subr_sleepqueue.c revision 127085
1/*
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the author nor the names of any co-contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * Implementation of sleep queues used to hold queue of threads blocked on
32 * a wait channel.  Sleep queues different from turnstiles in that wait
33 * channels are not owned by anyone, so there is no priority propagation.
34 * Sleep queues can also provide a timeout and can also be interrupted by
35 * signals.  That said, there are several similarities between the turnstile
36 * and sleep queue implementations.  (Note: turnstiles were implemented
37 * first.)  For example, both use a hash table of the same size where each
38 * bucket is referred to as a "chain" that contains both a spin lock and
39 * a linked list of queues.  An individual queue is located by using a hash
40 * to pick a chain, locking the chain, and then walking the chain searching
41 * for the queue.  This means that a wait channel object does not need to
42 * embed it's queue head just as locks do not embed their turnstile queue
43 * head.  Threads also carry around a sleep queue that they lend to the
44 * wait channel when blocking.  Just as in turnstiles, the queue includes
45 * a free list of the sleep queues of other threads blocked on the same
46 * wait channel in the case of multiple waiters.
47 *
48 * Some additional functionality provided by sleep queues include the
49 * ability to set a timeout.  The timeout is managed using a per-thread
50 * callout that resumes a thread if it is asleep.  A thread may also
51 * catch signals while it is asleep (aka an interruptible sleep).  The
52 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
53 * sleep queues also provide some extra assertions.  One is not allowed to
54 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
55 * must consistently use the same lock to synchronize with a wait channel,
56 * though this check is currently only a warning for sleep/wakeup due to
57 * pre-existing abuse of that API.  The same lock must also be held when
58 * awakening threads, though that is currently only enforced for condition
59 * variables.
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: head/sys/kern/subr_sleepqueue.c 127085 2004-03-16 18:56:22Z jhb $");
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/lock.h>
68#include <sys/kernel.h>
69#include <sys/ktr.h>
70#include <sys/malloc.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/sched.h>
74#include <sys/signalvar.h>
75#include <sys/sleepqueue.h>
76
77/*
78 * Constants for the hash table of sleep queue chains.  These constants are
79 * the same ones that 4BSD (and possibly earlier versions of BSD) used.
80 * Basically, we ignore the lower 8 bits of the address since most wait
81 * channel pointers are aligned and only look at the next 7 bits for the
82 * hash.  SC_TABLESIZE must be a power of two for SC_MASK to work properly.
83 */
84#define	SC_TABLESIZE	128			/* Must be power of 2. */
85#define	SC_MASK		(SC_TABLESIZE - 1)
86#define	SC_SHIFT	8
87#define	SC_HASH(wc)	(((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK)
88#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
89
90/*
91 * There two different lists of sleep queues.  Both lists are connected
92 * via the sq_hash entries.  The first list is the sleep queue chain list
93 * that a sleep queue is on when it is attached to a wait channel.  The
94 * second list is the free list hung off of a sleep queue that is attached
95 * to a wait channel.
96 *
97 * Each sleep queue also contains the wait channel it is attached to, the
98 * list of threads blocked on that wait channel, flags specific to the
99 * wait channel, and the lock used to synchronize with a wait channel.
100 * The flags are used to catch mismatches between the various consumers
101 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
102 * The lock pointer is only used when invariants are enabled for various
103 * debugging checks.
104 *
105 * Locking key:
106 *  c - sleep queue chain lock
107 */
108struct sleepqueue {
109	TAILQ_HEAD(, thread) sq_blocked;	/* (c) Blocked threads. */
110	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
111	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
112	void	*sq_wchan;			/* (c) Wait channel. */
113	int	sq_flags;			/* (c) Flags. */
114#ifdef INVARIANTS
115	struct mtx *sq_lock;			/* (c) Associated lock. */
116#endif
117};
118
119struct sleepqueue_chain {
120	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
121	struct mtx sc_lock;			/* Spin lock for this chain. */
122};
123
124static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
125
126MALLOC_DEFINE(M_SLEEPQUEUE, "sleep queues", "sleep queues");
127
128/*
129 * Prototypes for non-exported routines.
130 */
131static int	sleepq_check_timeout(void);
132static void	sleepq_switch(void *wchan);
133static void	sleepq_timeout(void *arg);
134static void	sleepq_wakeup_thread(struct sleepqueue *sq, struct thread *td,
135		    int pri);
136
137/*
138 * Early initialization of sleep queues that is called from the sleepinit()
139 * SYSINIT.
140 */
141void
142init_sleepqueues(void)
143{
144	int i;
145
146	for (i = 0; i < SC_TABLESIZE; i++) {
147		LIST_INIT(&sleepq_chains[i].sc_queues);
148		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
149		    MTX_SPIN);
150	}
151	thread0.td_sleepqueue = sleepq_alloc();
152}
153
154/*
155 * Malloc and initialize a new sleep queue for a new thread.
156 */
157struct sleepqueue *
158sleepq_alloc(void)
159{
160	struct sleepqueue *sq;
161
162	sq = malloc(sizeof(struct sleepqueue), M_SLEEPQUEUE, M_WAITOK | M_ZERO);
163	TAILQ_INIT(&sq->sq_blocked);
164	LIST_INIT(&sq->sq_free);
165	return (sq);
166}
167
168/*
169 * Free a sleep queue when a thread is destroyed.
170 */
171void
172sleepq_free(struct sleepqueue *sq)
173{
174
175	MPASS(sq != NULL);
176	MPASS(TAILQ_EMPTY(&sq->sq_blocked));
177	free(sq, M_SLEEPQUEUE);
178}
179
180/*
181 * Look up the sleep queue associated with a given wait channel in the hash
182 * table locking the associated sleep queue chain.  Return holdind the sleep
183 * queue chain lock.  If no queue is found in the table, NULL is returned.
184 */
185struct sleepqueue *
186sleepq_lookup(void *wchan)
187{
188	struct sleepqueue_chain *sc;
189	struct sleepqueue *sq;
190
191	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
192	sc = SC_LOOKUP(wchan);
193	mtx_lock_spin(&sc->sc_lock);
194	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
195		if (sq->sq_wchan == wchan)
196			return (sq);
197	return (NULL);
198}
199
200/*
201 * Unlock the sleep queue chain associated with a given wait channel.
202 */
203void
204sleepq_release(void *wchan)
205{
206	struct sleepqueue_chain *sc;
207
208	sc = SC_LOOKUP(wchan);
209	mtx_unlock_spin(&sc->sc_lock);
210}
211
212/*
213 * Places the current thread on the sleepqueue for the specified wait
214 * channel.  If INVARIANTS is enabled, then it associates the passed in
215 * lock with the sleepq to make sure it is held when that sleep queue is
216 * woken up.
217 */
218void
219sleepq_add(struct sleepqueue *sq, void *wchan, struct mtx *lock,
220    const char *wmesg, int flags)
221{
222	struct sleepqueue_chain *sc;
223	struct thread *td, *td1;
224
225	td = curthread;
226	sc = SC_LOOKUP(wchan);
227	mtx_assert(&sc->sc_lock, MA_OWNED);
228	MPASS(td->td_sleepqueue != NULL);
229	MPASS(wchan != NULL);
230
231	/* If the passed in sleep queue is NULL, use this thread's queue. */
232	if (sq == NULL) {
233		sq = td->td_sleepqueue;
234		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
235		KASSERT(TAILQ_EMPTY(&sq->sq_blocked),
236		    ("thread's sleep queue has a non-empty queue"));
237		KASSERT(LIST_EMPTY(&sq->sq_free),
238		    ("thread's sleep queue has a non-empty free list"));
239		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
240		sq->sq_wchan = wchan;
241#ifdef INVARIANTS
242		sq->sq_lock = lock;
243#endif
244		sq->sq_flags = flags;
245		TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
246	} else {
247		MPASS(wchan == sq->sq_wchan);
248		MPASS(lock == sq->sq_lock);
249		TAILQ_FOREACH(td1, &sq->sq_blocked, td_slpq)
250			if (td1->td_priority > td->td_priority)
251				break;
252		if (td1 != NULL)
253			TAILQ_INSERT_BEFORE(td1, td, td_slpq);
254		else
255			TAILQ_INSERT_TAIL(&sq->sq_blocked, td, td_slpq);
256		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
257	}
258	td->td_sleepqueue = NULL;
259	mtx_lock_spin(&sched_lock);
260	td->td_wchan = wchan;
261	td->td_wmesg = wmesg;
262	mtx_unlock_spin(&sched_lock);
263}
264
265/*
266 * Sets a timeout that will remove the current thread from the specified
267 * sleep queue after timo ticks if the thread has not already been awakened.
268 */
269void
270sleepq_set_timeout(void *wchan, int timo)
271{
272	struct sleepqueue_chain *sc;
273	struct thread *td;
274
275	td = curthread;
276	sc = SC_LOOKUP(wchan);
277	mtx_assert(&sc->sc_lock, MA_OWNED);
278	MPASS(TD_ON_SLEEPQ(td));
279	MPASS(td->td_sleepqueue == NULL);
280	MPASS(wchan != NULL);
281	callout_reset(&td->td_slpcallout, timo, sleepq_timeout, td);
282}
283
284/*
285 * Marks the pending sleep of the current thread as interruptible and
286 * makes an initial check for pending signals before putting a thread
287 * to sleep.
288 */
289int
290sleepq_catch_signals(void *wchan)
291{
292	struct sleepqueue_chain *sc;
293	struct sleepqueue *sq;
294	struct thread *td;
295	struct proc *p;
296	int sig;
297
298	td = curthread;
299	p = td->td_proc;
300	sc = SC_LOOKUP(wchan);
301	mtx_assert(&sc->sc_lock, MA_OWNED);
302	MPASS(td->td_sleepqueue == NULL);
303	MPASS(wchan != NULL);
304	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %d, %s)", td,
305	    p->p_pid, p->p_comm);
306
307	/* Mark thread as being in an interruptible sleep. */
308	mtx_lock_spin(&sched_lock);
309	MPASS(TD_ON_SLEEPQ(td));
310	td->td_flags |= TDF_SINTR;
311	mtx_unlock_spin(&sched_lock);
312	sleepq_release(wchan);
313
314	/* See if there are any pending signals for this thread. */
315	PROC_LOCK(p);
316	mtx_lock(&p->p_sigacts->ps_mtx);
317	sig = cursig(td);
318	mtx_unlock(&p->p_sigacts->ps_mtx);
319	if (sig == 0 && thread_suspend_check(1))
320		sig = SIGSTOP;
321	PROC_UNLOCK(p);
322
323	/*
324	 * If there were pending signals and this thread is still on
325	 * the sleep queue, remove it from the sleep queue.
326	 */
327	sq = sleepq_lookup(wchan);
328	mtx_lock_spin(&sched_lock);
329	if (TD_ON_SLEEPQ(td) && sig != 0) {
330		mtx_unlock_spin(&sched_lock);
331		sleepq_wakeup_thread(sq, td, -1);
332	} else
333		mtx_unlock_spin(&sched_lock);
334	return (sig);
335}
336
337/*
338 * Switches to another thread if we are still asleep on a sleep queue and
339 * drop the lock on the sleepqueue chain.  Returns with sched_lock held.
340 */
341static void
342sleepq_switch(void *wchan)
343{
344	struct sleepqueue_chain *sc;
345	struct thread *td;
346
347	td = curthread;
348	sc = SC_LOOKUP(wchan);
349	mtx_assert(&sc->sc_lock, MA_OWNED);
350
351	/*
352	 * If we have a sleep queue, then we've already been woken up, so
353	 * just return.
354	 */
355	if (td->td_sleepqueue != NULL) {
356		MPASS(!TD_ON_SLEEPQ(td));
357		mtx_unlock_spin(&sc->sc_lock);
358		mtx_lock_spin(&sched_lock);
359		return;
360	}
361
362	/*
363	 * Otherwise, actually go to sleep.
364	 */
365	mtx_lock_spin(&sched_lock);
366	mtx_unlock_spin(&sc->sc_lock);
367
368	sched_sleep(td);
369	TD_SET_SLEEPING(td);
370	mi_switch(SW_VOL);
371	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
372	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %d, %s)", td,
373	    td->td_proc->p_pid, td->td_proc->p_comm);
374}
375
376/*
377 * Check to see if we timed out.
378 */
379static int
380sleepq_check_timeout(void)
381{
382	struct thread *td;
383
384	mtx_assert(&sched_lock, MA_OWNED);
385	td = curthread;
386
387	/*
388	 * If TDF_TIMEOUT is set, we timed out.
389	 */
390	if (td->td_flags & TDF_TIMEOUT) {
391		td->td_flags &= ~TDF_TIMEOUT;
392		return (EWOULDBLOCK);
393	}
394
395	/*
396	 * If TDF_TIMOFAIL is set, the timeout ran after we had
397	 * already been woken up.
398	 */
399	if (td->td_flags & TDF_TIMOFAIL)
400		td->td_flags &= ~TDF_TIMOFAIL;
401
402	/*
403	 * If callout_stop() fails, then the timeout is running on
404	 * another CPU, so synchronize with it to avoid having it
405	 * accidentally wake up a subsequent sleep.
406	 */
407	else if (callout_stop(&td->td_slpcallout) == 0) {
408		td->td_flags |= TDF_TIMEOUT;
409		TD_SET_SLEEPING(td);
410		mi_switch(SW_INVOL);
411	}
412	return (0);
413}
414
415/*
416 * Check to see if we were awoken by a signal.
417 */
418static int
419sleepq_check_signals(void)
420{
421	struct thread *td;
422
423	mtx_assert(&sched_lock, MA_OWNED);
424	td = curthread;
425
426	/* We are no longer in an interruptible sleep. */
427	td->td_flags &= ~TDF_SINTR;
428
429	/* If we were interrupted, return td_intrval. */
430	if (td->td_flags & TDF_INTERRUPT)
431		return (td->td_intrval);
432	return (0);
433}
434
435/*
436 * If we were in an interruptible sleep and we weren't interrupted and
437 * didn't timeout, check to see if there are any pending signals and
438 * which return value we should use if so.  The return value from an
439 * earlier call to sleepq_catch_signals() should be passed in as the
440 * argument.
441 */
442int
443sleepq_calc_signal_retval(int sig)
444{
445	struct thread *td;
446	struct proc *p;
447	int rval;
448
449	td = curthread;
450	p = td->td_proc;
451	PROC_LOCK(p);
452	mtx_lock(&p->p_sigacts->ps_mtx);
453	/* XXX: Should we always be calling cursig()? */
454	if (sig == 0)
455		sig = cursig(td);
456	if (sig != 0) {
457		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
458			rval = EINTR;
459		else
460			rval = ERESTART;
461	} else
462		rval = 0;
463	mtx_unlock(&p->p_sigacts->ps_mtx);
464	PROC_UNLOCK(p);
465	return (rval);
466}
467
468/*
469 * Block the current thread until it is awakened from its sleep queue.
470 */
471void
472sleepq_wait(void *wchan)
473{
474
475	sleepq_switch(wchan);
476	mtx_unlock_spin(&sched_lock);
477}
478
479/*
480 * Block the current thread until it is awakened from its sleep queue
481 * or it is interrupted by a signal.
482 */
483int
484sleepq_wait_sig(void *wchan)
485{
486	int rval;
487
488	sleepq_switch(wchan);
489	rval = sleepq_check_signals();
490	mtx_unlock_spin(&sched_lock);
491	return (rval);
492}
493
494/*
495 * Block the current thread until it is awakened from its sleep queue
496 * or it times out while waiting.
497 */
498int
499sleepq_timedwait(void *wchan, int signal_caught)
500{
501	int rval;
502
503	sleepq_switch(wchan);
504	rval = sleepq_check_timeout();
505	mtx_unlock_spin(&sched_lock);
506	if (signal_caught)
507		return (0);
508	else
509		return (rval);
510}
511
512/*
513 * Block the current thread until it is awakened from its sleep queue,
514 * it is interrupted by a signal, or it times out waiting to be awakened.
515 */
516int
517sleepq_timedwait_sig(void *wchan, int signal_caught)
518{
519	int rvalt, rvals;
520
521	sleepq_switch(wchan);
522	rvalt = sleepq_check_timeout();
523	rvals = sleepq_check_signals();
524	mtx_unlock_spin(&sched_lock);
525	if (signal_caught || rvalt == 0)
526		return (rvals);
527	else
528		return (rvalt);
529}
530
531/*
532 * Removes a thread from a sleep queue and resumes it.
533 */
534static void
535sleepq_wakeup_thread(struct sleepqueue *sq, struct thread *td, int pri)
536{
537	struct sleepqueue_chain *sc;
538
539	MPASS(td != NULL);
540	MPASS(sq->sq_wchan != NULL);
541	MPASS(td->td_wchan == sq->sq_wchan);
542	sc = SC_LOOKUP(sq->sq_wchan);
543	mtx_assert(&sc->sc_lock, MA_OWNED);
544
545	/* Remove the thread from the queue. */
546	TAILQ_REMOVE(&sq->sq_blocked, td, td_slpq);
547
548	/*
549	 * Get a sleep queue for this thread.  If this is the last waiter,
550	 * use the queue itself and take it out of the chain, otherwise,
551	 * remove a queue from the free list.
552	 */
553	if (LIST_EMPTY(&sq->sq_free)) {
554		td->td_sleepqueue = sq;
555#ifdef INVARIANTS
556		sq->sq_wchan = NULL;
557#endif
558	} else
559		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
560	LIST_REMOVE(td->td_sleepqueue, sq_hash);
561
562	/*
563	 * Finish resuming the thread.
564	 */
565	mtx_lock_spin(&sched_lock);
566	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %d, %s)", td,
567	    td->td_proc->p_pid, td->td_proc->p_comm);
568	td->td_wmesg = NULL;
569	td->td_wchan = NULL;
570	TD_CLR_SLEEPING(td);
571
572	/* Adjust priority if requested. */
573	MPASS(pri == -1 || (pri >= PRI_MIN && pri <= PRI_MAX));
574	if (pri != -1 && td->td_priority > pri)
575		td->td_priority = pri;
576	setrunnable(td);
577	mtx_unlock_spin(&sched_lock);
578}
579
580/*
581 * Find the highest priority thread sleeping on a wait channel and resume it.
582 */
583void
584sleepq_signal(void *wchan, int flags, int pri)
585{
586	struct sleepqueue *sq;
587
588	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
589	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
590	sq = sleepq_lookup(wchan);
591	if (sq == NULL) {
592		sleepq_release(wchan);
593		return;
594	}
595	KASSERT(sq->sq_flags == flags,
596	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
597	/* XXX: Do for all sleep queues eventually. */
598	if (flags & SLEEPQ_CONDVAR)
599		mtx_assert(sq->sq_lock, MA_OWNED);
600	sleepq_wakeup_thread(sq, TAILQ_FIRST(&sq->sq_blocked), pri);
601	sleepq_release(wchan);
602}
603
604/*
605 * Resume all threads sleeping on a specified wait channel.
606 */
607void
608sleepq_broadcast(void *wchan, int flags, int pri)
609{
610	struct sleepqueue *sq;
611
612	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
613	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
614	sq = sleepq_lookup(wchan);
615	if (sq == NULL) {
616		sleepq_release(wchan);
617		return;
618	}
619	KASSERT(sq->sq_flags == flags,
620	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
621	/* XXX: Do for all sleep queues eventually. */
622	if (flags & SLEEPQ_CONDVAR)
623		mtx_assert(sq->sq_lock, MA_OWNED);
624	while (!TAILQ_EMPTY(&sq->sq_blocked))
625		sleepq_wakeup_thread(sq, TAILQ_FIRST(&sq->sq_blocked), pri);
626	sleepq_release(wchan);
627}
628
629/*
630 * Time sleeping threads out.  When the timeout expires, the thread is
631 * removed from the sleep queue and made runnable if it is still asleep.
632 */
633static void
634sleepq_timeout(void *arg)
635{
636	struct sleepqueue *sq;
637	struct thread *td;
638	void *wchan;
639
640	td = (struct thread *)arg;
641	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %d, %s)",
642	    td, td->td_proc->p_pid, td->td_proc->p_comm);
643
644	/*
645	 * First, see if the thread is asleep and get the wait channel if
646	 * it is.
647	 */
648	mtx_lock_spin(&sched_lock);
649	if (TD_ON_SLEEPQ(td)) {
650		wchan = td->td_wchan;
651		mtx_unlock_spin(&sched_lock);
652		sq = sleepq_lookup(wchan);
653		mtx_lock_spin(&sched_lock);
654	} else {
655		wchan = NULL;
656		sq = NULL;
657	}
658
659	/*
660	 * At this point, if the thread is still on the sleep queue,
661	 * we have that sleep queue locked as it cannot migrate sleep
662	 * queues while we dropped sched_lock.  If it had resumed and
663	 * was on another CPU while the lock was dropped, it would have
664	 * seen that TDF_TIMEOUT and TDF_TIMOFAIL are clear and the
665	 * call to callout_stop() to stop this routine would have failed
666	 * meaning that it would have already set TDF_TIMEOUT to
667	 * synchronize with this function.
668	 */
669	if (TD_ON_SLEEPQ(td)) {
670		MPASS(td->td_wchan == wchan);
671		MPASS(sq != NULL);
672		td->td_flags |= TDF_TIMEOUT;
673		mtx_unlock_spin(&sched_lock);
674		sleepq_wakeup_thread(sq, td, -1);
675		sleepq_release(wchan);
676		return;
677	} else if (wchan != NULL)
678		sleepq_release(wchan);
679
680	/*
681	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
682	 * then the other thread has already yielded to us, so clear
683	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
684	 * we know that the other thread is not on a sleep queue, but it
685	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
686	 * to let it know that the timeout has already run and doesn't
687	 * need to be canceled.
688	 */
689	if (td->td_flags & TDF_TIMEOUT) {
690		MPASS(TD_IS_SLEEPING(td));
691		td->td_flags &= ~TDF_TIMEOUT;
692		TD_CLR_SLEEPING(td);
693		setrunnable(td);
694	} else
695		td->td_flags |= TDF_TIMOFAIL;
696	mtx_unlock_spin(&sched_lock);
697}
698
699/*
700 * Resumes a specific thread from the sleep queue associated with a specific
701 * wait channel if it is on that queue.
702 */
703void
704sleepq_remove(struct thread *td, void *wchan)
705{
706	struct sleepqueue *sq;
707
708	/*
709	 * Look up the sleep queue for this wait channel, then re-check
710	 * that the thread is asleep on that channel, if it is not, then
711	 * bail.
712	 */
713	MPASS(wchan != NULL);
714	sq = sleepq_lookup(wchan);
715	mtx_lock_spin(&sched_lock);
716	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
717		mtx_unlock_spin(&sched_lock);
718		sleepq_release(wchan);
719		return;
720	}
721	mtx_unlock_spin(&sched_lock);
722	MPASS(sq != NULL);
723
724	/* Thread is asleep on sleep queue sq, so wake it up. */
725	sleepq_wakeup_thread(sq, td, -1);
726	sleepq_release(wchan);
727}
728
729/*
730 * Abort a thread as if an interrupt had occured.  Only abort
731 * interruptable waits (unfortunately it isn't safe to abort others).
732 *
733 * XXX: What in the world does the comment below mean?
734 * Also, whatever the signal code does...
735 */
736void
737sleepq_abort(struct thread *td)
738{
739	void *wchan;
740
741	mtx_assert(&sched_lock, MA_OWNED);
742	MPASS(TD_ON_SLEEPQ(td));
743	MPASS(td->td_flags & TDF_SINTR);
744
745	/*
746	 * If the TDF_TIMEOUT flag is set, just leave. A
747	 * timeout is scheduled anyhow.
748	 */
749	if (td->td_flags & TDF_TIMEOUT)
750		return;
751
752	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %d, %s)", td,
753	    td->td_proc->p_pid, td->td_proc->p_comm);
754	wchan = td->td_wchan;
755	mtx_unlock_spin(&sched_lock);
756	sleepq_remove(td, wchan);
757	mtx_lock_spin(&sched_lock);
758}
759