subr_sleepqueue.c revision 354405
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Implementation of sleep queues used to hold queue of threads blocked on
29 * a wait channel.  Sleep queues are different from turnstiles in that wait
30 * channels are not owned by anyone, so there is no priority propagation.
31 * Sleep queues can also provide a timeout and can also be interrupted by
32 * signals.  That said, there are several similarities between the turnstile
33 * and sleep queue implementations.  (Note: turnstiles were implemented
34 * first.)  For example, both use a hash table of the same size where each
35 * bucket is referred to as a "chain" that contains both a spin lock and
36 * a linked list of queues.  An individual queue is located by using a hash
37 * to pick a chain, locking the chain, and then walking the chain searching
38 * for the queue.  This means that a wait channel object does not need to
39 * embed its queue head just as locks do not embed their turnstile queue
40 * head.  Threads also carry around a sleep queue that they lend to the
41 * wait channel when blocking.  Just as in turnstiles, the queue includes
42 * a free list of the sleep queues of other threads blocked on the same
43 * wait channel in the case of multiple waiters.
44 *
45 * Some additional functionality provided by sleep queues include the
46 * ability to set a timeout.  The timeout is managed using a per-thread
47 * callout that resumes a thread if it is asleep.  A thread may also
48 * catch signals while it is asleep (aka an interruptible sleep).  The
49 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50 * sleep queues also provide some extra assertions.  One is not allowed to
51 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52 * must consistently use the same lock to synchronize with a wait channel,
53 * though this check is currently only a warning for sleep/wakeup due to
54 * pre-existing abuse of that API.  The same lock must also be held when
55 * awakening threads, though that is currently only enforced for condition
56 * variables.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: stable/11/sys/kern/subr_sleepqueue.c 354405 2019-11-06 18:02:18Z mav $");
61
62#include "opt_sleepqueue_profiling.h"
63#include "opt_ddb.h"
64#include "opt_sched.h"
65#include "opt_stack.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/sbuf.h>
75#include <sys/sched.h>
76#include <sys/sdt.h>
77#include <sys/signalvar.h>
78#include <sys/sleepqueue.h>
79#include <sys/stack.h>
80#include <sys/sysctl.h>
81#include <sys/time.h>
82
83#include <machine/atomic.h>
84
85#include <vm/uma.h>
86
87#ifdef DDB
88#include <ddb/ddb.h>
89#endif
90
91
92/*
93 * Constants for the hash table of sleep queue chains.
94 * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
95 */
96#define	SC_TABLESIZE	256			/* Must be power of 2. */
97#define	SC_MASK		(SC_TABLESIZE - 1)
98#define	SC_SHIFT	8
99#define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
100			    SC_MASK)
101#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
102#define NR_SLEEPQS      2
103/*
104 * There are two different lists of sleep queues.  Both lists are connected
105 * via the sq_hash entries.  The first list is the sleep queue chain list
106 * that a sleep queue is on when it is attached to a wait channel.  The
107 * second list is the free list hung off of a sleep queue that is attached
108 * to a wait channel.
109 *
110 * Each sleep queue also contains the wait channel it is attached to, the
111 * list of threads blocked on that wait channel, flags specific to the
112 * wait channel, and the lock used to synchronize with a wait channel.
113 * The flags are used to catch mismatches between the various consumers
114 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
115 * The lock pointer is only used when invariants are enabled for various
116 * debugging checks.
117 *
118 * Locking key:
119 *  c - sleep queue chain lock
120 */
121struct sleepqueue {
122	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
123	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
124	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
125	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
126	void	*sq_wchan;			/* (c) Wait channel. */
127	int	sq_type;			/* (c) Queue type. */
128#ifdef INVARIANTS
129	struct lock_object *sq_lock;		/* (c) Associated lock. */
130#endif
131};
132
133struct sleepqueue_chain {
134	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
135	struct mtx sc_lock;			/* Spin lock for this chain. */
136#ifdef SLEEPQUEUE_PROFILING
137	u_int	sc_depth;			/* Length of sc_queues. */
138	u_int	sc_max_depth;			/* Max length of sc_queues. */
139#endif
140};
141
142#ifdef SLEEPQUEUE_PROFILING
143u_int sleepq_max_depth;
144static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
145static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
146    "sleepq chain stats");
147SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
148    0, "maxmimum depth achieved of a single chain");
149
150static void	sleepq_profile(const char *wmesg);
151static int	prof_enabled;
152#endif
153static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
154static uma_zone_t sleepq_zone;
155
156/*
157 * Prototypes for non-exported routines.
158 */
159static int	sleepq_catch_signals(void *wchan, int pri);
160static int	sleepq_check_signals(void);
161static int	sleepq_check_timeout(void);
162#ifdef INVARIANTS
163static void	sleepq_dtor(void *mem, int size, void *arg);
164#endif
165static int	sleepq_init(void *mem, int size, int flags);
166static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
167		    int pri);
168static void	sleepq_switch(void *wchan, int pri);
169static void	sleepq_timeout(void *arg);
170
171SDT_PROBE_DECLARE(sched, , , sleep);
172SDT_PROBE_DECLARE(sched, , , wakeup);
173
174/*
175 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
176 * Note that it must happen after sleepinit() has been fully executed, so
177 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
178 */
179#ifdef SLEEPQUEUE_PROFILING
180static void
181init_sleepqueue_profiling(void)
182{
183	char chain_name[10];
184	struct sysctl_oid *chain_oid;
185	u_int i;
186
187	for (i = 0; i < SC_TABLESIZE; i++) {
188		snprintf(chain_name, sizeof(chain_name), "%u", i);
189		chain_oid = SYSCTL_ADD_NODE(NULL,
190		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
191		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
192		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
193		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
194		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
195		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
196		    NULL);
197	}
198}
199
200SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
201    init_sleepqueue_profiling, NULL);
202#endif
203
204/*
205 * Early initialization of sleep queues that is called from the sleepinit()
206 * SYSINIT.
207 */
208void
209init_sleepqueues(void)
210{
211	int i;
212
213	for (i = 0; i < SC_TABLESIZE; i++) {
214		LIST_INIT(&sleepq_chains[i].sc_queues);
215		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
216		    MTX_SPIN | MTX_RECURSE);
217	}
218	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
219#ifdef INVARIANTS
220	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
221#else
222	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
223#endif
224
225	thread0.td_sleepqueue = sleepq_alloc();
226}
227
228/*
229 * Get a sleep queue for a new thread.
230 */
231struct sleepqueue *
232sleepq_alloc(void)
233{
234
235	return (uma_zalloc(sleepq_zone, M_WAITOK));
236}
237
238/*
239 * Free a sleep queue when a thread is destroyed.
240 */
241void
242sleepq_free(struct sleepqueue *sq)
243{
244
245	uma_zfree(sleepq_zone, sq);
246}
247
248/*
249 * Lock the sleep queue chain associated with the specified wait channel.
250 */
251void
252sleepq_lock(void *wchan)
253{
254	struct sleepqueue_chain *sc;
255
256	sc = SC_LOOKUP(wchan);
257	mtx_lock_spin(&sc->sc_lock);
258}
259
260/*
261 * Look up the sleep queue associated with a given wait channel in the hash
262 * table locking the associated sleep queue chain.  If no queue is found in
263 * the table, NULL is returned.
264 */
265struct sleepqueue *
266sleepq_lookup(void *wchan)
267{
268	struct sleepqueue_chain *sc;
269	struct sleepqueue *sq;
270
271	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
272	sc = SC_LOOKUP(wchan);
273	mtx_assert(&sc->sc_lock, MA_OWNED);
274	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
275		if (sq->sq_wchan == wchan)
276			return (sq);
277	return (NULL);
278}
279
280/*
281 * Unlock the sleep queue chain associated with a given wait channel.
282 */
283void
284sleepq_release(void *wchan)
285{
286	struct sleepqueue_chain *sc;
287
288	sc = SC_LOOKUP(wchan);
289	mtx_unlock_spin(&sc->sc_lock);
290}
291
292/*
293 * Places the current thread on the sleep queue for the specified wait
294 * channel.  If INVARIANTS is enabled, then it associates the passed in
295 * lock with the sleepq to make sure it is held when that sleep queue is
296 * woken up.
297 */
298void
299sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
300    int queue)
301{
302	struct sleepqueue_chain *sc;
303	struct sleepqueue *sq;
304	struct thread *td;
305
306	td = curthread;
307	sc = SC_LOOKUP(wchan);
308	mtx_assert(&sc->sc_lock, MA_OWNED);
309	MPASS(td->td_sleepqueue != NULL);
310	MPASS(wchan != NULL);
311	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
312
313	/* If this thread is not allowed to sleep, die a horrible death. */
314	KASSERT(td->td_no_sleeping == 0,
315	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
316	    __func__, td, wchan));
317
318	/* Look up the sleep queue associated with the wait channel 'wchan'. */
319	sq = sleepq_lookup(wchan);
320
321	/*
322	 * If the wait channel does not already have a sleep queue, use
323	 * this thread's sleep queue.  Otherwise, insert the current thread
324	 * into the sleep queue already in use by this wait channel.
325	 */
326	if (sq == NULL) {
327#ifdef INVARIANTS
328		int i;
329
330		sq = td->td_sleepqueue;
331		for (i = 0; i < NR_SLEEPQS; i++) {
332			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
333			    ("thread's sleep queue %d is not empty", i));
334			KASSERT(sq->sq_blockedcnt[i] == 0,
335			    ("thread's sleep queue %d count mismatches", i));
336		}
337		KASSERT(LIST_EMPTY(&sq->sq_free),
338		    ("thread's sleep queue has a non-empty free list"));
339		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
340		sq->sq_lock = lock;
341#endif
342#ifdef SLEEPQUEUE_PROFILING
343		sc->sc_depth++;
344		if (sc->sc_depth > sc->sc_max_depth) {
345			sc->sc_max_depth = sc->sc_depth;
346			if (sc->sc_max_depth > sleepq_max_depth)
347				sleepq_max_depth = sc->sc_max_depth;
348		}
349#endif
350		sq = td->td_sleepqueue;
351		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
352		sq->sq_wchan = wchan;
353		sq->sq_type = flags & SLEEPQ_TYPE;
354	} else {
355		MPASS(wchan == sq->sq_wchan);
356		MPASS(lock == sq->sq_lock);
357		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
358		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
359	}
360	thread_lock(td);
361	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
362	sq->sq_blockedcnt[queue]++;
363	td->td_sleepqueue = NULL;
364	td->td_sqqueue = queue;
365	td->td_wchan = wchan;
366	td->td_wmesg = wmesg;
367	if (flags & SLEEPQ_INTERRUPTIBLE) {
368		td->td_flags |= TDF_SINTR;
369		td->td_flags &= ~TDF_SLEEPABORT;
370	}
371	thread_unlock(td);
372}
373
374/*
375 * Sets a timeout that will remove the current thread from the specified
376 * sleep queue after timo ticks if the thread has not already been awakened.
377 */
378void
379sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
380    int flags)
381{
382	struct sleepqueue_chain *sc;
383	struct thread *td;
384	sbintime_t pr1;
385
386	td = curthread;
387	sc = SC_LOOKUP(wchan);
388	mtx_assert(&sc->sc_lock, MA_OWNED);
389	MPASS(TD_ON_SLEEPQ(td));
390	MPASS(td->td_sleepqueue == NULL);
391	MPASS(wchan != NULL);
392	if (cold && td == &thread0)
393		panic("timed sleep before timers are working");
394	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
395	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
396	thread_lock(td);
397	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
398	thread_unlock(td);
399	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
400	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
401	    C_DIRECT_EXEC);
402}
403
404/*
405 * Return the number of actual sleepers for the specified queue.
406 */
407u_int
408sleepq_sleepcnt(void *wchan, int queue)
409{
410	struct sleepqueue *sq;
411
412	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
413	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
414	sq = sleepq_lookup(wchan);
415	if (sq == NULL)
416		return (0);
417	return (sq->sq_blockedcnt[queue]);
418}
419
420/*
421 * Marks the pending sleep of the current thread as interruptible and
422 * makes an initial check for pending signals before putting a thread
423 * to sleep. Enters and exits with the thread lock held.  Thread lock
424 * may have transitioned from the sleepq lock to a run lock.
425 */
426static int
427sleepq_catch_signals(void *wchan, int pri)
428{
429	struct sleepqueue_chain *sc;
430	struct sleepqueue *sq;
431	struct thread *td;
432	struct proc *p;
433	struct sigacts *ps;
434	int sig, ret;
435
436	ret = 0;
437	td = curthread;
438	p = curproc;
439	sc = SC_LOOKUP(wchan);
440	mtx_assert(&sc->sc_lock, MA_OWNED);
441	MPASS(wchan != NULL);
442	if ((td->td_pflags & TDP_WAKEUP) != 0) {
443		td->td_pflags &= ~TDP_WAKEUP;
444		ret = EINTR;
445		thread_lock(td);
446		goto out;
447	}
448
449	/*
450	 * See if there are any pending signals or suspension requests for this
451	 * thread.  If not, we can switch immediately.
452	 */
453	thread_lock(td);
454	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) != 0) {
455		thread_unlock(td);
456		mtx_unlock_spin(&sc->sc_lock);
457		CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
458			(void *)td, (long)p->p_pid, td->td_name);
459		PROC_LOCK(p);
460		/*
461		 * Check for suspension first. Checking for signals and then
462		 * suspending could result in a missed signal, since a signal
463		 * can be delivered while this thread is suspended.
464		 */
465		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
466			ret = thread_suspend_check(1);
467			MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
468			if (ret != 0) {
469				PROC_UNLOCK(p);
470				mtx_lock_spin(&sc->sc_lock);
471				thread_lock(td);
472				goto out;
473			}
474		}
475		if ((td->td_flags & TDF_NEEDSIGCHK) != 0) {
476			ps = p->p_sigacts;
477			mtx_lock(&ps->ps_mtx);
478			sig = cursig(td);
479			if (sig == -1) {
480				mtx_unlock(&ps->ps_mtx);
481				KASSERT((td->td_flags & TDF_SBDRY) != 0,
482				    ("lost TDF_SBDRY"));
483				KASSERT(TD_SBDRY_INTR(td),
484				    ("lost TDF_SERESTART of TDF_SEINTR"));
485				KASSERT((td->td_flags &
486				    (TDF_SEINTR | TDF_SERESTART)) !=
487				    (TDF_SEINTR | TDF_SERESTART),
488				    ("both TDF_SEINTR and TDF_SERESTART"));
489				ret = TD_SBDRY_ERRNO(td);
490			} else if (sig != 0) {
491				ret = SIGISMEMBER(ps->ps_sigintr, sig) ?
492				    EINTR : ERESTART;
493				mtx_unlock(&ps->ps_mtx);
494			} else {
495				mtx_unlock(&ps->ps_mtx);
496			}
497
498			/*
499			 * Do not go into sleep if this thread was the
500			 * ptrace(2) attach leader.  cursig() consumed
501			 * SIGSTOP from PT_ATTACH, but we usually act
502			 * on the signal by interrupting sleep, and
503			 * should do that here as well.
504			 */
505			if ((td->td_dbgflags & TDB_FSTP) != 0) {
506				if (ret == 0)
507					ret = EINTR;
508				td->td_dbgflags &= ~TDB_FSTP;
509			}
510		}
511		/*
512		 * Lock the per-process spinlock prior to dropping the PROC_LOCK
513		 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
514		 * thread_lock() are currently held in tdsendsignal().
515		 */
516		PROC_SLOCK(p);
517		mtx_lock_spin(&sc->sc_lock);
518		PROC_UNLOCK(p);
519		thread_lock(td);
520		PROC_SUNLOCK(p);
521	}
522	if (ret == 0) {
523		sleepq_switch(wchan, pri);
524		return (0);
525	}
526out:
527	/*
528	 * There were pending signals and this thread is still
529	 * on the sleep queue, remove it from the sleep queue.
530	 */
531	if (TD_ON_SLEEPQ(td)) {
532		sq = sleepq_lookup(wchan);
533		if (sleepq_resume_thread(sq, td, 0)) {
534#ifdef INVARIANTS
535			/*
536			 * This thread hasn't gone to sleep yet, so it
537			 * should not be swapped out.
538			 */
539			panic("not waking up swapper");
540#endif
541		}
542	}
543	mtx_unlock_spin(&sc->sc_lock);
544	MPASS(td->td_lock != &sc->sc_lock);
545	return (ret);
546}
547
548/*
549 * Switches to another thread if we are still asleep on a sleep queue.
550 * Returns with thread lock.
551 */
552static void
553sleepq_switch(void *wchan, int pri)
554{
555	struct sleepqueue_chain *sc;
556	struct sleepqueue *sq;
557	struct thread *td;
558	bool rtc_changed;
559
560	td = curthread;
561	sc = SC_LOOKUP(wchan);
562	mtx_assert(&sc->sc_lock, MA_OWNED);
563	THREAD_LOCK_ASSERT(td, MA_OWNED);
564
565	/*
566	 * If we have a sleep queue, then we've already been woken up, so
567	 * just return.
568	 */
569	if (td->td_sleepqueue != NULL) {
570		mtx_unlock_spin(&sc->sc_lock);
571		return;
572	}
573
574	/*
575	 * If TDF_TIMEOUT is set, then our sleep has been timed out
576	 * already but we are still on the sleep queue, so dequeue the
577	 * thread and return.
578	 *
579	 * Do the same if the real-time clock has been adjusted since this
580	 * thread calculated its timeout based on that clock.  This handles
581	 * the following race:
582	 * - The Ts thread needs to sleep until an absolute real-clock time.
583	 *   It copies the global rtc_generation into curthread->td_rtcgen,
584	 *   reads the RTC, and calculates a sleep duration based on that time.
585	 *   See umtxq_sleep() for an example.
586	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
587	 *   threads that are sleeping until an absolute real-clock time.
588	 *   See tc_setclock() and the POSIX specification of clock_settime().
589	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
590	 *   so Tc has finished waking, so this thread must test td_rtcgen.
591	 * (The declaration of td_rtcgen refers to this comment.)
592	 */
593	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
594	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
595		if (rtc_changed) {
596			td->td_rtcgen = 0;
597		}
598		MPASS(TD_ON_SLEEPQ(td));
599		sq = sleepq_lookup(wchan);
600		if (sleepq_resume_thread(sq, td, 0)) {
601#ifdef INVARIANTS
602			/*
603			 * This thread hasn't gone to sleep yet, so it
604			 * should not be swapped out.
605			 */
606			panic("not waking up swapper");
607#endif
608		}
609		mtx_unlock_spin(&sc->sc_lock);
610		return;
611	}
612#ifdef SLEEPQUEUE_PROFILING
613	if (prof_enabled)
614		sleepq_profile(td->td_wmesg);
615#endif
616	MPASS(td->td_sleepqueue == NULL);
617	sched_sleep(td, pri);
618	thread_lock_set(td, &sc->sc_lock);
619	SDT_PROBE0(sched, , , sleep);
620	TD_SET_SLEEPING(td);
621	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
622	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
623	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
624	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
625}
626
627/*
628 * Check to see if we timed out.
629 */
630static int
631sleepq_check_timeout(void)
632{
633	struct thread *td;
634	int res;
635
636	td = curthread;
637	THREAD_LOCK_ASSERT(td, MA_OWNED);
638
639	/*
640	 * If TDF_TIMEOUT is set, we timed out.  But recheck
641	 * td_sleeptimo anyway.
642	 */
643	res = 0;
644	if (td->td_sleeptimo != 0) {
645		if (td->td_sleeptimo <= sbinuptime())
646			res = EWOULDBLOCK;
647		td->td_sleeptimo = 0;
648	}
649	if (td->td_flags & TDF_TIMEOUT)
650		td->td_flags &= ~TDF_TIMEOUT;
651	else
652		/*
653		 * We ignore the situation where timeout subsystem was
654		 * unable to stop our callout.  The struct thread is
655		 * type-stable, the callout will use the correct
656		 * memory when running.  The checks of the
657		 * td_sleeptimo value in this function and in
658		 * sleepq_timeout() ensure that the thread does not
659		 * get spurious wakeups, even if the callout was reset
660		 * or thread reused.
661		 */
662		callout_stop(&td->td_slpcallout);
663	return (res);
664}
665
666/*
667 * Check to see if we were awoken by a signal.
668 */
669static int
670sleepq_check_signals(void)
671{
672	struct thread *td;
673
674	td = curthread;
675	THREAD_LOCK_ASSERT(td, MA_OWNED);
676
677	/* We are no longer in an interruptible sleep. */
678	if (td->td_flags & TDF_SINTR)
679		td->td_flags &= ~TDF_SINTR;
680
681	if (td->td_flags & TDF_SLEEPABORT) {
682		td->td_flags &= ~TDF_SLEEPABORT;
683		return (td->td_intrval);
684	}
685
686	return (0);
687}
688
689/*
690 * Block the current thread until it is awakened from its sleep queue.
691 */
692void
693sleepq_wait(void *wchan, int pri)
694{
695	struct thread *td;
696
697	td = curthread;
698	MPASS(!(td->td_flags & TDF_SINTR));
699	thread_lock(td);
700	sleepq_switch(wchan, pri);
701	thread_unlock(td);
702}
703
704/*
705 * Block the current thread until it is awakened from its sleep queue
706 * or it is interrupted by a signal.
707 */
708int
709sleepq_wait_sig(void *wchan, int pri)
710{
711	int rcatch;
712	int rval;
713
714	rcatch = sleepq_catch_signals(wchan, pri);
715	rval = sleepq_check_signals();
716	thread_unlock(curthread);
717	if (rcatch)
718		return (rcatch);
719	return (rval);
720}
721
722/*
723 * Block the current thread until it is awakened from its sleep queue
724 * or it times out while waiting.
725 */
726int
727sleepq_timedwait(void *wchan, int pri)
728{
729	struct thread *td;
730	int rval;
731
732	td = curthread;
733	MPASS(!(td->td_flags & TDF_SINTR));
734	thread_lock(td);
735	sleepq_switch(wchan, pri);
736	rval = sleepq_check_timeout();
737	thread_unlock(td);
738
739	return (rval);
740}
741
742/*
743 * Block the current thread until it is awakened from its sleep queue,
744 * it is interrupted by a signal, or it times out waiting to be awakened.
745 */
746int
747sleepq_timedwait_sig(void *wchan, int pri)
748{
749	int rcatch, rvalt, rvals;
750
751	rcatch = sleepq_catch_signals(wchan, pri);
752	rvalt = sleepq_check_timeout();
753	rvals = sleepq_check_signals();
754	thread_unlock(curthread);
755	if (rcatch)
756		return (rcatch);
757	if (rvals)
758		return (rvals);
759	return (rvalt);
760}
761
762/*
763 * Returns the type of sleepqueue given a waitchannel.
764 */
765int
766sleepq_type(void *wchan)
767{
768	struct sleepqueue *sq;
769	int type;
770
771	MPASS(wchan != NULL);
772
773	sleepq_lock(wchan);
774	sq = sleepq_lookup(wchan);
775	if (sq == NULL) {
776		sleepq_release(wchan);
777		return (-1);
778	}
779	type = sq->sq_type;
780	sleepq_release(wchan);
781	return (type);
782}
783
784/*
785 * Removes a thread from a sleep queue and makes it
786 * runnable.
787 */
788static int
789sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
790{
791	struct sleepqueue_chain *sc;
792
793	MPASS(td != NULL);
794	MPASS(sq->sq_wchan != NULL);
795	MPASS(td->td_wchan == sq->sq_wchan);
796	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
797	THREAD_LOCK_ASSERT(td, MA_OWNED);
798	sc = SC_LOOKUP(sq->sq_wchan);
799	mtx_assert(&sc->sc_lock, MA_OWNED);
800
801	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
802
803	/* Remove the thread from the queue. */
804	sq->sq_blockedcnt[td->td_sqqueue]--;
805	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
806
807	/*
808	 * Get a sleep queue for this thread.  If this is the last waiter,
809	 * use the queue itself and take it out of the chain, otherwise,
810	 * remove a queue from the free list.
811	 */
812	if (LIST_EMPTY(&sq->sq_free)) {
813		td->td_sleepqueue = sq;
814#ifdef INVARIANTS
815		sq->sq_wchan = NULL;
816#endif
817#ifdef SLEEPQUEUE_PROFILING
818		sc->sc_depth--;
819#endif
820	} else
821		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
822	LIST_REMOVE(td->td_sleepqueue, sq_hash);
823
824	td->td_wmesg = NULL;
825	td->td_wchan = NULL;
826	td->td_flags &= ~TDF_SINTR;
827
828	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
829	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
830
831	/* Adjust priority if requested. */
832	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
833	if (pri != 0 && td->td_priority > pri &&
834	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
835		sched_prio(td, pri);
836
837	/*
838	 * Note that thread td might not be sleeping if it is running
839	 * sleepq_catch_signals() on another CPU or is blocked on its
840	 * proc lock to check signals.  There's no need to mark the
841	 * thread runnable in that case.
842	 */
843	if (TD_IS_SLEEPING(td)) {
844		TD_CLR_SLEEPING(td);
845		return (setrunnable(td));
846	}
847	return (0);
848}
849
850#ifdef INVARIANTS
851/*
852 * UMA zone item deallocator.
853 */
854static void
855sleepq_dtor(void *mem, int size, void *arg)
856{
857	struct sleepqueue *sq;
858	int i;
859
860	sq = mem;
861	for (i = 0; i < NR_SLEEPQS; i++) {
862		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
863		MPASS(sq->sq_blockedcnt[i] == 0);
864	}
865}
866#endif
867
868/*
869 * UMA zone item initializer.
870 */
871static int
872sleepq_init(void *mem, int size, int flags)
873{
874	struct sleepqueue *sq;
875	int i;
876
877	bzero(mem, size);
878	sq = mem;
879	for (i = 0; i < NR_SLEEPQS; i++) {
880		TAILQ_INIT(&sq->sq_blocked[i]);
881		sq->sq_blockedcnt[i] = 0;
882	}
883	LIST_INIT(&sq->sq_free);
884	return (0);
885}
886
887/*
888 * Find thread sleeping on a wait channel and resume it.
889 */
890int
891sleepq_signal(void *wchan, int flags, int pri, int queue)
892{
893	struct sleepqueue_chain *sc;
894	struct sleepqueue *sq;
895	struct threadqueue *head;
896	struct thread *td, *besttd;
897	int wakeup_swapper;
898
899	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
900	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
901	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
902	sq = sleepq_lookup(wchan);
903	if (sq == NULL)
904		return (0);
905	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
906	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
907
908	head = &sq->sq_blocked[queue];
909	if (flags & SLEEPQ_UNFAIR) {
910		/*
911		 * Find the most recently sleeping thread, but try to
912		 * skip threads still in process of context switch to
913		 * avoid spinning on the thread lock.
914		 */
915		sc = SC_LOOKUP(wchan);
916		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
917		while (besttd->td_lock != &sc->sc_lock) {
918			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
919			if (td == NULL)
920				break;
921			besttd = td;
922		}
923	} else {
924		/*
925		 * Find the highest priority thread on the queue.  If there
926		 * is a tie, use the thread that first appears in the queue
927		 * as it has been sleeping the longest since threads are
928		 * always added to the tail of sleep queues.
929		 */
930		besttd = td = TAILQ_FIRST(head);
931		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
932			if (td->td_priority < besttd->td_priority)
933				besttd = td;
934		}
935	}
936	MPASS(besttd != NULL);
937	thread_lock(besttd);
938	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
939	thread_unlock(besttd);
940	return (wakeup_swapper);
941}
942
943static bool
944match_any(struct thread *td __unused)
945{
946
947	return (true);
948}
949
950/*
951 * Resume all threads sleeping on a specified wait channel.
952 */
953int
954sleepq_broadcast(void *wchan, int flags, int pri, int queue)
955{
956	struct sleepqueue *sq;
957
958	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
959	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
960	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
961	sq = sleepq_lookup(wchan);
962	if (sq == NULL)
963		return (0);
964	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
965	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
966
967	return (sleepq_remove_matching(sq, queue, match_any, pri));
968}
969
970/*
971 * Resume threads on the sleep queue that match the given predicate.
972 */
973int
974sleepq_remove_matching(struct sleepqueue *sq, int queue,
975    bool (*matches)(struct thread *), int pri)
976{
977	struct thread *td, *tdn;
978	int wakeup_swapper;
979
980	/*
981	 * The last thread will be given ownership of sq and may
982	 * re-enqueue itself before sleepq_resume_thread() returns,
983	 * so we must cache the "next" queue item at the beginning
984	 * of the final iteration.
985	 */
986	wakeup_swapper = 0;
987	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
988		thread_lock(td);
989		if (matches(td))
990			wakeup_swapper |= sleepq_resume_thread(sq, td, pri);
991		thread_unlock(td);
992	}
993
994	return (wakeup_swapper);
995}
996
997/*
998 * Time sleeping threads out.  When the timeout expires, the thread is
999 * removed from the sleep queue and made runnable if it is still asleep.
1000 */
1001static void
1002sleepq_timeout(void *arg)
1003{
1004	struct sleepqueue_chain *sc;
1005	struct sleepqueue *sq;
1006	struct thread *td;
1007	void *wchan;
1008	int wakeup_swapper;
1009
1010	td = arg;
1011	wakeup_swapper = 0;
1012	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1013	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1014
1015	thread_lock(td);
1016
1017	if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) {
1018		/*
1019		 * The thread does not want a timeout (yet).
1020		 */
1021	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1022		/*
1023		 * See if the thread is asleep and get the wait
1024		 * channel if it is.
1025		 */
1026		wchan = td->td_wchan;
1027		sc = SC_LOOKUP(wchan);
1028		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1029		sq = sleepq_lookup(wchan);
1030		MPASS(sq != NULL);
1031		td->td_flags |= TDF_TIMEOUT;
1032		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1033	} else if (TD_ON_SLEEPQ(td)) {
1034		/*
1035		 * If the thread is on the SLEEPQ but isn't sleeping
1036		 * yet, it can either be on another CPU in between
1037		 * sleepq_add() and one of the sleepq_*wait*()
1038		 * routines or it can be in sleepq_catch_signals().
1039		 */
1040		td->td_flags |= TDF_TIMEOUT;
1041	}
1042
1043	thread_unlock(td);
1044	if (wakeup_swapper)
1045		kick_proc0();
1046}
1047
1048/*
1049 * Resumes a specific thread from the sleep queue associated with a specific
1050 * wait channel if it is on that queue.
1051 */
1052void
1053sleepq_remove(struct thread *td, void *wchan)
1054{
1055	struct sleepqueue *sq;
1056	int wakeup_swapper;
1057
1058	/*
1059	 * Look up the sleep queue for this wait channel, then re-check
1060	 * that the thread is asleep on that channel, if it is not, then
1061	 * bail.
1062	 */
1063	MPASS(wchan != NULL);
1064	sleepq_lock(wchan);
1065	sq = sleepq_lookup(wchan);
1066	/*
1067	 * We can not lock the thread here as it may be sleeping on a
1068	 * different sleepq.  However, holding the sleepq lock for this
1069	 * wchan can guarantee that we do not miss a wakeup for this
1070	 * channel.  The asserts below will catch any false positives.
1071	 */
1072	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1073		sleepq_release(wchan);
1074		return;
1075	}
1076	/* Thread is asleep on sleep queue sq, so wake it up. */
1077	thread_lock(td);
1078	MPASS(sq != NULL);
1079	MPASS(td->td_wchan == wchan);
1080	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
1081	thread_unlock(td);
1082	sleepq_release(wchan);
1083	if (wakeup_swapper)
1084		kick_proc0();
1085}
1086
1087/*
1088 * Abort a thread as if an interrupt had occurred.  Only abort
1089 * interruptible waits (unfortunately it isn't safe to abort others).
1090 */
1091int
1092sleepq_abort(struct thread *td, int intrval)
1093{
1094	struct sleepqueue *sq;
1095	void *wchan;
1096
1097	THREAD_LOCK_ASSERT(td, MA_OWNED);
1098	MPASS(TD_ON_SLEEPQ(td));
1099	MPASS(td->td_flags & TDF_SINTR);
1100	MPASS(intrval == EINTR || intrval == ERESTART);
1101
1102	/*
1103	 * If the TDF_TIMEOUT flag is set, just leave. A
1104	 * timeout is scheduled anyhow.
1105	 */
1106	if (td->td_flags & TDF_TIMEOUT)
1107		return (0);
1108
1109	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1110	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1111	td->td_intrval = intrval;
1112	td->td_flags |= TDF_SLEEPABORT;
1113	/*
1114	 * If the thread has not slept yet it will find the signal in
1115	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1116	 * we have to do it here.
1117	 */
1118	if (!TD_IS_SLEEPING(td))
1119		return (0);
1120	wchan = td->td_wchan;
1121	MPASS(wchan != NULL);
1122	sq = sleepq_lookup(wchan);
1123	MPASS(sq != NULL);
1124
1125	/* Thread is asleep on sleep queue sq, so wake it up. */
1126	return (sleepq_resume_thread(sq, td, 0));
1127}
1128
1129void
1130sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1131{
1132	struct sleepqueue_chain *sc;
1133	struct sleepqueue *sq, *sq1;
1134	int i, wakeup_swapper;
1135
1136	wakeup_swapper = 0;
1137	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1138		if (LIST_EMPTY(&sc->sc_queues)) {
1139			continue;
1140		}
1141		mtx_lock_spin(&sc->sc_lock);
1142		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1143			for (i = 0; i < NR_SLEEPQS; ++i) {
1144				wakeup_swapper |= sleepq_remove_matching(sq, i,
1145				    matches, 0);
1146			}
1147		}
1148		mtx_unlock_spin(&sc->sc_lock);
1149	}
1150	if (wakeup_swapper) {
1151		kick_proc0();
1152	}
1153}
1154
1155/*
1156 * Prints the stacks of all threads presently sleeping on wchan/queue to
1157 * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1158 * printed.  Typically, this will equal the number of threads sleeping on the
1159 * queue, but may be less if sb overflowed before all stacks were printed.
1160 */
1161#ifdef STACK
1162int
1163sleepq_sbuf_print_stacks(struct sbuf *sb, void *wchan, int queue,
1164    int *count_stacks_printed)
1165{
1166	struct thread *td, *td_next;
1167	struct sleepqueue *sq;
1168	struct stack **st;
1169	struct sbuf **td_infos;
1170	int i, stack_idx, error, stacks_to_allocate;
1171	bool finished, partial_print;
1172
1173	error = 0;
1174	finished = false;
1175	partial_print = false;
1176
1177	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1178	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1179
1180	stacks_to_allocate = 10;
1181	for (i = 0; i < 3 && !finished ; i++) {
1182		/* We cannot malloc while holding the queue's spinlock, so
1183		 * we do our mallocs now, and hope it is enough.  If it
1184		 * isn't, we will free these, drop the lock, malloc more,
1185		 * and try again, up to a point.  After that point we will
1186		 * give up and report ENOMEM. We also cannot write to sb
1187		 * during this time since the client may have set the
1188		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1189		 * malloc as we print to it.  So we defer actually printing
1190		 * to sb until after we drop the spinlock.
1191		 */
1192
1193		/* Where we will store the stacks. */
1194		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1195		    M_TEMP, M_WAITOK);
1196		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1197		    stack_idx++)
1198			st[stack_idx] = stack_create();
1199
1200		/* Where we will store the td name, tid, etc. */
1201		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1202		    M_TEMP, M_WAITOK);
1203		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1204		    stack_idx++)
1205			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1206			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1207			    SBUF_FIXEDLEN);
1208
1209		sleepq_lock(wchan);
1210		sq = sleepq_lookup(wchan);
1211		if (sq == NULL) {
1212			/* This sleepq does not exist; exit and return ENOENT. */
1213			error = ENOENT;
1214			finished = true;
1215			sleepq_release(wchan);
1216			goto loop_end;
1217		}
1218
1219		stack_idx = 0;
1220		/* Save thread info */
1221		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1222		    td_next) {
1223			if (stack_idx >= stacks_to_allocate)
1224				goto loop_end;
1225
1226			/* Note the td_lock is equal to the sleepq_lock here. */
1227			stack_save_td(st[stack_idx], td);
1228
1229			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1230			    td->td_tid, td->td_name, td);
1231
1232			++stack_idx;
1233		}
1234
1235		finished = true;
1236		sleepq_release(wchan);
1237
1238		/* Print the stacks */
1239		for (i = 0; i < stack_idx; i++) {
1240			sbuf_finish(td_infos[i]);
1241			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1242			stack_sbuf_print(sb, st[i]);
1243			sbuf_printf(sb, "\n");
1244
1245			error = sbuf_error(sb);
1246			if (error == 0)
1247				*count_stacks_printed = stack_idx;
1248		}
1249
1250loop_end:
1251		if (!finished)
1252			sleepq_release(wchan);
1253		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1254		    stack_idx++)
1255			stack_destroy(st[stack_idx]);
1256		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1257		    stack_idx++)
1258			sbuf_delete(td_infos[stack_idx]);
1259		free(st, M_TEMP);
1260		free(td_infos, M_TEMP);
1261		stacks_to_allocate *= 10;
1262	}
1263
1264	if (!finished && error == 0)
1265		error = ENOMEM;
1266
1267	return (error);
1268}
1269#endif
1270
1271#ifdef SLEEPQUEUE_PROFILING
1272#define	SLEEPQ_PROF_LOCATIONS	1024
1273#define	SLEEPQ_SBUFSIZE		512
1274struct sleepq_prof {
1275	LIST_ENTRY(sleepq_prof) sp_link;
1276	const char	*sp_wmesg;
1277	long		sp_count;
1278};
1279
1280LIST_HEAD(sqphead, sleepq_prof);
1281
1282struct sqphead sleepq_prof_free;
1283struct sqphead sleepq_hash[SC_TABLESIZE];
1284static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1285static struct mtx sleepq_prof_lock;
1286MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1287
1288static void
1289sleepq_profile(const char *wmesg)
1290{
1291	struct sleepq_prof *sp;
1292
1293	mtx_lock_spin(&sleepq_prof_lock);
1294	if (prof_enabled == 0)
1295		goto unlock;
1296	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1297		if (sp->sp_wmesg == wmesg)
1298			goto done;
1299	sp = LIST_FIRST(&sleepq_prof_free);
1300	if (sp == NULL)
1301		goto unlock;
1302	sp->sp_wmesg = wmesg;
1303	LIST_REMOVE(sp, sp_link);
1304	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1305done:
1306	sp->sp_count++;
1307unlock:
1308	mtx_unlock_spin(&sleepq_prof_lock);
1309	return;
1310}
1311
1312static void
1313sleepq_prof_reset(void)
1314{
1315	struct sleepq_prof *sp;
1316	int enabled;
1317	int i;
1318
1319	mtx_lock_spin(&sleepq_prof_lock);
1320	enabled = prof_enabled;
1321	prof_enabled = 0;
1322	for (i = 0; i < SC_TABLESIZE; i++)
1323		LIST_INIT(&sleepq_hash[i]);
1324	LIST_INIT(&sleepq_prof_free);
1325	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1326		sp = &sleepq_profent[i];
1327		sp->sp_wmesg = NULL;
1328		sp->sp_count = 0;
1329		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1330	}
1331	prof_enabled = enabled;
1332	mtx_unlock_spin(&sleepq_prof_lock);
1333}
1334
1335static int
1336enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1337{
1338	int error, v;
1339
1340	v = prof_enabled;
1341	error = sysctl_handle_int(oidp, &v, v, req);
1342	if (error)
1343		return (error);
1344	if (req->newptr == NULL)
1345		return (error);
1346	if (v == prof_enabled)
1347		return (0);
1348	if (v == 1)
1349		sleepq_prof_reset();
1350	mtx_lock_spin(&sleepq_prof_lock);
1351	prof_enabled = !!v;
1352	mtx_unlock_spin(&sleepq_prof_lock);
1353
1354	return (0);
1355}
1356
1357static int
1358reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1359{
1360	int error, v;
1361
1362	v = 0;
1363	error = sysctl_handle_int(oidp, &v, 0, req);
1364	if (error)
1365		return (error);
1366	if (req->newptr == NULL)
1367		return (error);
1368	if (v == 0)
1369		return (0);
1370	sleepq_prof_reset();
1371
1372	return (0);
1373}
1374
1375static int
1376dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1377{
1378	struct sleepq_prof *sp;
1379	struct sbuf *sb;
1380	int enabled;
1381	int error;
1382	int i;
1383
1384	error = sysctl_wire_old_buffer(req, 0);
1385	if (error != 0)
1386		return (error);
1387	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1388	sbuf_printf(sb, "\nwmesg\tcount\n");
1389	enabled = prof_enabled;
1390	mtx_lock_spin(&sleepq_prof_lock);
1391	prof_enabled = 0;
1392	mtx_unlock_spin(&sleepq_prof_lock);
1393	for (i = 0; i < SC_TABLESIZE; i++) {
1394		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1395			sbuf_printf(sb, "%s\t%ld\n",
1396			    sp->sp_wmesg, sp->sp_count);
1397		}
1398	}
1399	mtx_lock_spin(&sleepq_prof_lock);
1400	prof_enabled = enabled;
1401	mtx_unlock_spin(&sleepq_prof_lock);
1402
1403	error = sbuf_finish(sb);
1404	sbuf_delete(sb);
1405	return (error);
1406}
1407
1408SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1409    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1410SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1411    NULL, 0, reset_sleepq_prof_stats, "I",
1412    "Reset sleepqueue profiling statistics");
1413SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1414    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1415#endif
1416
1417#ifdef DDB
1418DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1419{
1420	struct sleepqueue_chain *sc;
1421	struct sleepqueue *sq;
1422#ifdef INVARIANTS
1423	struct lock_object *lock;
1424#endif
1425	struct thread *td;
1426	void *wchan;
1427	int i;
1428
1429	if (!have_addr)
1430		return;
1431
1432	/*
1433	 * First, see if there is an active sleep queue for the wait channel
1434	 * indicated by the address.
1435	 */
1436	wchan = (void *)addr;
1437	sc = SC_LOOKUP(wchan);
1438	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1439		if (sq->sq_wchan == wchan)
1440			goto found;
1441
1442	/*
1443	 * Second, see if there is an active sleep queue at the address
1444	 * indicated.
1445	 */
1446	for (i = 0; i < SC_TABLESIZE; i++)
1447		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1448			if (sq == (struct sleepqueue *)addr)
1449				goto found;
1450		}
1451
1452	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1453	return;
1454found:
1455	db_printf("Wait channel: %p\n", sq->sq_wchan);
1456	db_printf("Queue type: %d\n", sq->sq_type);
1457#ifdef INVARIANTS
1458	if (sq->sq_lock) {
1459		lock = sq->sq_lock;
1460		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1461		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1462	}
1463#endif
1464	db_printf("Blocked threads:\n");
1465	for (i = 0; i < NR_SLEEPQS; i++) {
1466		db_printf("\nQueue[%d]:\n", i);
1467		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1468			db_printf("\tempty\n");
1469		else
1470			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1471				      td_slpq) {
1472				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1473					  td->td_tid, td->td_proc->p_pid,
1474					  td->td_name);
1475			}
1476		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1477	}
1478}
1479
1480/* Alias 'show sleepqueue' to 'show sleepq'. */
1481DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1482#endif
1483