subr_sleepqueue.c revision 177375
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel.  Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals.  That said, there are several similarities between the turnstile
36 * and sleep queue implementations.  (Note: turnstiles were implemented
37 * first.)  For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues.  An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue.  This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head.  Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking.  Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
47 *
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout.  The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep.  A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep).  The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53 * sleep queues also provide some extra assertions.  One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API.  The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 177375 2008-03-19 07:35:14Z jeff $");
64
65#include "opt_sleepqueue_profiling.h"
66#include "opt_ddb.h"
67#include "opt_sched.h"
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/lock.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/sbuf.h>
77#include <sys/sched.h>
78#include <sys/signalvar.h>
79#include <sys/sleepqueue.h>
80#include <sys/sysctl.h>
81
82#include <vm/uma.h>
83
84#ifdef DDB
85#include <ddb/ddb.h>
86#endif
87
88/*
89 * Constants for the hash table of sleep queue chains.  These constants are
90 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
91 * Basically, we ignore the lower 8 bits of the address since most wait
92 * channel pointers are aligned and only look at the next 7 bits for the
93 * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
94 */
95#define	SC_TABLESIZE	128			/* Must be power of 2. */
96#define	SC_MASK		(SC_TABLESIZE - 1)
97#define	SC_SHIFT	8
98#define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
99#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
100#define NR_SLEEPQS      2
101/*
102 * There two different lists of sleep queues.  Both lists are connected
103 * via the sq_hash entries.  The first list is the sleep queue chain list
104 * that a sleep queue is on when it is attached to a wait channel.  The
105 * second list is the free list hung off of a sleep queue that is attached
106 * to a wait channel.
107 *
108 * Each sleep queue also contains the wait channel it is attached to, the
109 * list of threads blocked on that wait channel, flags specific to the
110 * wait channel, and the lock used to synchronize with a wait channel.
111 * The flags are used to catch mismatches between the various consumers
112 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
113 * The lock pointer is only used when invariants are enabled for various
114 * debugging checks.
115 *
116 * Locking key:
117 *  c - sleep queue chain lock
118 */
119struct sleepqueue {
120	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
121	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
122	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
123	void	*sq_wchan;			/* (c) Wait channel. */
124#ifdef INVARIANTS
125	int	sq_type;			/* (c) Queue type. */
126	struct lock_object *sq_lock;		/* (c) Associated lock. */
127#endif
128};
129
130struct sleepqueue_chain {
131	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
132	struct mtx sc_lock;			/* Spin lock for this chain. */
133#ifdef SLEEPQUEUE_PROFILING
134	u_int	sc_depth;			/* Length of sc_queues. */
135	u_int	sc_max_depth;			/* Max length of sc_queues. */
136#endif
137};
138
139#ifdef SLEEPQUEUE_PROFILING
140u_int sleepq_max_depth;
141SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143    "sleepq chain stats");
144SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145    0, "maxmimum depth achieved of a single chain");
146
147static void	sleepq_profile(const char *wmesg);
148static int	prof_enabled;
149#endif
150static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
151static uma_zone_t sleepq_zone;
152
153/*
154 * Prototypes for non-exported routines.
155 */
156static int	sleepq_catch_signals(void *wchan, int pri);
157static int	sleepq_check_signals(void);
158static int	sleepq_check_timeout(void);
159#ifdef INVARIANTS
160static void	sleepq_dtor(void *mem, int size, void *arg);
161#endif
162static int	sleepq_init(void *mem, int size, int flags);
163static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164		    int pri);
165static void	sleepq_switch(void *wchan, int pri);
166static void	sleepq_timeout(void *arg);
167
168/*
169 * Early initialization of sleep queues that is called from the sleepinit()
170 * SYSINIT.
171 */
172void
173init_sleepqueues(void)
174{
175#ifdef SLEEPQUEUE_PROFILING
176	struct sysctl_oid *chain_oid;
177	char chain_name[10];
178#endif
179	int i;
180
181	for (i = 0; i < SC_TABLESIZE; i++) {
182		LIST_INIT(&sleepq_chains[i].sc_queues);
183		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
184		    MTX_SPIN | MTX_RECURSE);
185#ifdef SLEEPQUEUE_PROFILING
186		snprintf(chain_name, sizeof(chain_name), "%d", i);
187		chain_oid = SYSCTL_ADD_NODE(NULL,
188		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
189		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
190		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
191		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
192		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
193		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
194		    NULL);
195#endif
196	}
197	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
198#ifdef INVARIANTS
199	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
200#else
201	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
202#endif
203
204	thread0.td_sleepqueue = sleepq_alloc();
205}
206
207/*
208 * Get a sleep queue for a new thread.
209 */
210struct sleepqueue *
211sleepq_alloc(void)
212{
213
214	return (uma_zalloc(sleepq_zone, M_WAITOK));
215}
216
217/*
218 * Free a sleep queue when a thread is destroyed.
219 */
220void
221sleepq_free(struct sleepqueue *sq)
222{
223
224	uma_zfree(sleepq_zone, sq);
225}
226
227/*
228 * Lock the sleep queue chain associated with the specified wait channel.
229 */
230void
231sleepq_lock(void *wchan)
232{
233	struct sleepqueue_chain *sc;
234
235	sc = SC_LOOKUP(wchan);
236	mtx_lock_spin(&sc->sc_lock);
237}
238
239/*
240 * Look up the sleep queue associated with a given wait channel in the hash
241 * table locking the associated sleep queue chain.  If no queue is found in
242 * the table, NULL is returned.
243 */
244struct sleepqueue *
245sleepq_lookup(void *wchan)
246{
247	struct sleepqueue_chain *sc;
248	struct sleepqueue *sq;
249
250	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
251	sc = SC_LOOKUP(wchan);
252	mtx_assert(&sc->sc_lock, MA_OWNED);
253	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
254		if (sq->sq_wchan == wchan)
255			return (sq);
256	return (NULL);
257}
258
259/*
260 * Unlock the sleep queue chain associated with a given wait channel.
261 */
262void
263sleepq_release(void *wchan)
264{
265	struct sleepqueue_chain *sc;
266
267	sc = SC_LOOKUP(wchan);
268	mtx_unlock_spin(&sc->sc_lock);
269}
270
271/*
272 * Places the current thread on the sleep queue for the specified wait
273 * channel.  If INVARIANTS is enabled, then it associates the passed in
274 * lock with the sleepq to make sure it is held when that sleep queue is
275 * woken up.
276 */
277void
278sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
279    int queue)
280{
281	struct sleepqueue_chain *sc;
282	struct sleepqueue *sq;
283	struct thread *td;
284
285	td = curthread;
286	sc = SC_LOOKUP(wchan);
287	mtx_assert(&sc->sc_lock, MA_OWNED);
288	MPASS(td->td_sleepqueue != NULL);
289	MPASS(wchan != NULL);
290	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
291
292	/* If this thread is not allowed to sleep, die a horrible death. */
293	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
294	    ("Trying sleep, but thread marked as sleeping prohibited"));
295
296	/* Look up the sleep queue associated with the wait channel 'wchan'. */
297	sq = sleepq_lookup(wchan);
298
299	/*
300	 * If the wait channel does not already have a sleep queue, use
301	 * this thread's sleep queue.  Otherwise, insert the current thread
302	 * into the sleep queue already in use by this wait channel.
303	 */
304	if (sq == NULL) {
305#ifdef INVARIANTS
306		int i;
307
308		sq = td->td_sleepqueue;
309		for (i = 0; i < NR_SLEEPQS; i++)
310			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
311				("thread's sleep queue %d is not empty", i));
312		KASSERT(LIST_EMPTY(&sq->sq_free),
313		    ("thread's sleep queue has a non-empty free list"));
314		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
315		sq->sq_lock = lock;
316		sq->sq_type = flags & SLEEPQ_TYPE;
317#endif
318#ifdef SLEEPQUEUE_PROFILING
319		sc->sc_depth++;
320		if (sc->sc_depth > sc->sc_max_depth) {
321			sc->sc_max_depth = sc->sc_depth;
322			if (sc->sc_max_depth > sleepq_max_depth)
323				sleepq_max_depth = sc->sc_max_depth;
324		}
325#endif
326		sq = td->td_sleepqueue;
327		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
328		sq->sq_wchan = wchan;
329	} else {
330		MPASS(wchan == sq->sq_wchan);
331		MPASS(lock == sq->sq_lock);
332		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
333		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
334	}
335	thread_lock(td);
336	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
337	td->td_sleepqueue = NULL;
338	td->td_sqqueue = queue;
339	td->td_wchan = wchan;
340	td->td_wmesg = wmesg;
341	if (flags & SLEEPQ_INTERRUPTIBLE) {
342		td->td_flags |= TDF_SINTR;
343		td->td_flags &= ~TDF_SLEEPABORT;
344	}
345	thread_unlock(td);
346}
347
348/*
349 * Sets a timeout that will remove the current thread from the specified
350 * sleep queue after timo ticks if the thread has not already been awakened.
351 */
352void
353sleepq_set_timeout(void *wchan, int timo)
354{
355	struct sleepqueue_chain *sc;
356	struct thread *td;
357
358	td = curthread;
359	sc = SC_LOOKUP(wchan);
360	mtx_assert(&sc->sc_lock, MA_OWNED);
361	MPASS(TD_ON_SLEEPQ(td));
362	MPASS(td->td_sleepqueue == NULL);
363	MPASS(wchan != NULL);
364	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
365}
366
367/*
368 * Marks the pending sleep of the current thread as interruptible and
369 * makes an initial check for pending signals before putting a thread
370 * to sleep. Enters and exits with the thread lock held.  Thread lock
371 * may have transitioned from the sleepq lock to a run lock.
372 */
373static int
374sleepq_catch_signals(void *wchan, int pri)
375{
376	struct sleepqueue_chain *sc;
377	struct sleepqueue *sq;
378	struct thread *td;
379	struct proc *p;
380	struct sigacts *ps;
381	int sig, ret;
382
383	td = curthread;
384	p = curproc;
385	sc = SC_LOOKUP(wchan);
386	mtx_assert(&sc->sc_lock, MA_OWNED);
387	MPASS(wchan != NULL);
388	/*
389	 * See if there are any pending signals for this thread.  If not
390	 * we can switch immediately.  Otherwise do the signal processing
391	 * directly.
392	 */
393	thread_lock(td);
394	if ((td->td_flags & TDF_NEEDSIGCHK) == 0) {
395		sleepq_switch(wchan, pri);
396		return (0);
397	}
398	thread_unlock(td);
399	mtx_unlock_spin(&sc->sc_lock);
400	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
401		(void *)td, (long)p->p_pid, td->td_name);
402	PROC_LOCK(p);
403	ps = p->p_sigacts;
404	mtx_lock(&ps->ps_mtx);
405	sig = cursig(td);
406	if (sig == 0) {
407		mtx_unlock(&ps->ps_mtx);
408		ret = thread_suspend_check(1);
409		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
410	} else {
411		if (SIGISMEMBER(ps->ps_sigintr, sig))
412			ret = EINTR;
413		else
414			ret = ERESTART;
415		mtx_unlock(&ps->ps_mtx);
416	}
417	/*
418	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
419	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
420	 * thread_lock() are currently held in tdsignal().
421	 */
422	PROC_SLOCK(p);
423	mtx_lock_spin(&sc->sc_lock);
424	PROC_UNLOCK(p);
425	thread_lock(td);
426	PROC_SUNLOCK(p);
427	if (ret == 0) {
428		sleepq_switch(wchan, pri);
429		return (0);
430	}
431	/*
432	 * There were pending signals and this thread is still
433	 * on the sleep queue, remove it from the sleep queue.
434	 */
435	if (TD_ON_SLEEPQ(td)) {
436		sq = sleepq_lookup(wchan);
437		sleepq_resume_thread(sq, td, 0);
438	}
439	mtx_unlock_spin(&sc->sc_lock);
440	MPASS(td->td_lock != &sc->sc_lock);
441	return (ret);
442}
443
444/*
445 * Switches to another thread if we are still asleep on a sleep queue.
446 * Returns with thread lock.
447 */
448static void
449sleepq_switch(void *wchan, int pri)
450{
451	struct sleepqueue_chain *sc;
452	struct sleepqueue *sq;
453	struct thread *td;
454
455	td = curthread;
456	sc = SC_LOOKUP(wchan);
457	mtx_assert(&sc->sc_lock, MA_OWNED);
458	THREAD_LOCK_ASSERT(td, MA_OWNED);
459
460	/*
461	 * If we have a sleep queue, then we've already been woken up, so
462	 * just return.
463	 */
464	if (td->td_sleepqueue != NULL) {
465		mtx_unlock_spin(&sc->sc_lock);
466		return;
467	}
468
469	/*
470	 * If TDF_TIMEOUT is set, then our sleep has been timed out
471	 * already but we are still on the sleep queue, so dequeue the
472	 * thread and return.
473	 */
474	if (td->td_flags & TDF_TIMEOUT) {
475		MPASS(TD_ON_SLEEPQ(td));
476		sq = sleepq_lookup(wchan);
477		sleepq_resume_thread(sq, td, 0);
478		mtx_unlock_spin(&sc->sc_lock);
479		return;
480	}
481#ifdef SLEEPQUEUE_PROFILING
482	if (prof_enabled)
483		sleepq_profile(td->td_wmesg);
484#endif
485	MPASS(td->td_sleepqueue == NULL);
486	sched_sleep(td, pri);
487	thread_lock_set(td, &sc->sc_lock);
488	TD_SET_SLEEPING(td);
489	SCHED_STAT_INC(switch_sleepq);
490	mi_switch(SW_VOL, NULL);
491	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
492	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
493	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
494}
495
496/*
497 * Check to see if we timed out.
498 */
499static int
500sleepq_check_timeout(void)
501{
502	struct thread *td;
503
504	td = curthread;
505	THREAD_LOCK_ASSERT(td, MA_OWNED);
506
507	/*
508	 * If TDF_TIMEOUT is set, we timed out.
509	 */
510	if (td->td_flags & TDF_TIMEOUT) {
511		td->td_flags &= ~TDF_TIMEOUT;
512		return (EWOULDBLOCK);
513	}
514
515	/*
516	 * If TDF_TIMOFAIL is set, the timeout ran after we had
517	 * already been woken up.
518	 */
519	if (td->td_flags & TDF_TIMOFAIL)
520		td->td_flags &= ~TDF_TIMOFAIL;
521
522	/*
523	 * If callout_stop() fails, then the timeout is running on
524	 * another CPU, so synchronize with it to avoid having it
525	 * accidentally wake up a subsequent sleep.
526	 */
527	else if (callout_stop(&td->td_slpcallout) == 0) {
528		td->td_flags |= TDF_TIMEOUT;
529		TD_SET_SLEEPING(td);
530		SCHED_STAT_INC(switch_sleepqtimo);
531		mi_switch(SW_INVOL, NULL);
532	}
533	return (0);
534}
535
536/*
537 * Check to see if we were awoken by a signal.
538 */
539static int
540sleepq_check_signals(void)
541{
542	struct thread *td;
543
544	td = curthread;
545	THREAD_LOCK_ASSERT(td, MA_OWNED);
546
547	/* We are no longer in an interruptible sleep. */
548	if (td->td_flags & TDF_SINTR)
549		td->td_flags &= ~TDF_SINTR;
550
551	if (td->td_flags & TDF_SLEEPABORT) {
552		td->td_flags &= ~TDF_SLEEPABORT;
553		return (td->td_intrval);
554	}
555
556	return (0);
557}
558
559/*
560 * Block the current thread until it is awakened from its sleep queue.
561 */
562void
563sleepq_wait(void *wchan, int pri)
564{
565	struct thread *td;
566
567	td = curthread;
568	MPASS(!(td->td_flags & TDF_SINTR));
569	thread_lock(td);
570	sleepq_switch(wchan, pri);
571	thread_unlock(td);
572}
573
574/*
575 * Block the current thread until it is awakened from its sleep queue
576 * or it is interrupted by a signal.
577 */
578int
579sleepq_wait_sig(void *wchan, int pri)
580{
581	int rcatch;
582	int rval;
583
584	rcatch = sleepq_catch_signals(wchan, pri);
585	rval = sleepq_check_signals();
586	thread_unlock(curthread);
587	if (rcatch)
588		return (rcatch);
589	return (rval);
590}
591
592/*
593 * Block the current thread until it is awakened from its sleep queue
594 * or it times out while waiting.
595 */
596int
597sleepq_timedwait(void *wchan, int pri)
598{
599	struct thread *td;
600	int rval;
601
602	td = curthread;
603	MPASS(!(td->td_flags & TDF_SINTR));
604	thread_lock(td);
605	sleepq_switch(wchan, pri);
606	rval = sleepq_check_timeout();
607	thread_unlock(td);
608
609	return (rval);
610}
611
612/*
613 * Block the current thread until it is awakened from its sleep queue,
614 * it is interrupted by a signal, or it times out waiting to be awakened.
615 */
616int
617sleepq_timedwait_sig(void *wchan, int pri)
618{
619	int rcatch, rvalt, rvals;
620
621	rcatch = sleepq_catch_signals(wchan, pri);
622	rvalt = sleepq_check_timeout();
623	rvals = sleepq_check_signals();
624	thread_unlock(curthread);
625	if (rcatch)
626		return (rcatch);
627	if (rvals)
628		return (rvals);
629	return (rvalt);
630}
631
632/*
633 * Removes a thread from a sleep queue and makes it
634 * runnable.
635 */
636static void
637sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
638{
639	struct sleepqueue_chain *sc;
640
641	MPASS(td != NULL);
642	MPASS(sq->sq_wchan != NULL);
643	MPASS(td->td_wchan == sq->sq_wchan);
644	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
645	THREAD_LOCK_ASSERT(td, MA_OWNED);
646	sc = SC_LOOKUP(sq->sq_wchan);
647	mtx_assert(&sc->sc_lock, MA_OWNED);
648
649	/* Remove the thread from the queue. */
650	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
651
652	/*
653	 * Get a sleep queue for this thread.  If this is the last waiter,
654	 * use the queue itself and take it out of the chain, otherwise,
655	 * remove a queue from the free list.
656	 */
657	if (LIST_EMPTY(&sq->sq_free)) {
658		td->td_sleepqueue = sq;
659#ifdef INVARIANTS
660		sq->sq_wchan = NULL;
661#endif
662#ifdef SLEEPQUEUE_PROFILING
663		sc->sc_depth--;
664#endif
665	} else
666		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
667	LIST_REMOVE(td->td_sleepqueue, sq_hash);
668
669	td->td_wmesg = NULL;
670	td->td_wchan = NULL;
671	td->td_flags &= ~TDF_SINTR;
672
673	/*
674	 * Note that thread td might not be sleeping if it is running
675	 * sleepq_catch_signals() on another CPU or is blocked on
676	 * its proc lock to check signals.  It doesn't hurt to clear
677	 * the sleeping flag if it isn't set though, so we just always
678	 * do it.  However, we can't assert that it is set.
679	 */
680	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
681	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
682	TD_CLR_SLEEPING(td);
683
684	/* Adjust priority if requested. */
685	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
686	if (pri != 0 && td->td_priority > pri)
687		sched_prio(td, pri);
688	setrunnable(td);
689}
690
691#ifdef INVARIANTS
692/*
693 * UMA zone item deallocator.
694 */
695static void
696sleepq_dtor(void *mem, int size, void *arg)
697{
698	struct sleepqueue *sq;
699	int i;
700
701	sq = mem;
702	for (i = 0; i < NR_SLEEPQS; i++)
703		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
704}
705#endif
706
707/*
708 * UMA zone item initializer.
709 */
710static int
711sleepq_init(void *mem, int size, int flags)
712{
713	struct sleepqueue *sq;
714	int i;
715
716	bzero(mem, size);
717	sq = mem;
718	for (i = 0; i < NR_SLEEPQS; i++)
719		TAILQ_INIT(&sq->sq_blocked[i]);
720	LIST_INIT(&sq->sq_free);
721	return (0);
722}
723
724/*
725 * Find the highest priority thread sleeping on a wait channel and resume it.
726 */
727void
728sleepq_signal(void *wchan, int flags, int pri, int queue)
729{
730	struct sleepqueue *sq;
731	struct thread *td, *besttd;
732
733	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
734	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
735	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
736	sq = sleepq_lookup(wchan);
737	if (sq == NULL)
738		return;
739	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
740	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
741
742	/*
743	 * Find the highest priority thread on the queue.  If there is a
744	 * tie, use the thread that first appears in the queue as it has
745	 * been sleeping the longest since threads are always added to
746	 * the tail of sleep queues.
747	 */
748	besttd = NULL;
749	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
750		if (besttd == NULL || td->td_priority < besttd->td_priority)
751			besttd = td;
752	}
753	MPASS(besttd != NULL);
754	thread_lock(besttd);
755	sleepq_resume_thread(sq, besttd, pri);
756	thread_unlock(besttd);
757}
758
759/*
760 * Resume all threads sleeping on a specified wait channel.
761 */
762void
763sleepq_broadcast(void *wchan, int flags, int pri, int queue)
764{
765	struct sleepqueue *sq;
766	struct thread *td;
767
768	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
769	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
770	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
771	sq = sleepq_lookup(wchan);
772	if (sq == NULL)
773		return;
774	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
775	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
776
777	/* Resume all blocked threads on the sleep queue. */
778	while (!TAILQ_EMPTY(&sq->sq_blocked[queue])) {
779		td = TAILQ_FIRST(&sq->sq_blocked[queue]);
780		thread_lock(td);
781		sleepq_resume_thread(sq, td, pri);
782		thread_unlock(td);
783	}
784}
785
786/*
787 * Time sleeping threads out.  When the timeout expires, the thread is
788 * removed from the sleep queue and made runnable if it is still asleep.
789 */
790static void
791sleepq_timeout(void *arg)
792{
793	struct sleepqueue_chain *sc;
794	struct sleepqueue *sq;
795	struct thread *td;
796	void *wchan;
797
798	td = arg;
799	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
800	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
801
802	/*
803	 * First, see if the thread is asleep and get the wait channel if
804	 * it is.
805	 */
806	thread_lock(td);
807	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
808		wchan = td->td_wchan;
809		sc = SC_LOOKUP(wchan);
810		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
811		sq = sleepq_lookup(wchan);
812		MPASS(sq != NULL);
813		td->td_flags |= TDF_TIMEOUT;
814		sleepq_resume_thread(sq, td, 0);
815		thread_unlock(td);
816		return;
817	}
818
819	/*
820	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
821	 * can either be on another CPU in between sleepq_add() and
822	 * one of the sleepq_*wait*() routines or it can be in
823	 * sleepq_catch_signals().
824	 */
825	if (TD_ON_SLEEPQ(td)) {
826		td->td_flags |= TDF_TIMEOUT;
827		thread_unlock(td);
828		return;
829	}
830
831	/*
832	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
833	 * then the other thread has already yielded to us, so clear
834	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
835	 * we know that the other thread is not on a sleep queue, but it
836	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
837	 * to let it know that the timeout has already run and doesn't
838	 * need to be canceled.
839	 */
840	if (td->td_flags & TDF_TIMEOUT) {
841		MPASS(TD_IS_SLEEPING(td));
842		td->td_flags &= ~TDF_TIMEOUT;
843		TD_CLR_SLEEPING(td);
844		setrunnable(td);
845	} else
846		td->td_flags |= TDF_TIMOFAIL;
847	thread_unlock(td);
848}
849
850/*
851 * Resumes a specific thread from the sleep queue associated with a specific
852 * wait channel if it is on that queue.
853 */
854void
855sleepq_remove(struct thread *td, void *wchan)
856{
857	struct sleepqueue *sq;
858
859	/*
860	 * Look up the sleep queue for this wait channel, then re-check
861	 * that the thread is asleep on that channel, if it is not, then
862	 * bail.
863	 */
864	MPASS(wchan != NULL);
865	sleepq_lock(wchan);
866	sq = sleepq_lookup(wchan);
867	/*
868	 * We can not lock the thread here as it may be sleeping on a
869	 * different sleepq.  However, holding the sleepq lock for this
870	 * wchan can guarantee that we do not miss a wakeup for this
871	 * channel.  The asserts below will catch any false positives.
872	 */
873	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
874		sleepq_release(wchan);
875		return;
876	}
877	/* Thread is asleep on sleep queue sq, so wake it up. */
878	thread_lock(td);
879	MPASS(sq != NULL);
880	MPASS(td->td_wchan == wchan);
881	sleepq_resume_thread(sq, td, 0);
882	thread_unlock(td);
883	sleepq_release(wchan);
884}
885
886/*
887 * Abort a thread as if an interrupt had occurred.  Only abort
888 * interruptible waits (unfortunately it isn't safe to abort others).
889 */
890void
891sleepq_abort(struct thread *td, int intrval)
892{
893	struct sleepqueue *sq;
894	void *wchan;
895
896	THREAD_LOCK_ASSERT(td, MA_OWNED);
897	MPASS(TD_ON_SLEEPQ(td));
898	MPASS(td->td_flags & TDF_SINTR);
899	MPASS(intrval == EINTR || intrval == ERESTART);
900
901	/*
902	 * If the TDF_TIMEOUT flag is set, just leave. A
903	 * timeout is scheduled anyhow.
904	 */
905	if (td->td_flags & TDF_TIMEOUT)
906		return;
907
908	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
909	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
910	td->td_intrval = intrval;
911	td->td_flags |= TDF_SLEEPABORT;
912	/*
913	 * If the thread has not slept yet it will find the signal in
914	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
915	 * we have to do it here.
916	 */
917	if (!TD_IS_SLEEPING(td))
918		return;
919	wchan = td->td_wchan;
920	MPASS(wchan != NULL);
921	sq = sleepq_lookup(wchan);
922	MPASS(sq != NULL);
923
924	/* Thread is asleep on sleep queue sq, so wake it up. */
925	sleepq_resume_thread(sq, td, 0);
926}
927
928#ifdef SLEEPQUEUE_PROFILING
929#define	SLEEPQ_PROF_LOCATIONS	1024
930#define	SLEEPQ_SBUFSIZE		(40 * 512)
931struct sleepq_prof {
932	LIST_ENTRY(sleepq_prof) sp_link;
933	const char	*sp_wmesg;
934	long		sp_count;
935};
936
937LIST_HEAD(sqphead, sleepq_prof);
938
939struct sqphead sleepq_prof_free;
940struct sqphead sleepq_hash[SC_TABLESIZE];
941static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
942static struct mtx sleepq_prof_lock;
943MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
944
945static void
946sleepq_profile(const char *wmesg)
947{
948	struct sleepq_prof *sp;
949
950	mtx_lock_spin(&sleepq_prof_lock);
951	if (prof_enabled == 0)
952		goto unlock;
953	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
954		if (sp->sp_wmesg == wmesg)
955			goto done;
956	sp = LIST_FIRST(&sleepq_prof_free);
957	if (sp == NULL)
958		goto unlock;
959	sp->sp_wmesg = wmesg;
960	LIST_REMOVE(sp, sp_link);
961	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
962done:
963	sp->sp_count++;
964unlock:
965	mtx_unlock_spin(&sleepq_prof_lock);
966	return;
967}
968
969static void
970sleepq_prof_reset(void)
971{
972	struct sleepq_prof *sp;
973	int enabled;
974	int i;
975
976	mtx_lock_spin(&sleepq_prof_lock);
977	enabled = prof_enabled;
978	prof_enabled = 0;
979	for (i = 0; i < SC_TABLESIZE; i++)
980		LIST_INIT(&sleepq_hash[i]);
981	LIST_INIT(&sleepq_prof_free);
982	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
983		sp = &sleepq_profent[i];
984		sp->sp_wmesg = NULL;
985		sp->sp_count = 0;
986		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
987	}
988	prof_enabled = enabled;
989	mtx_unlock_spin(&sleepq_prof_lock);
990}
991
992static int
993enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
994{
995	int error, v;
996
997	v = prof_enabled;
998	error = sysctl_handle_int(oidp, &v, v, req);
999	if (error)
1000		return (error);
1001	if (req->newptr == NULL)
1002		return (error);
1003	if (v == prof_enabled)
1004		return (0);
1005	if (v == 1)
1006		sleepq_prof_reset();
1007	mtx_lock_spin(&sleepq_prof_lock);
1008	prof_enabled = !!v;
1009	mtx_unlock_spin(&sleepq_prof_lock);
1010
1011	return (0);
1012}
1013
1014static int
1015reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1016{
1017	int error, v;
1018
1019	v = 0;
1020	error = sysctl_handle_int(oidp, &v, 0, req);
1021	if (error)
1022		return (error);
1023	if (req->newptr == NULL)
1024		return (error);
1025	if (v == 0)
1026		return (0);
1027	sleepq_prof_reset();
1028
1029	return (0);
1030}
1031
1032static int
1033dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1034{
1035	static int multiplier = 1;
1036	struct sleepq_prof *sp;
1037	struct sbuf *sb;
1038	int enabled;
1039	int error;
1040	int i;
1041
1042retry_sbufops:
1043	sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
1044	sbuf_printf(sb, "\nwmesg\tcount\n");
1045	enabled = prof_enabled;
1046	mtx_lock_spin(&sleepq_prof_lock);
1047	prof_enabled = 0;
1048	mtx_unlock_spin(&sleepq_prof_lock);
1049	for (i = 0; i < SC_TABLESIZE; i++) {
1050		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1051			sbuf_printf(sb, "%s\t%ld\n",
1052			    sp->sp_wmesg, sp->sp_count);
1053			if (sbuf_overflowed(sb)) {
1054				sbuf_delete(sb);
1055				multiplier++;
1056				goto retry_sbufops;
1057			}
1058		}
1059	}
1060	mtx_lock_spin(&sleepq_prof_lock);
1061	prof_enabled = enabled;
1062	mtx_unlock_spin(&sleepq_prof_lock);
1063
1064	sbuf_finish(sb);
1065	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
1066	sbuf_delete(sb);
1067	return (error);
1068}
1069
1070SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1071    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1072SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1073    NULL, 0, reset_sleepq_prof_stats, "I",
1074    "Reset sleepqueue profiling statistics");
1075SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1076    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1077#endif
1078
1079#ifdef DDB
1080DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1081{
1082	struct sleepqueue_chain *sc;
1083	struct sleepqueue *sq;
1084#ifdef INVARIANTS
1085	struct lock_object *lock;
1086#endif
1087	struct thread *td;
1088	void *wchan;
1089	int i;
1090
1091	if (!have_addr)
1092		return;
1093
1094	/*
1095	 * First, see if there is an active sleep queue for the wait channel
1096	 * indicated by the address.
1097	 */
1098	wchan = (void *)addr;
1099	sc = SC_LOOKUP(wchan);
1100	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1101		if (sq->sq_wchan == wchan)
1102			goto found;
1103
1104	/*
1105	 * Second, see if there is an active sleep queue at the address
1106	 * indicated.
1107	 */
1108	for (i = 0; i < SC_TABLESIZE; i++)
1109		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1110			if (sq == (struct sleepqueue *)addr)
1111				goto found;
1112		}
1113
1114	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1115	return;
1116found:
1117	db_printf("Wait channel: %p\n", sq->sq_wchan);
1118#ifdef INVARIANTS
1119	db_printf("Queue type: %d\n", sq->sq_type);
1120	if (sq->sq_lock) {
1121		lock = sq->sq_lock;
1122		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1123		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1124	}
1125#endif
1126	db_printf("Blocked threads:\n");
1127	for (i = 0; i < NR_SLEEPQS; i++) {
1128		db_printf("\nQueue[%d]:\n", i);
1129		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1130			db_printf("\tempty\n");
1131		else
1132			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1133				      td_slpq) {
1134				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1135					  td->td_tid, td->td_proc->p_pid,
1136					  td->td_name[i] != '\0' ? td->td_name :
1137					  td->td_name);
1138			}
1139	}
1140}
1141
1142/* Alias 'show sleepqueue' to 'show sleepq'. */
1143DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL);
1144#endif
1145