subr_bus.c revision 327626
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/kern/subr_bus.c 327626 2018-01-06 17:20:58Z ian $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54#include <sys/systm.h>
55#include <sys/uio.h>
56#include <sys/bus.h>
57#include <sys/interrupt.h>
58#include <sys/cpuset.h>
59
60#include <net/vnet.h>
61
62#include <machine/cpu.h>
63#include <machine/stdarg.h>
64
65#include <vm/uma.h>
66#include <vm/vm.h>
67
68SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70
71/*
72 * Used to attach drivers to devclasses.
73 */
74typedef struct driverlink *driverlink_t;
75struct driverlink {
76	kobj_class_t	driver;
77	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78	int		pass;
79	TAILQ_ENTRY(driverlink) passlink;
80};
81
82/*
83 * Forward declarations
84 */
85typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87typedef TAILQ_HEAD(device_list, device) device_list_t;
88
89struct devclass {
90	TAILQ_ENTRY(devclass) link;
91	devclass_t	parent;		/* parent in devclass hierarchy */
92	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93	char		*name;
94	device_t	*devices;	/* array of devices indexed by unit */
95	int		maxunit;	/* size of devices array */
96	int		flags;
97#define DC_HAS_CHILDREN		1
98
99	struct sysctl_ctx_list sysctl_ctx;
100	struct sysctl_oid *sysctl_tree;
101};
102
103/**
104 * @brief Implementation of device.
105 */
106struct device {
107	/*
108	 * A device is a kernel object. The first field must be the
109	 * current ops table for the object.
110	 */
111	KOBJ_FIELDS;
112
113	/*
114	 * Device hierarchy.
115	 */
116	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118	device_t	parent;		/**< parent of this device  */
119	device_list_t	children;	/**< list of child devices */
120
121	/*
122	 * Details of this device.
123	 */
124	driver_t	*driver;	/**< current driver */
125	devclass_t	devclass;	/**< current device class */
126	int		unit;		/**< current unit number */
127	char*		nameunit;	/**< name+unit e.g. foodev0 */
128	char*		desc;		/**< driver specific description */
129	int		busy;		/**< count of calls to device_busy() */
130	device_state_t	state;		/**< current device state  */
131	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132	u_int		flags;		/**< internal device flags  */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144static void devctl2_init(void);
145
146#ifdef BUS_DEBUG
147
148static int bus_debug = 1;
149SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
150    "Bus debug level");
151
152#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154#define DRIVERNAME(d)	((d)? d->name : "no driver")
155#define DEVCLANAME(d)	((d)? d->name : "no devclass")
156
157/**
158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159 * prevent syslog from deleting initial spaces
160 */
161#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162
163static void print_device_short(device_t dev, int indent);
164static void print_device(device_t dev, int indent);
165void print_device_tree_short(device_t dev, int indent);
166void print_device_tree(device_t dev, int indent);
167static void print_driver_short(driver_t *driver, int indent);
168static void print_driver(driver_t *driver, int indent);
169static void print_driver_list(driver_list_t drivers, int indent);
170static void print_devclass_short(devclass_t dc, int indent);
171static void print_devclass(devclass_t dc, int indent);
172void print_devclass_list_short(void);
173void print_devclass_list(void);
174
175#else
176/* Make the compiler ignore the function calls */
177#define PDEBUG(a)			/* nop */
178#define DEVICENAME(d)			/* nop */
179#define DRIVERNAME(d)			/* nop */
180#define DEVCLANAME(d)			/* nop */
181
182#define print_device_short(d,i)		/* nop */
183#define print_device(d,i)		/* nop */
184#define print_device_tree_short(d,i)	/* nop */
185#define print_device_tree(d,i)		/* nop */
186#define print_driver_short(d,i)		/* nop */
187#define print_driver(d,i)		/* nop */
188#define print_driver_list(d,i)		/* nop */
189#define print_devclass_short(d,i)	/* nop */
190#define print_devclass(d,i)		/* nop */
191#define print_devclass_list_short()	/* nop */
192#define print_devclass_list()		/* nop */
193#endif
194
195/*
196 * dev sysctl tree
197 */
198
199enum {
200	DEVCLASS_SYSCTL_PARENT,
201};
202
203static int
204devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205{
206	devclass_t dc = (devclass_t)arg1;
207	const char *value;
208
209	switch (arg2) {
210	case DEVCLASS_SYSCTL_PARENT:
211		value = dc->parent ? dc->parent->name : "";
212		break;
213	default:
214		return (EINVAL);
215	}
216	return (SYSCTL_OUT_STR(req, value));
217}
218
219static void
220devclass_sysctl_init(devclass_t dc)
221{
222
223	if (dc->sysctl_tree != NULL)
224		return;
225	sysctl_ctx_init(&dc->sysctl_ctx);
226	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228	    CTLFLAG_RD, NULL, "");
229	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
231	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232	    "parent class");
233}
234
235enum {
236	DEVICE_SYSCTL_DESC,
237	DEVICE_SYSCTL_DRIVER,
238	DEVICE_SYSCTL_LOCATION,
239	DEVICE_SYSCTL_PNPINFO,
240	DEVICE_SYSCTL_PARENT,
241};
242
243static int
244device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245{
246	device_t dev = (device_t)arg1;
247	const char *value;
248	char *buf;
249	int error;
250
251	buf = NULL;
252	switch (arg2) {
253	case DEVICE_SYSCTL_DESC:
254		value = dev->desc ? dev->desc : "";
255		break;
256	case DEVICE_SYSCTL_DRIVER:
257		value = dev->driver ? dev->driver->name : "";
258		break;
259	case DEVICE_SYSCTL_LOCATION:
260		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261		bus_child_location_str(dev, buf, 1024);
262		break;
263	case DEVICE_SYSCTL_PNPINFO:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_pnpinfo_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PARENT:
268		value = dev->parent ? dev->parent->nameunit : "";
269		break;
270	default:
271		return (EINVAL);
272	}
273	error = SYSCTL_OUT_STR(req, value);
274	if (buf != NULL)
275		free(buf, M_BUS);
276	return (error);
277}
278
279static void
280device_sysctl_init(device_t dev)
281{
282	devclass_t dc = dev->devclass;
283	int domain;
284
285	if (dev->sysctl_tree != NULL)
286		return;
287	devclass_sysctl_init(dc);
288	sysctl_ctx_init(&dev->sysctl_ctx);
289	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291	    dev->nameunit + strlen(dc->name),
292	    CTLFLAG_RD, NULL, "");
293	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296	    "device description");
297	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300	    "device driver name");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304	    "device location relative to parent");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308	    "device identification");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312	    "parent device");
313	if (bus_get_domain(dev, &domain) == 0)
314		SYSCTL_ADD_INT(&dev->sysctl_ctx,
315		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
316		    CTLFLAG_RD, NULL, domain, "NUMA domain");
317}
318
319static void
320device_sysctl_update(device_t dev)
321{
322	devclass_t dc = dev->devclass;
323
324	if (dev->sysctl_tree == NULL)
325		return;
326	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
327}
328
329static void
330device_sysctl_fini(device_t dev)
331{
332	if (dev->sysctl_tree == NULL)
333		return;
334	sysctl_ctx_free(&dev->sysctl_ctx);
335	dev->sysctl_tree = NULL;
336}
337
338/*
339 * /dev/devctl implementation
340 */
341
342/*
343 * This design allows only one reader for /dev/devctl.  This is not desirable
344 * in the long run, but will get a lot of hair out of this implementation.
345 * Maybe we should make this device a clonable device.
346 *
347 * Also note: we specifically do not attach a device to the device_t tree
348 * to avoid potential chicken and egg problems.  One could argue that all
349 * of this belongs to the root node.  One could also further argue that the
350 * sysctl interface that we have not might more properly be an ioctl
351 * interface, but at this stage of the game, I'm not inclined to rock that
352 * boat.
353 *
354 * I'm also not sure that the SIGIO support is done correctly or not, as
355 * I copied it from a driver that had SIGIO support that likely hasn't been
356 * tested since 3.4 or 2.2.8!
357 */
358
359/* Deprecated way to adjust queue length */
360static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
361SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
362    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363    "devctl disable -- deprecated");
364
365#define DEVCTL_DEFAULT_QUEUE_LEN 1000
366static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
369    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
370
371static d_open_t		devopen;
372static d_close_t	devclose;
373static d_read_t		devread;
374static d_ioctl_t	devioctl;
375static d_poll_t		devpoll;
376static d_kqfilter_t	devkqfilter;
377
378static struct cdevsw dev_cdevsw = {
379	.d_version =	D_VERSION,
380	.d_open =	devopen,
381	.d_close =	devclose,
382	.d_read =	devread,
383	.d_ioctl =	devioctl,
384	.d_poll =	devpoll,
385	.d_kqfilter =	devkqfilter,
386	.d_name =	"devctl",
387};
388
389struct dev_event_info
390{
391	char *dei_data;
392	TAILQ_ENTRY(dev_event_info) dei_link;
393};
394
395TAILQ_HEAD(devq, dev_event_info);
396
397static struct dev_softc
398{
399	int	inuse;
400	int	nonblock;
401	int	queued;
402	int	async;
403	struct mtx mtx;
404	struct cv cv;
405	struct selinfo sel;
406	struct devq devq;
407	struct sigio *sigio;
408} devsoftc;
409
410static void	filt_devctl_detach(struct knote *kn);
411static int	filt_devctl_read(struct knote *kn, long hint);
412
413struct filterops devctl_rfiltops = {
414	.f_isfd = 1,
415	.f_detach = filt_devctl_detach,
416	.f_event = filt_devctl_read,
417};
418
419static struct cdev *devctl_dev;
420
421static void
422devinit(void)
423{
424	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
425	    UID_ROOT, GID_WHEEL, 0600, "devctl");
426	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
427	cv_init(&devsoftc.cv, "dev cv");
428	TAILQ_INIT(&devsoftc.devq);
429	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
430	devctl2_init();
431}
432
433static int
434devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435{
436
437	mtx_lock(&devsoftc.mtx);
438	if (devsoftc.inuse) {
439		mtx_unlock(&devsoftc.mtx);
440		return (EBUSY);
441	}
442	/* move to init */
443	devsoftc.inuse = 1;
444	mtx_unlock(&devsoftc.mtx);
445	return (0);
446}
447
448static int
449devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450{
451
452	mtx_lock(&devsoftc.mtx);
453	devsoftc.inuse = 0;
454	devsoftc.nonblock = 0;
455	devsoftc.async = 0;
456	cv_broadcast(&devsoftc.cv);
457	funsetown(&devsoftc.sigio);
458	mtx_unlock(&devsoftc.mtx);
459	return (0);
460}
461
462/*
463 * The read channel for this device is used to report changes to
464 * userland in realtime.  We are required to free the data as well as
465 * the n1 object because we allocate them separately.  Also note that
466 * we return one record at a time.  If you try to read this device a
467 * character at a time, you will lose the rest of the data.  Listening
468 * programs are expected to cope.
469 */
470static int
471devread(struct cdev *dev, struct uio *uio, int ioflag)
472{
473	struct dev_event_info *n1;
474	int rv;
475
476	mtx_lock(&devsoftc.mtx);
477	while (TAILQ_EMPTY(&devsoftc.devq)) {
478		if (devsoftc.nonblock) {
479			mtx_unlock(&devsoftc.mtx);
480			return (EAGAIN);
481		}
482		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483		if (rv) {
484			/*
485			 * Need to translate ERESTART to EINTR here? -- jake
486			 */
487			mtx_unlock(&devsoftc.mtx);
488			return (rv);
489		}
490	}
491	n1 = TAILQ_FIRST(&devsoftc.devq);
492	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493	devsoftc.queued--;
494	mtx_unlock(&devsoftc.mtx);
495	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496	free(n1->dei_data, M_BUS);
497	free(n1, M_BUS);
498	return (rv);
499}
500
501static	int
502devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503{
504	switch (cmd) {
505
506	case FIONBIO:
507		if (*(int*)data)
508			devsoftc.nonblock = 1;
509		else
510			devsoftc.nonblock = 0;
511		return (0);
512	case FIOASYNC:
513		if (*(int*)data)
514			devsoftc.async = 1;
515		else
516			devsoftc.async = 0;
517		return (0);
518	case FIOSETOWN:
519		return fsetown(*(int *)data, &devsoftc.sigio);
520	case FIOGETOWN:
521		*(int *)data = fgetown(&devsoftc.sigio);
522		return (0);
523
524		/* (un)Support for other fcntl() calls. */
525	case FIOCLEX:
526	case FIONCLEX:
527	case FIONREAD:
528	default:
529		break;
530	}
531	return (ENOTTY);
532}
533
534static	int
535devpoll(struct cdev *dev, int events, struct thread *td)
536{
537	int	revents = 0;
538
539	mtx_lock(&devsoftc.mtx);
540	if (events & (POLLIN | POLLRDNORM)) {
541		if (!TAILQ_EMPTY(&devsoftc.devq))
542			revents = events & (POLLIN | POLLRDNORM);
543		else
544			selrecord(td, &devsoftc.sel);
545	}
546	mtx_unlock(&devsoftc.mtx);
547
548	return (revents);
549}
550
551static int
552devkqfilter(struct cdev *dev, struct knote *kn)
553{
554	int error;
555
556	if (kn->kn_filter == EVFILT_READ) {
557		kn->kn_fop = &devctl_rfiltops;
558		knlist_add(&devsoftc.sel.si_note, kn, 0);
559		error = 0;
560	} else
561		error = EINVAL;
562	return (error);
563}
564
565static void
566filt_devctl_detach(struct knote *kn)
567{
568
569	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570}
571
572static int
573filt_devctl_read(struct knote *kn, long hint)
574{
575	kn->kn_data = devsoftc.queued;
576	return (kn->kn_data != 0);
577}
578
579/**
580 * @brief Return whether the userland process is running
581 */
582boolean_t
583devctl_process_running(void)
584{
585	return (devsoftc.inuse == 1);
586}
587
588/**
589 * @brief Queue data to be read from the devctl device
590 *
591 * Generic interface to queue data to the devctl device.  It is
592 * assumed that @p data is properly formatted.  It is further assumed
593 * that @p data is allocated using the M_BUS malloc type.
594 */
595void
596devctl_queue_data_f(char *data, int flags)
597{
598	struct dev_event_info *n1 = NULL, *n2 = NULL;
599
600	if (strlen(data) == 0)
601		goto out;
602	if (devctl_queue_length == 0)
603		goto out;
604	n1 = malloc(sizeof(*n1), M_BUS, flags);
605	if (n1 == NULL)
606		goto out;
607	n1->dei_data = data;
608	mtx_lock(&devsoftc.mtx);
609	if (devctl_queue_length == 0) {
610		mtx_unlock(&devsoftc.mtx);
611		free(n1->dei_data, M_BUS);
612		free(n1, M_BUS);
613		return;
614	}
615	/* Leave at least one spot in the queue... */
616	while (devsoftc.queued > devctl_queue_length - 1) {
617		n2 = TAILQ_FIRST(&devsoftc.devq);
618		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619		free(n2->dei_data, M_BUS);
620		free(n2, M_BUS);
621		devsoftc.queued--;
622	}
623	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624	devsoftc.queued++;
625	cv_broadcast(&devsoftc.cv);
626	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627	mtx_unlock(&devsoftc.mtx);
628	selwakeup(&devsoftc.sel);
629	if (devsoftc.async && devsoftc.sigio != NULL)
630		pgsigio(&devsoftc.sigio, SIGIO, 0);
631	return;
632out:
633	/*
634	 * We have to free data on all error paths since the caller
635	 * assumes it will be free'd when this item is dequeued.
636	 */
637	free(data, M_BUS);
638	return;
639}
640
641void
642devctl_queue_data(char *data)
643{
644
645	devctl_queue_data_f(data, M_NOWAIT);
646}
647
648/**
649 * @brief Send a 'notification' to userland, using standard ways
650 */
651void
652devctl_notify_f(const char *system, const char *subsystem, const char *type,
653    const char *data, int flags)
654{
655	int len = 0;
656	char *msg;
657
658	if (system == NULL)
659		return;		/* BOGUS!  Must specify system. */
660	if (subsystem == NULL)
661		return;		/* BOGUS!  Must specify subsystem. */
662	if (type == NULL)
663		return;		/* BOGUS!  Must specify type. */
664	len += strlen(" system=") + strlen(system);
665	len += strlen(" subsystem=") + strlen(subsystem);
666	len += strlen(" type=") + strlen(type);
667	/* add in the data message plus newline. */
668	if (data != NULL)
669		len += strlen(data);
670	len += 3;	/* '!', '\n', and NUL */
671	msg = malloc(len, M_BUS, flags);
672	if (msg == NULL)
673		return;		/* Drop it on the floor */
674	if (data != NULL)
675		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676		    system, subsystem, type, data);
677	else
678		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679		    system, subsystem, type);
680	devctl_queue_data_f(msg, flags);
681}
682
683void
684devctl_notify(const char *system, const char *subsystem, const char *type,
685    const char *data)
686{
687
688	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689}
690
691/*
692 * Common routine that tries to make sending messages as easy as possible.
693 * We allocate memory for the data, copy strings into that, but do not
694 * free it unless there's an error.  The dequeue part of the driver should
695 * free the data.  We don't send data when the device is disabled.  We do
696 * send data, even when we have no listeners, because we wish to avoid
697 * races relating to startup and restart of listening applications.
698 *
699 * devaddq is designed to string together the type of event, with the
700 * object of that event, plus the plug and play info and location info
701 * for that event.  This is likely most useful for devices, but less
702 * useful for other consumers of this interface.  Those should use
703 * the devctl_queue_data() interface instead.
704 */
705static void
706devaddq(const char *type, const char *what, device_t dev)
707{
708	char *data = NULL;
709	char *loc = NULL;
710	char *pnp = NULL;
711	const char *parstr;
712
713	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714		return;
715	data = malloc(1024, M_BUS, M_NOWAIT);
716	if (data == NULL)
717		goto bad;
718
719	/* get the bus specific location of this device */
720	loc = malloc(1024, M_BUS, M_NOWAIT);
721	if (loc == NULL)
722		goto bad;
723	*loc = '\0';
724	bus_child_location_str(dev, loc, 1024);
725
726	/* Get the bus specific pnp info of this device */
727	pnp = malloc(1024, M_BUS, M_NOWAIT);
728	if (pnp == NULL)
729		goto bad;
730	*pnp = '\0';
731	bus_child_pnpinfo_str(dev, pnp, 1024);
732
733	/* Get the parent of this device, or / if high enough in the tree. */
734	if (device_get_parent(dev) == NULL)
735		parstr = ".";	/* Or '/' ? */
736	else
737		parstr = device_get_nameunit(device_get_parent(dev));
738	/* String it all together. */
739	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740	  parstr);
741	free(loc, M_BUS);
742	free(pnp, M_BUS);
743	devctl_queue_data(data);
744	return;
745bad:
746	free(pnp, M_BUS);
747	free(loc, M_BUS);
748	free(data, M_BUS);
749	return;
750}
751
752/*
753 * A device was added to the tree.  We are called just after it successfully
754 * attaches (that is, probe and attach success for this device).  No call
755 * is made if a device is merely parented into the tree.  See devnomatch
756 * if probe fails.  If attach fails, no notification is sent (but maybe
757 * we should have a different message for this).
758 */
759static void
760devadded(device_t dev)
761{
762	devaddq("+", device_get_nameunit(dev), dev);
763}
764
765/*
766 * A device was removed from the tree.  We are called just before this
767 * happens.
768 */
769static void
770devremoved(device_t dev)
771{
772	devaddq("-", device_get_nameunit(dev), dev);
773}
774
775/*
776 * Called when there's no match for this device.  This is only called
777 * the first time that no match happens, so we don't keep getting this
778 * message.  Should that prove to be undesirable, we can change it.
779 * This is called when all drivers that can attach to a given bus
780 * decline to accept this device.  Other errors may not be detected.
781 */
782static void
783devnomatch(device_t dev)
784{
785	devaddq("?", "", dev);
786}
787
788static int
789sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790{
791	struct dev_event_info *n1;
792	int dis, error;
793
794	dis = (devctl_queue_length == 0);
795	error = sysctl_handle_int(oidp, &dis, 0, req);
796	if (error || !req->newptr)
797		return (error);
798	if (mtx_initialized(&devsoftc.mtx))
799		mtx_lock(&devsoftc.mtx);
800	if (dis) {
801		while (!TAILQ_EMPTY(&devsoftc.devq)) {
802			n1 = TAILQ_FIRST(&devsoftc.devq);
803			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
804			free(n1->dei_data, M_BUS);
805			free(n1, M_BUS);
806		}
807		devsoftc.queued = 0;
808		devctl_queue_length = 0;
809	} else {
810		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
811	}
812	if (mtx_initialized(&devsoftc.mtx))
813		mtx_unlock(&devsoftc.mtx);
814	return (0);
815}
816
817static int
818sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
819{
820	struct dev_event_info *n1;
821	int q, error;
822
823	q = devctl_queue_length;
824	error = sysctl_handle_int(oidp, &q, 0, req);
825	if (error || !req->newptr)
826		return (error);
827	if (q < 0)
828		return (EINVAL);
829	if (mtx_initialized(&devsoftc.mtx))
830		mtx_lock(&devsoftc.mtx);
831	devctl_queue_length = q;
832	while (devsoftc.queued > devctl_queue_length) {
833		n1 = TAILQ_FIRST(&devsoftc.devq);
834		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
835		free(n1->dei_data, M_BUS);
836		free(n1, M_BUS);
837		devsoftc.queued--;
838	}
839	if (mtx_initialized(&devsoftc.mtx))
840		mtx_unlock(&devsoftc.mtx);
841	return (0);
842}
843
844/**
845 * @brief safely quotes strings that might have double quotes in them.
846 *
847 * The devctl protocol relies on quoted strings having matching quotes.
848 * This routine quotes any internal quotes so the resulting string
849 * is safe to pass to snprintf to construct, for example pnp info strings.
850 * Strings are always terminated with a NUL, but may be truncated if longer
851 * than @p len bytes after quotes.
852 *
853 * @param dst	Buffer to hold the string. Must be at least @p len bytes long
854 * @param src	Original buffer.
855 * @param len	Length of buffer pointed to by @dst, including trailing NUL
856 */
857void
858devctl_safe_quote(char *dst, const char *src, size_t len)
859{
860	char *walker = dst, *ep = dst + len - 1;
861
862	if (len == 0)
863		return;
864	while (src != NULL && walker < ep)
865	{
866		if (*src == '"' || *src == '\\') {
867			if (ep - walker < 2)
868				break;
869			*walker++ = '\\';
870		}
871		*walker++ = *src++;
872	}
873	*walker = '\0';
874}
875
876/* End of /dev/devctl code */
877
878static TAILQ_HEAD(,device)	bus_data_devices;
879static int bus_data_generation = 1;
880
881static kobj_method_t null_methods[] = {
882	KOBJMETHOD_END
883};
884
885DEFINE_CLASS(null, null_methods, 0);
886
887/*
888 * Bus pass implementation
889 */
890
891static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892int bus_current_pass = BUS_PASS_ROOT;
893
894/**
895 * @internal
896 * @brief Register the pass level of a new driver attachment
897 *
898 * Register a new driver attachment's pass level.  If no driver
899 * attachment with the same pass level has been added, then @p new
900 * will be added to the global passes list.
901 *
902 * @param new		the new driver attachment
903 */
904static void
905driver_register_pass(struct driverlink *new)
906{
907	struct driverlink *dl;
908
909	/* We only consider pass numbers during boot. */
910	if (bus_current_pass == BUS_PASS_DEFAULT)
911		return;
912
913	/*
914	 * Walk the passes list.  If we already know about this pass
915	 * then there is nothing to do.  If we don't, then insert this
916	 * driver link into the list.
917	 */
918	TAILQ_FOREACH(dl, &passes, passlink) {
919		if (dl->pass < new->pass)
920			continue;
921		if (dl->pass == new->pass)
922			return;
923		TAILQ_INSERT_BEFORE(dl, new, passlink);
924		return;
925	}
926	TAILQ_INSERT_TAIL(&passes, new, passlink);
927}
928
929/**
930 * @brief Raise the current bus pass
931 *
932 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933 * method on the root bus to kick off a new device tree scan for each
934 * new pass level that has at least one driver.
935 */
936void
937bus_set_pass(int pass)
938{
939	struct driverlink *dl;
940
941	if (bus_current_pass > pass)
942		panic("Attempt to lower bus pass level");
943
944	TAILQ_FOREACH(dl, &passes, passlink) {
945		/* Skip pass values below the current pass level. */
946		if (dl->pass <= bus_current_pass)
947			continue;
948
949		/*
950		 * Bail once we hit a driver with a pass level that is
951		 * too high.
952		 */
953		if (dl->pass > pass)
954			break;
955
956		/*
957		 * Raise the pass level to the next level and rescan
958		 * the tree.
959		 */
960		bus_current_pass = dl->pass;
961		BUS_NEW_PASS(root_bus);
962	}
963
964	/*
965	 * If there isn't a driver registered for the requested pass,
966	 * then bus_current_pass might still be less than 'pass'.  Set
967	 * it to 'pass' in that case.
968	 */
969	if (bus_current_pass < pass)
970		bus_current_pass = pass;
971	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972}
973
974/*
975 * Devclass implementation
976 */
977
978static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979
980/**
981 * @internal
982 * @brief Find or create a device class
983 *
984 * If a device class with the name @p classname exists, return it,
985 * otherwise if @p create is non-zero create and return a new device
986 * class.
987 *
988 * If @p parentname is non-NULL, the parent of the devclass is set to
989 * the devclass of that name.
990 *
991 * @param classname	the devclass name to find or create
992 * @param parentname	the parent devclass name or @c NULL
993 * @param create	non-zero to create a devclass
994 */
995static devclass_t
996devclass_find_internal(const char *classname, const char *parentname,
997		       int create)
998{
999	devclass_t dc;
1000
1001	PDEBUG(("looking for %s", classname));
1002	if (!classname)
1003		return (NULL);
1004
1005	TAILQ_FOREACH(dc, &devclasses, link) {
1006		if (!strcmp(dc->name, classname))
1007			break;
1008	}
1009
1010	if (create && !dc) {
1011		PDEBUG(("creating %s", classname));
1012		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013		    M_BUS, M_NOWAIT | M_ZERO);
1014		if (!dc)
1015			return (NULL);
1016		dc->parent = NULL;
1017		dc->name = (char*) (dc + 1);
1018		strcpy(dc->name, classname);
1019		TAILQ_INIT(&dc->drivers);
1020		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021
1022		bus_data_generation_update();
1023	}
1024
1025	/*
1026	 * If a parent class is specified, then set that as our parent so
1027	 * that this devclass will support drivers for the parent class as
1028	 * well.  If the parent class has the same name don't do this though
1029	 * as it creates a cycle that can trigger an infinite loop in
1030	 * device_probe_child() if a device exists for which there is no
1031	 * suitable driver.
1032	 */
1033	if (parentname && dc && !dc->parent &&
1034	    strcmp(classname, parentname) != 0) {
1035		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036		dc->parent->flags |= DC_HAS_CHILDREN;
1037	}
1038
1039	return (dc);
1040}
1041
1042/**
1043 * @brief Create a device class
1044 *
1045 * If a device class with the name @p classname exists, return it,
1046 * otherwise create and return a new device class.
1047 *
1048 * @param classname	the devclass name to find or create
1049 */
1050devclass_t
1051devclass_create(const char *classname)
1052{
1053	return (devclass_find_internal(classname, NULL, TRUE));
1054}
1055
1056/**
1057 * @brief Find a device class
1058 *
1059 * If a device class with the name @p classname exists, return it,
1060 * otherwise return @c NULL.
1061 *
1062 * @param classname	the devclass name to find
1063 */
1064devclass_t
1065devclass_find(const char *classname)
1066{
1067	return (devclass_find_internal(classname, NULL, FALSE));
1068}
1069
1070/**
1071 * @brief Register that a device driver has been added to a devclass
1072 *
1073 * Register that a device driver has been added to a devclass.  This
1074 * is called by devclass_add_driver to accomplish the recursive
1075 * notification of all the children classes of dc, as well as dc.
1076 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077 * the devclass.
1078 *
1079 * We do a full search here of the devclass list at each iteration
1080 * level to save storing children-lists in the devclass structure.  If
1081 * we ever move beyond a few dozen devices doing this, we may need to
1082 * reevaluate...
1083 *
1084 * @param dc		the devclass to edit
1085 * @param driver	the driver that was just added
1086 */
1087static void
1088devclass_driver_added(devclass_t dc, driver_t *driver)
1089{
1090	devclass_t parent;
1091	int i;
1092
1093	/*
1094	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1095	 */
1096	for (i = 0; i < dc->maxunit; i++)
1097		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099
1100	/*
1101	 * Walk through the children classes.  Since we only keep a
1102	 * single parent pointer around, we walk the entire list of
1103	 * devclasses looking for children.  We set the
1104	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105	 * the parent, so we only walk the list for those devclasses
1106	 * that have children.
1107	 */
1108	if (!(dc->flags & DC_HAS_CHILDREN))
1109		return;
1110	parent = dc;
1111	TAILQ_FOREACH(dc, &devclasses, link) {
1112		if (dc->parent == parent)
1113			devclass_driver_added(dc, driver);
1114	}
1115}
1116
1117/**
1118 * @brief Add a device driver to a device class
1119 *
1120 * Add a device driver to a devclass. This is normally called
1121 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122 * all devices in the devclass will be called to allow them to attempt
1123 * to re-probe any unmatched children.
1124 *
1125 * @param dc		the devclass to edit
1126 * @param driver	the driver to register
1127 */
1128int
1129devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130{
1131	driverlink_t dl;
1132	const char *parentname;
1133
1134	PDEBUG(("%s", DRIVERNAME(driver)));
1135
1136	/* Don't allow invalid pass values. */
1137	if (pass <= BUS_PASS_ROOT)
1138		return (EINVAL);
1139
1140	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141	if (!dl)
1142		return (ENOMEM);
1143
1144	/*
1145	 * Compile the driver's methods. Also increase the reference count
1146	 * so that the class doesn't get freed when the last instance
1147	 * goes. This means we can safely use static methods and avoids a
1148	 * double-free in devclass_delete_driver.
1149	 */
1150	kobj_class_compile((kobj_class_t) driver);
1151
1152	/*
1153	 * If the driver has any base classes, make the
1154	 * devclass inherit from the devclass of the driver's
1155	 * first base class. This will allow the system to
1156	 * search for drivers in both devclasses for children
1157	 * of a device using this driver.
1158	 */
1159	if (driver->baseclasses)
1160		parentname = driver->baseclasses[0]->name;
1161	else
1162		parentname = NULL;
1163	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164
1165	dl->driver = driver;
1166	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167	driver->refs++;		/* XXX: kobj_mtx */
1168	dl->pass = pass;
1169	driver_register_pass(dl);
1170
1171	devclass_driver_added(dc, driver);
1172	bus_data_generation_update();
1173	return (0);
1174}
1175
1176/**
1177 * @brief Register that a device driver has been deleted from a devclass
1178 *
1179 * Register that a device driver has been removed from a devclass.
1180 * This is called by devclass_delete_driver to accomplish the
1181 * recursive notification of all the children classes of busclass, as
1182 * well as busclass.  Each layer will attempt to detach the driver
1183 * from any devices that are children of the bus's devclass.  The function
1184 * will return an error if a device fails to detach.
1185 *
1186 * We do a full search here of the devclass list at each iteration
1187 * level to save storing children-lists in the devclass structure.  If
1188 * we ever move beyond a few dozen devices doing this, we may need to
1189 * reevaluate...
1190 *
1191 * @param busclass	the devclass of the parent bus
1192 * @param dc		the devclass of the driver being deleted
1193 * @param driver	the driver being deleted
1194 */
1195static int
1196devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197{
1198	devclass_t parent;
1199	device_t dev;
1200	int error, i;
1201
1202	/*
1203	 * Disassociate from any devices.  We iterate through all the
1204	 * devices in the devclass of the driver and detach any which are
1205	 * using the driver and which have a parent in the devclass which
1206	 * we are deleting from.
1207	 *
1208	 * Note that since a driver can be in multiple devclasses, we
1209	 * should not detach devices which are not children of devices in
1210	 * the affected devclass.
1211	 */
1212	for (i = 0; i < dc->maxunit; i++) {
1213		if (dc->devices[i]) {
1214			dev = dc->devices[i];
1215			if (dev->driver == driver && dev->parent &&
1216			    dev->parent->devclass == busclass) {
1217				if ((error = device_detach(dev)) != 0)
1218					return (error);
1219				BUS_PROBE_NOMATCH(dev->parent, dev);
1220				devnomatch(dev);
1221				dev->flags |= DF_DONENOMATCH;
1222			}
1223		}
1224	}
1225
1226	/*
1227	 * Walk through the children classes.  Since we only keep a
1228	 * single parent pointer around, we walk the entire list of
1229	 * devclasses looking for children.  We set the
1230	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231	 * the parent, so we only walk the list for those devclasses
1232	 * that have children.
1233	 */
1234	if (!(busclass->flags & DC_HAS_CHILDREN))
1235		return (0);
1236	parent = busclass;
1237	TAILQ_FOREACH(busclass, &devclasses, link) {
1238		if (busclass->parent == parent) {
1239			error = devclass_driver_deleted(busclass, dc, driver);
1240			if (error)
1241				return (error);
1242		}
1243	}
1244	return (0);
1245}
1246
1247/**
1248 * @brief Delete a device driver from a device class
1249 *
1250 * Delete a device driver from a devclass. This is normally called
1251 * automatically by DRIVER_MODULE().
1252 *
1253 * If the driver is currently attached to any devices,
1254 * devclass_delete_driver() will first attempt to detach from each
1255 * device. If one of the detach calls fails, the driver will not be
1256 * deleted.
1257 *
1258 * @param dc		the devclass to edit
1259 * @param driver	the driver to unregister
1260 */
1261int
1262devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263{
1264	devclass_t dc = devclass_find(driver->name);
1265	driverlink_t dl;
1266	int error;
1267
1268	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269
1270	if (!dc)
1271		return (0);
1272
1273	/*
1274	 * Find the link structure in the bus' list of drivers.
1275	 */
1276	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277		if (dl->driver == driver)
1278			break;
1279	}
1280
1281	if (!dl) {
1282		PDEBUG(("%s not found in %s list", driver->name,
1283		    busclass->name));
1284		return (ENOENT);
1285	}
1286
1287	error = devclass_driver_deleted(busclass, dc, driver);
1288	if (error != 0)
1289		return (error);
1290
1291	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292	free(dl, M_BUS);
1293
1294	/* XXX: kobj_mtx */
1295	driver->refs--;
1296	if (driver->refs == 0)
1297		kobj_class_free((kobj_class_t) driver);
1298
1299	bus_data_generation_update();
1300	return (0);
1301}
1302
1303/**
1304 * @brief Quiesces a set of device drivers from a device class
1305 *
1306 * Quiesce a device driver from a devclass. This is normally called
1307 * automatically by DRIVER_MODULE().
1308 *
1309 * If the driver is currently attached to any devices,
1310 * devclass_quiesece_driver() will first attempt to quiesce each
1311 * device.
1312 *
1313 * @param dc		the devclass to edit
1314 * @param driver	the driver to unregister
1315 */
1316static int
1317devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318{
1319	devclass_t dc = devclass_find(driver->name);
1320	driverlink_t dl;
1321	device_t dev;
1322	int i;
1323	int error;
1324
1325	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326
1327	if (!dc)
1328		return (0);
1329
1330	/*
1331	 * Find the link structure in the bus' list of drivers.
1332	 */
1333	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334		if (dl->driver == driver)
1335			break;
1336	}
1337
1338	if (!dl) {
1339		PDEBUG(("%s not found in %s list", driver->name,
1340		    busclass->name));
1341		return (ENOENT);
1342	}
1343
1344	/*
1345	 * Quiesce all devices.  We iterate through all the devices in
1346	 * the devclass of the driver and quiesce any which are using
1347	 * the driver and which have a parent in the devclass which we
1348	 * are quiescing.
1349	 *
1350	 * Note that since a driver can be in multiple devclasses, we
1351	 * should not quiesce devices which are not children of
1352	 * devices in the affected devclass.
1353	 */
1354	for (i = 0; i < dc->maxunit; i++) {
1355		if (dc->devices[i]) {
1356			dev = dc->devices[i];
1357			if (dev->driver == driver && dev->parent &&
1358			    dev->parent->devclass == busclass) {
1359				if ((error = device_quiesce(dev)) != 0)
1360					return (error);
1361			}
1362		}
1363	}
1364
1365	return (0);
1366}
1367
1368/**
1369 * @internal
1370 */
1371static driverlink_t
1372devclass_find_driver_internal(devclass_t dc, const char *classname)
1373{
1374	driverlink_t dl;
1375
1376	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377
1378	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379		if (!strcmp(dl->driver->name, classname))
1380			return (dl);
1381	}
1382
1383	PDEBUG(("not found"));
1384	return (NULL);
1385}
1386
1387/**
1388 * @brief Return the name of the devclass
1389 */
1390const char *
1391devclass_get_name(devclass_t dc)
1392{
1393	return (dc->name);
1394}
1395
1396/**
1397 * @brief Find a device given a unit number
1398 *
1399 * @param dc		the devclass to search
1400 * @param unit		the unit number to search for
1401 *
1402 * @returns		the device with the given unit number or @c
1403 *			NULL if there is no such device
1404 */
1405device_t
1406devclass_get_device(devclass_t dc, int unit)
1407{
1408	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409		return (NULL);
1410	return (dc->devices[unit]);
1411}
1412
1413/**
1414 * @brief Find the softc field of a device given a unit number
1415 *
1416 * @param dc		the devclass to search
1417 * @param unit		the unit number to search for
1418 *
1419 * @returns		the softc field of the device with the given
1420 *			unit number or @c NULL if there is no such
1421 *			device
1422 */
1423void *
1424devclass_get_softc(devclass_t dc, int unit)
1425{
1426	device_t dev;
1427
1428	dev = devclass_get_device(dc, unit);
1429	if (!dev)
1430		return (NULL);
1431
1432	return (device_get_softc(dev));
1433}
1434
1435/**
1436 * @brief Get a list of devices in the devclass
1437 *
1438 * An array containing a list of all the devices in the given devclass
1439 * is allocated and returned in @p *devlistp. The number of devices
1440 * in the array is returned in @p *devcountp. The caller should free
1441 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442 *
1443 * @param dc		the devclass to examine
1444 * @param devlistp	points at location for array pointer return
1445 *			value
1446 * @param devcountp	points at location for array size return value
1447 *
1448 * @retval 0		success
1449 * @retval ENOMEM	the array allocation failed
1450 */
1451int
1452devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453{
1454	int count, i;
1455	device_t *list;
1456
1457	count = devclass_get_count(dc);
1458	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459	if (!list)
1460		return (ENOMEM);
1461
1462	count = 0;
1463	for (i = 0; i < dc->maxunit; i++) {
1464		if (dc->devices[i]) {
1465			list[count] = dc->devices[i];
1466			count++;
1467		}
1468	}
1469
1470	*devlistp = list;
1471	*devcountp = count;
1472
1473	return (0);
1474}
1475
1476/**
1477 * @brief Get a list of drivers in the devclass
1478 *
1479 * An array containing a list of pointers to all the drivers in the
1480 * given devclass is allocated and returned in @p *listp.  The number
1481 * of drivers in the array is returned in @p *countp. The caller should
1482 * free the array using @c free(p, M_TEMP).
1483 *
1484 * @param dc		the devclass to examine
1485 * @param listp		gives location for array pointer return value
1486 * @param countp	gives location for number of array elements
1487 *			return value
1488 *
1489 * @retval 0		success
1490 * @retval ENOMEM	the array allocation failed
1491 */
1492int
1493devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494{
1495	driverlink_t dl;
1496	driver_t **list;
1497	int count;
1498
1499	count = 0;
1500	TAILQ_FOREACH(dl, &dc->drivers, link)
1501		count++;
1502	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503	if (list == NULL)
1504		return (ENOMEM);
1505
1506	count = 0;
1507	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508		list[count] = dl->driver;
1509		count++;
1510	}
1511	*listp = list;
1512	*countp = count;
1513
1514	return (0);
1515}
1516
1517/**
1518 * @brief Get the number of devices in a devclass
1519 *
1520 * @param dc		the devclass to examine
1521 */
1522int
1523devclass_get_count(devclass_t dc)
1524{
1525	int count, i;
1526
1527	count = 0;
1528	for (i = 0; i < dc->maxunit; i++)
1529		if (dc->devices[i])
1530			count++;
1531	return (count);
1532}
1533
1534/**
1535 * @brief Get the maximum unit number used in a devclass
1536 *
1537 * Note that this is one greater than the highest currently-allocated
1538 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539 * that not even the devclass has been allocated yet.
1540 *
1541 * @param dc		the devclass to examine
1542 */
1543int
1544devclass_get_maxunit(devclass_t dc)
1545{
1546	if (dc == NULL)
1547		return (-1);
1548	return (dc->maxunit);
1549}
1550
1551/**
1552 * @brief Find a free unit number in a devclass
1553 *
1554 * This function searches for the first unused unit number greater
1555 * that or equal to @p unit.
1556 *
1557 * @param dc		the devclass to examine
1558 * @param unit		the first unit number to check
1559 */
1560int
1561devclass_find_free_unit(devclass_t dc, int unit)
1562{
1563	if (dc == NULL)
1564		return (unit);
1565	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566		unit++;
1567	return (unit);
1568}
1569
1570/**
1571 * @brief Set the parent of a devclass
1572 *
1573 * The parent class is normally initialised automatically by
1574 * DRIVER_MODULE().
1575 *
1576 * @param dc		the devclass to edit
1577 * @param pdc		the new parent devclass
1578 */
1579void
1580devclass_set_parent(devclass_t dc, devclass_t pdc)
1581{
1582	dc->parent = pdc;
1583}
1584
1585/**
1586 * @brief Get the parent of a devclass
1587 *
1588 * @param dc		the devclass to examine
1589 */
1590devclass_t
1591devclass_get_parent(devclass_t dc)
1592{
1593	return (dc->parent);
1594}
1595
1596struct sysctl_ctx_list *
1597devclass_get_sysctl_ctx(devclass_t dc)
1598{
1599	return (&dc->sysctl_ctx);
1600}
1601
1602struct sysctl_oid *
1603devclass_get_sysctl_tree(devclass_t dc)
1604{
1605	return (dc->sysctl_tree);
1606}
1607
1608/**
1609 * @internal
1610 * @brief Allocate a unit number
1611 *
1612 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613 * will do). The allocated unit number is returned in @p *unitp.
1614
1615 * @param dc		the devclass to allocate from
1616 * @param unitp		points at the location for the allocated unit
1617 *			number
1618 *
1619 * @retval 0		success
1620 * @retval EEXIST	the requested unit number is already allocated
1621 * @retval ENOMEM	memory allocation failure
1622 */
1623static int
1624devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625{
1626	const char *s;
1627	int unit = *unitp;
1628
1629	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630
1631	/* Ask the parent bus if it wants to wire this device. */
1632	if (unit == -1)
1633		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634		    &unit);
1635
1636	/* If we were given a wired unit number, check for existing device */
1637	/* XXX imp XXX */
1638	if (unit != -1) {
1639		if (unit >= 0 && unit < dc->maxunit &&
1640		    dc->devices[unit] != NULL) {
1641			if (bootverbose)
1642				printf("%s: %s%d already exists; skipping it\n",
1643				    dc->name, dc->name, *unitp);
1644			return (EEXIST);
1645		}
1646	} else {
1647		/* Unwired device, find the next available slot for it */
1648		unit = 0;
1649		for (unit = 0;; unit++) {
1650			/* If there is an "at" hint for a unit then skip it. */
1651			if (resource_string_value(dc->name, unit, "at", &s) ==
1652			    0)
1653				continue;
1654
1655			/* If this device slot is already in use, skip it. */
1656			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657				continue;
1658
1659			break;
1660		}
1661	}
1662
1663	/*
1664	 * We've selected a unit beyond the length of the table, so let's
1665	 * extend the table to make room for all units up to and including
1666	 * this one.
1667	 */
1668	if (unit >= dc->maxunit) {
1669		device_t *newlist, *oldlist;
1670		int newsize;
1671
1672		oldlist = dc->devices;
1673		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675		if (!newlist)
1676			return (ENOMEM);
1677		if (oldlist != NULL)
1678			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679		bzero(newlist + dc->maxunit,
1680		    sizeof(device_t) * (newsize - dc->maxunit));
1681		dc->devices = newlist;
1682		dc->maxunit = newsize;
1683		if (oldlist != NULL)
1684			free(oldlist, M_BUS);
1685	}
1686	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687
1688	*unitp = unit;
1689	return (0);
1690}
1691
1692/**
1693 * @internal
1694 * @brief Add a device to a devclass
1695 *
1696 * A unit number is allocated for the device (using the device's
1697 * preferred unit number if any) and the device is registered in the
1698 * devclass. This allows the device to be looked up by its unit
1699 * number, e.g. by decoding a dev_t minor number.
1700 *
1701 * @param dc		the devclass to add to
1702 * @param dev		the device to add
1703 *
1704 * @retval 0		success
1705 * @retval EEXIST	the requested unit number is already allocated
1706 * @retval ENOMEM	memory allocation failure
1707 */
1708static int
1709devclass_add_device(devclass_t dc, device_t dev)
1710{
1711	int buflen, error;
1712
1713	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714
1715	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716	if (buflen < 0)
1717		return (ENOMEM);
1718	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719	if (!dev->nameunit)
1720		return (ENOMEM);
1721
1722	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723		free(dev->nameunit, M_BUS);
1724		dev->nameunit = NULL;
1725		return (error);
1726	}
1727	dc->devices[dev->unit] = dev;
1728	dev->devclass = dc;
1729	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730
1731	return (0);
1732}
1733
1734/**
1735 * @internal
1736 * @brief Delete a device from a devclass
1737 *
1738 * The device is removed from the devclass's device list and its unit
1739 * number is freed.
1740
1741 * @param dc		the devclass to delete from
1742 * @param dev		the device to delete
1743 *
1744 * @retval 0		success
1745 */
1746static int
1747devclass_delete_device(devclass_t dc, device_t dev)
1748{
1749	if (!dc || !dev)
1750		return (0);
1751
1752	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753
1754	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755		panic("devclass_delete_device: inconsistent device class");
1756	dc->devices[dev->unit] = NULL;
1757	if (dev->flags & DF_WILDCARD)
1758		dev->unit = -1;
1759	dev->devclass = NULL;
1760	free(dev->nameunit, M_BUS);
1761	dev->nameunit = NULL;
1762
1763	return (0);
1764}
1765
1766/**
1767 * @internal
1768 * @brief Make a new device and add it as a child of @p parent
1769 *
1770 * @param parent	the parent of the new device
1771 * @param name		the devclass name of the new device or @c NULL
1772 *			to leave the devclass unspecified
1773 * @parem unit		the unit number of the new device of @c -1 to
1774 *			leave the unit number unspecified
1775 *
1776 * @returns the new device
1777 */
1778static device_t
1779make_device(device_t parent, const char *name, int unit)
1780{
1781	device_t dev;
1782	devclass_t dc;
1783
1784	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785
1786	if (name) {
1787		dc = devclass_find_internal(name, NULL, TRUE);
1788		if (!dc) {
1789			printf("make_device: can't find device class %s\n",
1790			    name);
1791			return (NULL);
1792		}
1793	} else {
1794		dc = NULL;
1795	}
1796
1797	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1798	if (!dev)
1799		return (NULL);
1800
1801	dev->parent = parent;
1802	TAILQ_INIT(&dev->children);
1803	kobj_init((kobj_t) dev, &null_class);
1804	dev->driver = NULL;
1805	dev->devclass = NULL;
1806	dev->unit = unit;
1807	dev->nameunit = NULL;
1808	dev->desc = NULL;
1809	dev->busy = 0;
1810	dev->devflags = 0;
1811	dev->flags = DF_ENABLED;
1812	dev->order = 0;
1813	if (unit == -1)
1814		dev->flags |= DF_WILDCARD;
1815	if (name) {
1816		dev->flags |= DF_FIXEDCLASS;
1817		if (devclass_add_device(dc, dev)) {
1818			kobj_delete((kobj_t) dev, M_BUS);
1819			return (NULL);
1820		}
1821	}
1822	dev->ivars = NULL;
1823	dev->softc = NULL;
1824
1825	dev->state = DS_NOTPRESENT;
1826
1827	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1828	bus_data_generation_update();
1829
1830	return (dev);
1831}
1832
1833/**
1834 * @internal
1835 * @brief Print a description of a device.
1836 */
1837static int
1838device_print_child(device_t dev, device_t child)
1839{
1840	int retval = 0;
1841
1842	if (device_is_alive(child))
1843		retval += BUS_PRINT_CHILD(dev, child);
1844	else
1845		retval += device_printf(child, " not found\n");
1846
1847	return (retval);
1848}
1849
1850/**
1851 * @brief Create a new device
1852 *
1853 * This creates a new device and adds it as a child of an existing
1854 * parent device. The new device will be added after the last existing
1855 * child with order zero.
1856 *
1857 * @param dev		the device which will be the parent of the
1858 *			new child device
1859 * @param name		devclass name for new device or @c NULL if not
1860 *			specified
1861 * @param unit		unit number for new device or @c -1 if not
1862 *			specified
1863 *
1864 * @returns		the new device
1865 */
1866device_t
1867device_add_child(device_t dev, const char *name, int unit)
1868{
1869	return (device_add_child_ordered(dev, 0, name, unit));
1870}
1871
1872/**
1873 * @brief Create a new device
1874 *
1875 * This creates a new device and adds it as a child of an existing
1876 * parent device. The new device will be added after the last existing
1877 * child with the same order.
1878 *
1879 * @param dev		the device which will be the parent of the
1880 *			new child device
1881 * @param order		a value which is used to partially sort the
1882 *			children of @p dev - devices created using
1883 *			lower values of @p order appear first in @p
1884 *			dev's list of children
1885 * @param name		devclass name for new device or @c NULL if not
1886 *			specified
1887 * @param unit		unit number for new device or @c -1 if not
1888 *			specified
1889 *
1890 * @returns		the new device
1891 */
1892device_t
1893device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1894{
1895	device_t child;
1896	device_t place;
1897
1898	PDEBUG(("%s at %s with order %u as unit %d",
1899	    name, DEVICENAME(dev), order, unit));
1900	KASSERT(name != NULL || unit == -1,
1901	    ("child device with wildcard name and specific unit number"));
1902
1903	child = make_device(dev, name, unit);
1904	if (child == NULL)
1905		return (child);
1906	child->order = order;
1907
1908	TAILQ_FOREACH(place, &dev->children, link) {
1909		if (place->order > order)
1910			break;
1911	}
1912
1913	if (place) {
1914		/*
1915		 * The device 'place' is the first device whose order is
1916		 * greater than the new child.
1917		 */
1918		TAILQ_INSERT_BEFORE(place, child, link);
1919	} else {
1920		/*
1921		 * The new child's order is greater or equal to the order of
1922		 * any existing device. Add the child to the tail of the list.
1923		 */
1924		TAILQ_INSERT_TAIL(&dev->children, child, link);
1925	}
1926
1927	bus_data_generation_update();
1928	return (child);
1929}
1930
1931/**
1932 * @brief Delete a device
1933 *
1934 * This function deletes a device along with all of its children. If
1935 * the device currently has a driver attached to it, the device is
1936 * detached first using device_detach().
1937 *
1938 * @param dev		the parent device
1939 * @param child		the device to delete
1940 *
1941 * @retval 0		success
1942 * @retval non-zero	a unit error code describing the error
1943 */
1944int
1945device_delete_child(device_t dev, device_t child)
1946{
1947	int error;
1948	device_t grandchild;
1949
1950	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1951
1952	/* detach parent before deleting children, if any */
1953	if ((error = device_detach(child)) != 0)
1954		return (error);
1955
1956	/* remove children second */
1957	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1958		error = device_delete_child(child, grandchild);
1959		if (error)
1960			return (error);
1961	}
1962
1963	if (child->devclass)
1964		devclass_delete_device(child->devclass, child);
1965	if (child->parent)
1966		BUS_CHILD_DELETED(dev, child);
1967	TAILQ_REMOVE(&dev->children, child, link);
1968	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1969	kobj_delete((kobj_t) child, M_BUS);
1970
1971	bus_data_generation_update();
1972	return (0);
1973}
1974
1975/**
1976 * @brief Delete all children devices of the given device, if any.
1977 *
1978 * This function deletes all children devices of the given device, if
1979 * any, using the device_delete_child() function for each device it
1980 * finds. If a child device cannot be deleted, this function will
1981 * return an error code.
1982 *
1983 * @param dev		the parent device
1984 *
1985 * @retval 0		success
1986 * @retval non-zero	a device would not detach
1987 */
1988int
1989device_delete_children(device_t dev)
1990{
1991	device_t child;
1992	int error;
1993
1994	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1995
1996	error = 0;
1997
1998	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1999		error = device_delete_child(dev, child);
2000		if (error) {
2001			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2002			break;
2003		}
2004	}
2005	return (error);
2006}
2007
2008/**
2009 * @brief Find a device given a unit number
2010 *
2011 * This is similar to devclass_get_devices() but only searches for
2012 * devices which have @p dev as a parent.
2013 *
2014 * @param dev		the parent device to search
2015 * @param unit		the unit number to search for.  If the unit is -1,
2016 *			return the first child of @p dev which has name
2017 *			@p classname (that is, the one with the lowest unit.)
2018 *
2019 * @returns		the device with the given unit number or @c
2020 *			NULL if there is no such device
2021 */
2022device_t
2023device_find_child(device_t dev, const char *classname, int unit)
2024{
2025	devclass_t dc;
2026	device_t child;
2027
2028	dc = devclass_find(classname);
2029	if (!dc)
2030		return (NULL);
2031
2032	if (unit != -1) {
2033		child = devclass_get_device(dc, unit);
2034		if (child && child->parent == dev)
2035			return (child);
2036	} else {
2037		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2038			child = devclass_get_device(dc, unit);
2039			if (child && child->parent == dev)
2040				return (child);
2041		}
2042	}
2043	return (NULL);
2044}
2045
2046/**
2047 * @internal
2048 */
2049static driverlink_t
2050first_matching_driver(devclass_t dc, device_t dev)
2051{
2052	if (dev->devclass)
2053		return (devclass_find_driver_internal(dc, dev->devclass->name));
2054	return (TAILQ_FIRST(&dc->drivers));
2055}
2056
2057/**
2058 * @internal
2059 */
2060static driverlink_t
2061next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2062{
2063	if (dev->devclass) {
2064		driverlink_t dl;
2065		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2066			if (!strcmp(dev->devclass->name, dl->driver->name))
2067				return (dl);
2068		return (NULL);
2069	}
2070	return (TAILQ_NEXT(last, link));
2071}
2072
2073/**
2074 * @internal
2075 */
2076int
2077device_probe_child(device_t dev, device_t child)
2078{
2079	devclass_t dc;
2080	driverlink_t best = NULL;
2081	driverlink_t dl;
2082	int result, pri = 0;
2083	int hasclass = (child->devclass != NULL);
2084
2085	GIANT_REQUIRED;
2086
2087	dc = dev->devclass;
2088	if (!dc)
2089		panic("device_probe_child: parent device has no devclass");
2090
2091	/*
2092	 * If the state is already probed, then return.  However, don't
2093	 * return if we can rebid this object.
2094	 */
2095	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2096		return (0);
2097
2098	for (; dc; dc = dc->parent) {
2099		for (dl = first_matching_driver(dc, child);
2100		     dl;
2101		     dl = next_matching_driver(dc, child, dl)) {
2102			/* If this driver's pass is too high, then ignore it. */
2103			if (dl->pass > bus_current_pass)
2104				continue;
2105
2106			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2107			result = device_set_driver(child, dl->driver);
2108			if (result == ENOMEM)
2109				return (result);
2110			else if (result != 0)
2111				continue;
2112			if (!hasclass) {
2113				if (device_set_devclass(child,
2114				    dl->driver->name) != 0) {
2115					char const * devname =
2116					    device_get_name(child);
2117					if (devname == NULL)
2118						devname = "(unknown)";
2119					printf("driver bug: Unable to set "
2120					    "devclass (class: %s "
2121					    "devname: %s)\n",
2122					    dl->driver->name,
2123					    devname);
2124					(void)device_set_driver(child, NULL);
2125					continue;
2126				}
2127			}
2128
2129			/* Fetch any flags for the device before probing. */
2130			resource_int_value(dl->driver->name, child->unit,
2131			    "flags", &child->devflags);
2132
2133			result = DEVICE_PROBE(child);
2134
2135			/* Reset flags and devclass before the next probe. */
2136			child->devflags = 0;
2137			if (!hasclass)
2138				(void)device_set_devclass(child, NULL);
2139
2140			/*
2141			 * If the driver returns SUCCESS, there can be
2142			 * no higher match for this device.
2143			 */
2144			if (result == 0) {
2145				best = dl;
2146				pri = 0;
2147				break;
2148			}
2149
2150			/*
2151			 * Reset DF_QUIET in case this driver doesn't
2152			 * end up as the best driver.
2153			 */
2154			device_verbose(child);
2155
2156			/*
2157			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2158			 * only match on devices whose driver was explicitly
2159			 * specified.
2160			 */
2161			if (result <= BUS_PROBE_NOWILDCARD &&
2162			    !(child->flags & DF_FIXEDCLASS)) {
2163				result = ENXIO;
2164			}
2165
2166			/*
2167			 * The driver returned an error so it
2168			 * certainly doesn't match.
2169			 */
2170			if (result > 0) {
2171				(void)device_set_driver(child, NULL);
2172				continue;
2173			}
2174
2175			/*
2176			 * A priority lower than SUCCESS, remember the
2177			 * best matching driver. Initialise the value
2178			 * of pri for the first match.
2179			 */
2180			if (best == NULL || result > pri) {
2181				best = dl;
2182				pri = result;
2183				continue;
2184			}
2185		}
2186		/*
2187		 * If we have an unambiguous match in this devclass,
2188		 * don't look in the parent.
2189		 */
2190		if (best && pri == 0)
2191			break;
2192	}
2193
2194	/*
2195	 * If we found a driver, change state and initialise the devclass.
2196	 */
2197	/* XXX What happens if we rebid and got no best? */
2198	if (best) {
2199		/*
2200		 * If this device was attached, and we were asked to
2201		 * rescan, and it is a different driver, then we have
2202		 * to detach the old driver and reattach this new one.
2203		 * Note, we don't have to check for DF_REBID here
2204		 * because if the state is > DS_ALIVE, we know it must
2205		 * be.
2206		 *
2207		 * This assumes that all DF_REBID drivers can have
2208		 * their probe routine called at any time and that
2209		 * they are idempotent as well as completely benign in
2210		 * normal operations.
2211		 *
2212		 * We also have to make sure that the detach
2213		 * succeeded, otherwise we fail the operation (or
2214		 * maybe it should just fail silently?  I'm torn).
2215		 */
2216		if (child->state > DS_ALIVE && best->driver != child->driver)
2217			if ((result = device_detach(dev)) != 0)
2218				return (result);
2219
2220		/* Set the winning driver, devclass, and flags. */
2221		if (!child->devclass) {
2222			result = device_set_devclass(child, best->driver->name);
2223			if (result != 0)
2224				return (result);
2225		}
2226		result = device_set_driver(child, best->driver);
2227		if (result != 0)
2228			return (result);
2229		resource_int_value(best->driver->name, child->unit,
2230		    "flags", &child->devflags);
2231
2232		if (pri < 0) {
2233			/*
2234			 * A bit bogus. Call the probe method again to make
2235			 * sure that we have the right description.
2236			 */
2237			DEVICE_PROBE(child);
2238#if 0
2239			child->flags |= DF_REBID;
2240#endif
2241		} else
2242			child->flags &= ~DF_REBID;
2243		child->state = DS_ALIVE;
2244
2245		bus_data_generation_update();
2246		return (0);
2247	}
2248
2249	return (ENXIO);
2250}
2251
2252/**
2253 * @brief Return the parent of a device
2254 */
2255device_t
2256device_get_parent(device_t dev)
2257{
2258	return (dev->parent);
2259}
2260
2261/**
2262 * @brief Get a list of children of a device
2263 *
2264 * An array containing a list of all the children of the given device
2265 * is allocated and returned in @p *devlistp. The number of devices
2266 * in the array is returned in @p *devcountp. The caller should free
2267 * the array using @c free(p, M_TEMP).
2268 *
2269 * @param dev		the device to examine
2270 * @param devlistp	points at location for array pointer return
2271 *			value
2272 * @param devcountp	points at location for array size return value
2273 *
2274 * @retval 0		success
2275 * @retval ENOMEM	the array allocation failed
2276 */
2277int
2278device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2279{
2280	int count;
2281	device_t child;
2282	device_t *list;
2283
2284	count = 0;
2285	TAILQ_FOREACH(child, &dev->children, link) {
2286		count++;
2287	}
2288	if (count == 0) {
2289		*devlistp = NULL;
2290		*devcountp = 0;
2291		return (0);
2292	}
2293
2294	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2295	if (!list)
2296		return (ENOMEM);
2297
2298	count = 0;
2299	TAILQ_FOREACH(child, &dev->children, link) {
2300		list[count] = child;
2301		count++;
2302	}
2303
2304	*devlistp = list;
2305	*devcountp = count;
2306
2307	return (0);
2308}
2309
2310/**
2311 * @brief Return the current driver for the device or @c NULL if there
2312 * is no driver currently attached
2313 */
2314driver_t *
2315device_get_driver(device_t dev)
2316{
2317	return (dev->driver);
2318}
2319
2320/**
2321 * @brief Return the current devclass for the device or @c NULL if
2322 * there is none.
2323 */
2324devclass_t
2325device_get_devclass(device_t dev)
2326{
2327	return (dev->devclass);
2328}
2329
2330/**
2331 * @brief Return the name of the device's devclass or @c NULL if there
2332 * is none.
2333 */
2334const char *
2335device_get_name(device_t dev)
2336{
2337	if (dev != NULL && dev->devclass)
2338		return (devclass_get_name(dev->devclass));
2339	return (NULL);
2340}
2341
2342/**
2343 * @brief Return a string containing the device's devclass name
2344 * followed by an ascii representation of the device's unit number
2345 * (e.g. @c "foo2").
2346 */
2347const char *
2348device_get_nameunit(device_t dev)
2349{
2350	return (dev->nameunit);
2351}
2352
2353/**
2354 * @brief Return the device's unit number.
2355 */
2356int
2357device_get_unit(device_t dev)
2358{
2359	return (dev->unit);
2360}
2361
2362/**
2363 * @brief Return the device's description string
2364 */
2365const char *
2366device_get_desc(device_t dev)
2367{
2368	return (dev->desc);
2369}
2370
2371/**
2372 * @brief Return the device's flags
2373 */
2374uint32_t
2375device_get_flags(device_t dev)
2376{
2377	return (dev->devflags);
2378}
2379
2380struct sysctl_ctx_list *
2381device_get_sysctl_ctx(device_t dev)
2382{
2383	return (&dev->sysctl_ctx);
2384}
2385
2386struct sysctl_oid *
2387device_get_sysctl_tree(device_t dev)
2388{
2389	return (dev->sysctl_tree);
2390}
2391
2392/**
2393 * @brief Print the name of the device followed by a colon and a space
2394 *
2395 * @returns the number of characters printed
2396 */
2397int
2398device_print_prettyname(device_t dev)
2399{
2400	const char *name = device_get_name(dev);
2401
2402	if (name == NULL)
2403		return (printf("unknown: "));
2404	return (printf("%s%d: ", name, device_get_unit(dev)));
2405}
2406
2407/**
2408 * @brief Print the name of the device followed by a colon, a space
2409 * and the result of calling vprintf() with the value of @p fmt and
2410 * the following arguments.
2411 *
2412 * @returns the number of characters printed
2413 */
2414int
2415device_printf(device_t dev, const char * fmt, ...)
2416{
2417	va_list ap;
2418	int retval;
2419
2420	retval = device_print_prettyname(dev);
2421	va_start(ap, fmt);
2422	retval += vprintf(fmt, ap);
2423	va_end(ap);
2424	return (retval);
2425}
2426
2427/**
2428 * @internal
2429 */
2430static void
2431device_set_desc_internal(device_t dev, const char* desc, int copy)
2432{
2433	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2434		free(dev->desc, M_BUS);
2435		dev->flags &= ~DF_DESCMALLOCED;
2436		dev->desc = NULL;
2437	}
2438
2439	if (copy && desc) {
2440		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2441		if (dev->desc) {
2442			strcpy(dev->desc, desc);
2443			dev->flags |= DF_DESCMALLOCED;
2444		}
2445	} else {
2446		/* Avoid a -Wcast-qual warning */
2447		dev->desc = (char *)(uintptr_t) desc;
2448	}
2449
2450	bus_data_generation_update();
2451}
2452
2453/**
2454 * @brief Set the device's description
2455 *
2456 * The value of @c desc should be a string constant that will not
2457 * change (at least until the description is changed in a subsequent
2458 * call to device_set_desc() or device_set_desc_copy()).
2459 */
2460void
2461device_set_desc(device_t dev, const char* desc)
2462{
2463	device_set_desc_internal(dev, desc, FALSE);
2464}
2465
2466/**
2467 * @brief Set the device's description
2468 *
2469 * The string pointed to by @c desc is copied. Use this function if
2470 * the device description is generated, (e.g. with sprintf()).
2471 */
2472void
2473device_set_desc_copy(device_t dev, const char* desc)
2474{
2475	device_set_desc_internal(dev, desc, TRUE);
2476}
2477
2478/**
2479 * @brief Set the device's flags
2480 */
2481void
2482device_set_flags(device_t dev, uint32_t flags)
2483{
2484	dev->devflags = flags;
2485}
2486
2487/**
2488 * @brief Return the device's softc field
2489 *
2490 * The softc is allocated and zeroed when a driver is attached, based
2491 * on the size field of the driver.
2492 */
2493void *
2494device_get_softc(device_t dev)
2495{
2496	return (dev->softc);
2497}
2498
2499/**
2500 * @brief Set the device's softc field
2501 *
2502 * Most drivers do not need to use this since the softc is allocated
2503 * automatically when the driver is attached.
2504 */
2505void
2506device_set_softc(device_t dev, void *softc)
2507{
2508	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2509		free(dev->softc, M_BUS_SC);
2510	dev->softc = softc;
2511	if (dev->softc)
2512		dev->flags |= DF_EXTERNALSOFTC;
2513	else
2514		dev->flags &= ~DF_EXTERNALSOFTC;
2515}
2516
2517/**
2518 * @brief Free claimed softc
2519 *
2520 * Most drivers do not need to use this since the softc is freed
2521 * automatically when the driver is detached.
2522 */
2523void
2524device_free_softc(void *softc)
2525{
2526	free(softc, M_BUS_SC);
2527}
2528
2529/**
2530 * @brief Claim softc
2531 *
2532 * This function can be used to let the driver free the automatically
2533 * allocated softc using "device_free_softc()". This function is
2534 * useful when the driver is refcounting the softc and the softc
2535 * cannot be freed when the "device_detach" method is called.
2536 */
2537void
2538device_claim_softc(device_t dev)
2539{
2540	if (dev->softc)
2541		dev->flags |= DF_EXTERNALSOFTC;
2542	else
2543		dev->flags &= ~DF_EXTERNALSOFTC;
2544}
2545
2546/**
2547 * @brief Get the device's ivars field
2548 *
2549 * The ivars field is used by the parent device to store per-device
2550 * state (e.g. the physical location of the device or a list of
2551 * resources).
2552 */
2553void *
2554device_get_ivars(device_t dev)
2555{
2556
2557	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2558	return (dev->ivars);
2559}
2560
2561/**
2562 * @brief Set the device's ivars field
2563 */
2564void
2565device_set_ivars(device_t dev, void * ivars)
2566{
2567
2568	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2569	dev->ivars = ivars;
2570}
2571
2572/**
2573 * @brief Return the device's state
2574 */
2575device_state_t
2576device_get_state(device_t dev)
2577{
2578	return (dev->state);
2579}
2580
2581/**
2582 * @brief Set the DF_ENABLED flag for the device
2583 */
2584void
2585device_enable(device_t dev)
2586{
2587	dev->flags |= DF_ENABLED;
2588}
2589
2590/**
2591 * @brief Clear the DF_ENABLED flag for the device
2592 */
2593void
2594device_disable(device_t dev)
2595{
2596	dev->flags &= ~DF_ENABLED;
2597}
2598
2599/**
2600 * @brief Increment the busy counter for the device
2601 */
2602void
2603device_busy(device_t dev)
2604{
2605	if (dev->state < DS_ATTACHING)
2606		panic("device_busy: called for unattached device");
2607	if (dev->busy == 0 && dev->parent)
2608		device_busy(dev->parent);
2609	dev->busy++;
2610	if (dev->state == DS_ATTACHED)
2611		dev->state = DS_BUSY;
2612}
2613
2614/**
2615 * @brief Decrement the busy counter for the device
2616 */
2617void
2618device_unbusy(device_t dev)
2619{
2620	if (dev->busy != 0 && dev->state != DS_BUSY &&
2621	    dev->state != DS_ATTACHING)
2622		panic("device_unbusy: called for non-busy device %s",
2623		    device_get_nameunit(dev));
2624	dev->busy--;
2625	if (dev->busy == 0) {
2626		if (dev->parent)
2627			device_unbusy(dev->parent);
2628		if (dev->state == DS_BUSY)
2629			dev->state = DS_ATTACHED;
2630	}
2631}
2632
2633/**
2634 * @brief Set the DF_QUIET flag for the device
2635 */
2636void
2637device_quiet(device_t dev)
2638{
2639	dev->flags |= DF_QUIET;
2640}
2641
2642/**
2643 * @brief Clear the DF_QUIET flag for the device
2644 */
2645void
2646device_verbose(device_t dev)
2647{
2648	dev->flags &= ~DF_QUIET;
2649}
2650
2651/**
2652 * @brief Return non-zero if the DF_QUIET flag is set on the device
2653 */
2654int
2655device_is_quiet(device_t dev)
2656{
2657	return ((dev->flags & DF_QUIET) != 0);
2658}
2659
2660/**
2661 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2662 */
2663int
2664device_is_enabled(device_t dev)
2665{
2666	return ((dev->flags & DF_ENABLED) != 0);
2667}
2668
2669/**
2670 * @brief Return non-zero if the device was successfully probed
2671 */
2672int
2673device_is_alive(device_t dev)
2674{
2675	return (dev->state >= DS_ALIVE);
2676}
2677
2678/**
2679 * @brief Return non-zero if the device currently has a driver
2680 * attached to it
2681 */
2682int
2683device_is_attached(device_t dev)
2684{
2685	return (dev->state >= DS_ATTACHED);
2686}
2687
2688/**
2689 * @brief Return non-zero if the device is currently suspended.
2690 */
2691int
2692device_is_suspended(device_t dev)
2693{
2694	return ((dev->flags & DF_SUSPENDED) != 0);
2695}
2696
2697/**
2698 * @brief Set the devclass of a device
2699 * @see devclass_add_device().
2700 */
2701int
2702device_set_devclass(device_t dev, const char *classname)
2703{
2704	devclass_t dc;
2705	int error;
2706
2707	if (!classname) {
2708		if (dev->devclass)
2709			devclass_delete_device(dev->devclass, dev);
2710		return (0);
2711	}
2712
2713	if (dev->devclass) {
2714		printf("device_set_devclass: device class already set\n");
2715		return (EINVAL);
2716	}
2717
2718	dc = devclass_find_internal(classname, NULL, TRUE);
2719	if (!dc)
2720		return (ENOMEM);
2721
2722	error = devclass_add_device(dc, dev);
2723
2724	bus_data_generation_update();
2725	return (error);
2726}
2727
2728/**
2729 * @brief Set the devclass of a device and mark the devclass fixed.
2730 * @see device_set_devclass()
2731 */
2732int
2733device_set_devclass_fixed(device_t dev, const char *classname)
2734{
2735	int error;
2736
2737	if (classname == NULL)
2738		return (EINVAL);
2739
2740	error = device_set_devclass(dev, classname);
2741	if (error)
2742		return (error);
2743	dev->flags |= DF_FIXEDCLASS;
2744	return (0);
2745}
2746
2747/**
2748 * @brief Set the driver of a device
2749 *
2750 * @retval 0		success
2751 * @retval EBUSY	the device already has a driver attached
2752 * @retval ENOMEM	a memory allocation failure occurred
2753 */
2754int
2755device_set_driver(device_t dev, driver_t *driver)
2756{
2757	if (dev->state >= DS_ATTACHED)
2758		return (EBUSY);
2759
2760	if (dev->driver == driver)
2761		return (0);
2762
2763	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2764		free(dev->softc, M_BUS_SC);
2765		dev->softc = NULL;
2766	}
2767	device_set_desc(dev, NULL);
2768	kobj_delete((kobj_t) dev, NULL);
2769	dev->driver = driver;
2770	if (driver) {
2771		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2772		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2773			dev->softc = malloc(driver->size, M_BUS_SC,
2774			    M_NOWAIT | M_ZERO);
2775			if (!dev->softc) {
2776				kobj_delete((kobj_t) dev, NULL);
2777				kobj_init((kobj_t) dev, &null_class);
2778				dev->driver = NULL;
2779				return (ENOMEM);
2780			}
2781		}
2782	} else {
2783		kobj_init((kobj_t) dev, &null_class);
2784	}
2785
2786	bus_data_generation_update();
2787	return (0);
2788}
2789
2790/**
2791 * @brief Probe a device, and return this status.
2792 *
2793 * This function is the core of the device autoconfiguration
2794 * system. Its purpose is to select a suitable driver for a device and
2795 * then call that driver to initialise the hardware appropriately. The
2796 * driver is selected by calling the DEVICE_PROBE() method of a set of
2797 * candidate drivers and then choosing the driver which returned the
2798 * best value. This driver is then attached to the device using
2799 * device_attach().
2800 *
2801 * The set of suitable drivers is taken from the list of drivers in
2802 * the parent device's devclass. If the device was originally created
2803 * with a specific class name (see device_add_child()), only drivers
2804 * with that name are probed, otherwise all drivers in the devclass
2805 * are probed. If no drivers return successful probe values in the
2806 * parent devclass, the search continues in the parent of that
2807 * devclass (see devclass_get_parent()) if any.
2808 *
2809 * @param dev		the device to initialise
2810 *
2811 * @retval 0		success
2812 * @retval ENXIO	no driver was found
2813 * @retval ENOMEM	memory allocation failure
2814 * @retval non-zero	some other unix error code
2815 * @retval -1		Device already attached
2816 */
2817int
2818device_probe(device_t dev)
2819{
2820	int error;
2821
2822	GIANT_REQUIRED;
2823
2824	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2825		return (-1);
2826
2827	if (!(dev->flags & DF_ENABLED)) {
2828		if (bootverbose && device_get_name(dev) != NULL) {
2829			device_print_prettyname(dev);
2830			printf("not probed (disabled)\n");
2831		}
2832		return (-1);
2833	}
2834	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2835		if (bus_current_pass == BUS_PASS_DEFAULT &&
2836		    !(dev->flags & DF_DONENOMATCH)) {
2837			BUS_PROBE_NOMATCH(dev->parent, dev);
2838			devnomatch(dev);
2839			dev->flags |= DF_DONENOMATCH;
2840		}
2841		return (error);
2842	}
2843	return (0);
2844}
2845
2846/**
2847 * @brief Probe a device and attach a driver if possible
2848 *
2849 * calls device_probe() and attaches if that was successful.
2850 */
2851int
2852device_probe_and_attach(device_t dev)
2853{
2854	int error;
2855
2856	GIANT_REQUIRED;
2857
2858	error = device_probe(dev);
2859	if (error == -1)
2860		return (0);
2861	else if (error != 0)
2862		return (error);
2863
2864	CURVNET_SET_QUIET(vnet0);
2865	error = device_attach(dev);
2866	CURVNET_RESTORE();
2867	return error;
2868}
2869
2870/**
2871 * @brief Attach a device driver to a device
2872 *
2873 * This function is a wrapper around the DEVICE_ATTACH() driver
2874 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2875 * device's sysctl tree, optionally prints a description of the device
2876 * and queues a notification event for user-based device management
2877 * services.
2878 *
2879 * Normally this function is only called internally from
2880 * device_probe_and_attach().
2881 *
2882 * @param dev		the device to initialise
2883 *
2884 * @retval 0		success
2885 * @retval ENXIO	no driver was found
2886 * @retval ENOMEM	memory allocation failure
2887 * @retval non-zero	some other unix error code
2888 */
2889int
2890device_attach(device_t dev)
2891{
2892	uint64_t attachtime;
2893	int error;
2894
2895	if (resource_disabled(dev->driver->name, dev->unit)) {
2896		device_disable(dev);
2897		if (bootverbose)
2898			 device_printf(dev, "disabled via hints entry\n");
2899		return (ENXIO);
2900	}
2901
2902	device_sysctl_init(dev);
2903	if (!device_is_quiet(dev))
2904		device_print_child(dev->parent, dev);
2905	attachtime = get_cyclecount();
2906	dev->state = DS_ATTACHING;
2907	if ((error = DEVICE_ATTACH(dev)) != 0) {
2908		printf("device_attach: %s%d attach returned %d\n",
2909		    dev->driver->name, dev->unit, error);
2910		if (!(dev->flags & DF_FIXEDCLASS))
2911			devclass_delete_device(dev->devclass, dev);
2912		(void)device_set_driver(dev, NULL);
2913		device_sysctl_fini(dev);
2914		KASSERT(dev->busy == 0, ("attach failed but busy"));
2915		dev->state = DS_NOTPRESENT;
2916		return (error);
2917	}
2918	attachtime = get_cyclecount() - attachtime;
2919	/*
2920	 * 4 bits per device is a reasonable value for desktop and server
2921	 * hardware with good get_cyclecount() implementations, but WILL
2922	 * need to be adjusted on other platforms.
2923	 */
2924#define	RANDOM_PROBE_BIT_GUESS	4
2925	if (bootverbose)
2926		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2927		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2928		    dev->driver->name, dev->unit);
2929	random_harvest_direct(&attachtime, sizeof(attachtime),
2930	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2931	device_sysctl_update(dev);
2932	if (dev->busy)
2933		dev->state = DS_BUSY;
2934	else
2935		dev->state = DS_ATTACHED;
2936	dev->flags &= ~DF_DONENOMATCH;
2937	EVENTHANDLER_INVOKE(device_attach, dev);
2938	devadded(dev);
2939	return (0);
2940}
2941
2942/**
2943 * @brief Detach a driver from a device
2944 *
2945 * This function is a wrapper around the DEVICE_DETACH() driver
2946 * method. If the call to DEVICE_DETACH() succeeds, it calls
2947 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2948 * notification event for user-based device management services and
2949 * cleans up the device's sysctl tree.
2950 *
2951 * @param dev		the device to un-initialise
2952 *
2953 * @retval 0		success
2954 * @retval ENXIO	no driver was found
2955 * @retval ENOMEM	memory allocation failure
2956 * @retval non-zero	some other unix error code
2957 */
2958int
2959device_detach(device_t dev)
2960{
2961	int error;
2962
2963	GIANT_REQUIRED;
2964
2965	PDEBUG(("%s", DEVICENAME(dev)));
2966	if (dev->state == DS_BUSY)
2967		return (EBUSY);
2968	if (dev->state != DS_ATTACHED)
2969		return (0);
2970
2971	EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2972	if ((error = DEVICE_DETACH(dev)) != 0) {
2973		EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_FAILED);
2974		return (error);
2975	} else {
2976		EVENTHANDLER_INVOKE(device_detach, dev, EVHDEV_DETACH_COMPLETE);
2977	}
2978	devremoved(dev);
2979	if (!device_is_quiet(dev))
2980		device_printf(dev, "detached\n");
2981	if (dev->parent)
2982		BUS_CHILD_DETACHED(dev->parent, dev);
2983
2984	if (!(dev->flags & DF_FIXEDCLASS))
2985		devclass_delete_device(dev->devclass, dev);
2986
2987	device_verbose(dev);
2988	dev->state = DS_NOTPRESENT;
2989	(void)device_set_driver(dev, NULL);
2990	device_sysctl_fini(dev);
2991
2992	return (0);
2993}
2994
2995/**
2996 * @brief Tells a driver to quiesce itself.
2997 *
2998 * This function is a wrapper around the DEVICE_QUIESCE() driver
2999 * method. If the call to DEVICE_QUIESCE() succeeds.
3000 *
3001 * @param dev		the device to quiesce
3002 *
3003 * @retval 0		success
3004 * @retval ENXIO	no driver was found
3005 * @retval ENOMEM	memory allocation failure
3006 * @retval non-zero	some other unix error code
3007 */
3008int
3009device_quiesce(device_t dev)
3010{
3011
3012	PDEBUG(("%s", DEVICENAME(dev)));
3013	if (dev->state == DS_BUSY)
3014		return (EBUSY);
3015	if (dev->state != DS_ATTACHED)
3016		return (0);
3017
3018	return (DEVICE_QUIESCE(dev));
3019}
3020
3021/**
3022 * @brief Notify a device of system shutdown
3023 *
3024 * This function calls the DEVICE_SHUTDOWN() driver method if the
3025 * device currently has an attached driver.
3026 *
3027 * @returns the value returned by DEVICE_SHUTDOWN()
3028 */
3029int
3030device_shutdown(device_t dev)
3031{
3032	if (dev->state < DS_ATTACHED)
3033		return (0);
3034	return (DEVICE_SHUTDOWN(dev));
3035}
3036
3037/**
3038 * @brief Set the unit number of a device
3039 *
3040 * This function can be used to override the unit number used for a
3041 * device (e.g. to wire a device to a pre-configured unit number).
3042 */
3043int
3044device_set_unit(device_t dev, int unit)
3045{
3046	devclass_t dc;
3047	int err;
3048
3049	dc = device_get_devclass(dev);
3050	if (unit < dc->maxunit && dc->devices[unit])
3051		return (EBUSY);
3052	err = devclass_delete_device(dc, dev);
3053	if (err)
3054		return (err);
3055	dev->unit = unit;
3056	err = devclass_add_device(dc, dev);
3057	if (err)
3058		return (err);
3059
3060	bus_data_generation_update();
3061	return (0);
3062}
3063
3064/*======================================*/
3065/*
3066 * Some useful method implementations to make life easier for bus drivers.
3067 */
3068
3069void
3070resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3071{
3072
3073	bzero(args, sz);
3074	args->size = sz;
3075	args->memattr = VM_MEMATTR_UNCACHEABLE;
3076}
3077
3078/**
3079 * @brief Initialise a resource list.
3080 *
3081 * @param rl		the resource list to initialise
3082 */
3083void
3084resource_list_init(struct resource_list *rl)
3085{
3086	STAILQ_INIT(rl);
3087}
3088
3089/**
3090 * @brief Reclaim memory used by a resource list.
3091 *
3092 * This function frees the memory for all resource entries on the list
3093 * (if any).
3094 *
3095 * @param rl		the resource list to free
3096 */
3097void
3098resource_list_free(struct resource_list *rl)
3099{
3100	struct resource_list_entry *rle;
3101
3102	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3103		if (rle->res)
3104			panic("resource_list_free: resource entry is busy");
3105		STAILQ_REMOVE_HEAD(rl, link);
3106		free(rle, M_BUS);
3107	}
3108}
3109
3110/**
3111 * @brief Add a resource entry.
3112 *
3113 * This function adds a resource entry using the given @p type, @p
3114 * start, @p end and @p count values. A rid value is chosen by
3115 * searching sequentially for the first unused rid starting at zero.
3116 *
3117 * @param rl		the resource list to edit
3118 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3119 * @param start		the start address of the resource
3120 * @param end		the end address of the resource
3121 * @param count		XXX end-start+1
3122 */
3123int
3124resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3125    rman_res_t end, rman_res_t count)
3126{
3127	int rid;
3128
3129	rid = 0;
3130	while (resource_list_find(rl, type, rid) != NULL)
3131		rid++;
3132	resource_list_add(rl, type, rid, start, end, count);
3133	return (rid);
3134}
3135
3136/**
3137 * @brief Add or modify a resource entry.
3138 *
3139 * If an existing entry exists with the same type and rid, it will be
3140 * modified using the given values of @p start, @p end and @p
3141 * count. If no entry exists, a new one will be created using the
3142 * given values.  The resource list entry that matches is then returned.
3143 *
3144 * @param rl		the resource list to edit
3145 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3146 * @param rid		the resource identifier
3147 * @param start		the start address of the resource
3148 * @param end		the end address of the resource
3149 * @param count		XXX end-start+1
3150 */
3151struct resource_list_entry *
3152resource_list_add(struct resource_list *rl, int type, int rid,
3153    rman_res_t start, rman_res_t end, rman_res_t count)
3154{
3155	struct resource_list_entry *rle;
3156
3157	rle = resource_list_find(rl, type, rid);
3158	if (!rle) {
3159		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3160		    M_NOWAIT);
3161		if (!rle)
3162			panic("resource_list_add: can't record entry");
3163		STAILQ_INSERT_TAIL(rl, rle, link);
3164		rle->type = type;
3165		rle->rid = rid;
3166		rle->res = NULL;
3167		rle->flags = 0;
3168	}
3169
3170	if (rle->res)
3171		panic("resource_list_add: resource entry is busy");
3172
3173	rle->start = start;
3174	rle->end = end;
3175	rle->count = count;
3176	return (rle);
3177}
3178
3179/**
3180 * @brief Determine if a resource entry is busy.
3181 *
3182 * Returns true if a resource entry is busy meaning that it has an
3183 * associated resource that is not an unallocated "reserved" resource.
3184 *
3185 * @param rl		the resource list to search
3186 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3187 * @param rid		the resource identifier
3188 *
3189 * @returns Non-zero if the entry is busy, zero otherwise.
3190 */
3191int
3192resource_list_busy(struct resource_list *rl, int type, int rid)
3193{
3194	struct resource_list_entry *rle;
3195
3196	rle = resource_list_find(rl, type, rid);
3197	if (rle == NULL || rle->res == NULL)
3198		return (0);
3199	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3200		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3201		    ("reserved resource is active"));
3202		return (0);
3203	}
3204	return (1);
3205}
3206
3207/**
3208 * @brief Determine if a resource entry is reserved.
3209 *
3210 * Returns true if a resource entry is reserved meaning that it has an
3211 * associated "reserved" resource.  The resource can either be
3212 * allocated or unallocated.
3213 *
3214 * @param rl		the resource list to search
3215 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3216 * @param rid		the resource identifier
3217 *
3218 * @returns Non-zero if the entry is reserved, zero otherwise.
3219 */
3220int
3221resource_list_reserved(struct resource_list *rl, int type, int rid)
3222{
3223	struct resource_list_entry *rle;
3224
3225	rle = resource_list_find(rl, type, rid);
3226	if (rle != NULL && rle->flags & RLE_RESERVED)
3227		return (1);
3228	return (0);
3229}
3230
3231/**
3232 * @brief Find a resource entry by type and rid.
3233 *
3234 * @param rl		the resource list to search
3235 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3236 * @param rid		the resource identifier
3237 *
3238 * @returns the resource entry pointer or NULL if there is no such
3239 * entry.
3240 */
3241struct resource_list_entry *
3242resource_list_find(struct resource_list *rl, int type, int rid)
3243{
3244	struct resource_list_entry *rle;
3245
3246	STAILQ_FOREACH(rle, rl, link) {
3247		if (rle->type == type && rle->rid == rid)
3248			return (rle);
3249	}
3250	return (NULL);
3251}
3252
3253/**
3254 * @brief Delete a resource entry.
3255 *
3256 * @param rl		the resource list to edit
3257 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3258 * @param rid		the resource identifier
3259 */
3260void
3261resource_list_delete(struct resource_list *rl, int type, int rid)
3262{
3263	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3264
3265	if (rle) {
3266		if (rle->res != NULL)
3267			panic("resource_list_delete: resource has not been released");
3268		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3269		free(rle, M_BUS);
3270	}
3271}
3272
3273/**
3274 * @brief Allocate a reserved resource
3275 *
3276 * This can be used by busses to force the allocation of resources
3277 * that are always active in the system even if they are not allocated
3278 * by a driver (e.g. PCI BARs).  This function is usually called when
3279 * adding a new child to the bus.  The resource is allocated from the
3280 * parent bus when it is reserved.  The resource list entry is marked
3281 * with RLE_RESERVED to note that it is a reserved resource.
3282 *
3283 * Subsequent attempts to allocate the resource with
3284 * resource_list_alloc() will succeed the first time and will set
3285 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3286 * resource that has been allocated is released with
3287 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3288 * the actual resource remains allocated.  The resource can be released to
3289 * the parent bus by calling resource_list_unreserve().
3290 *
3291 * @param rl		the resource list to allocate from
3292 * @param bus		the parent device of @p child
3293 * @param child		the device for which the resource is being reserved
3294 * @param type		the type of resource to allocate
3295 * @param rid		a pointer to the resource identifier
3296 * @param start		hint at the start of the resource range - pass
3297 *			@c 0 for any start address
3298 * @param end		hint at the end of the resource range - pass
3299 *			@c ~0 for any end address
3300 * @param count		hint at the size of range required - pass @c 1
3301 *			for any size
3302 * @param flags		any extra flags to control the resource
3303 *			allocation - see @c RF_XXX flags in
3304 *			<sys/rman.h> for details
3305 *
3306 * @returns		the resource which was allocated or @c NULL if no
3307 *			resource could be allocated
3308 */
3309struct resource *
3310resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3311    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3312{
3313	struct resource_list_entry *rle = NULL;
3314	int passthrough = (device_get_parent(child) != bus);
3315	struct resource *r;
3316
3317	if (passthrough)
3318		panic(
3319    "resource_list_reserve() should only be called for direct children");
3320	if (flags & RF_ACTIVE)
3321		panic(
3322    "resource_list_reserve() should only reserve inactive resources");
3323
3324	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3325	    flags);
3326	if (r != NULL) {
3327		rle = resource_list_find(rl, type, *rid);
3328		rle->flags |= RLE_RESERVED;
3329	}
3330	return (r);
3331}
3332
3333/**
3334 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3335 *
3336 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3337 * and passing the allocation up to the parent of @p bus. This assumes
3338 * that the first entry of @c device_get_ivars(child) is a struct
3339 * resource_list. This also handles 'passthrough' allocations where a
3340 * child is a remote descendant of bus by passing the allocation up to
3341 * the parent of bus.
3342 *
3343 * Typically, a bus driver would store a list of child resources
3344 * somewhere in the child device's ivars (see device_get_ivars()) and
3345 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3346 * then call resource_list_alloc() to perform the allocation.
3347 *
3348 * @param rl		the resource list to allocate from
3349 * @param bus		the parent device of @p child
3350 * @param child		the device which is requesting an allocation
3351 * @param type		the type of resource to allocate
3352 * @param rid		a pointer to the resource identifier
3353 * @param start		hint at the start of the resource range - pass
3354 *			@c 0 for any start address
3355 * @param end		hint at the end of the resource range - pass
3356 *			@c ~0 for any end address
3357 * @param count		hint at the size of range required - pass @c 1
3358 *			for any size
3359 * @param flags		any extra flags to control the resource
3360 *			allocation - see @c RF_XXX flags in
3361 *			<sys/rman.h> for details
3362 *
3363 * @returns		the resource which was allocated or @c NULL if no
3364 *			resource could be allocated
3365 */
3366struct resource *
3367resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3368    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3369{
3370	struct resource_list_entry *rle = NULL;
3371	int passthrough = (device_get_parent(child) != bus);
3372	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3373
3374	if (passthrough) {
3375		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3376		    type, rid, start, end, count, flags));
3377	}
3378
3379	rle = resource_list_find(rl, type, *rid);
3380
3381	if (!rle)
3382		return (NULL);		/* no resource of that type/rid */
3383
3384	if (rle->res) {
3385		if (rle->flags & RLE_RESERVED) {
3386			if (rle->flags & RLE_ALLOCATED)
3387				return (NULL);
3388			if ((flags & RF_ACTIVE) &&
3389			    bus_activate_resource(child, type, *rid,
3390			    rle->res) != 0)
3391				return (NULL);
3392			rle->flags |= RLE_ALLOCATED;
3393			return (rle->res);
3394		}
3395		device_printf(bus,
3396		    "resource entry %#x type %d for child %s is busy\n", *rid,
3397		    type, device_get_nameunit(child));
3398		return (NULL);
3399	}
3400
3401	if (isdefault) {
3402		start = rle->start;
3403		count = ulmax(count, rle->count);
3404		end = ulmax(rle->end, start + count - 1);
3405	}
3406
3407	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3408	    type, rid, start, end, count, flags);
3409
3410	/*
3411	 * Record the new range.
3412	 */
3413	if (rle->res) {
3414		rle->start = rman_get_start(rle->res);
3415		rle->end = rman_get_end(rle->res);
3416		rle->count = count;
3417	}
3418
3419	return (rle->res);
3420}
3421
3422/**
3423 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3424 *
3425 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3426 * used with resource_list_alloc().
3427 *
3428 * @param rl		the resource list which was allocated from
3429 * @param bus		the parent device of @p child
3430 * @param child		the device which is requesting a release
3431 * @param type		the type of resource to release
3432 * @param rid		the resource identifier
3433 * @param res		the resource to release
3434 *
3435 * @retval 0		success
3436 * @retval non-zero	a standard unix error code indicating what
3437 *			error condition prevented the operation
3438 */
3439int
3440resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3441    int type, int rid, struct resource *res)
3442{
3443	struct resource_list_entry *rle = NULL;
3444	int passthrough = (device_get_parent(child) != bus);
3445	int error;
3446
3447	if (passthrough) {
3448		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3449		    type, rid, res));
3450	}
3451
3452	rle = resource_list_find(rl, type, rid);
3453
3454	if (!rle)
3455		panic("resource_list_release: can't find resource");
3456	if (!rle->res)
3457		panic("resource_list_release: resource entry is not busy");
3458	if (rle->flags & RLE_RESERVED) {
3459		if (rle->flags & RLE_ALLOCATED) {
3460			if (rman_get_flags(res) & RF_ACTIVE) {
3461				error = bus_deactivate_resource(child, type,
3462				    rid, res);
3463				if (error)
3464					return (error);
3465			}
3466			rle->flags &= ~RLE_ALLOCATED;
3467			return (0);
3468		}
3469		return (EINVAL);
3470	}
3471
3472	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3473	    type, rid, res);
3474	if (error)
3475		return (error);
3476
3477	rle->res = NULL;
3478	return (0);
3479}
3480
3481/**
3482 * @brief Release all active resources of a given type
3483 *
3484 * Release all active resources of a specified type.  This is intended
3485 * to be used to cleanup resources leaked by a driver after detach or
3486 * a failed attach.
3487 *
3488 * @param rl		the resource list which was allocated from
3489 * @param bus		the parent device of @p child
3490 * @param child		the device whose active resources are being released
3491 * @param type		the type of resources to release
3492 *
3493 * @retval 0		success
3494 * @retval EBUSY	at least one resource was active
3495 */
3496int
3497resource_list_release_active(struct resource_list *rl, device_t bus,
3498    device_t child, int type)
3499{
3500	struct resource_list_entry *rle;
3501	int error, retval;
3502
3503	retval = 0;
3504	STAILQ_FOREACH(rle, rl, link) {
3505		if (rle->type != type)
3506			continue;
3507		if (rle->res == NULL)
3508			continue;
3509		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3510		    RLE_RESERVED)
3511			continue;
3512		retval = EBUSY;
3513		error = resource_list_release(rl, bus, child, type,
3514		    rman_get_rid(rle->res), rle->res);
3515		if (error != 0)
3516			device_printf(bus,
3517			    "Failed to release active resource: %d\n", error);
3518	}
3519	return (retval);
3520}
3521
3522
3523/**
3524 * @brief Fully release a reserved resource
3525 *
3526 * Fully releases a resource reserved via resource_list_reserve().
3527 *
3528 * @param rl		the resource list which was allocated from
3529 * @param bus		the parent device of @p child
3530 * @param child		the device whose reserved resource is being released
3531 * @param type		the type of resource to release
3532 * @param rid		the resource identifier
3533 * @param res		the resource to release
3534 *
3535 * @retval 0		success
3536 * @retval non-zero	a standard unix error code indicating what
3537 *			error condition prevented the operation
3538 */
3539int
3540resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3541    int type, int rid)
3542{
3543	struct resource_list_entry *rle = NULL;
3544	int passthrough = (device_get_parent(child) != bus);
3545
3546	if (passthrough)
3547		panic(
3548    "resource_list_unreserve() should only be called for direct children");
3549
3550	rle = resource_list_find(rl, type, rid);
3551
3552	if (!rle)
3553		panic("resource_list_unreserve: can't find resource");
3554	if (!(rle->flags & RLE_RESERVED))
3555		return (EINVAL);
3556	if (rle->flags & RLE_ALLOCATED)
3557		return (EBUSY);
3558	rle->flags &= ~RLE_RESERVED;
3559	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3560}
3561
3562/**
3563 * @brief Print a description of resources in a resource list
3564 *
3565 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3566 * The name is printed if at least one resource of the given type is available.
3567 * The format is used to print resource start and end.
3568 *
3569 * @param rl		the resource list to print
3570 * @param name		the name of @p type, e.g. @c "memory"
3571 * @param type		type type of resource entry to print
3572 * @param format	printf(9) format string to print resource
3573 *			start and end values
3574 *
3575 * @returns		the number of characters printed
3576 */
3577int
3578resource_list_print_type(struct resource_list *rl, const char *name, int type,
3579    const char *format)
3580{
3581	struct resource_list_entry *rle;
3582	int printed, retval;
3583
3584	printed = 0;
3585	retval = 0;
3586	/* Yes, this is kinda cheating */
3587	STAILQ_FOREACH(rle, rl, link) {
3588		if (rle->type == type) {
3589			if (printed == 0)
3590				retval += printf(" %s ", name);
3591			else
3592				retval += printf(",");
3593			printed++;
3594			retval += printf(format, rle->start);
3595			if (rle->count > 1) {
3596				retval += printf("-");
3597				retval += printf(format, rle->start +
3598						 rle->count - 1);
3599			}
3600		}
3601	}
3602	return (retval);
3603}
3604
3605/**
3606 * @brief Releases all the resources in a list.
3607 *
3608 * @param rl		The resource list to purge.
3609 *
3610 * @returns		nothing
3611 */
3612void
3613resource_list_purge(struct resource_list *rl)
3614{
3615	struct resource_list_entry *rle;
3616
3617	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3618		if (rle->res)
3619			bus_release_resource(rman_get_device(rle->res),
3620			    rle->type, rle->rid, rle->res);
3621		STAILQ_REMOVE_HEAD(rl, link);
3622		free(rle, M_BUS);
3623	}
3624}
3625
3626device_t
3627bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3628{
3629
3630	return (device_add_child_ordered(dev, order, name, unit));
3631}
3632
3633/**
3634 * @brief Helper function for implementing DEVICE_PROBE()
3635 *
3636 * This function can be used to help implement the DEVICE_PROBE() for
3637 * a bus (i.e. a device which has other devices attached to it). It
3638 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3639 * devclass.
3640 */
3641int
3642bus_generic_probe(device_t dev)
3643{
3644	devclass_t dc = dev->devclass;
3645	driverlink_t dl;
3646
3647	TAILQ_FOREACH(dl, &dc->drivers, link) {
3648		/*
3649		 * If this driver's pass is too high, then ignore it.
3650		 * For most drivers in the default pass, this will
3651		 * never be true.  For early-pass drivers they will
3652		 * only call the identify routines of eligible drivers
3653		 * when this routine is called.  Drivers for later
3654		 * passes should have their identify routines called
3655		 * on early-pass busses during BUS_NEW_PASS().
3656		 */
3657		if (dl->pass > bus_current_pass)
3658			continue;
3659		DEVICE_IDENTIFY(dl->driver, dev);
3660	}
3661
3662	return (0);
3663}
3664
3665/**
3666 * @brief Helper function for implementing DEVICE_ATTACH()
3667 *
3668 * This function can be used to help implement the DEVICE_ATTACH() for
3669 * a bus. It calls device_probe_and_attach() for each of the device's
3670 * children.
3671 */
3672int
3673bus_generic_attach(device_t dev)
3674{
3675	device_t child;
3676
3677	TAILQ_FOREACH(child, &dev->children, link) {
3678		device_probe_and_attach(child);
3679	}
3680
3681	return (0);
3682}
3683
3684/**
3685 * @brief Helper function for implementing DEVICE_DETACH()
3686 *
3687 * This function can be used to help implement the DEVICE_DETACH() for
3688 * a bus. It calls device_detach() for each of the device's
3689 * children.
3690 */
3691int
3692bus_generic_detach(device_t dev)
3693{
3694	device_t child;
3695	int error;
3696
3697	if (dev->state != DS_ATTACHED)
3698		return (EBUSY);
3699
3700	TAILQ_FOREACH(child, &dev->children, link) {
3701		if ((error = device_detach(child)) != 0)
3702			return (error);
3703	}
3704
3705	return (0);
3706}
3707
3708/**
3709 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3710 *
3711 * This function can be used to help implement the DEVICE_SHUTDOWN()
3712 * for a bus. It calls device_shutdown() for each of the device's
3713 * children.
3714 */
3715int
3716bus_generic_shutdown(device_t dev)
3717{
3718	device_t child;
3719
3720	TAILQ_FOREACH(child, &dev->children, link) {
3721		device_shutdown(child);
3722	}
3723
3724	return (0);
3725}
3726
3727/**
3728 * @brief Default function for suspending a child device.
3729 *
3730 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3731 */
3732int
3733bus_generic_suspend_child(device_t dev, device_t child)
3734{
3735	int	error;
3736
3737	error = DEVICE_SUSPEND(child);
3738
3739	if (error == 0)
3740		child->flags |= DF_SUSPENDED;
3741
3742	return (error);
3743}
3744
3745/**
3746 * @brief Default function for resuming a child device.
3747 *
3748 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3749 */
3750int
3751bus_generic_resume_child(device_t dev, device_t child)
3752{
3753
3754	DEVICE_RESUME(child);
3755	child->flags &= ~DF_SUSPENDED;
3756
3757	return (0);
3758}
3759
3760/**
3761 * @brief Helper function for implementing DEVICE_SUSPEND()
3762 *
3763 * This function can be used to help implement the DEVICE_SUSPEND()
3764 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3765 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3766 * operation is aborted and any devices which were suspended are
3767 * resumed immediately by calling their DEVICE_RESUME() methods.
3768 */
3769int
3770bus_generic_suspend(device_t dev)
3771{
3772	int		error;
3773	device_t	child, child2;
3774
3775	TAILQ_FOREACH(child, &dev->children, link) {
3776		error = BUS_SUSPEND_CHILD(dev, child);
3777		if (error) {
3778			for (child2 = TAILQ_FIRST(&dev->children);
3779			     child2 && child2 != child;
3780			     child2 = TAILQ_NEXT(child2, link))
3781				BUS_RESUME_CHILD(dev, child2);
3782			return (error);
3783		}
3784	}
3785	return (0);
3786}
3787
3788/**
3789 * @brief Helper function for implementing DEVICE_RESUME()
3790 *
3791 * This function can be used to help implement the DEVICE_RESUME() for
3792 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3793 */
3794int
3795bus_generic_resume(device_t dev)
3796{
3797	device_t	child;
3798
3799	TAILQ_FOREACH(child, &dev->children, link) {
3800		BUS_RESUME_CHILD(dev, child);
3801		/* if resume fails, there's nothing we can usefully do... */
3802	}
3803	return (0);
3804}
3805
3806/**
3807 * @brief Helper function for implementing BUS_PRINT_CHILD().
3808 *
3809 * This function prints the first part of the ascii representation of
3810 * @p child, including its name, unit and description (if any - see
3811 * device_set_desc()).
3812 *
3813 * @returns the number of characters printed
3814 */
3815int
3816bus_print_child_header(device_t dev, device_t child)
3817{
3818	int	retval = 0;
3819
3820	if (device_get_desc(child)) {
3821		retval += device_printf(child, "<%s>", device_get_desc(child));
3822	} else {
3823		retval += printf("%s", device_get_nameunit(child));
3824	}
3825
3826	return (retval);
3827}
3828
3829/**
3830 * @brief Helper function for implementing BUS_PRINT_CHILD().
3831 *
3832 * This function prints the last part of the ascii representation of
3833 * @p child, which consists of the string @c " on " followed by the
3834 * name and unit of the @p dev.
3835 *
3836 * @returns the number of characters printed
3837 */
3838int
3839bus_print_child_footer(device_t dev, device_t child)
3840{
3841	return (printf(" on %s\n", device_get_nameunit(dev)));
3842}
3843
3844/**
3845 * @brief Helper function for implementing BUS_PRINT_CHILD().
3846 *
3847 * This function prints out the VM domain for the given device.
3848 *
3849 * @returns the number of characters printed
3850 */
3851int
3852bus_print_child_domain(device_t dev, device_t child)
3853{
3854	int domain;
3855
3856	/* No domain? Don't print anything */
3857	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3858		return (0);
3859
3860	return (printf(" numa-domain %d", domain));
3861}
3862
3863/**
3864 * @brief Helper function for implementing BUS_PRINT_CHILD().
3865 *
3866 * This function simply calls bus_print_child_header() followed by
3867 * bus_print_child_footer().
3868 *
3869 * @returns the number of characters printed
3870 */
3871int
3872bus_generic_print_child(device_t dev, device_t child)
3873{
3874	int	retval = 0;
3875
3876	retval += bus_print_child_header(dev, child);
3877	retval += bus_print_child_domain(dev, child);
3878	retval += bus_print_child_footer(dev, child);
3879
3880	return (retval);
3881}
3882
3883/**
3884 * @brief Stub function for implementing BUS_READ_IVAR().
3885 *
3886 * @returns ENOENT
3887 */
3888int
3889bus_generic_read_ivar(device_t dev, device_t child, int index,
3890    uintptr_t * result)
3891{
3892	return (ENOENT);
3893}
3894
3895/**
3896 * @brief Stub function for implementing BUS_WRITE_IVAR().
3897 *
3898 * @returns ENOENT
3899 */
3900int
3901bus_generic_write_ivar(device_t dev, device_t child, int index,
3902    uintptr_t value)
3903{
3904	return (ENOENT);
3905}
3906
3907/**
3908 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3909 *
3910 * @returns NULL
3911 */
3912struct resource_list *
3913bus_generic_get_resource_list(device_t dev, device_t child)
3914{
3915	return (NULL);
3916}
3917
3918/**
3919 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3920 *
3921 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3922 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3923 * and then calls device_probe_and_attach() for each unattached child.
3924 */
3925void
3926bus_generic_driver_added(device_t dev, driver_t *driver)
3927{
3928	device_t child;
3929
3930	DEVICE_IDENTIFY(driver, dev);
3931	TAILQ_FOREACH(child, &dev->children, link) {
3932		if (child->state == DS_NOTPRESENT ||
3933		    (child->flags & DF_REBID))
3934			device_probe_and_attach(child);
3935	}
3936}
3937
3938/**
3939 * @brief Helper function for implementing BUS_NEW_PASS().
3940 *
3941 * This implementing of BUS_NEW_PASS() first calls the identify
3942 * routines for any drivers that probe at the current pass.  Then it
3943 * walks the list of devices for this bus.  If a device is already
3944 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3945 * device is not already attached, it attempts to attach a driver to
3946 * it.
3947 */
3948void
3949bus_generic_new_pass(device_t dev)
3950{
3951	driverlink_t dl;
3952	devclass_t dc;
3953	device_t child;
3954
3955	dc = dev->devclass;
3956	TAILQ_FOREACH(dl, &dc->drivers, link) {
3957		if (dl->pass == bus_current_pass)
3958			DEVICE_IDENTIFY(dl->driver, dev);
3959	}
3960	TAILQ_FOREACH(child, &dev->children, link) {
3961		if (child->state >= DS_ATTACHED)
3962			BUS_NEW_PASS(child);
3963		else if (child->state == DS_NOTPRESENT)
3964			device_probe_and_attach(child);
3965	}
3966}
3967
3968/**
3969 * @brief Helper function for implementing BUS_SETUP_INTR().
3970 *
3971 * This simple implementation of BUS_SETUP_INTR() simply calls the
3972 * BUS_SETUP_INTR() method of the parent of @p dev.
3973 */
3974int
3975bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3976    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3977    void **cookiep)
3978{
3979	/* Propagate up the bus hierarchy until someone handles it. */
3980	if (dev->parent)
3981		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3982		    filter, intr, arg, cookiep));
3983	return (EINVAL);
3984}
3985
3986/**
3987 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3988 *
3989 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3990 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3991 */
3992int
3993bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3994    void *cookie)
3995{
3996	/* Propagate up the bus hierarchy until someone handles it. */
3997	if (dev->parent)
3998		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3999	return (EINVAL);
4000}
4001
4002/**
4003 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4004 *
4005 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4006 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4007 */
4008int
4009bus_generic_adjust_resource(device_t dev, device_t child, int type,
4010    struct resource *r, rman_res_t start, rman_res_t end)
4011{
4012	/* Propagate up the bus hierarchy until someone handles it. */
4013	if (dev->parent)
4014		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4015		    end));
4016	return (EINVAL);
4017}
4018
4019/**
4020 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4021 *
4022 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4023 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4024 */
4025struct resource *
4026bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4027    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4028{
4029	/* Propagate up the bus hierarchy until someone handles it. */
4030	if (dev->parent)
4031		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4032		    start, end, count, flags));
4033	return (NULL);
4034}
4035
4036/**
4037 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4038 *
4039 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4040 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4041 */
4042int
4043bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4044    struct resource *r)
4045{
4046	/* Propagate up the bus hierarchy until someone handles it. */
4047	if (dev->parent)
4048		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4049		    r));
4050	return (EINVAL);
4051}
4052
4053/**
4054 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4055 *
4056 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4057 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4058 */
4059int
4060bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4061    struct resource *r)
4062{
4063	/* Propagate up the bus hierarchy until someone handles it. */
4064	if (dev->parent)
4065		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4066		    r));
4067	return (EINVAL);
4068}
4069
4070/**
4071 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4072 *
4073 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4074 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4075 */
4076int
4077bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4078    int rid, struct resource *r)
4079{
4080	/* Propagate up the bus hierarchy until someone handles it. */
4081	if (dev->parent)
4082		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4083		    r));
4084	return (EINVAL);
4085}
4086
4087/**
4088 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4089 *
4090 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4091 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4092 */
4093int
4094bus_generic_map_resource(device_t dev, device_t child, int type,
4095    struct resource *r, struct resource_map_request *args,
4096    struct resource_map *map)
4097{
4098	/* Propagate up the bus hierarchy until someone handles it. */
4099	if (dev->parent)
4100		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4101		    map));
4102	return (EINVAL);
4103}
4104
4105/**
4106 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4107 *
4108 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4109 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4110 */
4111int
4112bus_generic_unmap_resource(device_t dev, device_t child, int type,
4113    struct resource *r, struct resource_map *map)
4114{
4115	/* Propagate up the bus hierarchy until someone handles it. */
4116	if (dev->parent)
4117		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4118	return (EINVAL);
4119}
4120
4121/**
4122 * @brief Helper function for implementing BUS_BIND_INTR().
4123 *
4124 * This simple implementation of BUS_BIND_INTR() simply calls the
4125 * BUS_BIND_INTR() method of the parent of @p dev.
4126 */
4127int
4128bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4129    int cpu)
4130{
4131
4132	/* Propagate up the bus hierarchy until someone handles it. */
4133	if (dev->parent)
4134		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4135	return (EINVAL);
4136}
4137
4138/**
4139 * @brief Helper function for implementing BUS_CONFIG_INTR().
4140 *
4141 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4142 * BUS_CONFIG_INTR() method of the parent of @p dev.
4143 */
4144int
4145bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4146    enum intr_polarity pol)
4147{
4148
4149	/* Propagate up the bus hierarchy until someone handles it. */
4150	if (dev->parent)
4151		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4152	return (EINVAL);
4153}
4154
4155/**
4156 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4157 *
4158 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4159 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4160 */
4161int
4162bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4163    void *cookie, const char *descr)
4164{
4165
4166	/* Propagate up the bus hierarchy until someone handles it. */
4167	if (dev->parent)
4168		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4169		    descr));
4170	return (EINVAL);
4171}
4172
4173/**
4174 * @brief Helper function for implementing BUS_GET_CPUS().
4175 *
4176 * This simple implementation of BUS_GET_CPUS() simply calls the
4177 * BUS_GET_CPUS() method of the parent of @p dev.
4178 */
4179int
4180bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4181    size_t setsize, cpuset_t *cpuset)
4182{
4183
4184	/* Propagate up the bus hierarchy until someone handles it. */
4185	if (dev->parent != NULL)
4186		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4187	return (EINVAL);
4188}
4189
4190/**
4191 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4192 *
4193 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4194 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4195 */
4196bus_dma_tag_t
4197bus_generic_get_dma_tag(device_t dev, device_t child)
4198{
4199
4200	/* Propagate up the bus hierarchy until someone handles it. */
4201	if (dev->parent != NULL)
4202		return (BUS_GET_DMA_TAG(dev->parent, child));
4203	return (NULL);
4204}
4205
4206/**
4207 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4208 *
4209 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4210 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4211 */
4212bus_space_tag_t
4213bus_generic_get_bus_tag(device_t dev, device_t child)
4214{
4215
4216	/* Propagate up the bus hierarchy until someone handles it. */
4217	if (dev->parent != NULL)
4218		return (BUS_GET_BUS_TAG(dev->parent, child));
4219	return ((bus_space_tag_t)0);
4220}
4221
4222/**
4223 * @brief Helper function for implementing BUS_GET_RESOURCE().
4224 *
4225 * This implementation of BUS_GET_RESOURCE() uses the
4226 * resource_list_find() function to do most of the work. It calls
4227 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4228 * search.
4229 */
4230int
4231bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4232    rman_res_t *startp, rman_res_t *countp)
4233{
4234	struct resource_list *		rl = NULL;
4235	struct resource_list_entry *	rle = NULL;
4236
4237	rl = BUS_GET_RESOURCE_LIST(dev, child);
4238	if (!rl)
4239		return (EINVAL);
4240
4241	rle = resource_list_find(rl, type, rid);
4242	if (!rle)
4243		return (ENOENT);
4244
4245	if (startp)
4246		*startp = rle->start;
4247	if (countp)
4248		*countp = rle->count;
4249
4250	return (0);
4251}
4252
4253/**
4254 * @brief Helper function for implementing BUS_SET_RESOURCE().
4255 *
4256 * This implementation of BUS_SET_RESOURCE() uses the
4257 * resource_list_add() function to do most of the work. It calls
4258 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4259 * edit.
4260 */
4261int
4262bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4263    rman_res_t start, rman_res_t count)
4264{
4265	struct resource_list *		rl = NULL;
4266
4267	rl = BUS_GET_RESOURCE_LIST(dev, child);
4268	if (!rl)
4269		return (EINVAL);
4270
4271	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4272
4273	return (0);
4274}
4275
4276/**
4277 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4278 *
4279 * This implementation of BUS_DELETE_RESOURCE() uses the
4280 * resource_list_delete() function to do most of the work. It calls
4281 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4282 * edit.
4283 */
4284void
4285bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4286{
4287	struct resource_list *		rl = NULL;
4288
4289	rl = BUS_GET_RESOURCE_LIST(dev, child);
4290	if (!rl)
4291		return;
4292
4293	resource_list_delete(rl, type, rid);
4294
4295	return;
4296}
4297
4298/**
4299 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4300 *
4301 * This implementation of BUS_RELEASE_RESOURCE() uses the
4302 * resource_list_release() function to do most of the work. It calls
4303 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4304 */
4305int
4306bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4307    int rid, struct resource *r)
4308{
4309	struct resource_list *		rl = NULL;
4310
4311	if (device_get_parent(child) != dev)
4312		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4313		    type, rid, r));
4314
4315	rl = BUS_GET_RESOURCE_LIST(dev, child);
4316	if (!rl)
4317		return (EINVAL);
4318
4319	return (resource_list_release(rl, dev, child, type, rid, r));
4320}
4321
4322/**
4323 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4324 *
4325 * This implementation of BUS_ALLOC_RESOURCE() uses the
4326 * resource_list_alloc() function to do most of the work. It calls
4327 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4328 */
4329struct resource *
4330bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4331    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4332{
4333	struct resource_list *		rl = NULL;
4334
4335	if (device_get_parent(child) != dev)
4336		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4337		    type, rid, start, end, count, flags));
4338
4339	rl = BUS_GET_RESOURCE_LIST(dev, child);
4340	if (!rl)
4341		return (NULL);
4342
4343	return (resource_list_alloc(rl, dev, child, type, rid,
4344	    start, end, count, flags));
4345}
4346
4347/**
4348 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4349 *
4350 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4351 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4352 */
4353int
4354bus_generic_child_present(device_t dev, device_t child)
4355{
4356	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4357}
4358
4359int
4360bus_generic_get_domain(device_t dev, device_t child, int *domain)
4361{
4362
4363	if (dev->parent)
4364		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4365
4366	return (ENOENT);
4367}
4368
4369/**
4370 * @brief Helper function for implementing BUS_RESCAN().
4371 *
4372 * This null implementation of BUS_RESCAN() always fails to indicate
4373 * the bus does not support rescanning.
4374 */
4375int
4376bus_null_rescan(device_t dev)
4377{
4378
4379	return (ENXIO);
4380}
4381
4382/*
4383 * Some convenience functions to make it easier for drivers to use the
4384 * resource-management functions.  All these really do is hide the
4385 * indirection through the parent's method table, making for slightly
4386 * less-wordy code.  In the future, it might make sense for this code
4387 * to maintain some sort of a list of resources allocated by each device.
4388 */
4389
4390int
4391bus_alloc_resources(device_t dev, struct resource_spec *rs,
4392    struct resource **res)
4393{
4394	int i;
4395
4396	for (i = 0; rs[i].type != -1; i++)
4397		res[i] = NULL;
4398	for (i = 0; rs[i].type != -1; i++) {
4399		res[i] = bus_alloc_resource_any(dev,
4400		    rs[i].type, &rs[i].rid, rs[i].flags);
4401		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4402			bus_release_resources(dev, rs, res);
4403			return (ENXIO);
4404		}
4405	}
4406	return (0);
4407}
4408
4409void
4410bus_release_resources(device_t dev, const struct resource_spec *rs,
4411    struct resource **res)
4412{
4413	int i;
4414
4415	for (i = 0; rs[i].type != -1; i++)
4416		if (res[i] != NULL) {
4417			bus_release_resource(
4418			    dev, rs[i].type, rs[i].rid, res[i]);
4419			res[i] = NULL;
4420		}
4421}
4422
4423/**
4424 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4425 *
4426 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4427 * parent of @p dev.
4428 */
4429struct resource *
4430bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4431    rman_res_t end, rman_res_t count, u_int flags)
4432{
4433	struct resource *res;
4434
4435	if (dev->parent == NULL)
4436		return (NULL);
4437	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4438	    count, flags);
4439	return (res);
4440}
4441
4442/**
4443 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4444 *
4445 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4446 * parent of @p dev.
4447 */
4448int
4449bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4450    rman_res_t end)
4451{
4452	if (dev->parent == NULL)
4453		return (EINVAL);
4454	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4455}
4456
4457/**
4458 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4459 *
4460 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4461 * parent of @p dev.
4462 */
4463int
4464bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4465{
4466	if (dev->parent == NULL)
4467		return (EINVAL);
4468	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4469}
4470
4471/**
4472 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4473 *
4474 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4475 * parent of @p dev.
4476 */
4477int
4478bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4479{
4480	if (dev->parent == NULL)
4481		return (EINVAL);
4482	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4483}
4484
4485/**
4486 * @brief Wrapper function for BUS_MAP_RESOURCE().
4487 *
4488 * This function simply calls the BUS_MAP_RESOURCE() method of the
4489 * parent of @p dev.
4490 */
4491int
4492bus_map_resource(device_t dev, int type, struct resource *r,
4493    struct resource_map_request *args, struct resource_map *map)
4494{
4495	if (dev->parent == NULL)
4496		return (EINVAL);
4497	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4498}
4499
4500/**
4501 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4502 *
4503 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4504 * parent of @p dev.
4505 */
4506int
4507bus_unmap_resource(device_t dev, int type, struct resource *r,
4508    struct resource_map *map)
4509{
4510	if (dev->parent == NULL)
4511		return (EINVAL);
4512	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4513}
4514
4515/**
4516 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4517 *
4518 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4519 * parent of @p dev.
4520 */
4521int
4522bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4523{
4524	int rv;
4525
4526	if (dev->parent == NULL)
4527		return (EINVAL);
4528	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4529	return (rv);
4530}
4531
4532/**
4533 * @brief Wrapper function for BUS_SETUP_INTR().
4534 *
4535 * This function simply calls the BUS_SETUP_INTR() method of the
4536 * parent of @p dev.
4537 */
4538int
4539bus_setup_intr(device_t dev, struct resource *r, int flags,
4540    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4541{
4542	int error;
4543
4544	if (dev->parent == NULL)
4545		return (EINVAL);
4546	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4547	    arg, cookiep);
4548	if (error != 0)
4549		return (error);
4550	if (handler != NULL && !(flags & INTR_MPSAFE))
4551		device_printf(dev, "[GIANT-LOCKED]\n");
4552	return (0);
4553}
4554
4555/**
4556 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4557 *
4558 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4559 * parent of @p dev.
4560 */
4561int
4562bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4563{
4564	if (dev->parent == NULL)
4565		return (EINVAL);
4566	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4567}
4568
4569/**
4570 * @brief Wrapper function for BUS_BIND_INTR().
4571 *
4572 * This function simply calls the BUS_BIND_INTR() method of the
4573 * parent of @p dev.
4574 */
4575int
4576bus_bind_intr(device_t dev, struct resource *r, int cpu)
4577{
4578	if (dev->parent == NULL)
4579		return (EINVAL);
4580	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4581}
4582
4583/**
4584 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4585 *
4586 * This function first formats the requested description into a
4587 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4588 * the parent of @p dev.
4589 */
4590int
4591bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4592    const char *fmt, ...)
4593{
4594	va_list ap;
4595	char descr[MAXCOMLEN + 1];
4596
4597	if (dev->parent == NULL)
4598		return (EINVAL);
4599	va_start(ap, fmt);
4600	vsnprintf(descr, sizeof(descr), fmt, ap);
4601	va_end(ap);
4602	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4603}
4604
4605/**
4606 * @brief Wrapper function for BUS_SET_RESOURCE().
4607 *
4608 * This function simply calls the BUS_SET_RESOURCE() method of the
4609 * parent of @p dev.
4610 */
4611int
4612bus_set_resource(device_t dev, int type, int rid,
4613    rman_res_t start, rman_res_t count)
4614{
4615	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4616	    start, count));
4617}
4618
4619/**
4620 * @brief Wrapper function for BUS_GET_RESOURCE().
4621 *
4622 * This function simply calls the BUS_GET_RESOURCE() method of the
4623 * parent of @p dev.
4624 */
4625int
4626bus_get_resource(device_t dev, int type, int rid,
4627    rman_res_t *startp, rman_res_t *countp)
4628{
4629	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4630	    startp, countp));
4631}
4632
4633/**
4634 * @brief Wrapper function for BUS_GET_RESOURCE().
4635 *
4636 * This function simply calls the BUS_GET_RESOURCE() method of the
4637 * parent of @p dev and returns the start value.
4638 */
4639rman_res_t
4640bus_get_resource_start(device_t dev, int type, int rid)
4641{
4642	rman_res_t start;
4643	rman_res_t count;
4644	int error;
4645
4646	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4647	    &start, &count);
4648	if (error)
4649		return (0);
4650	return (start);
4651}
4652
4653/**
4654 * @brief Wrapper function for BUS_GET_RESOURCE().
4655 *
4656 * This function simply calls the BUS_GET_RESOURCE() method of the
4657 * parent of @p dev and returns the count value.
4658 */
4659rman_res_t
4660bus_get_resource_count(device_t dev, int type, int rid)
4661{
4662	rman_res_t start;
4663	rman_res_t count;
4664	int error;
4665
4666	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4667	    &start, &count);
4668	if (error)
4669		return (0);
4670	return (count);
4671}
4672
4673/**
4674 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4675 *
4676 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4677 * parent of @p dev.
4678 */
4679void
4680bus_delete_resource(device_t dev, int type, int rid)
4681{
4682	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4683}
4684
4685/**
4686 * @brief Wrapper function for BUS_CHILD_PRESENT().
4687 *
4688 * This function simply calls the BUS_CHILD_PRESENT() method of the
4689 * parent of @p dev.
4690 */
4691int
4692bus_child_present(device_t child)
4693{
4694	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4695}
4696
4697/**
4698 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4699 *
4700 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4701 * parent of @p dev.
4702 */
4703int
4704bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4705{
4706	device_t parent;
4707
4708	parent = device_get_parent(child);
4709	if (parent == NULL) {
4710		*buf = '\0';
4711		return (0);
4712	}
4713	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4714}
4715
4716/**
4717 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4718 *
4719 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4720 * parent of @p dev.
4721 */
4722int
4723bus_child_location_str(device_t child, char *buf, size_t buflen)
4724{
4725	device_t parent;
4726
4727	parent = device_get_parent(child);
4728	if (parent == NULL) {
4729		*buf = '\0';
4730		return (0);
4731	}
4732	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4733}
4734
4735/**
4736 * @brief Wrapper function for BUS_GET_CPUS().
4737 *
4738 * This function simply calls the BUS_GET_CPUS() method of the
4739 * parent of @p dev.
4740 */
4741int
4742bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4743{
4744	device_t parent;
4745
4746	parent = device_get_parent(dev);
4747	if (parent == NULL)
4748		return (EINVAL);
4749	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4750}
4751
4752/**
4753 * @brief Wrapper function for BUS_GET_DMA_TAG().
4754 *
4755 * This function simply calls the BUS_GET_DMA_TAG() method of the
4756 * parent of @p dev.
4757 */
4758bus_dma_tag_t
4759bus_get_dma_tag(device_t dev)
4760{
4761	device_t parent;
4762
4763	parent = device_get_parent(dev);
4764	if (parent == NULL)
4765		return (NULL);
4766	return (BUS_GET_DMA_TAG(parent, dev));
4767}
4768
4769/**
4770 * @brief Wrapper function for BUS_GET_BUS_TAG().
4771 *
4772 * This function simply calls the BUS_GET_BUS_TAG() method of the
4773 * parent of @p dev.
4774 */
4775bus_space_tag_t
4776bus_get_bus_tag(device_t dev)
4777{
4778	device_t parent;
4779
4780	parent = device_get_parent(dev);
4781	if (parent == NULL)
4782		return ((bus_space_tag_t)0);
4783	return (BUS_GET_BUS_TAG(parent, dev));
4784}
4785
4786/**
4787 * @brief Wrapper function for BUS_GET_DOMAIN().
4788 *
4789 * This function simply calls the BUS_GET_DOMAIN() method of the
4790 * parent of @p dev.
4791 */
4792int
4793bus_get_domain(device_t dev, int *domain)
4794{
4795	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4796}
4797
4798/* Resume all devices and then notify userland that we're up again. */
4799static int
4800root_resume(device_t dev)
4801{
4802	int error;
4803
4804	error = bus_generic_resume(dev);
4805	if (error == 0)
4806		devctl_notify("kern", "power", "resume", NULL);
4807	return (error);
4808}
4809
4810static int
4811root_print_child(device_t dev, device_t child)
4812{
4813	int	retval = 0;
4814
4815	retval += bus_print_child_header(dev, child);
4816	retval += printf("\n");
4817
4818	return (retval);
4819}
4820
4821static int
4822root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4823    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4824{
4825	/*
4826	 * If an interrupt mapping gets to here something bad has happened.
4827	 */
4828	panic("root_setup_intr");
4829}
4830
4831/*
4832 * If we get here, assume that the device is permanent and really is
4833 * present in the system.  Removable bus drivers are expected to intercept
4834 * this call long before it gets here.  We return -1 so that drivers that
4835 * really care can check vs -1 or some ERRNO returned higher in the food
4836 * chain.
4837 */
4838static int
4839root_child_present(device_t dev, device_t child)
4840{
4841	return (-1);
4842}
4843
4844static int
4845root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4846    cpuset_t *cpuset)
4847{
4848
4849	switch (op) {
4850	case INTR_CPUS:
4851		/* Default to returning the set of all CPUs. */
4852		if (setsize != sizeof(cpuset_t))
4853			return (EINVAL);
4854		*cpuset = all_cpus;
4855		return (0);
4856	default:
4857		return (EINVAL);
4858	}
4859}
4860
4861static kobj_method_t root_methods[] = {
4862	/* Device interface */
4863	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4864	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4865	KOBJMETHOD(device_resume,	root_resume),
4866
4867	/* Bus interface */
4868	KOBJMETHOD(bus_print_child,	root_print_child),
4869	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4870	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4871	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4872	KOBJMETHOD(bus_child_present,	root_child_present),
4873	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4874
4875	KOBJMETHOD_END
4876};
4877
4878static driver_t root_driver = {
4879	"root",
4880	root_methods,
4881	1,			/* no softc */
4882};
4883
4884device_t	root_bus;
4885devclass_t	root_devclass;
4886
4887static int
4888root_bus_module_handler(module_t mod, int what, void* arg)
4889{
4890	switch (what) {
4891	case MOD_LOAD:
4892		TAILQ_INIT(&bus_data_devices);
4893		kobj_class_compile((kobj_class_t) &root_driver);
4894		root_bus = make_device(NULL, "root", 0);
4895		root_bus->desc = "System root bus";
4896		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4897		root_bus->driver = &root_driver;
4898		root_bus->state = DS_ATTACHED;
4899		root_devclass = devclass_find_internal("root", NULL, FALSE);
4900		devinit();
4901		return (0);
4902
4903	case MOD_SHUTDOWN:
4904		device_shutdown(root_bus);
4905		return (0);
4906	default:
4907		return (EOPNOTSUPP);
4908	}
4909
4910	return (0);
4911}
4912
4913static moduledata_t root_bus_mod = {
4914	"rootbus",
4915	root_bus_module_handler,
4916	NULL
4917};
4918DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4919
4920/**
4921 * @brief Automatically configure devices
4922 *
4923 * This function begins the autoconfiguration process by calling
4924 * device_probe_and_attach() for each child of the @c root0 device.
4925 */
4926void
4927root_bus_configure(void)
4928{
4929
4930	PDEBUG(("."));
4931
4932	/* Eventually this will be split up, but this is sufficient for now. */
4933	bus_set_pass(BUS_PASS_DEFAULT);
4934}
4935
4936/**
4937 * @brief Module handler for registering device drivers
4938 *
4939 * This module handler is used to automatically register device
4940 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4941 * devclass_add_driver() for the driver described by the
4942 * driver_module_data structure pointed to by @p arg
4943 */
4944int
4945driver_module_handler(module_t mod, int what, void *arg)
4946{
4947	struct driver_module_data *dmd;
4948	devclass_t bus_devclass;
4949	kobj_class_t driver;
4950	int error, pass;
4951
4952	dmd = (struct driver_module_data *)arg;
4953	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4954	error = 0;
4955
4956	switch (what) {
4957	case MOD_LOAD:
4958		if (dmd->dmd_chainevh)
4959			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4960
4961		pass = dmd->dmd_pass;
4962		driver = dmd->dmd_driver;
4963		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4964		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4965		error = devclass_add_driver(bus_devclass, driver, pass,
4966		    dmd->dmd_devclass);
4967		break;
4968
4969	case MOD_UNLOAD:
4970		PDEBUG(("Unloading module: driver %s from bus %s",
4971		    DRIVERNAME(dmd->dmd_driver),
4972		    dmd->dmd_busname));
4973		error = devclass_delete_driver(bus_devclass,
4974		    dmd->dmd_driver);
4975
4976		if (!error && dmd->dmd_chainevh)
4977			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4978		break;
4979	case MOD_QUIESCE:
4980		PDEBUG(("Quiesce module: driver %s from bus %s",
4981		    DRIVERNAME(dmd->dmd_driver),
4982		    dmd->dmd_busname));
4983		error = devclass_quiesce_driver(bus_devclass,
4984		    dmd->dmd_driver);
4985
4986		if (!error && dmd->dmd_chainevh)
4987			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4988		break;
4989	default:
4990		error = EOPNOTSUPP;
4991		break;
4992	}
4993
4994	return (error);
4995}
4996
4997/**
4998 * @brief Enumerate all hinted devices for this bus.
4999 *
5000 * Walks through the hints for this bus and calls the bus_hinted_child
5001 * routine for each one it fines.  It searches first for the specific
5002 * bus that's being probed for hinted children (eg isa0), and then for
5003 * generic children (eg isa).
5004 *
5005 * @param	dev	bus device to enumerate
5006 */
5007void
5008bus_enumerate_hinted_children(device_t bus)
5009{
5010	int i;
5011	const char *dname, *busname;
5012	int dunit;
5013
5014	/*
5015	 * enumerate all devices on the specific bus
5016	 */
5017	busname = device_get_nameunit(bus);
5018	i = 0;
5019	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5020		BUS_HINTED_CHILD(bus, dname, dunit);
5021
5022	/*
5023	 * and all the generic ones.
5024	 */
5025	busname = device_get_name(bus);
5026	i = 0;
5027	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5028		BUS_HINTED_CHILD(bus, dname, dunit);
5029}
5030
5031#ifdef BUS_DEBUG
5032
5033/* the _short versions avoid iteration by not calling anything that prints
5034 * more than oneliners. I love oneliners.
5035 */
5036
5037static void
5038print_device_short(device_t dev, int indent)
5039{
5040	if (!dev)
5041		return;
5042
5043	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5044	    dev->unit, dev->desc,
5045	    (dev->parent? "":"no "),
5046	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5047	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5048	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5049	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5050	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5051	    (dev->flags&DF_REBID? "rebiddable,":""),
5052	    (dev->ivars? "":"no "),
5053	    (dev->softc? "":"no "),
5054	    dev->busy));
5055}
5056
5057static void
5058print_device(device_t dev, int indent)
5059{
5060	if (!dev)
5061		return;
5062
5063	print_device_short(dev, indent);
5064
5065	indentprintf(("Parent:\n"));
5066	print_device_short(dev->parent, indent+1);
5067	indentprintf(("Driver:\n"));
5068	print_driver_short(dev->driver, indent+1);
5069	indentprintf(("Devclass:\n"));
5070	print_devclass_short(dev->devclass, indent+1);
5071}
5072
5073void
5074print_device_tree_short(device_t dev, int indent)
5075/* print the device and all its children (indented) */
5076{
5077	device_t child;
5078
5079	if (!dev)
5080		return;
5081
5082	print_device_short(dev, indent);
5083
5084	TAILQ_FOREACH(child, &dev->children, link) {
5085		print_device_tree_short(child, indent+1);
5086	}
5087}
5088
5089void
5090print_device_tree(device_t dev, int indent)
5091/* print the device and all its children (indented) */
5092{
5093	device_t child;
5094
5095	if (!dev)
5096		return;
5097
5098	print_device(dev, indent);
5099
5100	TAILQ_FOREACH(child, &dev->children, link) {
5101		print_device_tree(child, indent+1);
5102	}
5103}
5104
5105static void
5106print_driver_short(driver_t *driver, int indent)
5107{
5108	if (!driver)
5109		return;
5110
5111	indentprintf(("driver %s: softc size = %zd\n",
5112	    driver->name, driver->size));
5113}
5114
5115static void
5116print_driver(driver_t *driver, int indent)
5117{
5118	if (!driver)
5119		return;
5120
5121	print_driver_short(driver, indent);
5122}
5123
5124static void
5125print_driver_list(driver_list_t drivers, int indent)
5126{
5127	driverlink_t driver;
5128
5129	TAILQ_FOREACH(driver, &drivers, link) {
5130		print_driver(driver->driver, indent);
5131	}
5132}
5133
5134static void
5135print_devclass_short(devclass_t dc, int indent)
5136{
5137	if ( !dc )
5138		return;
5139
5140	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5141}
5142
5143static void
5144print_devclass(devclass_t dc, int indent)
5145{
5146	int i;
5147
5148	if ( !dc )
5149		return;
5150
5151	print_devclass_short(dc, indent);
5152	indentprintf(("Drivers:\n"));
5153	print_driver_list(dc->drivers, indent+1);
5154
5155	indentprintf(("Devices:\n"));
5156	for (i = 0; i < dc->maxunit; i++)
5157		if (dc->devices[i])
5158			print_device(dc->devices[i], indent+1);
5159}
5160
5161void
5162print_devclass_list_short(void)
5163{
5164	devclass_t dc;
5165
5166	printf("Short listing of devclasses, drivers & devices:\n");
5167	TAILQ_FOREACH(dc, &devclasses, link) {
5168		print_devclass_short(dc, 0);
5169	}
5170}
5171
5172void
5173print_devclass_list(void)
5174{
5175	devclass_t dc;
5176
5177	printf("Full listing of devclasses, drivers & devices:\n");
5178	TAILQ_FOREACH(dc, &devclasses, link) {
5179		print_devclass(dc, 0);
5180	}
5181}
5182
5183#endif
5184
5185/*
5186 * User-space access to the device tree.
5187 *
5188 * We implement a small set of nodes:
5189 *
5190 * hw.bus			Single integer read method to obtain the
5191 *				current generation count.
5192 * hw.bus.devices		Reads the entire device tree in flat space.
5193 * hw.bus.rman			Resource manager interface
5194 *
5195 * We might like to add the ability to scan devclasses and/or drivers to
5196 * determine what else is currently loaded/available.
5197 */
5198
5199static int
5200sysctl_bus(SYSCTL_HANDLER_ARGS)
5201{
5202	struct u_businfo	ubus;
5203
5204	ubus.ub_version = BUS_USER_VERSION;
5205	ubus.ub_generation = bus_data_generation;
5206
5207	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5208}
5209SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5210    "bus-related data");
5211
5212static int
5213sysctl_devices(SYSCTL_HANDLER_ARGS)
5214{
5215	int			*name = (int *)arg1;
5216	u_int			namelen = arg2;
5217	int			index;
5218	struct device		*dev;
5219	struct u_device		udev;	/* XXX this is a bit big */
5220	int			error;
5221
5222	if (namelen != 2)
5223		return (EINVAL);
5224
5225	if (bus_data_generation_check(name[0]))
5226		return (EINVAL);
5227
5228	index = name[1];
5229
5230	/*
5231	 * Scan the list of devices, looking for the requested index.
5232	 */
5233	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5234		if (index-- == 0)
5235			break;
5236	}
5237	if (dev == NULL)
5238		return (ENOENT);
5239
5240	/*
5241	 * Populate the return array.
5242	 */
5243	bzero(&udev, sizeof(udev));
5244	udev.dv_handle = (uintptr_t)dev;
5245	udev.dv_parent = (uintptr_t)dev->parent;
5246	if (dev->nameunit != NULL)
5247		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5248	if (dev->desc != NULL)
5249		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5250	if (dev->driver != NULL && dev->driver->name != NULL)
5251		strlcpy(udev.dv_drivername, dev->driver->name,
5252		    sizeof(udev.dv_drivername));
5253	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5254	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5255	udev.dv_devflags = dev->devflags;
5256	udev.dv_flags = dev->flags;
5257	udev.dv_state = dev->state;
5258	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5259	return (error);
5260}
5261
5262SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5263    "system device tree");
5264
5265int
5266bus_data_generation_check(int generation)
5267{
5268	if (generation != bus_data_generation)
5269		return (1);
5270
5271	/* XXX generate optimised lists here? */
5272	return (0);
5273}
5274
5275void
5276bus_data_generation_update(void)
5277{
5278	bus_data_generation++;
5279}
5280
5281int
5282bus_free_resource(device_t dev, int type, struct resource *r)
5283{
5284	if (r == NULL)
5285		return (0);
5286	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5287}
5288
5289device_t
5290device_lookup_by_name(const char *name)
5291{
5292	device_t dev;
5293
5294	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5295		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5296			return (dev);
5297	}
5298	return (NULL);
5299}
5300
5301/*
5302 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5303 * implicit semantics on open, so it could not be reused for this.
5304 * Another option would be to call this /dev/bus?
5305 */
5306static int
5307find_device(struct devreq *req, device_t *devp)
5308{
5309	device_t dev;
5310
5311	/*
5312	 * First, ensure that the name is nul terminated.
5313	 */
5314	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5315		return (EINVAL);
5316
5317	/*
5318	 * Second, try to find an attached device whose name matches
5319	 * 'name'.
5320	 */
5321	dev = device_lookup_by_name(req->dr_name);
5322	if (dev != NULL) {
5323		*devp = dev;
5324		return (0);
5325	}
5326
5327	/* Finally, give device enumerators a chance. */
5328	dev = NULL;
5329	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5330	if (dev == NULL)
5331		return (ENOENT);
5332	*devp = dev;
5333	return (0);
5334}
5335
5336static bool
5337driver_exists(device_t bus, const char *driver)
5338{
5339	devclass_t dc;
5340
5341	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5342		if (devclass_find_driver_internal(dc, driver) != NULL)
5343			return (true);
5344	}
5345	return (false);
5346}
5347
5348static int
5349devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5350    struct thread *td)
5351{
5352	struct devreq *req;
5353	device_t dev;
5354	int error, old;
5355
5356	/* Locate the device to control. */
5357	mtx_lock(&Giant);
5358	req = (struct devreq *)data;
5359	switch (cmd) {
5360	case DEV_ATTACH:
5361	case DEV_DETACH:
5362	case DEV_ENABLE:
5363	case DEV_DISABLE:
5364	case DEV_SUSPEND:
5365	case DEV_RESUME:
5366	case DEV_SET_DRIVER:
5367	case DEV_CLEAR_DRIVER:
5368	case DEV_RESCAN:
5369	case DEV_DELETE:
5370		error = priv_check(td, PRIV_DRIVER);
5371		if (error == 0)
5372			error = find_device(req, &dev);
5373		break;
5374	default:
5375		error = ENOTTY;
5376		break;
5377	}
5378	if (error) {
5379		mtx_unlock(&Giant);
5380		return (error);
5381	}
5382
5383	/* Perform the requested operation. */
5384	switch (cmd) {
5385	case DEV_ATTACH:
5386		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5387			error = EBUSY;
5388		else if (!device_is_enabled(dev))
5389			error = ENXIO;
5390		else
5391			error = device_probe_and_attach(dev);
5392		break;
5393	case DEV_DETACH:
5394		if (!device_is_attached(dev)) {
5395			error = ENXIO;
5396			break;
5397		}
5398		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5399			error = device_quiesce(dev);
5400			if (error)
5401				break;
5402		}
5403		error = device_detach(dev);
5404		break;
5405	case DEV_ENABLE:
5406		if (device_is_enabled(dev)) {
5407			error = EBUSY;
5408			break;
5409		}
5410
5411		/*
5412		 * If the device has been probed but not attached (e.g.
5413		 * when it has been disabled by a loader hint), just
5414		 * attach the device rather than doing a full probe.
5415		 */
5416		device_enable(dev);
5417		if (device_is_alive(dev)) {
5418			/*
5419			 * If the device was disabled via a hint, clear
5420			 * the hint.
5421			 */
5422			if (resource_disabled(dev->driver->name, dev->unit))
5423				resource_unset_value(dev->driver->name,
5424				    dev->unit, "disabled");
5425			error = device_attach(dev);
5426		} else
5427			error = device_probe_and_attach(dev);
5428		break;
5429	case DEV_DISABLE:
5430		if (!device_is_enabled(dev)) {
5431			error = ENXIO;
5432			break;
5433		}
5434
5435		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5436			error = device_quiesce(dev);
5437			if (error)
5438				break;
5439		}
5440
5441		/*
5442		 * Force DF_FIXEDCLASS on around detach to preserve
5443		 * the existing name.
5444		 */
5445		old = dev->flags;
5446		dev->flags |= DF_FIXEDCLASS;
5447		error = device_detach(dev);
5448		if (!(old & DF_FIXEDCLASS))
5449			dev->flags &= ~DF_FIXEDCLASS;
5450		if (error == 0)
5451			device_disable(dev);
5452		break;
5453	case DEV_SUSPEND:
5454		if (device_is_suspended(dev)) {
5455			error = EBUSY;
5456			break;
5457		}
5458		if (device_get_parent(dev) == NULL) {
5459			error = EINVAL;
5460			break;
5461		}
5462		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5463		break;
5464	case DEV_RESUME:
5465		if (!device_is_suspended(dev)) {
5466			error = EINVAL;
5467			break;
5468		}
5469		if (device_get_parent(dev) == NULL) {
5470			error = EINVAL;
5471			break;
5472		}
5473		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5474		break;
5475	case DEV_SET_DRIVER: {
5476		devclass_t dc;
5477		char driver[128];
5478
5479		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5480		if (error)
5481			break;
5482		if (driver[0] == '\0') {
5483			error = EINVAL;
5484			break;
5485		}
5486		if (dev->devclass != NULL &&
5487		    strcmp(driver, dev->devclass->name) == 0)
5488			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5489			break;
5490
5491		/*
5492		 * Scan drivers for this device's bus looking for at
5493		 * least one matching driver.
5494		 */
5495		if (dev->parent == NULL) {
5496			error = EINVAL;
5497			break;
5498		}
5499		if (!driver_exists(dev->parent, driver)) {
5500			error = ENOENT;
5501			break;
5502		}
5503		dc = devclass_create(driver);
5504		if (dc == NULL) {
5505			error = ENOMEM;
5506			break;
5507		}
5508
5509		/* Detach device if necessary. */
5510		if (device_is_attached(dev)) {
5511			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5512				error = device_detach(dev);
5513			else
5514				error = EBUSY;
5515			if (error)
5516				break;
5517		}
5518
5519		/* Clear any previously-fixed device class and unit. */
5520		if (dev->flags & DF_FIXEDCLASS)
5521			devclass_delete_device(dev->devclass, dev);
5522		dev->flags |= DF_WILDCARD;
5523		dev->unit = -1;
5524
5525		/* Force the new device class. */
5526		error = devclass_add_device(dc, dev);
5527		if (error)
5528			break;
5529		dev->flags |= DF_FIXEDCLASS;
5530		error = device_probe_and_attach(dev);
5531		break;
5532	}
5533	case DEV_CLEAR_DRIVER:
5534		if (!(dev->flags & DF_FIXEDCLASS)) {
5535			error = 0;
5536			break;
5537		}
5538		if (device_is_attached(dev)) {
5539			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5540				error = device_detach(dev);
5541			else
5542				error = EBUSY;
5543			if (error)
5544				break;
5545		}
5546
5547		dev->flags &= ~DF_FIXEDCLASS;
5548		dev->flags |= DF_WILDCARD;
5549		devclass_delete_device(dev->devclass, dev);
5550		error = device_probe_and_attach(dev);
5551		break;
5552	case DEV_RESCAN:
5553		if (!device_is_attached(dev)) {
5554			error = ENXIO;
5555			break;
5556		}
5557		error = BUS_RESCAN(dev);
5558		break;
5559	case DEV_DELETE: {
5560		device_t parent;
5561
5562		parent = device_get_parent(dev);
5563		if (parent == NULL) {
5564			error = EINVAL;
5565			break;
5566		}
5567		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5568			if (bus_child_present(dev) != 0) {
5569				error = EBUSY;
5570				break;
5571			}
5572		}
5573
5574		error = device_delete_child(parent, dev);
5575		break;
5576	}
5577	}
5578	mtx_unlock(&Giant);
5579	return (error);
5580}
5581
5582static struct cdevsw devctl2_cdevsw = {
5583	.d_version =	D_VERSION,
5584	.d_ioctl =	devctl2_ioctl,
5585	.d_name =	"devctl2",
5586};
5587
5588static void
5589devctl2_init(void)
5590{
5591
5592	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5593	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5594}
5595