subr_sleepqueue.c revision 183054
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel.  Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals.  That said, there are several similarities between the turnstile
36 * and sleep queue implementations.  (Note: turnstiles were implemented
37 * first.)  For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues.  An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue.  This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head.  Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking.  Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
47 *
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout.  The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep.  A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep).  The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53 * sleep queues also provide some extra assertions.  One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API.  The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 183054 2008-09-15 22:45:14Z sam $");
64
65#include "opt_sleepqueue_profiling.h"
66#include "opt_ddb.h"
67#include "opt_sched.h"
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/lock.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/sbuf.h>
77#include <sys/sched.h>
78#include <sys/signalvar.h>
79#include <sys/sleepqueue.h>
80#include <sys/sysctl.h>
81
82#include <vm/uma.h>
83
84#ifdef DDB
85#include <ddb/ddb.h>
86#endif
87
88/*
89 * Constants for the hash table of sleep queue chains.  These constants are
90 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
91 * Basically, we ignore the lower 8 bits of the address since most wait
92 * channel pointers are aligned and only look at the next 7 bits for the
93 * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
94 */
95#define	SC_TABLESIZE	128			/* Must be power of 2. */
96#define	SC_MASK		(SC_TABLESIZE - 1)
97#define	SC_SHIFT	8
98#define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
99#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
100#define NR_SLEEPQS      2
101/*
102 * There two different lists of sleep queues.  Both lists are connected
103 * via the sq_hash entries.  The first list is the sleep queue chain list
104 * that a sleep queue is on when it is attached to a wait channel.  The
105 * second list is the free list hung off of a sleep queue that is attached
106 * to a wait channel.
107 *
108 * Each sleep queue also contains the wait channel it is attached to, the
109 * list of threads blocked on that wait channel, flags specific to the
110 * wait channel, and the lock used to synchronize with a wait channel.
111 * The flags are used to catch mismatches between the various consumers
112 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
113 * The lock pointer is only used when invariants are enabled for various
114 * debugging checks.
115 *
116 * Locking key:
117 *  c - sleep queue chain lock
118 */
119struct sleepqueue {
120	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
121	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
122	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
123	void	*sq_wchan;			/* (c) Wait channel. */
124#ifdef INVARIANTS
125	int	sq_type;			/* (c) Queue type. */
126	struct lock_object *sq_lock;		/* (c) Associated lock. */
127#endif
128};
129
130struct sleepqueue_chain {
131	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
132	struct mtx sc_lock;			/* Spin lock for this chain. */
133#ifdef SLEEPQUEUE_PROFILING
134	u_int	sc_depth;			/* Length of sc_queues. */
135	u_int	sc_max_depth;			/* Max length of sc_queues. */
136#endif
137};
138
139#ifdef SLEEPQUEUE_PROFILING
140u_int sleepq_max_depth;
141SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143    "sleepq chain stats");
144SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145    0, "maxmimum depth achieved of a single chain");
146
147static void	sleepq_profile(const char *wmesg);
148static int	prof_enabled;
149#endif
150static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
151static uma_zone_t sleepq_zone;
152
153/*
154 * Prototypes for non-exported routines.
155 */
156static int	sleepq_catch_signals(void *wchan, int pri);
157static int	sleepq_check_signals(void);
158static int	sleepq_check_timeout(void);
159#ifdef INVARIANTS
160static void	sleepq_dtor(void *mem, int size, void *arg);
161#endif
162static int	sleepq_init(void *mem, int size, int flags);
163static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164		    int pri);
165static void	sleepq_switch(void *wchan, int pri);
166static void	sleepq_timeout(void *arg);
167
168/*
169 * Early initialization of sleep queues that is called from the sleepinit()
170 * SYSINIT.
171 */
172void
173init_sleepqueues(void)
174{
175#ifdef SLEEPQUEUE_PROFILING
176	struct sysctl_oid *chain_oid;
177	char chain_name[10];
178#endif
179	int i;
180
181	for (i = 0; i < SC_TABLESIZE; i++) {
182		LIST_INIT(&sleepq_chains[i].sc_queues);
183		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
184		    MTX_SPIN | MTX_RECURSE);
185#ifdef SLEEPQUEUE_PROFILING
186		snprintf(chain_name, sizeof(chain_name), "%d", i);
187		chain_oid = SYSCTL_ADD_NODE(NULL,
188		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
189		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
190		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
191		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
192		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
193		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
194		    NULL);
195#endif
196	}
197	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
198#ifdef INVARIANTS
199	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
200#else
201	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
202#endif
203
204	thread0.td_sleepqueue = sleepq_alloc();
205}
206
207/*
208 * Get a sleep queue for a new thread.
209 */
210struct sleepqueue *
211sleepq_alloc(void)
212{
213
214	return (uma_zalloc(sleepq_zone, M_WAITOK));
215}
216
217/*
218 * Free a sleep queue when a thread is destroyed.
219 */
220void
221sleepq_free(struct sleepqueue *sq)
222{
223
224	uma_zfree(sleepq_zone, sq);
225}
226
227/*
228 * Lock the sleep queue chain associated with the specified wait channel.
229 */
230void
231sleepq_lock(void *wchan)
232{
233	struct sleepqueue_chain *sc;
234
235	sc = SC_LOOKUP(wchan);
236	mtx_lock_spin(&sc->sc_lock);
237}
238
239/*
240 * Look up the sleep queue associated with a given wait channel in the hash
241 * table locking the associated sleep queue chain.  If no queue is found in
242 * the table, NULL is returned.
243 */
244struct sleepqueue *
245sleepq_lookup(void *wchan)
246{
247	struct sleepqueue_chain *sc;
248	struct sleepqueue *sq;
249
250	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
251	sc = SC_LOOKUP(wchan);
252	mtx_assert(&sc->sc_lock, MA_OWNED);
253	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
254		if (sq->sq_wchan == wchan)
255			return (sq);
256	return (NULL);
257}
258
259/*
260 * Unlock the sleep queue chain associated with a given wait channel.
261 */
262void
263sleepq_release(void *wchan)
264{
265	struct sleepqueue_chain *sc;
266
267	sc = SC_LOOKUP(wchan);
268	mtx_unlock_spin(&sc->sc_lock);
269}
270
271/*
272 * Places the current thread on the sleep queue for the specified wait
273 * channel.  If INVARIANTS is enabled, then it associates the passed in
274 * lock with the sleepq to make sure it is held when that sleep queue is
275 * woken up.
276 */
277void
278sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
279    int queue)
280{
281	struct sleepqueue_chain *sc;
282	struct sleepqueue *sq;
283	struct thread *td;
284
285	td = curthread;
286	sc = SC_LOOKUP(wchan);
287	mtx_assert(&sc->sc_lock, MA_OWNED);
288	MPASS(td->td_sleepqueue != NULL);
289	MPASS(wchan != NULL);
290	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
291
292	/* If this thread is not allowed to sleep, die a horrible death. */
293	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
294	    ("Trying sleep, but thread marked as sleeping prohibited"));
295
296	/* Look up the sleep queue associated with the wait channel 'wchan'. */
297	sq = sleepq_lookup(wchan);
298
299	/*
300	 * If the wait channel does not already have a sleep queue, use
301	 * this thread's sleep queue.  Otherwise, insert the current thread
302	 * into the sleep queue already in use by this wait channel.
303	 */
304	if (sq == NULL) {
305#ifdef INVARIANTS
306		int i;
307
308		sq = td->td_sleepqueue;
309		for (i = 0; i < NR_SLEEPQS; i++)
310			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
311				("thread's sleep queue %d is not empty", i));
312		KASSERT(LIST_EMPTY(&sq->sq_free),
313		    ("thread's sleep queue has a non-empty free list"));
314		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
315		sq->sq_lock = lock;
316		sq->sq_type = flags & SLEEPQ_TYPE;
317#endif
318#ifdef SLEEPQUEUE_PROFILING
319		sc->sc_depth++;
320		if (sc->sc_depth > sc->sc_max_depth) {
321			sc->sc_max_depth = sc->sc_depth;
322			if (sc->sc_max_depth > sleepq_max_depth)
323				sleepq_max_depth = sc->sc_max_depth;
324		}
325#endif
326		sq = td->td_sleepqueue;
327		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
328		sq->sq_wchan = wchan;
329	} else {
330		MPASS(wchan == sq->sq_wchan);
331		MPASS(lock == sq->sq_lock);
332		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
333		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
334	}
335	thread_lock(td);
336	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
337	td->td_sleepqueue = NULL;
338	td->td_sqqueue = queue;
339	td->td_wchan = wchan;
340	td->td_wmesg = wmesg;
341	if (flags & SLEEPQ_INTERRUPTIBLE) {
342		td->td_flags |= TDF_SINTR;
343		td->td_flags &= ~TDF_SLEEPABORT;
344	}
345	thread_unlock(td);
346}
347
348/*
349 * Sets a timeout that will remove the current thread from the specified
350 * sleep queue after timo ticks if the thread has not already been awakened.
351 */
352void
353sleepq_set_timeout(void *wchan, int timo)
354{
355	struct sleepqueue_chain *sc;
356	struct thread *td;
357
358	td = curthread;
359	sc = SC_LOOKUP(wchan);
360	mtx_assert(&sc->sc_lock, MA_OWNED);
361	MPASS(TD_ON_SLEEPQ(td));
362	MPASS(td->td_sleepqueue == NULL);
363	MPASS(wchan != NULL);
364	callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
365}
366
367/*
368 * Marks the pending sleep of the current thread as interruptible and
369 * makes an initial check for pending signals before putting a thread
370 * to sleep. Enters and exits with the thread lock held.  Thread lock
371 * may have transitioned from the sleepq lock to a run lock.
372 */
373static int
374sleepq_catch_signals(void *wchan, int pri)
375{
376	struct sleepqueue_chain *sc;
377	struct sleepqueue *sq;
378	struct thread *td;
379	struct proc *p;
380	struct sigacts *ps;
381	int sig, ret;
382
383	td = curthread;
384	p = curproc;
385	sc = SC_LOOKUP(wchan);
386	mtx_assert(&sc->sc_lock, MA_OWNED);
387	MPASS(wchan != NULL);
388	/*
389	 * See if there are any pending signals for this thread.  If not
390	 * we can switch immediately.  Otherwise do the signal processing
391	 * directly.
392	 */
393	thread_lock(td);
394	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
395		sleepq_switch(wchan, pri);
396		return (0);
397	}
398	thread_unlock(td);
399	mtx_unlock_spin(&sc->sc_lock);
400	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
401		(void *)td, (long)p->p_pid, td->td_name);
402	PROC_LOCK(p);
403	ps = p->p_sigacts;
404	mtx_lock(&ps->ps_mtx);
405	sig = cursig(td);
406	if (sig == 0) {
407		mtx_unlock(&ps->ps_mtx);
408		ret = thread_suspend_check(1);
409		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
410	} else {
411		if (SIGISMEMBER(ps->ps_sigintr, sig))
412			ret = EINTR;
413		else
414			ret = ERESTART;
415		mtx_unlock(&ps->ps_mtx);
416	}
417	/*
418	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
419	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
420	 * thread_lock() are currently held in tdsignal().
421	 */
422	PROC_SLOCK(p);
423	mtx_lock_spin(&sc->sc_lock);
424	PROC_UNLOCK(p);
425	thread_lock(td);
426	PROC_SUNLOCK(p);
427	if (ret == 0) {
428		sleepq_switch(wchan, pri);
429		return (0);
430	}
431	/*
432	 * There were pending signals and this thread is still
433	 * on the sleep queue, remove it from the sleep queue.
434	 */
435	if (TD_ON_SLEEPQ(td)) {
436		sq = sleepq_lookup(wchan);
437		if (sleepq_resume_thread(sq, td, 0)) {
438#ifdef INVARIANTS
439			/*
440			 * This thread hasn't gone to sleep yet, so it
441			 * should not be swapped out.
442			 */
443			panic("not waking up swapper");
444#endif
445		}
446	}
447	mtx_unlock_spin(&sc->sc_lock);
448	MPASS(td->td_lock != &sc->sc_lock);
449	return (ret);
450}
451
452/*
453 * Switches to another thread if we are still asleep on a sleep queue.
454 * Returns with thread lock.
455 */
456static void
457sleepq_switch(void *wchan, int pri)
458{
459	struct sleepqueue_chain *sc;
460	struct sleepqueue *sq;
461	struct thread *td;
462
463	td = curthread;
464	sc = SC_LOOKUP(wchan);
465	mtx_assert(&sc->sc_lock, MA_OWNED);
466	THREAD_LOCK_ASSERT(td, MA_OWNED);
467
468	/*
469	 * If we have a sleep queue, then we've already been woken up, so
470	 * just return.
471	 */
472	if (td->td_sleepqueue != NULL) {
473		mtx_unlock_spin(&sc->sc_lock);
474		return;
475	}
476
477	/*
478	 * If TDF_TIMEOUT is set, then our sleep has been timed out
479	 * already but we are still on the sleep queue, so dequeue the
480	 * thread and return.
481	 */
482	if (td->td_flags & TDF_TIMEOUT) {
483		MPASS(TD_ON_SLEEPQ(td));
484		sq = sleepq_lookup(wchan);
485		if (sleepq_resume_thread(sq, td, 0)) {
486#ifdef INVARIANTS
487			/*
488			 * This thread hasn't gone to sleep yet, so it
489			 * should not be swapped out.
490			 */
491			panic("not waking up swapper");
492#endif
493		}
494		mtx_unlock_spin(&sc->sc_lock);
495		return;
496	}
497#ifdef SLEEPQUEUE_PROFILING
498	if (prof_enabled)
499		sleepq_profile(td->td_wmesg);
500#endif
501	MPASS(td->td_sleepqueue == NULL);
502	sched_sleep(td, pri);
503	thread_lock_set(td, &sc->sc_lock);
504	TD_SET_SLEEPING(td);
505	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
506	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
507	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
508	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
509}
510
511/*
512 * Check to see if we timed out.
513 */
514static int
515sleepq_check_timeout(void)
516{
517	struct thread *td;
518
519	td = curthread;
520	THREAD_LOCK_ASSERT(td, MA_OWNED);
521
522	/*
523	 * If TDF_TIMEOUT is set, we timed out.
524	 */
525	if (td->td_flags & TDF_TIMEOUT) {
526		td->td_flags &= ~TDF_TIMEOUT;
527		return (EWOULDBLOCK);
528	}
529
530	/*
531	 * If TDF_TIMOFAIL is set, the timeout ran after we had
532	 * already been woken up.
533	 */
534	if (td->td_flags & TDF_TIMOFAIL)
535		td->td_flags &= ~TDF_TIMOFAIL;
536
537	/*
538	 * If callout_stop() fails, then the timeout is running on
539	 * another CPU, so synchronize with it to avoid having it
540	 * accidentally wake up a subsequent sleep.
541	 */
542	else if (callout_stop(&td->td_slpcallout) == 0) {
543		td->td_flags |= TDF_TIMEOUT;
544		TD_SET_SLEEPING(td);
545		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
546	}
547	return (0);
548}
549
550/*
551 * Check to see if we were awoken by a signal.
552 */
553static int
554sleepq_check_signals(void)
555{
556	struct thread *td;
557
558	td = curthread;
559	THREAD_LOCK_ASSERT(td, MA_OWNED);
560
561	/* We are no longer in an interruptible sleep. */
562	if (td->td_flags & TDF_SINTR)
563		td->td_flags &= ~TDF_SINTR;
564
565	if (td->td_flags & TDF_SLEEPABORT) {
566		td->td_flags &= ~TDF_SLEEPABORT;
567		return (td->td_intrval);
568	}
569
570	return (0);
571}
572
573/*
574 * Block the current thread until it is awakened from its sleep queue.
575 */
576void
577sleepq_wait(void *wchan, int pri)
578{
579	struct thread *td;
580
581	td = curthread;
582	MPASS(!(td->td_flags & TDF_SINTR));
583	thread_lock(td);
584	sleepq_switch(wchan, pri);
585	thread_unlock(td);
586}
587
588/*
589 * Block the current thread until it is awakened from its sleep queue
590 * or it is interrupted by a signal.
591 */
592int
593sleepq_wait_sig(void *wchan, int pri)
594{
595	int rcatch;
596	int rval;
597
598	rcatch = sleepq_catch_signals(wchan, pri);
599	rval = sleepq_check_signals();
600	thread_unlock(curthread);
601	if (rcatch)
602		return (rcatch);
603	return (rval);
604}
605
606/*
607 * Block the current thread until it is awakened from its sleep queue
608 * or it times out while waiting.
609 */
610int
611sleepq_timedwait(void *wchan, int pri)
612{
613	struct thread *td;
614	int rval;
615
616	td = curthread;
617	MPASS(!(td->td_flags & TDF_SINTR));
618	thread_lock(td);
619	sleepq_switch(wchan, pri);
620	rval = sleepq_check_timeout();
621	thread_unlock(td);
622
623	return (rval);
624}
625
626/*
627 * Block the current thread until it is awakened from its sleep queue,
628 * it is interrupted by a signal, or it times out waiting to be awakened.
629 */
630int
631sleepq_timedwait_sig(void *wchan, int pri)
632{
633	int rcatch, rvalt, rvals;
634
635	rcatch = sleepq_catch_signals(wchan, pri);
636	rvalt = sleepq_check_timeout();
637	rvals = sleepq_check_signals();
638	thread_unlock(curthread);
639	if (rcatch)
640		return (rcatch);
641	if (rvals)
642		return (rvals);
643	return (rvalt);
644}
645
646/*
647 * Removes a thread from a sleep queue and makes it
648 * runnable.
649 */
650static int
651sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
652{
653	struct sleepqueue_chain *sc;
654
655	MPASS(td != NULL);
656	MPASS(sq->sq_wchan != NULL);
657	MPASS(td->td_wchan == sq->sq_wchan);
658	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
659	THREAD_LOCK_ASSERT(td, MA_OWNED);
660	sc = SC_LOOKUP(sq->sq_wchan);
661	mtx_assert(&sc->sc_lock, MA_OWNED);
662
663	/* Remove the thread from the queue. */
664	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
665
666	/*
667	 * Get a sleep queue for this thread.  If this is the last waiter,
668	 * use the queue itself and take it out of the chain, otherwise,
669	 * remove a queue from the free list.
670	 */
671	if (LIST_EMPTY(&sq->sq_free)) {
672		td->td_sleepqueue = sq;
673#ifdef INVARIANTS
674		sq->sq_wchan = NULL;
675#endif
676#ifdef SLEEPQUEUE_PROFILING
677		sc->sc_depth--;
678#endif
679	} else
680		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
681	LIST_REMOVE(td->td_sleepqueue, sq_hash);
682
683	td->td_wmesg = NULL;
684	td->td_wchan = NULL;
685	td->td_flags &= ~TDF_SINTR;
686
687	/*
688	 * Note that thread td might not be sleeping if it is running
689	 * sleepq_catch_signals() on another CPU or is blocked on
690	 * its proc lock to check signals.  It doesn't hurt to clear
691	 * the sleeping flag if it isn't set though, so we just always
692	 * do it.  However, we can't assert that it is set.
693	 */
694	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
695	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
696	TD_CLR_SLEEPING(td);
697
698	/* Adjust priority if requested. */
699	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
700	if (pri != 0 && td->td_priority > pri)
701		sched_prio(td, pri);
702	return (setrunnable(td));
703}
704
705#ifdef INVARIANTS
706/*
707 * UMA zone item deallocator.
708 */
709static void
710sleepq_dtor(void *mem, int size, void *arg)
711{
712	struct sleepqueue *sq;
713	int i;
714
715	sq = mem;
716	for (i = 0; i < NR_SLEEPQS; i++)
717		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
718}
719#endif
720
721/*
722 * UMA zone item initializer.
723 */
724static int
725sleepq_init(void *mem, int size, int flags)
726{
727	struct sleepqueue *sq;
728	int i;
729
730	bzero(mem, size);
731	sq = mem;
732	for (i = 0; i < NR_SLEEPQS; i++)
733		TAILQ_INIT(&sq->sq_blocked[i]);
734	LIST_INIT(&sq->sq_free);
735	return (0);
736}
737
738/*
739 * Find the highest priority thread sleeping on a wait channel and resume it.
740 */
741int
742sleepq_signal(void *wchan, int flags, int pri, int queue)
743{
744	struct sleepqueue *sq;
745	struct thread *td, *besttd;
746	int wakeup_swapper;
747
748	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
749	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
750	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
751	sq = sleepq_lookup(wchan);
752	if (sq == NULL)
753		return (0);
754	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
755	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
756
757	/*
758	 * Find the highest priority thread on the queue.  If there is a
759	 * tie, use the thread that first appears in the queue as it has
760	 * been sleeping the longest since threads are always added to
761	 * the tail of sleep queues.
762	 */
763	besttd = NULL;
764	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
765		if (besttd == NULL || td->td_priority < besttd->td_priority)
766			besttd = td;
767	}
768	MPASS(besttd != NULL);
769	thread_lock(besttd);
770	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
771	thread_unlock(besttd);
772	return (wakeup_swapper);
773}
774
775/*
776 * Resume all threads sleeping on a specified wait channel.
777 */
778int
779sleepq_broadcast(void *wchan, int flags, int pri, int queue)
780{
781	struct sleepqueue *sq;
782	struct thread *td, *tdn;
783	int wakeup_swapper;
784
785	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
786	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
787	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
788	sq = sleepq_lookup(wchan);
789	if (sq == NULL)
790		return (0);
791	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
792	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
793
794	/* Resume all blocked threads on the sleep queue. */
795	wakeup_swapper = 0;
796	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
797		thread_lock(td);
798		if (sleepq_resume_thread(sq, td, pri))
799			wakeup_swapper = 1;
800		thread_unlock(td);
801	}
802	return (wakeup_swapper);
803}
804
805/*
806 * Time sleeping threads out.  When the timeout expires, the thread is
807 * removed from the sleep queue and made runnable if it is still asleep.
808 */
809static void
810sleepq_timeout(void *arg)
811{
812	struct sleepqueue_chain *sc;
813	struct sleepqueue *sq;
814	struct thread *td;
815	void *wchan;
816	int wakeup_swapper;
817
818	td = arg;
819	wakeup_swapper = 0;
820	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
821	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
822
823	/*
824	 * First, see if the thread is asleep and get the wait channel if
825	 * it is.
826	 */
827	thread_lock(td);
828	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
829		wchan = td->td_wchan;
830		sc = SC_LOOKUP(wchan);
831		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
832		sq = sleepq_lookup(wchan);
833		MPASS(sq != NULL);
834		td->td_flags |= TDF_TIMEOUT;
835		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
836		thread_unlock(td);
837		if (wakeup_swapper)
838			kick_proc0();
839		return;
840	}
841
842	/*
843	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
844	 * can either be on another CPU in between sleepq_add() and
845	 * one of the sleepq_*wait*() routines or it can be in
846	 * sleepq_catch_signals().
847	 */
848	if (TD_ON_SLEEPQ(td)) {
849		td->td_flags |= TDF_TIMEOUT;
850		thread_unlock(td);
851		return;
852	}
853
854	/*
855	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
856	 * then the other thread has already yielded to us, so clear
857	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
858	 * we know that the other thread is not on a sleep queue, but it
859	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
860	 * to let it know that the timeout has already run and doesn't
861	 * need to be canceled.
862	 */
863	if (td->td_flags & TDF_TIMEOUT) {
864		MPASS(TD_IS_SLEEPING(td));
865		td->td_flags &= ~TDF_TIMEOUT;
866		TD_CLR_SLEEPING(td);
867		wakeup_swapper = setrunnable(td);
868	} else
869		td->td_flags |= TDF_TIMOFAIL;
870	thread_unlock(td);
871	if (wakeup_swapper)
872		kick_proc0();
873}
874
875/*
876 * Resumes a specific thread from the sleep queue associated with a specific
877 * wait channel if it is on that queue.
878 */
879void
880sleepq_remove(struct thread *td, void *wchan)
881{
882	struct sleepqueue *sq;
883	int wakeup_swapper;
884
885	/*
886	 * Look up the sleep queue for this wait channel, then re-check
887	 * that the thread is asleep on that channel, if it is not, then
888	 * bail.
889	 */
890	MPASS(wchan != NULL);
891	sleepq_lock(wchan);
892	sq = sleepq_lookup(wchan);
893	/*
894	 * We can not lock the thread here as it may be sleeping on a
895	 * different sleepq.  However, holding the sleepq lock for this
896	 * wchan can guarantee that we do not miss a wakeup for this
897	 * channel.  The asserts below will catch any false positives.
898	 */
899	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
900		sleepq_release(wchan);
901		return;
902	}
903	/* Thread is asleep on sleep queue sq, so wake it up. */
904	thread_lock(td);
905	MPASS(sq != NULL);
906	MPASS(td->td_wchan == wchan);
907	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
908	thread_unlock(td);
909	sleepq_release(wchan);
910	if (wakeup_swapper)
911		kick_proc0();
912}
913
914/*
915 * Abort a thread as if an interrupt had occurred.  Only abort
916 * interruptible waits (unfortunately it isn't safe to abort others).
917 */
918int
919sleepq_abort(struct thread *td, int intrval)
920{
921	struct sleepqueue *sq;
922	void *wchan;
923
924	THREAD_LOCK_ASSERT(td, MA_OWNED);
925	MPASS(TD_ON_SLEEPQ(td));
926	MPASS(td->td_flags & TDF_SINTR);
927	MPASS(intrval == EINTR || intrval == ERESTART);
928
929	/*
930	 * If the TDF_TIMEOUT flag is set, just leave. A
931	 * timeout is scheduled anyhow.
932	 */
933	if (td->td_flags & TDF_TIMEOUT)
934		return (0);
935
936	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
937	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
938	td->td_intrval = intrval;
939	td->td_flags |= TDF_SLEEPABORT;
940	/*
941	 * If the thread has not slept yet it will find the signal in
942	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
943	 * we have to do it here.
944	 */
945	if (!TD_IS_SLEEPING(td))
946		return (0);
947	wchan = td->td_wchan;
948	MPASS(wchan != NULL);
949	sq = sleepq_lookup(wchan);
950	MPASS(sq != NULL);
951
952	/* Thread is asleep on sleep queue sq, so wake it up. */
953	return (sleepq_resume_thread(sq, td, 0));
954}
955
956#ifdef SLEEPQUEUE_PROFILING
957#define	SLEEPQ_PROF_LOCATIONS	1024
958#define	SLEEPQ_SBUFSIZE		(40 * 512)
959struct sleepq_prof {
960	LIST_ENTRY(sleepq_prof) sp_link;
961	const char	*sp_wmesg;
962	long		sp_count;
963};
964
965LIST_HEAD(sqphead, sleepq_prof);
966
967struct sqphead sleepq_prof_free;
968struct sqphead sleepq_hash[SC_TABLESIZE];
969static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
970static struct mtx sleepq_prof_lock;
971MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
972
973static void
974sleepq_profile(const char *wmesg)
975{
976	struct sleepq_prof *sp;
977
978	mtx_lock_spin(&sleepq_prof_lock);
979	if (prof_enabled == 0)
980		goto unlock;
981	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
982		if (sp->sp_wmesg == wmesg)
983			goto done;
984	sp = LIST_FIRST(&sleepq_prof_free);
985	if (sp == NULL)
986		goto unlock;
987	sp->sp_wmesg = wmesg;
988	LIST_REMOVE(sp, sp_link);
989	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
990done:
991	sp->sp_count++;
992unlock:
993	mtx_unlock_spin(&sleepq_prof_lock);
994	return;
995}
996
997static void
998sleepq_prof_reset(void)
999{
1000	struct sleepq_prof *sp;
1001	int enabled;
1002	int i;
1003
1004	mtx_lock_spin(&sleepq_prof_lock);
1005	enabled = prof_enabled;
1006	prof_enabled = 0;
1007	for (i = 0; i < SC_TABLESIZE; i++)
1008		LIST_INIT(&sleepq_hash[i]);
1009	LIST_INIT(&sleepq_prof_free);
1010	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1011		sp = &sleepq_profent[i];
1012		sp->sp_wmesg = NULL;
1013		sp->sp_count = 0;
1014		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1015	}
1016	prof_enabled = enabled;
1017	mtx_unlock_spin(&sleepq_prof_lock);
1018}
1019
1020static int
1021enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1022{
1023	int error, v;
1024
1025	v = prof_enabled;
1026	error = sysctl_handle_int(oidp, &v, v, req);
1027	if (error)
1028		return (error);
1029	if (req->newptr == NULL)
1030		return (error);
1031	if (v == prof_enabled)
1032		return (0);
1033	if (v == 1)
1034		sleepq_prof_reset();
1035	mtx_lock_spin(&sleepq_prof_lock);
1036	prof_enabled = !!v;
1037	mtx_unlock_spin(&sleepq_prof_lock);
1038
1039	return (0);
1040}
1041
1042static int
1043reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1044{
1045	int error, v;
1046
1047	v = 0;
1048	error = sysctl_handle_int(oidp, &v, 0, req);
1049	if (error)
1050		return (error);
1051	if (req->newptr == NULL)
1052		return (error);
1053	if (v == 0)
1054		return (0);
1055	sleepq_prof_reset();
1056
1057	return (0);
1058}
1059
1060static int
1061dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1062{
1063	static int multiplier = 1;
1064	struct sleepq_prof *sp;
1065	struct sbuf *sb;
1066	int enabled;
1067	int error;
1068	int i;
1069
1070retry_sbufops:
1071	sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
1072	sbuf_printf(sb, "\nwmesg\tcount\n");
1073	enabled = prof_enabled;
1074	mtx_lock_spin(&sleepq_prof_lock);
1075	prof_enabled = 0;
1076	mtx_unlock_spin(&sleepq_prof_lock);
1077	for (i = 0; i < SC_TABLESIZE; i++) {
1078		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1079			sbuf_printf(sb, "%s\t%ld\n",
1080			    sp->sp_wmesg, sp->sp_count);
1081			if (sbuf_overflowed(sb)) {
1082				sbuf_delete(sb);
1083				multiplier++;
1084				goto retry_sbufops;
1085			}
1086		}
1087	}
1088	mtx_lock_spin(&sleepq_prof_lock);
1089	prof_enabled = enabled;
1090	mtx_unlock_spin(&sleepq_prof_lock);
1091
1092	sbuf_finish(sb);
1093	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
1094	sbuf_delete(sb);
1095	return (error);
1096}
1097
1098SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1099    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1100SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1101    NULL, 0, reset_sleepq_prof_stats, "I",
1102    "Reset sleepqueue profiling statistics");
1103SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1104    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1105#endif
1106
1107#ifdef DDB
1108DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1109{
1110	struct sleepqueue_chain *sc;
1111	struct sleepqueue *sq;
1112#ifdef INVARIANTS
1113	struct lock_object *lock;
1114#endif
1115	struct thread *td;
1116	void *wchan;
1117	int i;
1118
1119	if (!have_addr)
1120		return;
1121
1122	/*
1123	 * First, see if there is an active sleep queue for the wait channel
1124	 * indicated by the address.
1125	 */
1126	wchan = (void *)addr;
1127	sc = SC_LOOKUP(wchan);
1128	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1129		if (sq->sq_wchan == wchan)
1130			goto found;
1131
1132	/*
1133	 * Second, see if there is an active sleep queue at the address
1134	 * indicated.
1135	 */
1136	for (i = 0; i < SC_TABLESIZE; i++)
1137		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1138			if (sq == (struct sleepqueue *)addr)
1139				goto found;
1140		}
1141
1142	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1143	return;
1144found:
1145	db_printf("Wait channel: %p\n", sq->sq_wchan);
1146#ifdef INVARIANTS
1147	db_printf("Queue type: %d\n", sq->sq_type);
1148	if (sq->sq_lock) {
1149		lock = sq->sq_lock;
1150		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1151		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1152	}
1153#endif
1154	db_printf("Blocked threads:\n");
1155	for (i = 0; i < NR_SLEEPQS; i++) {
1156		db_printf("\nQueue[%d]:\n", i);
1157		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1158			db_printf("\tempty\n");
1159		else
1160			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1161				      td_slpq) {
1162				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1163					  td->td_tid, td->td_proc->p_pid,
1164					  td->td_name);
1165			}
1166	}
1167}
1168
1169/* Alias 'show sleepqueue' to 'show sleepq'. */
1170DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1171#endif
1172