subr_sleepqueue.c revision 145056
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel.  Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals.  That said, there are several similarities between the turnstile
36 * and sleep queue implementations.  (Note: turnstiles were implemented
37 * first.)  For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues.  An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue.  This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head.  Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking.  Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
47 *
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout.  The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep.  A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep).  The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53 * sleep queues also provide some extra assertions.  One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API.  The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
60 */
61
62#include "opt_sleepqueue_profiling.h"
63
64#include <sys/cdefs.h>
65__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 145056 2005-04-14 06:30:32Z jhb $");
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/malloc.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sched.h>
76#include <sys/signalvar.h>
77#include <sys/sleepqueue.h>
78#include <sys/sysctl.h>
79
80/*
81 * Constants for the hash table of sleep queue chains.  These constants are
82 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
83 * Basically, we ignore the lower 8 bits of the address since most wait
84 * channel pointers are aligned and only look at the next 7 bits for the
85 * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
86 */
87#define	SC_TABLESIZE	128			/* Must be power of 2. */
88#define	SC_MASK		(SC_TABLESIZE - 1)
89#define	SC_SHIFT	8
90#define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
91#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
92
93/*
94 * There two different lists of sleep queues.  Both lists are connected
95 * via the sq_hash entries.  The first list is the sleep queue chain list
96 * that a sleep queue is on when it is attached to a wait channel.  The
97 * second list is the free list hung off of a sleep queue that is attached
98 * to a wait channel.
99 *
100 * Each sleep queue also contains the wait channel it is attached to, the
101 * list of threads blocked on that wait channel, flags specific to the
102 * wait channel, and the lock used to synchronize with a wait channel.
103 * The flags are used to catch mismatches between the various consumers
104 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
105 * The lock pointer is only used when invariants are enabled for various
106 * debugging checks.
107 *
108 * Locking key:
109 *  c - sleep queue chain lock
110 */
111struct sleepqueue {
112	TAILQ_HEAD(, thread) sq_blocked;	/* (c) Blocked threads. */
113	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
114	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
115	void	*sq_wchan;			/* (c) Wait channel. */
116#ifdef INVARIANTS
117	int	sq_type;			/* (c) Queue type. */
118	struct mtx *sq_lock;			/* (c) Associated lock. */
119#endif
120};
121
122struct sleepqueue_chain {
123	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
124	struct mtx sc_lock;			/* Spin lock for this chain. */
125#ifdef SLEEPQUEUE_PROFILING
126	u_int	sc_depth;			/* Length of sc_queues. */
127	u_int	sc_max_depth;			/* Max length of sc_queues. */
128#endif
129};
130
131#ifdef SLEEPQUEUE_PROFILING
132u_int sleepq_max_depth;
133SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
134SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
135    "sleepq chain stats");
136SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
137    0, "maxmimum depth achieved of a single chain");
138#endif
139static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
140
141static MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues");
142
143/*
144 * Prototypes for non-exported routines.
145 */
146static int	sleepq_check_timeout(void);
147static void	sleepq_switch(void *wchan);
148static void	sleepq_timeout(void *arg);
149static void	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri);
150
151/*
152 * Early initialization of sleep queues that is called from the sleepinit()
153 * SYSINIT.
154 */
155void
156init_sleepqueues(void)
157{
158#ifdef SLEEPQUEUE_PROFILING
159	struct sysctl_oid *chain_oid;
160	char chain_name[10];
161#endif
162	int i;
163
164	for (i = 0; i < SC_TABLESIZE; i++) {
165		LIST_INIT(&sleepq_chains[i].sc_queues);
166		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
167		    MTX_SPIN);
168#ifdef SLEEPQUEUE_PROFILING
169		snprintf(chain_name, sizeof(chain_name), "%d", i);
170		chain_oid = SYSCTL_ADD_NODE(NULL,
171		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
172		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
173		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
174		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
175		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
176		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
177		    NULL);
178#endif
179	}
180	thread0.td_sleepqueue = sleepq_alloc();
181}
182
183/*
184 * Malloc and initialize a new sleep queue for a new thread.
185 */
186struct sleepqueue *
187sleepq_alloc(void)
188{
189	struct sleepqueue *sq;
190
191	sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
192	TAILQ_INIT(&sq->sq_blocked);
193	LIST_INIT(&sq->sq_free);
194	return (sq);
195}
196
197/*
198 * Free a sleep queue when a thread is destroyed.
199 */
200void
201sleepq_free(struct sleepqueue *sq)
202{
203
204	MPASS(sq != NULL);
205	MPASS(TAILQ_EMPTY(&sq->sq_blocked));
206	free(sq, M_SLEEPQUEUE);
207}
208
209/*
210 * Lock the sleep queue chain associated with the specified wait channel.
211 */
212void
213sleepq_lock(void *wchan)
214{
215	struct sleepqueue_chain *sc;
216
217	sc = SC_LOOKUP(wchan);
218	mtx_lock_spin(&sc->sc_lock);
219}
220
221/*
222 * Look up the sleep queue associated with a given wait channel in the hash
223 * table locking the associated sleep queue chain.  If no queue is found in
224 * the table, NULL is returned.
225 */
226struct sleepqueue *
227sleepq_lookup(void *wchan)
228{
229	struct sleepqueue_chain *sc;
230	struct sleepqueue *sq;
231
232	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
233	sc = SC_LOOKUP(wchan);
234	mtx_assert(&sc->sc_lock, MA_OWNED);
235	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
236		if (sq->sq_wchan == wchan)
237			return (sq);
238	return (NULL);
239}
240
241/*
242 * Unlock the sleep queue chain associated with a given wait channel.
243 */
244void
245sleepq_release(void *wchan)
246{
247	struct sleepqueue_chain *sc;
248
249	sc = SC_LOOKUP(wchan);
250	mtx_unlock_spin(&sc->sc_lock);
251}
252
253/*
254 * Places the current thread on the sleep queue for the specified wait
255 * channel.  If INVARIANTS is enabled, then it associates the passed in
256 * lock with the sleepq to make sure it is held when that sleep queue is
257 * woken up.
258 */
259void
260sleepq_add(void *wchan, struct mtx *lock, const char *wmesg, int flags)
261{
262	struct sleepqueue_chain *sc;
263	struct sleepqueue *sq;
264	struct thread *td;
265
266	td = curthread;
267	sc = SC_LOOKUP(wchan);
268	mtx_assert(&sc->sc_lock, MA_OWNED);
269	MPASS(td->td_sleepqueue != NULL);
270	MPASS(wchan != NULL);
271
272	/* Look up the sleep queue associated with the wait channel 'wchan'. */
273	sq = sleepq_lookup(wchan);
274
275	/*
276	 * If the wait channel does not already have a sleep queue, use
277	 * this thread's sleep queue.  Otherwise, insert the current thread
278	 * into the sleep queue already in use by this wait channel.
279	 */
280	if (sq == NULL) {
281#ifdef SLEEPQUEUE_PROFILING
282		sc->sc_depth++;
283		if (sc->sc_depth > sc->sc_max_depth) {
284			sc->sc_max_depth = sc->sc_depth;
285			if (sc->sc_max_depth > sleepq_max_depth)
286				sleepq_max_depth = sc->sc_max_depth;
287		}
288#endif
289		sq = td->td_sleepqueue;
290		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
291		KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
292		    ("thread's sleep queue has a non-empty queue"));
293		KASSERT(LIST_EMPTY(&sq->sq_free),
294		    ("thread's sleep queue has a non-empty free list"));
295		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
296		sq->sq_wchan = wchan;
297#ifdef INVARIANTS
298		sq->sq_lock = lock;
299		sq->sq_type = flags & SLEEPQ_TYPE;
300#endif
301	} else {
302		MPASS(wchan == sq->sq_wchan);
303		MPASS(lock == sq->sq_lock);
304		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
305		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
306	}
307	TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
308	td->td_sleepqueue = NULL;
309	mtx_lock_spin(&sched_lock);
310	td->td_wchan = wchan;
311	td->td_wmesg = wmesg;
312	if (flags & SLEEPQ_INTERRUPTIBLE)
313		td->td_flags |= TDF_SINTR;
314	mtx_unlock_spin(&sched_lock);
315}
316
317/*
318 * Sets a timeout that will remove the current thread from the specified
319 * sleep queue after timo ticks if the thread has not already been awakened.
320 */
321void
322sleepq_set_timeout(void *wchan, int timo)
323{
324	struct sleepqueue_chain *sc;
325	struct thread *td;
326
327	td = curthread;
328	sc = SC_LOOKUP(wchan);
329	mtx_assert(&sc->sc_lock, MA_OWNED);
330	MPASS(TD_ON_SLEEPQ(td));
331	MPASS(td->td_sleepqueue == NULL);
332	MPASS(wchan != NULL);
333	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
334}
335
336/*
337 * Marks the pending sleep of the current thread as interruptible and
338 * makes an initial check for pending signals before putting a thread
339 * to sleep.
340 */
341int
342sleepq_catch_signals(void *wchan)
343{
344	struct sleepqueue_chain *sc;
345	struct sleepqueue *sq;
346	struct thread *td;
347	struct proc *p;
348	int do_upcall;
349	int sig;
350
351	do_upcall = 0;
352	td = curthread;
353	p = td->td_proc;
354	sc = SC_LOOKUP(wchan);
355	mtx_assert(&sc->sc_lock, MA_OWNED);
356	MPASS(td->td_sleepqueue == NULL);
357	MPASS(wchan != NULL);
358	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
359	    (void *)td, (long)p->p_pid, p->p_comm);
360
361	/* Mark thread as being in an interruptible sleep. */
362	MPASS(td->td_flags & TDF_SINTR);
363	MPASS(TD_ON_SLEEPQ(td));
364	sleepq_release(wchan);
365
366	/* See if there are any pending signals for this thread. */
367	PROC_LOCK(p);
368	mtx_lock(&p->p_sigacts->ps_mtx);
369	sig = cursig(td);
370	mtx_unlock(&p->p_sigacts->ps_mtx);
371	if (sig == 0 && thread_suspend_check(1))
372		sig = SIGSTOP;
373	else
374		do_upcall = thread_upcall_check(td);
375	PROC_UNLOCK(p);
376
377	/*
378	 * If there were pending signals and this thread is still on
379	 * the sleep queue, remove it from the sleep queue.  If the
380	 * thread was removed from the sleep queue while we were blocked
381	 * above, then clear TDF_SINTR before returning.
382	 */
383	sleepq_lock(wchan);
384	sq = sleepq_lookup(wchan);
385	mtx_lock_spin(&sched_lock);
386	if (TD_ON_SLEEPQ(td) && (sig != 0 || do_upcall != 0))
387		sleepq_resume_thread(sq, td, -1);
388	else if (!TD_ON_SLEEPQ(td) && sig == 0)
389		td->td_flags &= ~TDF_SINTR;
390	mtx_unlock_spin(&sched_lock);
391	return (sig);
392}
393
394/*
395 * Switches to another thread if we are still asleep on a sleep queue and
396 * drop the lock on the sleep queue chain.  Returns with sched_lock held.
397 */
398static void
399sleepq_switch(void *wchan)
400{
401	struct sleepqueue_chain *sc;
402	struct thread *td;
403
404	td = curthread;
405	sc = SC_LOOKUP(wchan);
406	mtx_assert(&sc->sc_lock, MA_OWNED);
407
408	/*
409	 * If we have a sleep queue, then we've already been woken up, so
410	 * just return.
411	 */
412	if (td->td_sleepqueue != NULL) {
413		MPASS(!TD_ON_SLEEPQ(td));
414		mtx_unlock_spin(&sc->sc_lock);
415		mtx_lock_spin(&sched_lock);
416		return;
417	}
418
419	/*
420	 * Otherwise, actually go to sleep.
421	 */
422	mtx_lock_spin(&sched_lock);
423	mtx_unlock_spin(&sc->sc_lock);
424
425	sched_sleep(td);
426	TD_SET_SLEEPING(td);
427	mi_switch(SW_VOL, NULL);
428	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
429	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
430	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
431}
432
433/*
434 * Check to see if we timed out.
435 */
436static int
437sleepq_check_timeout(void)
438{
439	struct thread *td;
440
441	mtx_assert(&sched_lock, MA_OWNED);
442	td = curthread;
443
444	/*
445	 * If TDF_TIMEOUT is set, we timed out.
446	 */
447	if (td->td_flags & TDF_TIMEOUT) {
448		td->td_flags &= ~TDF_TIMEOUT;
449		return (EWOULDBLOCK);
450	}
451
452	/*
453	 * If TDF_TIMOFAIL is set, the timeout ran after we had
454	 * already been woken up.
455	 */
456	if (td->td_flags & TDF_TIMOFAIL)
457		td->td_flags &= ~TDF_TIMOFAIL;
458
459	/*
460	 * If callout_stop() fails, then the timeout is running on
461	 * another CPU, so synchronize with it to avoid having it
462	 * accidentally wake up a subsequent sleep.
463	 */
464	else if (callout_stop(&td->td_slpcallout) == 0) {
465		td->td_flags |= TDF_TIMEOUT;
466		TD_SET_SLEEPING(td);
467		mi_switch(SW_INVOL, NULL);
468	}
469	return (0);
470}
471
472/*
473 * Check to see if we were awoken by a signal.
474 */
475static int
476sleepq_check_signals(void)
477{
478	struct thread *td;
479
480	mtx_assert(&sched_lock, MA_OWNED);
481	td = curthread;
482
483	/*
484	 * If TDF_SINTR is clear, then we were awakened while executing
485	 * sleepq_catch_signals().
486	 */
487	if (!(td->td_flags & TDF_SINTR))
488		return (0);
489
490	/* We are no longer in an interruptible sleep. */
491	td->td_flags &= ~TDF_SINTR;
492
493	if (td->td_flags & TDF_INTERRUPT)
494		return (td->td_intrval);
495	return (0);
496}
497
498/*
499 * If we were in an interruptible sleep and we weren't interrupted and
500 * didn't timeout, check to see if there are any pending signals and
501 * which return value we should use if so.  The return value from an
502 * earlier call to sleepq_catch_signals() should be passed in as the
503 * argument.
504 */
505int
506sleepq_calc_signal_retval(int sig)
507{
508	struct thread *td;
509	struct proc *p;
510	int rval;
511
512	td = curthread;
513	p = td->td_proc;
514	PROC_LOCK(p);
515	mtx_lock(&p->p_sigacts->ps_mtx);
516	/* XXX: Should we always be calling cursig()? */
517	if (sig == 0)
518		sig = cursig(td);
519	if (sig != 0) {
520		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
521			rval = EINTR;
522		else
523			rval = ERESTART;
524	} else
525		rval = 0;
526	mtx_unlock(&p->p_sigacts->ps_mtx);
527	PROC_UNLOCK(p);
528	return (rval);
529}
530
531/*
532 * Block the current thread until it is awakened from its sleep queue.
533 */
534void
535sleepq_wait(void *wchan)
536{
537
538	MPASS(!(curthread->td_flags & TDF_SINTR));
539	sleepq_switch(wchan);
540	mtx_unlock_spin(&sched_lock);
541}
542
543/*
544 * Block the current thread until it is awakened from its sleep queue
545 * or it is interrupted by a signal.
546 */
547int
548sleepq_wait_sig(void *wchan)
549{
550	int rval;
551
552	sleepq_switch(wchan);
553	rval = sleepq_check_signals();
554	mtx_unlock_spin(&sched_lock);
555	return (rval);
556}
557
558/*
559 * Block the current thread until it is awakened from its sleep queue
560 * or it times out while waiting.
561 */
562int
563sleepq_timedwait(void *wchan)
564{
565	int rval;
566
567	MPASS(!(curthread->td_flags & TDF_SINTR));
568	sleepq_switch(wchan);
569	rval = sleepq_check_timeout();
570	mtx_unlock_spin(&sched_lock);
571	return (rval);
572}
573
574/*
575 * Block the current thread until it is awakened from its sleep queue,
576 * it is interrupted by a signal, or it times out waiting to be awakened.
577 */
578int
579sleepq_timedwait_sig(void *wchan, int signal_caught)
580{
581	int rvalt, rvals;
582
583	sleepq_switch(wchan);
584	rvalt = sleepq_check_timeout();
585	rvals = sleepq_check_signals();
586	mtx_unlock_spin(&sched_lock);
587	if (signal_caught || rvalt == 0)
588		return (rvals);
589	else
590		return (rvalt);
591}
592
593/*
594 * Removes a thread from a sleep queue and makes it
595 * runnable.
596 */
597static void
598sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
599{
600	struct sleepqueue_chain *sc;
601
602	MPASS(td != NULL);
603	MPASS(sq->sq_wchan != NULL);
604	MPASS(td->td_wchan == sq->sq_wchan);
605	sc = SC_LOOKUP(sq->sq_wchan);
606	mtx_assert(&sc->sc_lock, MA_OWNED);
607	mtx_assert(&sched_lock, MA_OWNED);
608
609	/* Remove the thread from the queue. */
610	TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
611
612	/*
613	 * Get a sleep queue for this thread.  If this is the last waiter,
614	 * use the queue itself and take it out of the chain, otherwise,
615	 * remove a queue from the free list.
616	 */
617	if (LIST_EMPTY(&sq->sq_free)) {
618		td->td_sleepqueue = sq;
619#ifdef INVARIANTS
620		sq->sq_wchan = NULL;
621#endif
622#ifdef SLEEPQUEUE_PROFILING
623		sc->sc_depth--;
624#endif
625	} else
626		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
627	LIST_REMOVE(td->td_sleepqueue, sq_hash);
628
629	td->td_wmesg = NULL;
630	td->td_wchan = NULL;
631
632	/*
633	 * Note that thread td might not be sleeping if it is running
634	 * sleepq_catch_signals() on another CPU or is blocked on
635	 * its proc lock to check signals.  It doesn't hurt to clear
636	 * the sleeping flag if it isn't set though, so we just always
637	 * do it.  However, we can't assert that it is set.
638	 */
639	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
640	    (void *)td, (long)td->td_proc->p_pid, td->td_proc->p_comm);
641	TD_CLR_SLEEPING(td);
642
643	/* Adjust priority if requested. */
644	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
645	if (pri != -1 && td->td_priority > pri)
646		sched_prio(td, pri);
647	setrunnable(td);
648}
649
650/*
651 * Find the highest priority thread sleeping on a wait channel and resume it.
652 */
653void
654sleepq_signal(void *wchan, int flags, int pri)
655{
656	struct sleepqueue *sq;
657	struct thread *td, *besttd;
658
659	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
660	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
661	sq = sleepq_lookup(wchan);
662	if (sq == NULL) {
663		sleepq_release(wchan);
664		return;
665	}
666	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
667	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
668
669	/*
670	 * Find the highest priority thread on the queue.  If there is a
671	 * tie, use the thread that first appears in the queue as it has
672	 * been sleeping the longest since threads are always added to
673	 * the tail of sleep queues.
674	 */
675	besttd = NULL;
676	TAILQ_FOREACH(td, &sq->sq_blocked, td_slpq) {
677		if (besttd == NULL || td->td_priority < besttd->td_priority)
678			besttd = td;
679	}
680	MPASS(besttd != NULL);
681	mtx_lock_spin(&sched_lock);
682	sleepq_resume_thread(sq, besttd, pri);
683	mtx_unlock_spin(&sched_lock);
684	sleepq_release(wchan);
685}
686
687/*
688 * Resume all threads sleeping on a specified wait channel.
689 */
690void
691sleepq_broadcast(void *wchan, int flags, int pri)
692{
693	struct sleepqueue *sq;
694
695	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
696	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
697	sq = sleepq_lookup(wchan);
698	if (sq == NULL) {
699		sleepq_release(wchan);
700		return;
701	}
702	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
703	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
704
705	/* Resume all blocked threads on the sleep queue. */
706	mtx_lock_spin(&sched_lock);
707	while (!TAILQ_EMPTY(&sq->sq_blocked))
708		sleepq_resume_thread(sq, TAILQ_FIRST(&sq->sq_blocked), pri);
709	mtx_unlock_spin(&sched_lock);
710	sleepq_release(wchan);
711}
712
713/*
714 * Time sleeping threads out.  When the timeout expires, the thread is
715 * removed from the sleep queue and made runnable if it is still asleep.
716 */
717static void
718sleepq_timeout(void *arg)
719{
720	struct sleepqueue *sq;
721	struct thread *td;
722	void *wchan;
723
724	td = arg;
725	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
726	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
727
728	/*
729	 * First, see if the thread is asleep and get the wait channel if
730	 * it is.
731	 */
732	mtx_lock_spin(&sched_lock);
733	if (TD_ON_SLEEPQ(td)) {
734		wchan = td->td_wchan;
735		mtx_unlock_spin(&sched_lock);
736		sleepq_lock(wchan);
737		sq = sleepq_lookup(wchan);
738		mtx_lock_spin(&sched_lock);
739	} else {
740		wchan = NULL;
741		sq = NULL;
742	}
743
744	/*
745	 * At this point, if the thread is still on the sleep queue,
746	 * we have that sleep queue locked as it cannot migrate sleep
747	 * queues while we dropped sched_lock.  If it had resumed and
748	 * was on another CPU while the lock was dropped, it would have
749	 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
750	 * call to callout_stop() to stop this routine would have failed
751	 * meaning that it would have already set TDF_TIMEOUT to
752	 * synchronize with this function.
753	 */
754	if (TD_ON_SLEEPQ(td)) {
755		MPASS(td->td_wchan == wchan);
756		MPASS(sq != NULL);
757		td->td_flags |= TDF_TIMEOUT;
758		sleepq_resume_thread(sq, td, -1);
759		mtx_unlock_spin(&sched_lock);
760		sleepq_release(wchan);
761		return;
762	} else if (wchan != NULL)
763		sleepq_release(wchan);
764
765	/*
766	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
767	 * then the other thread has already yielded to us, so clear
768	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
769	 * we know that the other thread is not on a sleep queue, but it
770	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
771	 * to let it know that the timeout has already run and doesn't
772	 * need to be canceled.
773	 */
774	if (td->td_flags & TDF_TIMEOUT) {
775		MPASS(TD_IS_SLEEPING(td));
776		td->td_flags &= ~TDF_TIMEOUT;
777		TD_CLR_SLEEPING(td);
778		setrunnable(td);
779	} else
780		td->td_flags |= TDF_TIMOFAIL;
781	mtx_unlock_spin(&sched_lock);
782}
783
784/*
785 * Resumes a specific thread from the sleep queue associated with a specific
786 * wait channel if it is on that queue.
787 */
788void
789sleepq_remove(struct thread *td, void *wchan)
790{
791	struct sleepqueue *sq;
792
793	/*
794	 * Look up the sleep queue for this wait channel, then re-check
795	 * that the thread is asleep on that channel, if it is not, then
796	 * bail.
797	 */
798	MPASS(wchan != NULL);
799	sleepq_lock(wchan);
800	sq = sleepq_lookup(wchan);
801	mtx_lock_spin(&sched_lock);
802	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
803		mtx_unlock_spin(&sched_lock);
804		sleepq_release(wchan);
805		return;
806	}
807	MPASS(sq != NULL);
808
809	/* Thread is asleep on sleep queue sq, so wake it up. */
810	sleepq_resume_thread(sq, td, -1);
811	sleepq_release(wchan);
812	mtx_unlock_spin(&sched_lock);
813}
814
815/*
816 * Abort a thread as if an interrupt had occurred.  Only abort
817 * interruptible waits (unfortunately it isn't safe to abort others).
818 *
819 * XXX: What in the world does the comment below mean?
820 * Also, whatever the signal code does...
821 */
822void
823sleepq_abort(struct thread *td)
824{
825	void *wchan;
826
827	mtx_assert(&sched_lock, MA_OWNED);
828	MPASS(TD_ON_SLEEPQ(td));
829	MPASS(td->td_flags & TDF_SINTR);
830
831	/*
832	 * If the TDF_TIMEOUT flag is set, just leave. A
833	 * timeout is scheduled anyhow.
834	 */
835	if (td->td_flags & TDF_TIMEOUT)
836		return;
837
838	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
839	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_proc->p_comm);
840	wchan = td->td_wchan;
841	mtx_unlock_spin(&sched_lock);
842	sleepq_remove(td, wchan);
843	mtx_lock_spin(&sched_lock);
844}
845