subr_sleepqueue.c revision 184667
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel.  Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals.  That said, there are several similarities between the turnstile
36 * and sleep queue implementations.  (Note: turnstiles were implemented
37 * first.)  For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues.  An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue.  This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head.  Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking.  Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
47 *
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout.  The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep.  A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep).  The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53 * sleep queues also provide some extra assertions.  One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API.  The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 184667 2008-11-05 03:01:23Z davidxu $");
64
65#include "opt_sleepqueue_profiling.h"
66#include "opt_ddb.h"
67#include "opt_sched.h"
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/lock.h>
72#include <sys/kernel.h>
73#include <sys/ktr.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/sbuf.h>
77#include <sys/sched.h>
78#include <sys/signalvar.h>
79#include <sys/sleepqueue.h>
80#include <sys/sysctl.h>
81
82#include <vm/uma.h>
83
84#ifdef DDB
85#include <ddb/ddb.h>
86#endif
87
88/*
89 * Constants for the hash table of sleep queue chains.  These constants are
90 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
91 * Basically, we ignore the lower 8 bits of the address since most wait
92 * channel pointers are aligned and only look at the next 7 bits for the
93 * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
94 */
95#define	SC_TABLESIZE	128			/* Must be power of 2. */
96#define	SC_MASK		(SC_TABLESIZE - 1)
97#define	SC_SHIFT	8
98#define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
99#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
100#define NR_SLEEPQS      2
101/*
102 * There two different lists of sleep queues.  Both lists are connected
103 * via the sq_hash entries.  The first list is the sleep queue chain list
104 * that a sleep queue is on when it is attached to a wait channel.  The
105 * second list is the free list hung off of a sleep queue that is attached
106 * to a wait channel.
107 *
108 * Each sleep queue also contains the wait channel it is attached to, the
109 * list of threads blocked on that wait channel, flags specific to the
110 * wait channel, and the lock used to synchronize with a wait channel.
111 * The flags are used to catch mismatches between the various consumers
112 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
113 * The lock pointer is only used when invariants are enabled for various
114 * debugging checks.
115 *
116 * Locking key:
117 *  c - sleep queue chain lock
118 */
119struct sleepqueue {
120	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
121	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
122	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
123	void	*sq_wchan;			/* (c) Wait channel. */
124#ifdef INVARIANTS
125	int	sq_type;			/* (c) Queue type. */
126	struct lock_object *sq_lock;		/* (c) Associated lock. */
127#endif
128};
129
130struct sleepqueue_chain {
131	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
132	struct mtx sc_lock;			/* Spin lock for this chain. */
133#ifdef SLEEPQUEUE_PROFILING
134	u_int	sc_depth;			/* Length of sc_queues. */
135	u_int	sc_max_depth;			/* Max length of sc_queues. */
136#endif
137};
138
139#ifdef SLEEPQUEUE_PROFILING
140u_int sleepq_max_depth;
141SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
142SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
143    "sleepq chain stats");
144SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
145    0, "maxmimum depth achieved of a single chain");
146
147static void	sleepq_profile(const char *wmesg);
148static int	prof_enabled;
149#endif
150static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
151static uma_zone_t sleepq_zone;
152
153/*
154 * Prototypes for non-exported routines.
155 */
156static int	sleepq_catch_signals(void *wchan, int pri);
157static int	sleepq_check_signals(void);
158static int	sleepq_check_timeout(void);
159#ifdef INVARIANTS
160static void	sleepq_dtor(void *mem, int size, void *arg);
161#endif
162static int	sleepq_init(void *mem, int size, int flags);
163static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
164		    int pri);
165static void	sleepq_switch(void *wchan, int pri);
166static void	sleepq_timeout(void *arg);
167
168/*
169 * Early initialization of sleep queues that is called from the sleepinit()
170 * SYSINIT.
171 */
172void
173init_sleepqueues(void)
174{
175#ifdef SLEEPQUEUE_PROFILING
176	struct sysctl_oid *chain_oid;
177	char chain_name[10];
178#endif
179	int i;
180
181	for (i = 0; i < SC_TABLESIZE; i++) {
182		LIST_INIT(&sleepq_chains[i].sc_queues);
183		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
184		    MTX_SPIN | MTX_RECURSE);
185#ifdef SLEEPQUEUE_PROFILING
186		snprintf(chain_name, sizeof(chain_name), "%d", i);
187		chain_oid = SYSCTL_ADD_NODE(NULL,
188		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
189		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
190		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
191		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
192		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
193		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
194		    NULL);
195#endif
196	}
197	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
198#ifdef INVARIANTS
199	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
200#else
201	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
202#endif
203
204	thread0.td_sleepqueue = sleepq_alloc();
205}
206
207/*
208 * Get a sleep queue for a new thread.
209 */
210struct sleepqueue *
211sleepq_alloc(void)
212{
213
214	return (uma_zalloc(sleepq_zone, M_WAITOK));
215}
216
217/*
218 * Free a sleep queue when a thread is destroyed.
219 */
220void
221sleepq_free(struct sleepqueue *sq)
222{
223
224	uma_zfree(sleepq_zone, sq);
225}
226
227/*
228 * Lock the sleep queue chain associated with the specified wait channel.
229 */
230void
231sleepq_lock(void *wchan)
232{
233	struct sleepqueue_chain *sc;
234
235	sc = SC_LOOKUP(wchan);
236	mtx_lock_spin(&sc->sc_lock);
237}
238
239/*
240 * Look up the sleep queue associated with a given wait channel in the hash
241 * table locking the associated sleep queue chain.  If no queue is found in
242 * the table, NULL is returned.
243 */
244struct sleepqueue *
245sleepq_lookup(void *wchan)
246{
247	struct sleepqueue_chain *sc;
248	struct sleepqueue *sq;
249
250	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
251	sc = SC_LOOKUP(wchan);
252	mtx_assert(&sc->sc_lock, MA_OWNED);
253	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
254		if (sq->sq_wchan == wchan)
255			return (sq);
256	return (NULL);
257}
258
259/*
260 * Unlock the sleep queue chain associated with a given wait channel.
261 */
262void
263sleepq_release(void *wchan)
264{
265	struct sleepqueue_chain *sc;
266
267	sc = SC_LOOKUP(wchan);
268	mtx_unlock_spin(&sc->sc_lock);
269}
270
271/*
272 * Places the current thread on the sleep queue for the specified wait
273 * channel.  If INVARIANTS is enabled, then it associates the passed in
274 * lock with the sleepq to make sure it is held when that sleep queue is
275 * woken up.
276 */
277void
278sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
279    int queue)
280{
281	struct sleepqueue_chain *sc;
282	struct sleepqueue *sq;
283	struct thread *td;
284
285	td = curthread;
286	sc = SC_LOOKUP(wchan);
287	mtx_assert(&sc->sc_lock, MA_OWNED);
288	MPASS(td->td_sleepqueue != NULL);
289	MPASS(wchan != NULL);
290	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
291
292	/* If this thread is not allowed to sleep, die a horrible death. */
293	KASSERT(!(td->td_pflags & TDP_NOSLEEPING),
294	    ("Trying sleep, but thread marked as sleeping prohibited"));
295
296	/* Look up the sleep queue associated with the wait channel 'wchan'. */
297	sq = sleepq_lookup(wchan);
298
299	/*
300	 * If the wait channel does not already have a sleep queue, use
301	 * this thread's sleep queue.  Otherwise, insert the current thread
302	 * into the sleep queue already in use by this wait channel.
303	 */
304	if (sq == NULL) {
305#ifdef INVARIANTS
306		int i;
307
308		sq = td->td_sleepqueue;
309		for (i = 0; i < NR_SLEEPQS; i++)
310			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
311				("thread's sleep queue %d is not empty", i));
312		KASSERT(LIST_EMPTY(&sq->sq_free),
313		    ("thread's sleep queue has a non-empty free list"));
314		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
315		sq->sq_lock = lock;
316		sq->sq_type = flags & SLEEPQ_TYPE;
317#endif
318#ifdef SLEEPQUEUE_PROFILING
319		sc->sc_depth++;
320		if (sc->sc_depth > sc->sc_max_depth) {
321			sc->sc_max_depth = sc->sc_depth;
322			if (sc->sc_max_depth > sleepq_max_depth)
323				sleepq_max_depth = sc->sc_max_depth;
324		}
325#endif
326		sq = td->td_sleepqueue;
327		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
328		sq->sq_wchan = wchan;
329	} else {
330		MPASS(wchan == sq->sq_wchan);
331		MPASS(lock == sq->sq_lock);
332		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
333		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
334	}
335	thread_lock(td);
336	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
337	td->td_sleepqueue = NULL;
338	td->td_sqqueue = queue;
339	td->td_wchan = wchan;
340	td->td_wmesg = wmesg;
341	if (flags & SLEEPQ_INTERRUPTIBLE) {
342		td->td_flags |= TDF_SINTR;
343		td->td_flags &= ~TDF_SLEEPABORT;
344	}
345	thread_unlock(td);
346}
347
348/*
349 * Sets a timeout that will remove the current thread from the specified
350 * sleep queue after timo ticks if the thread has not already been awakened.
351 */
352void
353sleepq_set_timeout(void *wchan, int timo)
354{
355	struct sleepqueue_chain *sc;
356	struct thread *td;
357
358	td = curthread;
359	sc = SC_LOOKUP(wchan);
360	mtx_assert(&sc->sc_lock, MA_OWNED);
361	MPASS(TD_ON_SLEEPQ(td));
362	MPASS(td->td_sleepqueue == NULL);
363	MPASS(wchan != NULL);
364	callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td);
365}
366
367/*
368 * Marks the pending sleep of the current thread as interruptible and
369 * makes an initial check for pending signals before putting a thread
370 * to sleep. Enters and exits with the thread lock held.  Thread lock
371 * may have transitioned from the sleepq lock to a run lock.
372 */
373static int
374sleepq_catch_signals(void *wchan, int pri)
375{
376	struct sleepqueue_chain *sc;
377	struct sleepqueue *sq;
378	struct thread *td;
379	struct proc *p;
380	struct sigacts *ps;
381	int sig, ret;
382
383	td = curthread;
384	p = curproc;
385	sc = SC_LOOKUP(wchan);
386	mtx_assert(&sc->sc_lock, MA_OWNED);
387	MPASS(wchan != NULL);
388	/*
389	 * See if there are any pending signals for this thread.  If not
390	 * we can switch immediately.  Otherwise do the signal processing
391	 * directly.
392	 */
393	thread_lock(td);
394	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
395		sleepq_switch(wchan, pri);
396		return (0);
397	}
398	thread_unlock(td);
399	mtx_unlock_spin(&sc->sc_lock);
400	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
401		(void *)td, (long)p->p_pid, td->td_name);
402	PROC_LOCK(p);
403	ps = p->p_sigacts;
404	mtx_lock(&ps->ps_mtx);
405	sig = cursig(td);
406	if (sig == 0) {
407		mtx_unlock(&ps->ps_mtx);
408		ret = thread_suspend_check(1);
409		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
410	} else {
411		if (SIGISMEMBER(ps->ps_sigintr, sig))
412			ret = EINTR;
413		else
414			ret = ERESTART;
415		mtx_unlock(&ps->ps_mtx);
416	}
417	/*
418	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
419	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
420	 * thread_lock() are currently held in tdsignal().
421	 */
422	PROC_SLOCK(p);
423	mtx_lock_spin(&sc->sc_lock);
424	PROC_UNLOCK(p);
425	thread_lock(td);
426	PROC_SUNLOCK(p);
427	/*
428	 * There were pending signals and this thread is still
429	 * on the sleep queue, remove it from the sleep queue.
430	 */
431	if (TD_ON_SLEEPQ(td)) {
432		sq = sleepq_lookup(wchan);
433		if (sleepq_resume_thread(sq, td, 0)) {
434#ifdef INVARIANTS
435			/*
436			 * This thread hasn't gone to sleep yet, so it
437			 * should not be swapped out.
438			 */
439			panic("not waking up swapper");
440#endif
441		}
442	}
443	mtx_unlock_spin(&sc->sc_lock);
444	MPASS(td->td_lock != &sc->sc_lock);
445	return (ret);
446}
447
448/*
449 * Switches to another thread if we are still asleep on a sleep queue.
450 * Returns with thread lock.
451 */
452static void
453sleepq_switch(void *wchan, int pri)
454{
455	struct sleepqueue_chain *sc;
456	struct sleepqueue *sq;
457	struct thread *td;
458
459	td = curthread;
460	sc = SC_LOOKUP(wchan);
461	mtx_assert(&sc->sc_lock, MA_OWNED);
462	THREAD_LOCK_ASSERT(td, MA_OWNED);
463
464	/*
465	 * If we have a sleep queue, then we've already been woken up, so
466	 * just return.
467	 */
468	if (td->td_sleepqueue != NULL) {
469		mtx_unlock_spin(&sc->sc_lock);
470		return;
471	}
472
473	/*
474	 * If TDF_TIMEOUT is set, then our sleep has been timed out
475	 * already but we are still on the sleep queue, so dequeue the
476	 * thread and return.
477	 */
478	if (td->td_flags & TDF_TIMEOUT) {
479		MPASS(TD_ON_SLEEPQ(td));
480		sq = sleepq_lookup(wchan);
481		if (sleepq_resume_thread(sq, td, 0)) {
482#ifdef INVARIANTS
483			/*
484			 * This thread hasn't gone to sleep yet, so it
485			 * should not be swapped out.
486			 */
487			panic("not waking up swapper");
488#endif
489		}
490		mtx_unlock_spin(&sc->sc_lock);
491		return;
492	}
493#ifdef SLEEPQUEUE_PROFILING
494	if (prof_enabled)
495		sleepq_profile(td->td_wmesg);
496#endif
497	MPASS(td->td_sleepqueue == NULL);
498	sched_sleep(td, pri);
499	thread_lock_set(td, &sc->sc_lock);
500	TD_SET_SLEEPING(td);
501	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
502	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
503	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
504	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
505}
506
507/*
508 * Check to see if we timed out.
509 */
510static int
511sleepq_check_timeout(void)
512{
513	struct thread *td;
514
515	td = curthread;
516	THREAD_LOCK_ASSERT(td, MA_OWNED);
517
518	/*
519	 * If TDF_TIMEOUT is set, we timed out.
520	 */
521	if (td->td_flags & TDF_TIMEOUT) {
522		td->td_flags &= ~TDF_TIMEOUT;
523		return (EWOULDBLOCK);
524	}
525
526	/*
527	 * If TDF_TIMOFAIL is set, the timeout ran after we had
528	 * already been woken up.
529	 */
530	if (td->td_flags & TDF_TIMOFAIL)
531		td->td_flags &= ~TDF_TIMOFAIL;
532
533	/*
534	 * If callout_stop() fails, then the timeout is running on
535	 * another CPU, so synchronize with it to avoid having it
536	 * accidentally wake up a subsequent sleep.
537	 */
538	else if (callout_stop(&td->td_slpcallout) == 0) {
539		td->td_flags |= TDF_TIMEOUT;
540		TD_SET_SLEEPING(td);
541		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
542	}
543	return (0);
544}
545
546/*
547 * Check to see if we were awoken by a signal.
548 */
549static int
550sleepq_check_signals(void)
551{
552	struct thread *td;
553
554	td = curthread;
555	THREAD_LOCK_ASSERT(td, MA_OWNED);
556
557	/* We are no longer in an interruptible sleep. */
558	if (td->td_flags & TDF_SINTR)
559		td->td_flags &= ~TDF_SINTR;
560
561	if (td->td_flags & TDF_SLEEPABORT) {
562		td->td_flags &= ~TDF_SLEEPABORT;
563		return (td->td_intrval);
564	}
565
566	return (0);
567}
568
569/*
570 * Block the current thread until it is awakened from its sleep queue.
571 */
572void
573sleepq_wait(void *wchan, int pri)
574{
575	struct thread *td;
576
577	td = curthread;
578	MPASS(!(td->td_flags & TDF_SINTR));
579	thread_lock(td);
580	sleepq_switch(wchan, pri);
581	thread_unlock(td);
582}
583
584/*
585 * Block the current thread until it is awakened from its sleep queue
586 * or it is interrupted by a signal.
587 */
588int
589sleepq_wait_sig(void *wchan, int pri)
590{
591	int rcatch;
592	int rval;
593
594	rcatch = sleepq_catch_signals(wchan, pri);
595	rval = sleepq_check_signals();
596	thread_unlock(curthread);
597	if (rcatch)
598		return (rcatch);
599	return (rval);
600}
601
602/*
603 * Block the current thread until it is awakened from its sleep queue
604 * or it times out while waiting.
605 */
606int
607sleepq_timedwait(void *wchan, int pri)
608{
609	struct thread *td;
610	int rval;
611
612	td = curthread;
613	MPASS(!(td->td_flags & TDF_SINTR));
614	thread_lock(td);
615	sleepq_switch(wchan, pri);
616	rval = sleepq_check_timeout();
617	thread_unlock(td);
618
619	return (rval);
620}
621
622/*
623 * Block the current thread until it is awakened from its sleep queue,
624 * it is interrupted by a signal, or it times out waiting to be awakened.
625 */
626int
627sleepq_timedwait_sig(void *wchan, int pri)
628{
629	int rcatch, rvalt, rvals;
630
631	rcatch = sleepq_catch_signals(wchan, pri);
632	rvalt = sleepq_check_timeout();
633	rvals = sleepq_check_signals();
634	thread_unlock(curthread);
635	if (rcatch)
636		return (rcatch);
637	if (rvals)
638		return (rvals);
639	return (rvalt);
640}
641
642/*
643 * Removes a thread from a sleep queue and makes it
644 * runnable.
645 */
646static int
647sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
648{
649	struct sleepqueue_chain *sc;
650
651	MPASS(td != NULL);
652	MPASS(sq->sq_wchan != NULL);
653	MPASS(td->td_wchan == sq->sq_wchan);
654	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
655	THREAD_LOCK_ASSERT(td, MA_OWNED);
656	sc = SC_LOOKUP(sq->sq_wchan);
657	mtx_assert(&sc->sc_lock, MA_OWNED);
658
659	/* Remove the thread from the queue. */
660	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
661
662	/*
663	 * Get a sleep queue for this thread.  If this is the last waiter,
664	 * use the queue itself and take it out of the chain, otherwise,
665	 * remove a queue from the free list.
666	 */
667	if (LIST_EMPTY(&sq->sq_free)) {
668		td->td_sleepqueue = sq;
669#ifdef INVARIANTS
670		sq->sq_wchan = NULL;
671#endif
672#ifdef SLEEPQUEUE_PROFILING
673		sc->sc_depth--;
674#endif
675	} else
676		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
677	LIST_REMOVE(td->td_sleepqueue, sq_hash);
678
679	td->td_wmesg = NULL;
680	td->td_wchan = NULL;
681	td->td_flags &= ~TDF_SINTR;
682
683	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
684	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
685
686	/* Adjust priority if requested. */
687	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
688	if (pri != 0 && td->td_priority > pri)
689		sched_prio(td, pri);
690
691	/*
692	 * Note that thread td might not be sleeping if it is running
693	 * sleepq_catch_signals() on another CPU or is blocked on its
694	 * proc lock to check signals.  There's no need to mark the
695	 * thread runnable in that case.
696	 */
697	if (TD_IS_SLEEPING(td)) {
698		TD_CLR_SLEEPING(td);
699		return (setrunnable(td));
700	}
701	return (0);
702}
703
704#ifdef INVARIANTS
705/*
706 * UMA zone item deallocator.
707 */
708static void
709sleepq_dtor(void *mem, int size, void *arg)
710{
711	struct sleepqueue *sq;
712	int i;
713
714	sq = mem;
715	for (i = 0; i < NR_SLEEPQS; i++)
716		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
717}
718#endif
719
720/*
721 * UMA zone item initializer.
722 */
723static int
724sleepq_init(void *mem, int size, int flags)
725{
726	struct sleepqueue *sq;
727	int i;
728
729	bzero(mem, size);
730	sq = mem;
731	for (i = 0; i < NR_SLEEPQS; i++)
732		TAILQ_INIT(&sq->sq_blocked[i]);
733	LIST_INIT(&sq->sq_free);
734	return (0);
735}
736
737/*
738 * Find the highest priority thread sleeping on a wait channel and resume it.
739 */
740int
741sleepq_signal(void *wchan, int flags, int pri, int queue)
742{
743	struct sleepqueue *sq;
744	struct thread *td, *besttd;
745	int wakeup_swapper;
746
747	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
748	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
749	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
750	sq = sleepq_lookup(wchan);
751	if (sq == NULL)
752		return (0);
753	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
754	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
755
756	/*
757	 * Find the highest priority thread on the queue.  If there is a
758	 * tie, use the thread that first appears in the queue as it has
759	 * been sleeping the longest since threads are always added to
760	 * the tail of sleep queues.
761	 */
762	besttd = NULL;
763	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
764		if (besttd == NULL || td->td_priority < besttd->td_priority)
765			besttd = td;
766	}
767	MPASS(besttd != NULL);
768	thread_lock(besttd);
769	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
770	thread_unlock(besttd);
771	return (wakeup_swapper);
772}
773
774/*
775 * Resume all threads sleeping on a specified wait channel.
776 */
777int
778sleepq_broadcast(void *wchan, int flags, int pri, int queue)
779{
780	struct sleepqueue *sq;
781	struct thread *td, *tdn;
782	int wakeup_swapper;
783
784	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
785	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
786	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
787	sq = sleepq_lookup(wchan);
788	if (sq == NULL)
789		return (0);
790	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
791	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
792
793	/* Resume all blocked threads on the sleep queue. */
794	wakeup_swapper = 0;
795	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
796		thread_lock(td);
797		if (sleepq_resume_thread(sq, td, pri))
798			wakeup_swapper = 1;
799		thread_unlock(td);
800	}
801	return (wakeup_swapper);
802}
803
804/*
805 * Time sleeping threads out.  When the timeout expires, the thread is
806 * removed from the sleep queue and made runnable if it is still asleep.
807 */
808static void
809sleepq_timeout(void *arg)
810{
811	struct sleepqueue_chain *sc;
812	struct sleepqueue *sq;
813	struct thread *td;
814	void *wchan;
815	int wakeup_swapper;
816
817	td = arg;
818	wakeup_swapper = 0;
819	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
820	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
821
822	/*
823	 * First, see if the thread is asleep and get the wait channel if
824	 * it is.
825	 */
826	thread_lock(td);
827	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
828		wchan = td->td_wchan;
829		sc = SC_LOOKUP(wchan);
830		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
831		sq = sleepq_lookup(wchan);
832		MPASS(sq != NULL);
833		td->td_flags |= TDF_TIMEOUT;
834		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
835		thread_unlock(td);
836		if (wakeup_swapper)
837			kick_proc0();
838		return;
839	}
840
841	/*
842	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
843	 * can either be on another CPU in between sleepq_add() and
844	 * one of the sleepq_*wait*() routines or it can be in
845	 * sleepq_catch_signals().
846	 */
847	if (TD_ON_SLEEPQ(td)) {
848		td->td_flags |= TDF_TIMEOUT;
849		thread_unlock(td);
850		return;
851	}
852
853	/*
854	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
855	 * then the other thread has already yielded to us, so clear
856	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
857	 * we know that the other thread is not on a sleep queue, but it
858	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
859	 * to let it know that the timeout has already run and doesn't
860	 * need to be canceled.
861	 */
862	if (td->td_flags & TDF_TIMEOUT) {
863		MPASS(TD_IS_SLEEPING(td));
864		td->td_flags &= ~TDF_TIMEOUT;
865		TD_CLR_SLEEPING(td);
866		wakeup_swapper = setrunnable(td);
867	} else
868		td->td_flags |= TDF_TIMOFAIL;
869	thread_unlock(td);
870	if (wakeup_swapper)
871		kick_proc0();
872}
873
874/*
875 * Resumes a specific thread from the sleep queue associated with a specific
876 * wait channel if it is on that queue.
877 */
878void
879sleepq_remove(struct thread *td, void *wchan)
880{
881	struct sleepqueue *sq;
882	int wakeup_swapper;
883
884	/*
885	 * Look up the sleep queue for this wait channel, then re-check
886	 * that the thread is asleep on that channel, if it is not, then
887	 * bail.
888	 */
889	MPASS(wchan != NULL);
890	sleepq_lock(wchan);
891	sq = sleepq_lookup(wchan);
892	/*
893	 * We can not lock the thread here as it may be sleeping on a
894	 * different sleepq.  However, holding the sleepq lock for this
895	 * wchan can guarantee that we do not miss a wakeup for this
896	 * channel.  The asserts below will catch any false positives.
897	 */
898	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
899		sleepq_release(wchan);
900		return;
901	}
902	/* Thread is asleep on sleep queue sq, so wake it up. */
903	thread_lock(td);
904	MPASS(sq != NULL);
905	MPASS(td->td_wchan == wchan);
906	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
907	thread_unlock(td);
908	sleepq_release(wchan);
909	if (wakeup_swapper)
910		kick_proc0();
911}
912
913/*
914 * Abort a thread as if an interrupt had occurred.  Only abort
915 * interruptible waits (unfortunately it isn't safe to abort others).
916 */
917int
918sleepq_abort(struct thread *td, int intrval)
919{
920	struct sleepqueue *sq;
921	void *wchan;
922
923	THREAD_LOCK_ASSERT(td, MA_OWNED);
924	MPASS(TD_ON_SLEEPQ(td));
925	MPASS(td->td_flags & TDF_SINTR);
926	MPASS(intrval == EINTR || intrval == ERESTART);
927
928	/*
929	 * If the TDF_TIMEOUT flag is set, just leave. A
930	 * timeout is scheduled anyhow.
931	 */
932	if (td->td_flags & TDF_TIMEOUT)
933		return (0);
934
935	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
936	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
937	td->td_intrval = intrval;
938	td->td_flags |= TDF_SLEEPABORT;
939	/*
940	 * If the thread has not slept yet it will find the signal in
941	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
942	 * we have to do it here.
943	 */
944	if (!TD_IS_SLEEPING(td))
945		return (0);
946	wchan = td->td_wchan;
947	MPASS(wchan != NULL);
948	sq = sleepq_lookup(wchan);
949	MPASS(sq != NULL);
950
951	/* Thread is asleep on sleep queue sq, so wake it up. */
952	return (sleepq_resume_thread(sq, td, 0));
953}
954
955#ifdef SLEEPQUEUE_PROFILING
956#define	SLEEPQ_PROF_LOCATIONS	1024
957#define	SLEEPQ_SBUFSIZE		(40 * 512)
958struct sleepq_prof {
959	LIST_ENTRY(sleepq_prof) sp_link;
960	const char	*sp_wmesg;
961	long		sp_count;
962};
963
964LIST_HEAD(sqphead, sleepq_prof);
965
966struct sqphead sleepq_prof_free;
967struct sqphead sleepq_hash[SC_TABLESIZE];
968static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
969static struct mtx sleepq_prof_lock;
970MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
971
972static void
973sleepq_profile(const char *wmesg)
974{
975	struct sleepq_prof *sp;
976
977	mtx_lock_spin(&sleepq_prof_lock);
978	if (prof_enabled == 0)
979		goto unlock;
980	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
981		if (sp->sp_wmesg == wmesg)
982			goto done;
983	sp = LIST_FIRST(&sleepq_prof_free);
984	if (sp == NULL)
985		goto unlock;
986	sp->sp_wmesg = wmesg;
987	LIST_REMOVE(sp, sp_link);
988	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
989done:
990	sp->sp_count++;
991unlock:
992	mtx_unlock_spin(&sleepq_prof_lock);
993	return;
994}
995
996static void
997sleepq_prof_reset(void)
998{
999	struct sleepq_prof *sp;
1000	int enabled;
1001	int i;
1002
1003	mtx_lock_spin(&sleepq_prof_lock);
1004	enabled = prof_enabled;
1005	prof_enabled = 0;
1006	for (i = 0; i < SC_TABLESIZE; i++)
1007		LIST_INIT(&sleepq_hash[i]);
1008	LIST_INIT(&sleepq_prof_free);
1009	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1010		sp = &sleepq_profent[i];
1011		sp->sp_wmesg = NULL;
1012		sp->sp_count = 0;
1013		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1014	}
1015	prof_enabled = enabled;
1016	mtx_unlock_spin(&sleepq_prof_lock);
1017}
1018
1019static int
1020enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1021{
1022	int error, v;
1023
1024	v = prof_enabled;
1025	error = sysctl_handle_int(oidp, &v, v, req);
1026	if (error)
1027		return (error);
1028	if (req->newptr == NULL)
1029		return (error);
1030	if (v == prof_enabled)
1031		return (0);
1032	if (v == 1)
1033		sleepq_prof_reset();
1034	mtx_lock_spin(&sleepq_prof_lock);
1035	prof_enabled = !!v;
1036	mtx_unlock_spin(&sleepq_prof_lock);
1037
1038	return (0);
1039}
1040
1041static int
1042reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1043{
1044	int error, v;
1045
1046	v = 0;
1047	error = sysctl_handle_int(oidp, &v, 0, req);
1048	if (error)
1049		return (error);
1050	if (req->newptr == NULL)
1051		return (error);
1052	if (v == 0)
1053		return (0);
1054	sleepq_prof_reset();
1055
1056	return (0);
1057}
1058
1059static int
1060dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1061{
1062	static int multiplier = 1;
1063	struct sleepq_prof *sp;
1064	struct sbuf *sb;
1065	int enabled;
1066	int error;
1067	int i;
1068
1069retry_sbufops:
1070	sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN);
1071	sbuf_printf(sb, "\nwmesg\tcount\n");
1072	enabled = prof_enabled;
1073	mtx_lock_spin(&sleepq_prof_lock);
1074	prof_enabled = 0;
1075	mtx_unlock_spin(&sleepq_prof_lock);
1076	for (i = 0; i < SC_TABLESIZE; i++) {
1077		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1078			sbuf_printf(sb, "%s\t%ld\n",
1079			    sp->sp_wmesg, sp->sp_count);
1080			if (sbuf_overflowed(sb)) {
1081				sbuf_delete(sb);
1082				multiplier++;
1083				goto retry_sbufops;
1084			}
1085		}
1086	}
1087	mtx_lock_spin(&sleepq_prof_lock);
1088	prof_enabled = enabled;
1089	mtx_unlock_spin(&sleepq_prof_lock);
1090
1091	sbuf_finish(sb);
1092	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
1093	sbuf_delete(sb);
1094	return (error);
1095}
1096
1097SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1098    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1099SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1100    NULL, 0, reset_sleepq_prof_stats, "I",
1101    "Reset sleepqueue profiling statistics");
1102SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1103    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1104#endif
1105
1106#ifdef DDB
1107DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1108{
1109	struct sleepqueue_chain *sc;
1110	struct sleepqueue *sq;
1111#ifdef INVARIANTS
1112	struct lock_object *lock;
1113#endif
1114	struct thread *td;
1115	void *wchan;
1116	int i;
1117
1118	if (!have_addr)
1119		return;
1120
1121	/*
1122	 * First, see if there is an active sleep queue for the wait channel
1123	 * indicated by the address.
1124	 */
1125	wchan = (void *)addr;
1126	sc = SC_LOOKUP(wchan);
1127	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1128		if (sq->sq_wchan == wchan)
1129			goto found;
1130
1131	/*
1132	 * Second, see if there is an active sleep queue at the address
1133	 * indicated.
1134	 */
1135	for (i = 0; i < SC_TABLESIZE; i++)
1136		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1137			if (sq == (struct sleepqueue *)addr)
1138				goto found;
1139		}
1140
1141	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1142	return;
1143found:
1144	db_printf("Wait channel: %p\n", sq->sq_wchan);
1145#ifdef INVARIANTS
1146	db_printf("Queue type: %d\n", sq->sq_type);
1147	if (sq->sq_lock) {
1148		lock = sq->sq_lock;
1149		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1150		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1151	}
1152#endif
1153	db_printf("Blocked threads:\n");
1154	for (i = 0; i < NR_SLEEPQS; i++) {
1155		db_printf("\nQueue[%d]:\n", i);
1156		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1157			db_printf("\tempty\n");
1158		else
1159			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1160				      td_slpq) {
1161				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1162					  td->td_tid, td->td_proc->p_pid,
1163					  td->td_name);
1164			}
1165	}
1166}
1167
1168/* Alias 'show sleepqueue' to 'show sleepq'. */
1169DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1170#endif
1171