subr_bus.c revision 306535
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/kern/subr_bus.c 306535 2016-09-30 22:29:19Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54#include <sys/systm.h>
55#include <sys/uio.h>
56#include <sys/bus.h>
57#include <sys/interrupt.h>
58#include <sys/cpuset.h>
59
60#include <net/vnet.h>
61
62#include <machine/cpu.h>
63#include <machine/stdarg.h>
64
65#include <vm/uma.h>
66#include <vm/vm.h>
67
68SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70
71/*
72 * Used to attach drivers to devclasses.
73 */
74typedef struct driverlink *driverlink_t;
75struct driverlink {
76	kobj_class_t	driver;
77	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78	int		pass;
79	TAILQ_ENTRY(driverlink) passlink;
80};
81
82/*
83 * Forward declarations
84 */
85typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87typedef TAILQ_HEAD(device_list, device) device_list_t;
88
89struct devclass {
90	TAILQ_ENTRY(devclass) link;
91	devclass_t	parent;		/* parent in devclass hierarchy */
92	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93	char		*name;
94	device_t	*devices;	/* array of devices indexed by unit */
95	int		maxunit;	/* size of devices array */
96	int		flags;
97#define DC_HAS_CHILDREN		1
98
99	struct sysctl_ctx_list sysctl_ctx;
100	struct sysctl_oid *sysctl_tree;
101};
102
103/**
104 * @brief Implementation of device.
105 */
106struct device {
107	/*
108	 * A device is a kernel object. The first field must be the
109	 * current ops table for the object.
110	 */
111	KOBJ_FIELDS;
112
113	/*
114	 * Device hierarchy.
115	 */
116	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118	device_t	parent;		/**< parent of this device  */
119	device_list_t	children;	/**< list of child devices */
120
121	/*
122	 * Details of this device.
123	 */
124	driver_t	*driver;	/**< current driver */
125	devclass_t	devclass;	/**< current device class */
126	int		unit;		/**< current unit number */
127	char*		nameunit;	/**< name+unit e.g. foodev0 */
128	char*		desc;		/**< driver specific description */
129	int		busy;		/**< count of calls to device_busy() */
130	device_state_t	state;		/**< current device state  */
131	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132	u_int		flags;		/**< internal device flags  */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144static void devctl2_init(void);
145
146#ifdef BUS_DEBUG
147
148static int bus_debug = 1;
149SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
150    "Bus debug level");
151
152#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154#define DRIVERNAME(d)	((d)? d->name : "no driver")
155#define DEVCLANAME(d)	((d)? d->name : "no devclass")
156
157/**
158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159 * prevent syslog from deleting initial spaces
160 */
161#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162
163static void print_device_short(device_t dev, int indent);
164static void print_device(device_t dev, int indent);
165void print_device_tree_short(device_t dev, int indent);
166void print_device_tree(device_t dev, int indent);
167static void print_driver_short(driver_t *driver, int indent);
168static void print_driver(driver_t *driver, int indent);
169static void print_driver_list(driver_list_t drivers, int indent);
170static void print_devclass_short(devclass_t dc, int indent);
171static void print_devclass(devclass_t dc, int indent);
172void print_devclass_list_short(void);
173void print_devclass_list(void);
174
175#else
176/* Make the compiler ignore the function calls */
177#define PDEBUG(a)			/* nop */
178#define DEVICENAME(d)			/* nop */
179#define DRIVERNAME(d)			/* nop */
180#define DEVCLANAME(d)			/* nop */
181
182#define print_device_short(d,i)		/* nop */
183#define print_device(d,i)		/* nop */
184#define print_device_tree_short(d,i)	/* nop */
185#define print_device_tree(d,i)		/* nop */
186#define print_driver_short(d,i)		/* nop */
187#define print_driver(d,i)		/* nop */
188#define print_driver_list(d,i)		/* nop */
189#define print_devclass_short(d,i)	/* nop */
190#define print_devclass(d,i)		/* nop */
191#define print_devclass_list_short()	/* nop */
192#define print_devclass_list()		/* nop */
193#endif
194
195/*
196 * dev sysctl tree
197 */
198
199enum {
200	DEVCLASS_SYSCTL_PARENT,
201};
202
203static int
204devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205{
206	devclass_t dc = (devclass_t)arg1;
207	const char *value;
208
209	switch (arg2) {
210	case DEVCLASS_SYSCTL_PARENT:
211		value = dc->parent ? dc->parent->name : "";
212		break;
213	default:
214		return (EINVAL);
215	}
216	return (SYSCTL_OUT_STR(req, value));
217}
218
219static void
220devclass_sysctl_init(devclass_t dc)
221{
222
223	if (dc->sysctl_tree != NULL)
224		return;
225	sysctl_ctx_init(&dc->sysctl_ctx);
226	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228	    CTLFLAG_RD, NULL, "");
229	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
231	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232	    "parent class");
233}
234
235enum {
236	DEVICE_SYSCTL_DESC,
237	DEVICE_SYSCTL_DRIVER,
238	DEVICE_SYSCTL_LOCATION,
239	DEVICE_SYSCTL_PNPINFO,
240	DEVICE_SYSCTL_PARENT,
241};
242
243static int
244device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245{
246	device_t dev = (device_t)arg1;
247	const char *value;
248	char *buf;
249	int error;
250
251	buf = NULL;
252	switch (arg2) {
253	case DEVICE_SYSCTL_DESC:
254		value = dev->desc ? dev->desc : "";
255		break;
256	case DEVICE_SYSCTL_DRIVER:
257		value = dev->driver ? dev->driver->name : "";
258		break;
259	case DEVICE_SYSCTL_LOCATION:
260		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261		bus_child_location_str(dev, buf, 1024);
262		break;
263	case DEVICE_SYSCTL_PNPINFO:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_pnpinfo_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PARENT:
268		value = dev->parent ? dev->parent->nameunit : "";
269		break;
270	default:
271		return (EINVAL);
272	}
273	error = SYSCTL_OUT_STR(req, value);
274	if (buf != NULL)
275		free(buf, M_BUS);
276	return (error);
277}
278
279static void
280device_sysctl_init(device_t dev)
281{
282	devclass_t dc = dev->devclass;
283	int domain;
284
285	if (dev->sysctl_tree != NULL)
286		return;
287	devclass_sysctl_init(dc);
288	sysctl_ctx_init(&dev->sysctl_ctx);
289	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291	    dev->nameunit + strlen(dc->name),
292	    CTLFLAG_RD, NULL, "");
293	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296	    "device description");
297	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300	    "device driver name");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304	    "device location relative to parent");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308	    "device identification");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312	    "parent device");
313	if (bus_get_domain(dev, &domain) == 0)
314		SYSCTL_ADD_INT(&dev->sysctl_ctx,
315		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
316		    CTLFLAG_RD, NULL, domain, "NUMA domain");
317}
318
319static void
320device_sysctl_update(device_t dev)
321{
322	devclass_t dc = dev->devclass;
323
324	if (dev->sysctl_tree == NULL)
325		return;
326	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
327}
328
329static void
330device_sysctl_fini(device_t dev)
331{
332	if (dev->sysctl_tree == NULL)
333		return;
334	sysctl_ctx_free(&dev->sysctl_ctx);
335	dev->sysctl_tree = NULL;
336}
337
338/*
339 * /dev/devctl implementation
340 */
341
342/*
343 * This design allows only one reader for /dev/devctl.  This is not desirable
344 * in the long run, but will get a lot of hair out of this implementation.
345 * Maybe we should make this device a clonable device.
346 *
347 * Also note: we specifically do not attach a device to the device_t tree
348 * to avoid potential chicken and egg problems.  One could argue that all
349 * of this belongs to the root node.  One could also further argue that the
350 * sysctl interface that we have not might more properly be an ioctl
351 * interface, but at this stage of the game, I'm not inclined to rock that
352 * boat.
353 *
354 * I'm also not sure that the SIGIO support is done correctly or not, as
355 * I copied it from a driver that had SIGIO support that likely hasn't been
356 * tested since 3.4 or 2.2.8!
357 */
358
359/* Deprecated way to adjust queue length */
360static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
361SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
362    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363    "devctl disable -- deprecated");
364
365#define DEVCTL_DEFAULT_QUEUE_LEN 1000
366static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
369    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
370
371static d_open_t		devopen;
372static d_close_t	devclose;
373static d_read_t		devread;
374static d_ioctl_t	devioctl;
375static d_poll_t		devpoll;
376static d_kqfilter_t	devkqfilter;
377
378static struct cdevsw dev_cdevsw = {
379	.d_version =	D_VERSION,
380	.d_open =	devopen,
381	.d_close =	devclose,
382	.d_read =	devread,
383	.d_ioctl =	devioctl,
384	.d_poll =	devpoll,
385	.d_kqfilter =	devkqfilter,
386	.d_name =	"devctl",
387};
388
389struct dev_event_info
390{
391	char *dei_data;
392	TAILQ_ENTRY(dev_event_info) dei_link;
393};
394
395TAILQ_HEAD(devq, dev_event_info);
396
397static struct dev_softc
398{
399	int	inuse;
400	int	nonblock;
401	int	queued;
402	int	async;
403	struct mtx mtx;
404	struct cv cv;
405	struct selinfo sel;
406	struct devq devq;
407	struct sigio *sigio;
408} devsoftc;
409
410static void	filt_devctl_detach(struct knote *kn);
411static int	filt_devctl_read(struct knote *kn, long hint);
412
413struct filterops devctl_rfiltops = {
414	.f_isfd = 1,
415	.f_detach = filt_devctl_detach,
416	.f_event = filt_devctl_read,
417};
418
419static struct cdev *devctl_dev;
420
421static void
422devinit(void)
423{
424	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
425	    UID_ROOT, GID_WHEEL, 0600, "devctl");
426	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
427	cv_init(&devsoftc.cv, "dev cv");
428	TAILQ_INIT(&devsoftc.devq);
429	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
430	devctl2_init();
431}
432
433static int
434devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435{
436
437	mtx_lock(&devsoftc.mtx);
438	if (devsoftc.inuse) {
439		mtx_unlock(&devsoftc.mtx);
440		return (EBUSY);
441	}
442	/* move to init */
443	devsoftc.inuse = 1;
444	mtx_unlock(&devsoftc.mtx);
445	return (0);
446}
447
448static int
449devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450{
451
452	mtx_lock(&devsoftc.mtx);
453	devsoftc.inuse = 0;
454	devsoftc.nonblock = 0;
455	devsoftc.async = 0;
456	cv_broadcast(&devsoftc.cv);
457	funsetown(&devsoftc.sigio);
458	mtx_unlock(&devsoftc.mtx);
459	return (0);
460}
461
462/*
463 * The read channel for this device is used to report changes to
464 * userland in realtime.  We are required to free the data as well as
465 * the n1 object because we allocate them separately.  Also note that
466 * we return one record at a time.  If you try to read this device a
467 * character at a time, you will lose the rest of the data.  Listening
468 * programs are expected to cope.
469 */
470static int
471devread(struct cdev *dev, struct uio *uio, int ioflag)
472{
473	struct dev_event_info *n1;
474	int rv;
475
476	mtx_lock(&devsoftc.mtx);
477	while (TAILQ_EMPTY(&devsoftc.devq)) {
478		if (devsoftc.nonblock) {
479			mtx_unlock(&devsoftc.mtx);
480			return (EAGAIN);
481		}
482		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483		if (rv) {
484			/*
485			 * Need to translate ERESTART to EINTR here? -- jake
486			 */
487			mtx_unlock(&devsoftc.mtx);
488			return (rv);
489		}
490	}
491	n1 = TAILQ_FIRST(&devsoftc.devq);
492	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493	devsoftc.queued--;
494	mtx_unlock(&devsoftc.mtx);
495	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496	free(n1->dei_data, M_BUS);
497	free(n1, M_BUS);
498	return (rv);
499}
500
501static	int
502devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503{
504	switch (cmd) {
505
506	case FIONBIO:
507		if (*(int*)data)
508			devsoftc.nonblock = 1;
509		else
510			devsoftc.nonblock = 0;
511		return (0);
512	case FIOASYNC:
513		if (*(int*)data)
514			devsoftc.async = 1;
515		else
516			devsoftc.async = 0;
517		return (0);
518	case FIOSETOWN:
519		return fsetown(*(int *)data, &devsoftc.sigio);
520	case FIOGETOWN:
521		*(int *)data = fgetown(&devsoftc.sigio);
522		return (0);
523
524		/* (un)Support for other fcntl() calls. */
525	case FIOCLEX:
526	case FIONCLEX:
527	case FIONREAD:
528	default:
529		break;
530	}
531	return (ENOTTY);
532}
533
534static	int
535devpoll(struct cdev *dev, int events, struct thread *td)
536{
537	int	revents = 0;
538
539	mtx_lock(&devsoftc.mtx);
540	if (events & (POLLIN | POLLRDNORM)) {
541		if (!TAILQ_EMPTY(&devsoftc.devq))
542			revents = events & (POLLIN | POLLRDNORM);
543		else
544			selrecord(td, &devsoftc.sel);
545	}
546	mtx_unlock(&devsoftc.mtx);
547
548	return (revents);
549}
550
551static int
552devkqfilter(struct cdev *dev, struct knote *kn)
553{
554	int error;
555
556	if (kn->kn_filter == EVFILT_READ) {
557		kn->kn_fop = &devctl_rfiltops;
558		knlist_add(&devsoftc.sel.si_note, kn, 0);
559		error = 0;
560	} else
561		error = EINVAL;
562	return (error);
563}
564
565static void
566filt_devctl_detach(struct knote *kn)
567{
568
569	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570}
571
572static int
573filt_devctl_read(struct knote *kn, long hint)
574{
575	kn->kn_data = devsoftc.queued;
576	return (kn->kn_data != 0);
577}
578
579/**
580 * @brief Return whether the userland process is running
581 */
582boolean_t
583devctl_process_running(void)
584{
585	return (devsoftc.inuse == 1);
586}
587
588/**
589 * @brief Queue data to be read from the devctl device
590 *
591 * Generic interface to queue data to the devctl device.  It is
592 * assumed that @p data is properly formatted.  It is further assumed
593 * that @p data is allocated using the M_BUS malloc type.
594 */
595void
596devctl_queue_data_f(char *data, int flags)
597{
598	struct dev_event_info *n1 = NULL, *n2 = NULL;
599
600	if (strlen(data) == 0)
601		goto out;
602	if (devctl_queue_length == 0)
603		goto out;
604	n1 = malloc(sizeof(*n1), M_BUS, flags);
605	if (n1 == NULL)
606		goto out;
607	n1->dei_data = data;
608	mtx_lock(&devsoftc.mtx);
609	if (devctl_queue_length == 0) {
610		mtx_unlock(&devsoftc.mtx);
611		free(n1->dei_data, M_BUS);
612		free(n1, M_BUS);
613		return;
614	}
615	/* Leave at least one spot in the queue... */
616	while (devsoftc.queued > devctl_queue_length - 1) {
617		n2 = TAILQ_FIRST(&devsoftc.devq);
618		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619		free(n2->dei_data, M_BUS);
620		free(n2, M_BUS);
621		devsoftc.queued--;
622	}
623	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624	devsoftc.queued++;
625	cv_broadcast(&devsoftc.cv);
626	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627	mtx_unlock(&devsoftc.mtx);
628	selwakeup(&devsoftc.sel);
629	if (devsoftc.async && devsoftc.sigio != NULL)
630		pgsigio(&devsoftc.sigio, SIGIO, 0);
631	return;
632out:
633	/*
634	 * We have to free data on all error paths since the caller
635	 * assumes it will be free'd when this item is dequeued.
636	 */
637	free(data, M_BUS);
638	return;
639}
640
641void
642devctl_queue_data(char *data)
643{
644
645	devctl_queue_data_f(data, M_NOWAIT);
646}
647
648/**
649 * @brief Send a 'notification' to userland, using standard ways
650 */
651void
652devctl_notify_f(const char *system, const char *subsystem, const char *type,
653    const char *data, int flags)
654{
655	int len = 0;
656	char *msg;
657
658	if (system == NULL)
659		return;		/* BOGUS!  Must specify system. */
660	if (subsystem == NULL)
661		return;		/* BOGUS!  Must specify subsystem. */
662	if (type == NULL)
663		return;		/* BOGUS!  Must specify type. */
664	len += strlen(" system=") + strlen(system);
665	len += strlen(" subsystem=") + strlen(subsystem);
666	len += strlen(" type=") + strlen(type);
667	/* add in the data message plus newline. */
668	if (data != NULL)
669		len += strlen(data);
670	len += 3;	/* '!', '\n', and NUL */
671	msg = malloc(len, M_BUS, flags);
672	if (msg == NULL)
673		return;		/* Drop it on the floor */
674	if (data != NULL)
675		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676		    system, subsystem, type, data);
677	else
678		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679		    system, subsystem, type);
680	devctl_queue_data_f(msg, flags);
681}
682
683void
684devctl_notify(const char *system, const char *subsystem, const char *type,
685    const char *data)
686{
687
688	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689}
690
691/*
692 * Common routine that tries to make sending messages as easy as possible.
693 * We allocate memory for the data, copy strings into that, but do not
694 * free it unless there's an error.  The dequeue part of the driver should
695 * free the data.  We don't send data when the device is disabled.  We do
696 * send data, even when we have no listeners, because we wish to avoid
697 * races relating to startup and restart of listening applications.
698 *
699 * devaddq is designed to string together the type of event, with the
700 * object of that event, plus the plug and play info and location info
701 * for that event.  This is likely most useful for devices, but less
702 * useful for other consumers of this interface.  Those should use
703 * the devctl_queue_data() interface instead.
704 */
705static void
706devaddq(const char *type, const char *what, device_t dev)
707{
708	char *data = NULL;
709	char *loc = NULL;
710	char *pnp = NULL;
711	const char *parstr;
712
713	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714		return;
715	data = malloc(1024, M_BUS, M_NOWAIT);
716	if (data == NULL)
717		goto bad;
718
719	/* get the bus specific location of this device */
720	loc = malloc(1024, M_BUS, M_NOWAIT);
721	if (loc == NULL)
722		goto bad;
723	*loc = '\0';
724	bus_child_location_str(dev, loc, 1024);
725
726	/* Get the bus specific pnp info of this device */
727	pnp = malloc(1024, M_BUS, M_NOWAIT);
728	if (pnp == NULL)
729		goto bad;
730	*pnp = '\0';
731	bus_child_pnpinfo_str(dev, pnp, 1024);
732
733	/* Get the parent of this device, or / if high enough in the tree. */
734	if (device_get_parent(dev) == NULL)
735		parstr = ".";	/* Or '/' ? */
736	else
737		parstr = device_get_nameunit(device_get_parent(dev));
738	/* String it all together. */
739	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740	  parstr);
741	free(loc, M_BUS);
742	free(pnp, M_BUS);
743	devctl_queue_data(data);
744	return;
745bad:
746	free(pnp, M_BUS);
747	free(loc, M_BUS);
748	free(data, M_BUS);
749	return;
750}
751
752/*
753 * A device was added to the tree.  We are called just after it successfully
754 * attaches (that is, probe and attach success for this device).  No call
755 * is made if a device is merely parented into the tree.  See devnomatch
756 * if probe fails.  If attach fails, no notification is sent (but maybe
757 * we should have a different message for this).
758 */
759static void
760devadded(device_t dev)
761{
762	devaddq("+", device_get_nameunit(dev), dev);
763}
764
765/*
766 * A device was removed from the tree.  We are called just before this
767 * happens.
768 */
769static void
770devremoved(device_t dev)
771{
772	devaddq("-", device_get_nameunit(dev), dev);
773}
774
775/*
776 * Called when there's no match for this device.  This is only called
777 * the first time that no match happens, so we don't keep getting this
778 * message.  Should that prove to be undesirable, we can change it.
779 * This is called when all drivers that can attach to a given bus
780 * decline to accept this device.  Other errors may not be detected.
781 */
782static void
783devnomatch(device_t dev)
784{
785	devaddq("?", "", dev);
786}
787
788static int
789sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790{
791	struct dev_event_info *n1;
792	int dis, error;
793
794	dis = (devctl_queue_length == 0);
795	error = sysctl_handle_int(oidp, &dis, 0, req);
796	if (error || !req->newptr)
797		return (error);
798	if (mtx_initialized(&devsoftc.mtx))
799		mtx_lock(&devsoftc.mtx);
800	if (dis) {
801		while (!TAILQ_EMPTY(&devsoftc.devq)) {
802			n1 = TAILQ_FIRST(&devsoftc.devq);
803			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
804			free(n1->dei_data, M_BUS);
805			free(n1, M_BUS);
806		}
807		devsoftc.queued = 0;
808		devctl_queue_length = 0;
809	} else {
810		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
811	}
812	if (mtx_initialized(&devsoftc.mtx))
813		mtx_unlock(&devsoftc.mtx);
814	return (0);
815}
816
817static int
818sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
819{
820	struct dev_event_info *n1;
821	int q, error;
822
823	q = devctl_queue_length;
824	error = sysctl_handle_int(oidp, &q, 0, req);
825	if (error || !req->newptr)
826		return (error);
827	if (q < 0)
828		return (EINVAL);
829	if (mtx_initialized(&devsoftc.mtx))
830		mtx_lock(&devsoftc.mtx);
831	devctl_queue_length = q;
832	while (devsoftc.queued > devctl_queue_length) {
833		n1 = TAILQ_FIRST(&devsoftc.devq);
834		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
835		free(n1->dei_data, M_BUS);
836		free(n1, M_BUS);
837		devsoftc.queued--;
838	}
839	if (mtx_initialized(&devsoftc.mtx))
840		mtx_unlock(&devsoftc.mtx);
841	return (0);
842}
843
844/**
845 * @brief safely quotes strings that might have double quotes in them.
846 *
847 * The devctl protocol relies on quoted strings having matching quotes.
848 * This routine quotes any internal quotes so the resulting string
849 * is safe to pass to snprintf to construct, for example pnp info strings.
850 * Strings are always terminated with a NUL, but may be truncated if longer
851 * than @p len bytes after quotes.
852 *
853 * @param dst	Buffer to hold the string. Must be at least @p len bytes long
854 * @param src	Original buffer.
855 * @param len	Length of buffer pointed to by @dst, including trailing NUL
856 */
857void
858devctl_safe_quote(char *dst, const char *src, size_t len)
859{
860	char *walker = dst, *ep = dst + len - 1;
861
862	if (len == 0)
863		return;
864	while (src != NULL && walker < ep)
865	{
866		if (*src == '"' || *src == '\\') {
867			if (ep - walker < 2)
868				break;
869			*walker++ = '\\';
870		}
871		*walker++ = *src++;
872	}
873	*walker = '\0';
874}
875
876/* End of /dev/devctl code */
877
878static TAILQ_HEAD(,device)	bus_data_devices;
879static int bus_data_generation = 1;
880
881static kobj_method_t null_methods[] = {
882	KOBJMETHOD_END
883};
884
885DEFINE_CLASS(null, null_methods, 0);
886
887/*
888 * Bus pass implementation
889 */
890
891static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892int bus_current_pass = BUS_PASS_ROOT;
893
894/**
895 * @internal
896 * @brief Register the pass level of a new driver attachment
897 *
898 * Register a new driver attachment's pass level.  If no driver
899 * attachment with the same pass level has been added, then @p new
900 * will be added to the global passes list.
901 *
902 * @param new		the new driver attachment
903 */
904static void
905driver_register_pass(struct driverlink *new)
906{
907	struct driverlink *dl;
908
909	/* We only consider pass numbers during boot. */
910	if (bus_current_pass == BUS_PASS_DEFAULT)
911		return;
912
913	/*
914	 * Walk the passes list.  If we already know about this pass
915	 * then there is nothing to do.  If we don't, then insert this
916	 * driver link into the list.
917	 */
918	TAILQ_FOREACH(dl, &passes, passlink) {
919		if (dl->pass < new->pass)
920			continue;
921		if (dl->pass == new->pass)
922			return;
923		TAILQ_INSERT_BEFORE(dl, new, passlink);
924		return;
925	}
926	TAILQ_INSERT_TAIL(&passes, new, passlink);
927}
928
929/**
930 * @brief Raise the current bus pass
931 *
932 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933 * method on the root bus to kick off a new device tree scan for each
934 * new pass level that has at least one driver.
935 */
936void
937bus_set_pass(int pass)
938{
939	struct driverlink *dl;
940
941	if (bus_current_pass > pass)
942		panic("Attempt to lower bus pass level");
943
944	TAILQ_FOREACH(dl, &passes, passlink) {
945		/* Skip pass values below the current pass level. */
946		if (dl->pass <= bus_current_pass)
947			continue;
948
949		/*
950		 * Bail once we hit a driver with a pass level that is
951		 * too high.
952		 */
953		if (dl->pass > pass)
954			break;
955
956		/*
957		 * Raise the pass level to the next level and rescan
958		 * the tree.
959		 */
960		bus_current_pass = dl->pass;
961		BUS_NEW_PASS(root_bus);
962	}
963
964	/*
965	 * If there isn't a driver registered for the requested pass,
966	 * then bus_current_pass might still be less than 'pass'.  Set
967	 * it to 'pass' in that case.
968	 */
969	if (bus_current_pass < pass)
970		bus_current_pass = pass;
971	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972}
973
974/*
975 * Devclass implementation
976 */
977
978static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979
980/**
981 * @internal
982 * @brief Find or create a device class
983 *
984 * If a device class with the name @p classname exists, return it,
985 * otherwise if @p create is non-zero create and return a new device
986 * class.
987 *
988 * If @p parentname is non-NULL, the parent of the devclass is set to
989 * the devclass of that name.
990 *
991 * @param classname	the devclass name to find or create
992 * @param parentname	the parent devclass name or @c NULL
993 * @param create	non-zero to create a devclass
994 */
995static devclass_t
996devclass_find_internal(const char *classname, const char *parentname,
997		       int create)
998{
999	devclass_t dc;
1000
1001	PDEBUG(("looking for %s", classname));
1002	if (!classname)
1003		return (NULL);
1004
1005	TAILQ_FOREACH(dc, &devclasses, link) {
1006		if (!strcmp(dc->name, classname))
1007			break;
1008	}
1009
1010	if (create && !dc) {
1011		PDEBUG(("creating %s", classname));
1012		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013		    M_BUS, M_NOWAIT | M_ZERO);
1014		if (!dc)
1015			return (NULL);
1016		dc->parent = NULL;
1017		dc->name = (char*) (dc + 1);
1018		strcpy(dc->name, classname);
1019		TAILQ_INIT(&dc->drivers);
1020		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021
1022		bus_data_generation_update();
1023	}
1024
1025	/*
1026	 * If a parent class is specified, then set that as our parent so
1027	 * that this devclass will support drivers for the parent class as
1028	 * well.  If the parent class has the same name don't do this though
1029	 * as it creates a cycle that can trigger an infinite loop in
1030	 * device_probe_child() if a device exists for which there is no
1031	 * suitable driver.
1032	 */
1033	if (parentname && dc && !dc->parent &&
1034	    strcmp(classname, parentname) != 0) {
1035		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036		dc->parent->flags |= DC_HAS_CHILDREN;
1037	}
1038
1039	return (dc);
1040}
1041
1042/**
1043 * @brief Create a device class
1044 *
1045 * If a device class with the name @p classname exists, return it,
1046 * otherwise create and return a new device class.
1047 *
1048 * @param classname	the devclass name to find or create
1049 */
1050devclass_t
1051devclass_create(const char *classname)
1052{
1053	return (devclass_find_internal(classname, NULL, TRUE));
1054}
1055
1056/**
1057 * @brief Find a device class
1058 *
1059 * If a device class with the name @p classname exists, return it,
1060 * otherwise return @c NULL.
1061 *
1062 * @param classname	the devclass name to find
1063 */
1064devclass_t
1065devclass_find(const char *classname)
1066{
1067	return (devclass_find_internal(classname, NULL, FALSE));
1068}
1069
1070/**
1071 * @brief Register that a device driver has been added to a devclass
1072 *
1073 * Register that a device driver has been added to a devclass.  This
1074 * is called by devclass_add_driver to accomplish the recursive
1075 * notification of all the children classes of dc, as well as dc.
1076 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077 * the devclass.
1078 *
1079 * We do a full search here of the devclass list at each iteration
1080 * level to save storing children-lists in the devclass structure.  If
1081 * we ever move beyond a few dozen devices doing this, we may need to
1082 * reevaluate...
1083 *
1084 * @param dc		the devclass to edit
1085 * @param driver	the driver that was just added
1086 */
1087static void
1088devclass_driver_added(devclass_t dc, driver_t *driver)
1089{
1090	devclass_t parent;
1091	int i;
1092
1093	/*
1094	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1095	 */
1096	for (i = 0; i < dc->maxunit; i++)
1097		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099
1100	/*
1101	 * Walk through the children classes.  Since we only keep a
1102	 * single parent pointer around, we walk the entire list of
1103	 * devclasses looking for children.  We set the
1104	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105	 * the parent, so we only walk the list for those devclasses
1106	 * that have children.
1107	 */
1108	if (!(dc->flags & DC_HAS_CHILDREN))
1109		return;
1110	parent = dc;
1111	TAILQ_FOREACH(dc, &devclasses, link) {
1112		if (dc->parent == parent)
1113			devclass_driver_added(dc, driver);
1114	}
1115}
1116
1117/**
1118 * @brief Add a device driver to a device class
1119 *
1120 * Add a device driver to a devclass. This is normally called
1121 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122 * all devices in the devclass will be called to allow them to attempt
1123 * to re-probe any unmatched children.
1124 *
1125 * @param dc		the devclass to edit
1126 * @param driver	the driver to register
1127 */
1128int
1129devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130{
1131	driverlink_t dl;
1132	const char *parentname;
1133
1134	PDEBUG(("%s", DRIVERNAME(driver)));
1135
1136	/* Don't allow invalid pass values. */
1137	if (pass <= BUS_PASS_ROOT)
1138		return (EINVAL);
1139
1140	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141	if (!dl)
1142		return (ENOMEM);
1143
1144	/*
1145	 * Compile the driver's methods. Also increase the reference count
1146	 * so that the class doesn't get freed when the last instance
1147	 * goes. This means we can safely use static methods and avoids a
1148	 * double-free in devclass_delete_driver.
1149	 */
1150	kobj_class_compile((kobj_class_t) driver);
1151
1152	/*
1153	 * If the driver has any base classes, make the
1154	 * devclass inherit from the devclass of the driver's
1155	 * first base class. This will allow the system to
1156	 * search for drivers in both devclasses for children
1157	 * of a device using this driver.
1158	 */
1159	if (driver->baseclasses)
1160		parentname = driver->baseclasses[0]->name;
1161	else
1162		parentname = NULL;
1163	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164
1165	dl->driver = driver;
1166	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167	driver->refs++;		/* XXX: kobj_mtx */
1168	dl->pass = pass;
1169	driver_register_pass(dl);
1170
1171	devclass_driver_added(dc, driver);
1172	bus_data_generation_update();
1173	return (0);
1174}
1175
1176/**
1177 * @brief Register that a device driver has been deleted from a devclass
1178 *
1179 * Register that a device driver has been removed from a devclass.
1180 * This is called by devclass_delete_driver to accomplish the
1181 * recursive notification of all the children classes of busclass, as
1182 * well as busclass.  Each layer will attempt to detach the driver
1183 * from any devices that are children of the bus's devclass.  The function
1184 * will return an error if a device fails to detach.
1185 *
1186 * We do a full search here of the devclass list at each iteration
1187 * level to save storing children-lists in the devclass structure.  If
1188 * we ever move beyond a few dozen devices doing this, we may need to
1189 * reevaluate...
1190 *
1191 * @param busclass	the devclass of the parent bus
1192 * @param dc		the devclass of the driver being deleted
1193 * @param driver	the driver being deleted
1194 */
1195static int
1196devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197{
1198	devclass_t parent;
1199	device_t dev;
1200	int error, i;
1201
1202	/*
1203	 * Disassociate from any devices.  We iterate through all the
1204	 * devices in the devclass of the driver and detach any which are
1205	 * using the driver and which have a parent in the devclass which
1206	 * we are deleting from.
1207	 *
1208	 * Note that since a driver can be in multiple devclasses, we
1209	 * should not detach devices which are not children of devices in
1210	 * the affected devclass.
1211	 */
1212	for (i = 0; i < dc->maxunit; i++) {
1213		if (dc->devices[i]) {
1214			dev = dc->devices[i];
1215			if (dev->driver == driver && dev->parent &&
1216			    dev->parent->devclass == busclass) {
1217				if ((error = device_detach(dev)) != 0)
1218					return (error);
1219				BUS_PROBE_NOMATCH(dev->parent, dev);
1220				devnomatch(dev);
1221				dev->flags |= DF_DONENOMATCH;
1222			}
1223		}
1224	}
1225
1226	/*
1227	 * Walk through the children classes.  Since we only keep a
1228	 * single parent pointer around, we walk the entire list of
1229	 * devclasses looking for children.  We set the
1230	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231	 * the parent, so we only walk the list for those devclasses
1232	 * that have children.
1233	 */
1234	if (!(busclass->flags & DC_HAS_CHILDREN))
1235		return (0);
1236	parent = busclass;
1237	TAILQ_FOREACH(busclass, &devclasses, link) {
1238		if (busclass->parent == parent) {
1239			error = devclass_driver_deleted(busclass, dc, driver);
1240			if (error)
1241				return (error);
1242		}
1243	}
1244	return (0);
1245}
1246
1247/**
1248 * @brief Delete a device driver from a device class
1249 *
1250 * Delete a device driver from a devclass. This is normally called
1251 * automatically by DRIVER_MODULE().
1252 *
1253 * If the driver is currently attached to any devices,
1254 * devclass_delete_driver() will first attempt to detach from each
1255 * device. If one of the detach calls fails, the driver will not be
1256 * deleted.
1257 *
1258 * @param dc		the devclass to edit
1259 * @param driver	the driver to unregister
1260 */
1261int
1262devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263{
1264	devclass_t dc = devclass_find(driver->name);
1265	driverlink_t dl;
1266	int error;
1267
1268	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269
1270	if (!dc)
1271		return (0);
1272
1273	/*
1274	 * Find the link structure in the bus' list of drivers.
1275	 */
1276	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277		if (dl->driver == driver)
1278			break;
1279	}
1280
1281	if (!dl) {
1282		PDEBUG(("%s not found in %s list", driver->name,
1283		    busclass->name));
1284		return (ENOENT);
1285	}
1286
1287	error = devclass_driver_deleted(busclass, dc, driver);
1288	if (error != 0)
1289		return (error);
1290
1291	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292	free(dl, M_BUS);
1293
1294	/* XXX: kobj_mtx */
1295	driver->refs--;
1296	if (driver->refs == 0)
1297		kobj_class_free((kobj_class_t) driver);
1298
1299	bus_data_generation_update();
1300	return (0);
1301}
1302
1303/**
1304 * @brief Quiesces a set of device drivers from a device class
1305 *
1306 * Quiesce a device driver from a devclass. This is normally called
1307 * automatically by DRIVER_MODULE().
1308 *
1309 * If the driver is currently attached to any devices,
1310 * devclass_quiesece_driver() will first attempt to quiesce each
1311 * device.
1312 *
1313 * @param dc		the devclass to edit
1314 * @param driver	the driver to unregister
1315 */
1316static int
1317devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318{
1319	devclass_t dc = devclass_find(driver->name);
1320	driverlink_t dl;
1321	device_t dev;
1322	int i;
1323	int error;
1324
1325	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326
1327	if (!dc)
1328		return (0);
1329
1330	/*
1331	 * Find the link structure in the bus' list of drivers.
1332	 */
1333	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334		if (dl->driver == driver)
1335			break;
1336	}
1337
1338	if (!dl) {
1339		PDEBUG(("%s not found in %s list", driver->name,
1340		    busclass->name));
1341		return (ENOENT);
1342	}
1343
1344	/*
1345	 * Quiesce all devices.  We iterate through all the devices in
1346	 * the devclass of the driver and quiesce any which are using
1347	 * the driver and which have a parent in the devclass which we
1348	 * are quiescing.
1349	 *
1350	 * Note that since a driver can be in multiple devclasses, we
1351	 * should not quiesce devices which are not children of
1352	 * devices in the affected devclass.
1353	 */
1354	for (i = 0; i < dc->maxunit; i++) {
1355		if (dc->devices[i]) {
1356			dev = dc->devices[i];
1357			if (dev->driver == driver && dev->parent &&
1358			    dev->parent->devclass == busclass) {
1359				if ((error = device_quiesce(dev)) != 0)
1360					return (error);
1361			}
1362		}
1363	}
1364
1365	return (0);
1366}
1367
1368/**
1369 * @internal
1370 */
1371static driverlink_t
1372devclass_find_driver_internal(devclass_t dc, const char *classname)
1373{
1374	driverlink_t dl;
1375
1376	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377
1378	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379		if (!strcmp(dl->driver->name, classname))
1380			return (dl);
1381	}
1382
1383	PDEBUG(("not found"));
1384	return (NULL);
1385}
1386
1387/**
1388 * @brief Return the name of the devclass
1389 */
1390const char *
1391devclass_get_name(devclass_t dc)
1392{
1393	return (dc->name);
1394}
1395
1396/**
1397 * @brief Find a device given a unit number
1398 *
1399 * @param dc		the devclass to search
1400 * @param unit		the unit number to search for
1401 *
1402 * @returns		the device with the given unit number or @c
1403 *			NULL if there is no such device
1404 */
1405device_t
1406devclass_get_device(devclass_t dc, int unit)
1407{
1408	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409		return (NULL);
1410	return (dc->devices[unit]);
1411}
1412
1413/**
1414 * @brief Find the softc field of a device given a unit number
1415 *
1416 * @param dc		the devclass to search
1417 * @param unit		the unit number to search for
1418 *
1419 * @returns		the softc field of the device with the given
1420 *			unit number or @c NULL if there is no such
1421 *			device
1422 */
1423void *
1424devclass_get_softc(devclass_t dc, int unit)
1425{
1426	device_t dev;
1427
1428	dev = devclass_get_device(dc, unit);
1429	if (!dev)
1430		return (NULL);
1431
1432	return (device_get_softc(dev));
1433}
1434
1435/**
1436 * @brief Get a list of devices in the devclass
1437 *
1438 * An array containing a list of all the devices in the given devclass
1439 * is allocated and returned in @p *devlistp. The number of devices
1440 * in the array is returned in @p *devcountp. The caller should free
1441 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442 *
1443 * @param dc		the devclass to examine
1444 * @param devlistp	points at location for array pointer return
1445 *			value
1446 * @param devcountp	points at location for array size return value
1447 *
1448 * @retval 0		success
1449 * @retval ENOMEM	the array allocation failed
1450 */
1451int
1452devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453{
1454	int count, i;
1455	device_t *list;
1456
1457	count = devclass_get_count(dc);
1458	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459	if (!list)
1460		return (ENOMEM);
1461
1462	count = 0;
1463	for (i = 0; i < dc->maxunit; i++) {
1464		if (dc->devices[i]) {
1465			list[count] = dc->devices[i];
1466			count++;
1467		}
1468	}
1469
1470	*devlistp = list;
1471	*devcountp = count;
1472
1473	return (0);
1474}
1475
1476/**
1477 * @brief Get a list of drivers in the devclass
1478 *
1479 * An array containing a list of pointers to all the drivers in the
1480 * given devclass is allocated and returned in @p *listp.  The number
1481 * of drivers in the array is returned in @p *countp. The caller should
1482 * free the array using @c free(p, M_TEMP).
1483 *
1484 * @param dc		the devclass to examine
1485 * @param listp		gives location for array pointer return value
1486 * @param countp	gives location for number of array elements
1487 *			return value
1488 *
1489 * @retval 0		success
1490 * @retval ENOMEM	the array allocation failed
1491 */
1492int
1493devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494{
1495	driverlink_t dl;
1496	driver_t **list;
1497	int count;
1498
1499	count = 0;
1500	TAILQ_FOREACH(dl, &dc->drivers, link)
1501		count++;
1502	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503	if (list == NULL)
1504		return (ENOMEM);
1505
1506	count = 0;
1507	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508		list[count] = dl->driver;
1509		count++;
1510	}
1511	*listp = list;
1512	*countp = count;
1513
1514	return (0);
1515}
1516
1517/**
1518 * @brief Get the number of devices in a devclass
1519 *
1520 * @param dc		the devclass to examine
1521 */
1522int
1523devclass_get_count(devclass_t dc)
1524{
1525	int count, i;
1526
1527	count = 0;
1528	for (i = 0; i < dc->maxunit; i++)
1529		if (dc->devices[i])
1530			count++;
1531	return (count);
1532}
1533
1534/**
1535 * @brief Get the maximum unit number used in a devclass
1536 *
1537 * Note that this is one greater than the highest currently-allocated
1538 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539 * that not even the devclass has been allocated yet.
1540 *
1541 * @param dc		the devclass to examine
1542 */
1543int
1544devclass_get_maxunit(devclass_t dc)
1545{
1546	if (dc == NULL)
1547		return (-1);
1548	return (dc->maxunit);
1549}
1550
1551/**
1552 * @brief Find a free unit number in a devclass
1553 *
1554 * This function searches for the first unused unit number greater
1555 * that or equal to @p unit.
1556 *
1557 * @param dc		the devclass to examine
1558 * @param unit		the first unit number to check
1559 */
1560int
1561devclass_find_free_unit(devclass_t dc, int unit)
1562{
1563	if (dc == NULL)
1564		return (unit);
1565	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566		unit++;
1567	return (unit);
1568}
1569
1570/**
1571 * @brief Set the parent of a devclass
1572 *
1573 * The parent class is normally initialised automatically by
1574 * DRIVER_MODULE().
1575 *
1576 * @param dc		the devclass to edit
1577 * @param pdc		the new parent devclass
1578 */
1579void
1580devclass_set_parent(devclass_t dc, devclass_t pdc)
1581{
1582	dc->parent = pdc;
1583}
1584
1585/**
1586 * @brief Get the parent of a devclass
1587 *
1588 * @param dc		the devclass to examine
1589 */
1590devclass_t
1591devclass_get_parent(devclass_t dc)
1592{
1593	return (dc->parent);
1594}
1595
1596struct sysctl_ctx_list *
1597devclass_get_sysctl_ctx(devclass_t dc)
1598{
1599	return (&dc->sysctl_ctx);
1600}
1601
1602struct sysctl_oid *
1603devclass_get_sysctl_tree(devclass_t dc)
1604{
1605	return (dc->sysctl_tree);
1606}
1607
1608/**
1609 * @internal
1610 * @brief Allocate a unit number
1611 *
1612 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613 * will do). The allocated unit number is returned in @p *unitp.
1614
1615 * @param dc		the devclass to allocate from
1616 * @param unitp		points at the location for the allocated unit
1617 *			number
1618 *
1619 * @retval 0		success
1620 * @retval EEXIST	the requested unit number is already allocated
1621 * @retval ENOMEM	memory allocation failure
1622 */
1623static int
1624devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625{
1626	const char *s;
1627	int unit = *unitp;
1628
1629	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630
1631	/* Ask the parent bus if it wants to wire this device. */
1632	if (unit == -1)
1633		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634		    &unit);
1635
1636	/* If we were given a wired unit number, check for existing device */
1637	/* XXX imp XXX */
1638	if (unit != -1) {
1639		if (unit >= 0 && unit < dc->maxunit &&
1640		    dc->devices[unit] != NULL) {
1641			if (bootverbose)
1642				printf("%s: %s%d already exists; skipping it\n",
1643				    dc->name, dc->name, *unitp);
1644			return (EEXIST);
1645		}
1646	} else {
1647		/* Unwired device, find the next available slot for it */
1648		unit = 0;
1649		for (unit = 0;; unit++) {
1650			/* If there is an "at" hint for a unit then skip it. */
1651			if (resource_string_value(dc->name, unit, "at", &s) ==
1652			    0)
1653				continue;
1654
1655			/* If this device slot is already in use, skip it. */
1656			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657				continue;
1658
1659			break;
1660		}
1661	}
1662
1663	/*
1664	 * We've selected a unit beyond the length of the table, so let's
1665	 * extend the table to make room for all units up to and including
1666	 * this one.
1667	 */
1668	if (unit >= dc->maxunit) {
1669		device_t *newlist, *oldlist;
1670		int newsize;
1671
1672		oldlist = dc->devices;
1673		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675		if (!newlist)
1676			return (ENOMEM);
1677		if (oldlist != NULL)
1678			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679		bzero(newlist + dc->maxunit,
1680		    sizeof(device_t) * (newsize - dc->maxunit));
1681		dc->devices = newlist;
1682		dc->maxunit = newsize;
1683		if (oldlist != NULL)
1684			free(oldlist, M_BUS);
1685	}
1686	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687
1688	*unitp = unit;
1689	return (0);
1690}
1691
1692/**
1693 * @internal
1694 * @brief Add a device to a devclass
1695 *
1696 * A unit number is allocated for the device (using the device's
1697 * preferred unit number if any) and the device is registered in the
1698 * devclass. This allows the device to be looked up by its unit
1699 * number, e.g. by decoding a dev_t minor number.
1700 *
1701 * @param dc		the devclass to add to
1702 * @param dev		the device to add
1703 *
1704 * @retval 0		success
1705 * @retval EEXIST	the requested unit number is already allocated
1706 * @retval ENOMEM	memory allocation failure
1707 */
1708static int
1709devclass_add_device(devclass_t dc, device_t dev)
1710{
1711	int buflen, error;
1712
1713	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714
1715	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716	if (buflen < 0)
1717		return (ENOMEM);
1718	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719	if (!dev->nameunit)
1720		return (ENOMEM);
1721
1722	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723		free(dev->nameunit, M_BUS);
1724		dev->nameunit = NULL;
1725		return (error);
1726	}
1727	dc->devices[dev->unit] = dev;
1728	dev->devclass = dc;
1729	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730
1731	return (0);
1732}
1733
1734/**
1735 * @internal
1736 * @brief Delete a device from a devclass
1737 *
1738 * The device is removed from the devclass's device list and its unit
1739 * number is freed.
1740
1741 * @param dc		the devclass to delete from
1742 * @param dev		the device to delete
1743 *
1744 * @retval 0		success
1745 */
1746static int
1747devclass_delete_device(devclass_t dc, device_t dev)
1748{
1749	if (!dc || !dev)
1750		return (0);
1751
1752	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753
1754	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755		panic("devclass_delete_device: inconsistent device class");
1756	dc->devices[dev->unit] = NULL;
1757	if (dev->flags & DF_WILDCARD)
1758		dev->unit = -1;
1759	dev->devclass = NULL;
1760	free(dev->nameunit, M_BUS);
1761	dev->nameunit = NULL;
1762
1763	return (0);
1764}
1765
1766/**
1767 * @internal
1768 * @brief Make a new device and add it as a child of @p parent
1769 *
1770 * @param parent	the parent of the new device
1771 * @param name		the devclass name of the new device or @c NULL
1772 *			to leave the devclass unspecified
1773 * @parem unit		the unit number of the new device of @c -1 to
1774 *			leave the unit number unspecified
1775 *
1776 * @returns the new device
1777 */
1778static device_t
1779make_device(device_t parent, const char *name, int unit)
1780{
1781	device_t dev;
1782	devclass_t dc;
1783
1784	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785
1786	if (name) {
1787		dc = devclass_find_internal(name, NULL, TRUE);
1788		if (!dc) {
1789			printf("make_device: can't find device class %s\n",
1790			    name);
1791			return (NULL);
1792		}
1793	} else {
1794		dc = NULL;
1795	}
1796
1797	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1798	if (!dev)
1799		return (NULL);
1800
1801	dev->parent = parent;
1802	TAILQ_INIT(&dev->children);
1803	kobj_init((kobj_t) dev, &null_class);
1804	dev->driver = NULL;
1805	dev->devclass = NULL;
1806	dev->unit = unit;
1807	dev->nameunit = NULL;
1808	dev->desc = NULL;
1809	dev->busy = 0;
1810	dev->devflags = 0;
1811	dev->flags = DF_ENABLED;
1812	dev->order = 0;
1813	if (unit == -1)
1814		dev->flags |= DF_WILDCARD;
1815	if (name) {
1816		dev->flags |= DF_FIXEDCLASS;
1817		if (devclass_add_device(dc, dev)) {
1818			kobj_delete((kobj_t) dev, M_BUS);
1819			return (NULL);
1820		}
1821	}
1822	dev->ivars = NULL;
1823	dev->softc = NULL;
1824
1825	dev->state = DS_NOTPRESENT;
1826
1827	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1828	bus_data_generation_update();
1829
1830	return (dev);
1831}
1832
1833/**
1834 * @internal
1835 * @brief Print a description of a device.
1836 */
1837static int
1838device_print_child(device_t dev, device_t child)
1839{
1840	int retval = 0;
1841
1842	if (device_is_alive(child))
1843		retval += BUS_PRINT_CHILD(dev, child);
1844	else
1845		retval += device_printf(child, " not found\n");
1846
1847	return (retval);
1848}
1849
1850/**
1851 * @brief Create a new device
1852 *
1853 * This creates a new device and adds it as a child of an existing
1854 * parent device. The new device will be added after the last existing
1855 * child with order zero.
1856 *
1857 * @param dev		the device which will be the parent of the
1858 *			new child device
1859 * @param name		devclass name for new device or @c NULL if not
1860 *			specified
1861 * @param unit		unit number for new device or @c -1 if not
1862 *			specified
1863 *
1864 * @returns		the new device
1865 */
1866device_t
1867device_add_child(device_t dev, const char *name, int unit)
1868{
1869	return (device_add_child_ordered(dev, 0, name, unit));
1870}
1871
1872/**
1873 * @brief Create a new device
1874 *
1875 * This creates a new device and adds it as a child of an existing
1876 * parent device. The new device will be added after the last existing
1877 * child with the same order.
1878 *
1879 * @param dev		the device which will be the parent of the
1880 *			new child device
1881 * @param order		a value which is used to partially sort the
1882 *			children of @p dev - devices created using
1883 *			lower values of @p order appear first in @p
1884 *			dev's list of children
1885 * @param name		devclass name for new device or @c NULL if not
1886 *			specified
1887 * @param unit		unit number for new device or @c -1 if not
1888 *			specified
1889 *
1890 * @returns		the new device
1891 */
1892device_t
1893device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1894{
1895	device_t child;
1896	device_t place;
1897
1898	PDEBUG(("%s at %s with order %u as unit %d",
1899	    name, DEVICENAME(dev), order, unit));
1900	KASSERT(name != NULL || unit == -1,
1901	    ("child device with wildcard name and specific unit number"));
1902
1903	child = make_device(dev, name, unit);
1904	if (child == NULL)
1905		return (child);
1906	child->order = order;
1907
1908	TAILQ_FOREACH(place, &dev->children, link) {
1909		if (place->order > order)
1910			break;
1911	}
1912
1913	if (place) {
1914		/*
1915		 * The device 'place' is the first device whose order is
1916		 * greater than the new child.
1917		 */
1918		TAILQ_INSERT_BEFORE(place, child, link);
1919	} else {
1920		/*
1921		 * The new child's order is greater or equal to the order of
1922		 * any existing device. Add the child to the tail of the list.
1923		 */
1924		TAILQ_INSERT_TAIL(&dev->children, child, link);
1925	}
1926
1927	bus_data_generation_update();
1928	return (child);
1929}
1930
1931/**
1932 * @brief Delete a device
1933 *
1934 * This function deletes a device along with all of its children. If
1935 * the device currently has a driver attached to it, the device is
1936 * detached first using device_detach().
1937 *
1938 * @param dev		the parent device
1939 * @param child		the device to delete
1940 *
1941 * @retval 0		success
1942 * @retval non-zero	a unit error code describing the error
1943 */
1944int
1945device_delete_child(device_t dev, device_t child)
1946{
1947	int error;
1948	device_t grandchild;
1949
1950	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1951
1952	/* remove children first */
1953	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1954		error = device_delete_child(child, grandchild);
1955		if (error)
1956			return (error);
1957	}
1958
1959	if ((error = device_detach(child)) != 0)
1960		return (error);
1961	if (child->devclass)
1962		devclass_delete_device(child->devclass, child);
1963	if (child->parent)
1964		BUS_CHILD_DELETED(dev, child);
1965	TAILQ_REMOVE(&dev->children, child, link);
1966	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1967	kobj_delete((kobj_t) child, M_BUS);
1968
1969	bus_data_generation_update();
1970	return (0);
1971}
1972
1973/**
1974 * @brief Delete all children devices of the given device, if any.
1975 *
1976 * This function deletes all children devices of the given device, if
1977 * any, using the device_delete_child() function for each device it
1978 * finds. If a child device cannot be deleted, this function will
1979 * return an error code.
1980 *
1981 * @param dev		the parent device
1982 *
1983 * @retval 0		success
1984 * @retval non-zero	a device would not detach
1985 */
1986int
1987device_delete_children(device_t dev)
1988{
1989	device_t child;
1990	int error;
1991
1992	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1993
1994	error = 0;
1995
1996	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1997		error = device_delete_child(dev, child);
1998		if (error) {
1999			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2000			break;
2001		}
2002	}
2003	return (error);
2004}
2005
2006/**
2007 * @brief Find a device given a unit number
2008 *
2009 * This is similar to devclass_get_devices() but only searches for
2010 * devices which have @p dev as a parent.
2011 *
2012 * @param dev		the parent device to search
2013 * @param unit		the unit number to search for.  If the unit is -1,
2014 *			return the first child of @p dev which has name
2015 *			@p classname (that is, the one with the lowest unit.)
2016 *
2017 * @returns		the device with the given unit number or @c
2018 *			NULL if there is no such device
2019 */
2020device_t
2021device_find_child(device_t dev, const char *classname, int unit)
2022{
2023	devclass_t dc;
2024	device_t child;
2025
2026	dc = devclass_find(classname);
2027	if (!dc)
2028		return (NULL);
2029
2030	if (unit != -1) {
2031		child = devclass_get_device(dc, unit);
2032		if (child && child->parent == dev)
2033			return (child);
2034	} else {
2035		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2036			child = devclass_get_device(dc, unit);
2037			if (child && child->parent == dev)
2038				return (child);
2039		}
2040	}
2041	return (NULL);
2042}
2043
2044/**
2045 * @internal
2046 */
2047static driverlink_t
2048first_matching_driver(devclass_t dc, device_t dev)
2049{
2050	if (dev->devclass)
2051		return (devclass_find_driver_internal(dc, dev->devclass->name));
2052	return (TAILQ_FIRST(&dc->drivers));
2053}
2054
2055/**
2056 * @internal
2057 */
2058static driverlink_t
2059next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2060{
2061	if (dev->devclass) {
2062		driverlink_t dl;
2063		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2064			if (!strcmp(dev->devclass->name, dl->driver->name))
2065				return (dl);
2066		return (NULL);
2067	}
2068	return (TAILQ_NEXT(last, link));
2069}
2070
2071/**
2072 * @internal
2073 */
2074int
2075device_probe_child(device_t dev, device_t child)
2076{
2077	devclass_t dc;
2078	driverlink_t best = NULL;
2079	driverlink_t dl;
2080	int result, pri = 0;
2081	int hasclass = (child->devclass != NULL);
2082
2083	GIANT_REQUIRED;
2084
2085	dc = dev->devclass;
2086	if (!dc)
2087		panic("device_probe_child: parent device has no devclass");
2088
2089	/*
2090	 * If the state is already probed, then return.  However, don't
2091	 * return if we can rebid this object.
2092	 */
2093	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2094		return (0);
2095
2096	for (; dc; dc = dc->parent) {
2097		for (dl = first_matching_driver(dc, child);
2098		     dl;
2099		     dl = next_matching_driver(dc, child, dl)) {
2100			/* If this driver's pass is too high, then ignore it. */
2101			if (dl->pass > bus_current_pass)
2102				continue;
2103
2104			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2105			result = device_set_driver(child, dl->driver);
2106			if (result == ENOMEM)
2107				return (result);
2108			else if (result != 0)
2109				continue;
2110			if (!hasclass) {
2111				if (device_set_devclass(child,
2112				    dl->driver->name) != 0) {
2113					char const * devname =
2114					    device_get_name(child);
2115					if (devname == NULL)
2116						devname = "(unknown)";
2117					printf("driver bug: Unable to set "
2118					    "devclass (class: %s "
2119					    "devname: %s)\n",
2120					    dl->driver->name,
2121					    devname);
2122					(void)device_set_driver(child, NULL);
2123					continue;
2124				}
2125			}
2126
2127			/* Fetch any flags for the device before probing. */
2128			resource_int_value(dl->driver->name, child->unit,
2129			    "flags", &child->devflags);
2130
2131			result = DEVICE_PROBE(child);
2132
2133			/* Reset flags and devclass before the next probe. */
2134			child->devflags = 0;
2135			if (!hasclass)
2136				(void)device_set_devclass(child, NULL);
2137
2138			/*
2139			 * If the driver returns SUCCESS, there can be
2140			 * no higher match for this device.
2141			 */
2142			if (result == 0) {
2143				best = dl;
2144				pri = 0;
2145				break;
2146			}
2147
2148			/*
2149			 * Reset DF_QUIET in case this driver doesn't
2150			 * end up as the best driver.
2151			 */
2152			device_verbose(child);
2153
2154			/*
2155			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2156			 * only match on devices whose driver was explicitly
2157			 * specified.
2158			 */
2159			if (result <= BUS_PROBE_NOWILDCARD &&
2160			    !(child->flags & DF_FIXEDCLASS)) {
2161				result = ENXIO;
2162			}
2163
2164			/*
2165			 * The driver returned an error so it
2166			 * certainly doesn't match.
2167			 */
2168			if (result > 0) {
2169				(void)device_set_driver(child, NULL);
2170				continue;
2171			}
2172
2173			/*
2174			 * A priority lower than SUCCESS, remember the
2175			 * best matching driver. Initialise the value
2176			 * of pri for the first match.
2177			 */
2178			if (best == NULL || result > pri) {
2179				best = dl;
2180				pri = result;
2181				continue;
2182			}
2183		}
2184		/*
2185		 * If we have an unambiguous match in this devclass,
2186		 * don't look in the parent.
2187		 */
2188		if (best && pri == 0)
2189			break;
2190	}
2191
2192	/*
2193	 * If we found a driver, change state and initialise the devclass.
2194	 */
2195	/* XXX What happens if we rebid and got no best? */
2196	if (best) {
2197		/*
2198		 * If this device was attached, and we were asked to
2199		 * rescan, and it is a different driver, then we have
2200		 * to detach the old driver and reattach this new one.
2201		 * Note, we don't have to check for DF_REBID here
2202		 * because if the state is > DS_ALIVE, we know it must
2203		 * be.
2204		 *
2205		 * This assumes that all DF_REBID drivers can have
2206		 * their probe routine called at any time and that
2207		 * they are idempotent as well as completely benign in
2208		 * normal operations.
2209		 *
2210		 * We also have to make sure that the detach
2211		 * succeeded, otherwise we fail the operation (or
2212		 * maybe it should just fail silently?  I'm torn).
2213		 */
2214		if (child->state > DS_ALIVE && best->driver != child->driver)
2215			if ((result = device_detach(dev)) != 0)
2216				return (result);
2217
2218		/* Set the winning driver, devclass, and flags. */
2219		if (!child->devclass) {
2220			result = device_set_devclass(child, best->driver->name);
2221			if (result != 0)
2222				return (result);
2223		}
2224		result = device_set_driver(child, best->driver);
2225		if (result != 0)
2226			return (result);
2227		resource_int_value(best->driver->name, child->unit,
2228		    "flags", &child->devflags);
2229
2230		if (pri < 0) {
2231			/*
2232			 * A bit bogus. Call the probe method again to make
2233			 * sure that we have the right description.
2234			 */
2235			DEVICE_PROBE(child);
2236#if 0
2237			child->flags |= DF_REBID;
2238#endif
2239		} else
2240			child->flags &= ~DF_REBID;
2241		child->state = DS_ALIVE;
2242
2243		bus_data_generation_update();
2244		return (0);
2245	}
2246
2247	return (ENXIO);
2248}
2249
2250/**
2251 * @brief Return the parent of a device
2252 */
2253device_t
2254device_get_parent(device_t dev)
2255{
2256	return (dev->parent);
2257}
2258
2259/**
2260 * @brief Get a list of children of a device
2261 *
2262 * An array containing a list of all the children of the given device
2263 * is allocated and returned in @p *devlistp. The number of devices
2264 * in the array is returned in @p *devcountp. The caller should free
2265 * the array using @c free(p, M_TEMP).
2266 *
2267 * @param dev		the device to examine
2268 * @param devlistp	points at location for array pointer return
2269 *			value
2270 * @param devcountp	points at location for array size return value
2271 *
2272 * @retval 0		success
2273 * @retval ENOMEM	the array allocation failed
2274 */
2275int
2276device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2277{
2278	int count;
2279	device_t child;
2280	device_t *list;
2281
2282	count = 0;
2283	TAILQ_FOREACH(child, &dev->children, link) {
2284		count++;
2285	}
2286	if (count == 0) {
2287		*devlistp = NULL;
2288		*devcountp = 0;
2289		return (0);
2290	}
2291
2292	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2293	if (!list)
2294		return (ENOMEM);
2295
2296	count = 0;
2297	TAILQ_FOREACH(child, &dev->children, link) {
2298		list[count] = child;
2299		count++;
2300	}
2301
2302	*devlistp = list;
2303	*devcountp = count;
2304
2305	return (0);
2306}
2307
2308/**
2309 * @brief Return the current driver for the device or @c NULL if there
2310 * is no driver currently attached
2311 */
2312driver_t *
2313device_get_driver(device_t dev)
2314{
2315	return (dev->driver);
2316}
2317
2318/**
2319 * @brief Return the current devclass for the device or @c NULL if
2320 * there is none.
2321 */
2322devclass_t
2323device_get_devclass(device_t dev)
2324{
2325	return (dev->devclass);
2326}
2327
2328/**
2329 * @brief Return the name of the device's devclass or @c NULL if there
2330 * is none.
2331 */
2332const char *
2333device_get_name(device_t dev)
2334{
2335	if (dev != NULL && dev->devclass)
2336		return (devclass_get_name(dev->devclass));
2337	return (NULL);
2338}
2339
2340/**
2341 * @brief Return a string containing the device's devclass name
2342 * followed by an ascii representation of the device's unit number
2343 * (e.g. @c "foo2").
2344 */
2345const char *
2346device_get_nameunit(device_t dev)
2347{
2348	return (dev->nameunit);
2349}
2350
2351/**
2352 * @brief Return the device's unit number.
2353 */
2354int
2355device_get_unit(device_t dev)
2356{
2357	return (dev->unit);
2358}
2359
2360/**
2361 * @brief Return the device's description string
2362 */
2363const char *
2364device_get_desc(device_t dev)
2365{
2366	return (dev->desc);
2367}
2368
2369/**
2370 * @brief Return the device's flags
2371 */
2372uint32_t
2373device_get_flags(device_t dev)
2374{
2375	return (dev->devflags);
2376}
2377
2378struct sysctl_ctx_list *
2379device_get_sysctl_ctx(device_t dev)
2380{
2381	return (&dev->sysctl_ctx);
2382}
2383
2384struct sysctl_oid *
2385device_get_sysctl_tree(device_t dev)
2386{
2387	return (dev->sysctl_tree);
2388}
2389
2390/**
2391 * @brief Print the name of the device followed by a colon and a space
2392 *
2393 * @returns the number of characters printed
2394 */
2395int
2396device_print_prettyname(device_t dev)
2397{
2398	const char *name = device_get_name(dev);
2399
2400	if (name == NULL)
2401		return (printf("unknown: "));
2402	return (printf("%s%d: ", name, device_get_unit(dev)));
2403}
2404
2405/**
2406 * @brief Print the name of the device followed by a colon, a space
2407 * and the result of calling vprintf() with the value of @p fmt and
2408 * the following arguments.
2409 *
2410 * @returns the number of characters printed
2411 */
2412int
2413device_printf(device_t dev, const char * fmt, ...)
2414{
2415	va_list ap;
2416	int retval;
2417
2418	retval = device_print_prettyname(dev);
2419	va_start(ap, fmt);
2420	retval += vprintf(fmt, ap);
2421	va_end(ap);
2422	return (retval);
2423}
2424
2425/**
2426 * @internal
2427 */
2428static void
2429device_set_desc_internal(device_t dev, const char* desc, int copy)
2430{
2431	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2432		free(dev->desc, M_BUS);
2433		dev->flags &= ~DF_DESCMALLOCED;
2434		dev->desc = NULL;
2435	}
2436
2437	if (copy && desc) {
2438		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2439		if (dev->desc) {
2440			strcpy(dev->desc, desc);
2441			dev->flags |= DF_DESCMALLOCED;
2442		}
2443	} else {
2444		/* Avoid a -Wcast-qual warning */
2445		dev->desc = (char *)(uintptr_t) desc;
2446	}
2447
2448	bus_data_generation_update();
2449}
2450
2451/**
2452 * @brief Set the device's description
2453 *
2454 * The value of @c desc should be a string constant that will not
2455 * change (at least until the description is changed in a subsequent
2456 * call to device_set_desc() or device_set_desc_copy()).
2457 */
2458void
2459device_set_desc(device_t dev, const char* desc)
2460{
2461	device_set_desc_internal(dev, desc, FALSE);
2462}
2463
2464/**
2465 * @brief Set the device's description
2466 *
2467 * The string pointed to by @c desc is copied. Use this function if
2468 * the device description is generated, (e.g. with sprintf()).
2469 */
2470void
2471device_set_desc_copy(device_t dev, const char* desc)
2472{
2473	device_set_desc_internal(dev, desc, TRUE);
2474}
2475
2476/**
2477 * @brief Set the device's flags
2478 */
2479void
2480device_set_flags(device_t dev, uint32_t flags)
2481{
2482	dev->devflags = flags;
2483}
2484
2485/**
2486 * @brief Return the device's softc field
2487 *
2488 * The softc is allocated and zeroed when a driver is attached, based
2489 * on the size field of the driver.
2490 */
2491void *
2492device_get_softc(device_t dev)
2493{
2494	return (dev->softc);
2495}
2496
2497/**
2498 * @brief Set the device's softc field
2499 *
2500 * Most drivers do not need to use this since the softc is allocated
2501 * automatically when the driver is attached.
2502 */
2503void
2504device_set_softc(device_t dev, void *softc)
2505{
2506	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2507		free(dev->softc, M_BUS_SC);
2508	dev->softc = softc;
2509	if (dev->softc)
2510		dev->flags |= DF_EXTERNALSOFTC;
2511	else
2512		dev->flags &= ~DF_EXTERNALSOFTC;
2513}
2514
2515/**
2516 * @brief Free claimed softc
2517 *
2518 * Most drivers do not need to use this since the softc is freed
2519 * automatically when the driver is detached.
2520 */
2521void
2522device_free_softc(void *softc)
2523{
2524	free(softc, M_BUS_SC);
2525}
2526
2527/**
2528 * @brief Claim softc
2529 *
2530 * This function can be used to let the driver free the automatically
2531 * allocated softc using "device_free_softc()". This function is
2532 * useful when the driver is refcounting the softc and the softc
2533 * cannot be freed when the "device_detach" method is called.
2534 */
2535void
2536device_claim_softc(device_t dev)
2537{
2538	if (dev->softc)
2539		dev->flags |= DF_EXTERNALSOFTC;
2540	else
2541		dev->flags &= ~DF_EXTERNALSOFTC;
2542}
2543
2544/**
2545 * @brief Get the device's ivars field
2546 *
2547 * The ivars field is used by the parent device to store per-device
2548 * state (e.g. the physical location of the device or a list of
2549 * resources).
2550 */
2551void *
2552device_get_ivars(device_t dev)
2553{
2554
2555	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2556	return (dev->ivars);
2557}
2558
2559/**
2560 * @brief Set the device's ivars field
2561 */
2562void
2563device_set_ivars(device_t dev, void * ivars)
2564{
2565
2566	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2567	dev->ivars = ivars;
2568}
2569
2570/**
2571 * @brief Return the device's state
2572 */
2573device_state_t
2574device_get_state(device_t dev)
2575{
2576	return (dev->state);
2577}
2578
2579/**
2580 * @brief Set the DF_ENABLED flag for the device
2581 */
2582void
2583device_enable(device_t dev)
2584{
2585	dev->flags |= DF_ENABLED;
2586}
2587
2588/**
2589 * @brief Clear the DF_ENABLED flag for the device
2590 */
2591void
2592device_disable(device_t dev)
2593{
2594	dev->flags &= ~DF_ENABLED;
2595}
2596
2597/**
2598 * @brief Increment the busy counter for the device
2599 */
2600void
2601device_busy(device_t dev)
2602{
2603	if (dev->state < DS_ATTACHING)
2604		panic("device_busy: called for unattached device");
2605	if (dev->busy == 0 && dev->parent)
2606		device_busy(dev->parent);
2607	dev->busy++;
2608	if (dev->state == DS_ATTACHED)
2609		dev->state = DS_BUSY;
2610}
2611
2612/**
2613 * @brief Decrement the busy counter for the device
2614 */
2615void
2616device_unbusy(device_t dev)
2617{
2618	if (dev->busy != 0 && dev->state != DS_BUSY &&
2619	    dev->state != DS_ATTACHING)
2620		panic("device_unbusy: called for non-busy device %s",
2621		    device_get_nameunit(dev));
2622	dev->busy--;
2623	if (dev->busy == 0) {
2624		if (dev->parent)
2625			device_unbusy(dev->parent);
2626		if (dev->state == DS_BUSY)
2627			dev->state = DS_ATTACHED;
2628	}
2629}
2630
2631/**
2632 * @brief Set the DF_QUIET flag for the device
2633 */
2634void
2635device_quiet(device_t dev)
2636{
2637	dev->flags |= DF_QUIET;
2638}
2639
2640/**
2641 * @brief Clear the DF_QUIET flag for the device
2642 */
2643void
2644device_verbose(device_t dev)
2645{
2646	dev->flags &= ~DF_QUIET;
2647}
2648
2649/**
2650 * @brief Return non-zero if the DF_QUIET flag is set on the device
2651 */
2652int
2653device_is_quiet(device_t dev)
2654{
2655	return ((dev->flags & DF_QUIET) != 0);
2656}
2657
2658/**
2659 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2660 */
2661int
2662device_is_enabled(device_t dev)
2663{
2664	return ((dev->flags & DF_ENABLED) != 0);
2665}
2666
2667/**
2668 * @brief Return non-zero if the device was successfully probed
2669 */
2670int
2671device_is_alive(device_t dev)
2672{
2673	return (dev->state >= DS_ALIVE);
2674}
2675
2676/**
2677 * @brief Return non-zero if the device currently has a driver
2678 * attached to it
2679 */
2680int
2681device_is_attached(device_t dev)
2682{
2683	return (dev->state >= DS_ATTACHED);
2684}
2685
2686/**
2687 * @brief Return non-zero if the device is currently suspended.
2688 */
2689int
2690device_is_suspended(device_t dev)
2691{
2692	return ((dev->flags & DF_SUSPENDED) != 0);
2693}
2694
2695/**
2696 * @brief Set the devclass of a device
2697 * @see devclass_add_device().
2698 */
2699int
2700device_set_devclass(device_t dev, const char *classname)
2701{
2702	devclass_t dc;
2703	int error;
2704
2705	if (!classname) {
2706		if (dev->devclass)
2707			devclass_delete_device(dev->devclass, dev);
2708		return (0);
2709	}
2710
2711	if (dev->devclass) {
2712		printf("device_set_devclass: device class already set\n");
2713		return (EINVAL);
2714	}
2715
2716	dc = devclass_find_internal(classname, NULL, TRUE);
2717	if (!dc)
2718		return (ENOMEM);
2719
2720	error = devclass_add_device(dc, dev);
2721
2722	bus_data_generation_update();
2723	return (error);
2724}
2725
2726/**
2727 * @brief Set the devclass of a device and mark the devclass fixed.
2728 * @see device_set_devclass()
2729 */
2730int
2731device_set_devclass_fixed(device_t dev, const char *classname)
2732{
2733	int error;
2734
2735	if (classname == NULL)
2736		return (EINVAL);
2737
2738	error = device_set_devclass(dev, classname);
2739	if (error)
2740		return (error);
2741	dev->flags |= DF_FIXEDCLASS;
2742	return (0);
2743}
2744
2745/**
2746 * @brief Set the driver of a device
2747 *
2748 * @retval 0		success
2749 * @retval EBUSY	the device already has a driver attached
2750 * @retval ENOMEM	a memory allocation failure occurred
2751 */
2752int
2753device_set_driver(device_t dev, driver_t *driver)
2754{
2755	if (dev->state >= DS_ATTACHED)
2756		return (EBUSY);
2757
2758	if (dev->driver == driver)
2759		return (0);
2760
2761	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2762		free(dev->softc, M_BUS_SC);
2763		dev->softc = NULL;
2764	}
2765	device_set_desc(dev, NULL);
2766	kobj_delete((kobj_t) dev, NULL);
2767	dev->driver = driver;
2768	if (driver) {
2769		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2770		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2771			dev->softc = malloc(driver->size, M_BUS_SC,
2772			    M_NOWAIT | M_ZERO);
2773			if (!dev->softc) {
2774				kobj_delete((kobj_t) dev, NULL);
2775				kobj_init((kobj_t) dev, &null_class);
2776				dev->driver = NULL;
2777				return (ENOMEM);
2778			}
2779		}
2780	} else {
2781		kobj_init((kobj_t) dev, &null_class);
2782	}
2783
2784	bus_data_generation_update();
2785	return (0);
2786}
2787
2788/**
2789 * @brief Probe a device, and return this status.
2790 *
2791 * This function is the core of the device autoconfiguration
2792 * system. Its purpose is to select a suitable driver for a device and
2793 * then call that driver to initialise the hardware appropriately. The
2794 * driver is selected by calling the DEVICE_PROBE() method of a set of
2795 * candidate drivers and then choosing the driver which returned the
2796 * best value. This driver is then attached to the device using
2797 * device_attach().
2798 *
2799 * The set of suitable drivers is taken from the list of drivers in
2800 * the parent device's devclass. If the device was originally created
2801 * with a specific class name (see device_add_child()), only drivers
2802 * with that name are probed, otherwise all drivers in the devclass
2803 * are probed. If no drivers return successful probe values in the
2804 * parent devclass, the search continues in the parent of that
2805 * devclass (see devclass_get_parent()) if any.
2806 *
2807 * @param dev		the device to initialise
2808 *
2809 * @retval 0		success
2810 * @retval ENXIO	no driver was found
2811 * @retval ENOMEM	memory allocation failure
2812 * @retval non-zero	some other unix error code
2813 * @retval -1		Device already attached
2814 */
2815int
2816device_probe(device_t dev)
2817{
2818	int error;
2819
2820	GIANT_REQUIRED;
2821
2822	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2823		return (-1);
2824
2825	if (!(dev->flags & DF_ENABLED)) {
2826		if (bootverbose && device_get_name(dev) != NULL) {
2827			device_print_prettyname(dev);
2828			printf("not probed (disabled)\n");
2829		}
2830		return (-1);
2831	}
2832	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2833		if (bus_current_pass == BUS_PASS_DEFAULT &&
2834		    !(dev->flags & DF_DONENOMATCH)) {
2835			BUS_PROBE_NOMATCH(dev->parent, dev);
2836			devnomatch(dev);
2837			dev->flags |= DF_DONENOMATCH;
2838		}
2839		return (error);
2840	}
2841	return (0);
2842}
2843
2844/**
2845 * @brief Probe a device and attach a driver if possible
2846 *
2847 * calls device_probe() and attaches if that was successful.
2848 */
2849int
2850device_probe_and_attach(device_t dev)
2851{
2852	int error;
2853
2854	GIANT_REQUIRED;
2855
2856	error = device_probe(dev);
2857	if (error == -1)
2858		return (0);
2859	else if (error != 0)
2860		return (error);
2861
2862	CURVNET_SET_QUIET(vnet0);
2863	error = device_attach(dev);
2864	CURVNET_RESTORE();
2865	return error;
2866}
2867
2868/**
2869 * @brief Attach a device driver to a device
2870 *
2871 * This function is a wrapper around the DEVICE_ATTACH() driver
2872 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2873 * device's sysctl tree, optionally prints a description of the device
2874 * and queues a notification event for user-based device management
2875 * services.
2876 *
2877 * Normally this function is only called internally from
2878 * device_probe_and_attach().
2879 *
2880 * @param dev		the device to initialise
2881 *
2882 * @retval 0		success
2883 * @retval ENXIO	no driver was found
2884 * @retval ENOMEM	memory allocation failure
2885 * @retval non-zero	some other unix error code
2886 */
2887int
2888device_attach(device_t dev)
2889{
2890	uint64_t attachtime;
2891	int error;
2892
2893	if (resource_disabled(dev->driver->name, dev->unit)) {
2894		device_disable(dev);
2895		if (bootverbose)
2896			 device_printf(dev, "disabled via hints entry\n");
2897		return (ENXIO);
2898	}
2899
2900	device_sysctl_init(dev);
2901	if (!device_is_quiet(dev))
2902		device_print_child(dev->parent, dev);
2903	attachtime = get_cyclecount();
2904	dev->state = DS_ATTACHING;
2905	if ((error = DEVICE_ATTACH(dev)) != 0) {
2906		printf("device_attach: %s%d attach returned %d\n",
2907		    dev->driver->name, dev->unit, error);
2908		if (!(dev->flags & DF_FIXEDCLASS))
2909			devclass_delete_device(dev->devclass, dev);
2910		(void)device_set_driver(dev, NULL);
2911		device_sysctl_fini(dev);
2912		KASSERT(dev->busy == 0, ("attach failed but busy"));
2913		dev->state = DS_NOTPRESENT;
2914		return (error);
2915	}
2916	attachtime = get_cyclecount() - attachtime;
2917	/*
2918	 * 4 bits per device is a reasonable value for desktop and server
2919	 * hardware with good get_cyclecount() implementations, but WILL
2920	 * need to be adjusted on other platforms.
2921	 */
2922#define	RANDOM_PROBE_BIT_GUESS	4
2923	if (bootverbose)
2924		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2925		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2926		    dev->driver->name, dev->unit);
2927	random_harvest_direct(&attachtime, sizeof(attachtime),
2928	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2929	device_sysctl_update(dev);
2930	if (dev->busy)
2931		dev->state = DS_BUSY;
2932	else
2933		dev->state = DS_ATTACHED;
2934	dev->flags &= ~DF_DONENOMATCH;
2935	devadded(dev);
2936	return (0);
2937}
2938
2939/**
2940 * @brief Detach a driver from a device
2941 *
2942 * This function is a wrapper around the DEVICE_DETACH() driver
2943 * method. If the call to DEVICE_DETACH() succeeds, it calls
2944 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2945 * notification event for user-based device management services and
2946 * cleans up the device's sysctl tree.
2947 *
2948 * @param dev		the device to un-initialise
2949 *
2950 * @retval 0		success
2951 * @retval ENXIO	no driver was found
2952 * @retval ENOMEM	memory allocation failure
2953 * @retval non-zero	some other unix error code
2954 */
2955int
2956device_detach(device_t dev)
2957{
2958	int error;
2959
2960	GIANT_REQUIRED;
2961
2962	PDEBUG(("%s", DEVICENAME(dev)));
2963	if (dev->state == DS_BUSY)
2964		return (EBUSY);
2965	if (dev->state != DS_ATTACHED)
2966		return (0);
2967
2968	if ((error = DEVICE_DETACH(dev)) != 0)
2969		return (error);
2970	devremoved(dev);
2971	if (!device_is_quiet(dev))
2972		device_printf(dev, "detached\n");
2973	if (dev->parent)
2974		BUS_CHILD_DETACHED(dev->parent, dev);
2975
2976	if (!(dev->flags & DF_FIXEDCLASS))
2977		devclass_delete_device(dev->devclass, dev);
2978
2979	device_verbose(dev);
2980	dev->state = DS_NOTPRESENT;
2981	(void)device_set_driver(dev, NULL);
2982	device_sysctl_fini(dev);
2983
2984	return (0);
2985}
2986
2987/**
2988 * @brief Tells a driver to quiesce itself.
2989 *
2990 * This function is a wrapper around the DEVICE_QUIESCE() driver
2991 * method. If the call to DEVICE_QUIESCE() succeeds.
2992 *
2993 * @param dev		the device to quiesce
2994 *
2995 * @retval 0		success
2996 * @retval ENXIO	no driver was found
2997 * @retval ENOMEM	memory allocation failure
2998 * @retval non-zero	some other unix error code
2999 */
3000int
3001device_quiesce(device_t dev)
3002{
3003
3004	PDEBUG(("%s", DEVICENAME(dev)));
3005	if (dev->state == DS_BUSY)
3006		return (EBUSY);
3007	if (dev->state != DS_ATTACHED)
3008		return (0);
3009
3010	return (DEVICE_QUIESCE(dev));
3011}
3012
3013/**
3014 * @brief Notify a device of system shutdown
3015 *
3016 * This function calls the DEVICE_SHUTDOWN() driver method if the
3017 * device currently has an attached driver.
3018 *
3019 * @returns the value returned by DEVICE_SHUTDOWN()
3020 */
3021int
3022device_shutdown(device_t dev)
3023{
3024	if (dev->state < DS_ATTACHED)
3025		return (0);
3026	return (DEVICE_SHUTDOWN(dev));
3027}
3028
3029/**
3030 * @brief Set the unit number of a device
3031 *
3032 * This function can be used to override the unit number used for a
3033 * device (e.g. to wire a device to a pre-configured unit number).
3034 */
3035int
3036device_set_unit(device_t dev, int unit)
3037{
3038	devclass_t dc;
3039	int err;
3040
3041	dc = device_get_devclass(dev);
3042	if (unit < dc->maxunit && dc->devices[unit])
3043		return (EBUSY);
3044	err = devclass_delete_device(dc, dev);
3045	if (err)
3046		return (err);
3047	dev->unit = unit;
3048	err = devclass_add_device(dc, dev);
3049	if (err)
3050		return (err);
3051
3052	bus_data_generation_update();
3053	return (0);
3054}
3055
3056/*======================================*/
3057/*
3058 * Some useful method implementations to make life easier for bus drivers.
3059 */
3060
3061void
3062resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3063{
3064
3065	bzero(args, sz);
3066	args->size = sz;
3067	args->memattr = VM_MEMATTR_UNCACHEABLE;
3068}
3069
3070/**
3071 * @brief Initialise a resource list.
3072 *
3073 * @param rl		the resource list to initialise
3074 */
3075void
3076resource_list_init(struct resource_list *rl)
3077{
3078	STAILQ_INIT(rl);
3079}
3080
3081/**
3082 * @brief Reclaim memory used by a resource list.
3083 *
3084 * This function frees the memory for all resource entries on the list
3085 * (if any).
3086 *
3087 * @param rl		the resource list to free
3088 */
3089void
3090resource_list_free(struct resource_list *rl)
3091{
3092	struct resource_list_entry *rle;
3093
3094	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3095		if (rle->res)
3096			panic("resource_list_free: resource entry is busy");
3097		STAILQ_REMOVE_HEAD(rl, link);
3098		free(rle, M_BUS);
3099	}
3100}
3101
3102/**
3103 * @brief Add a resource entry.
3104 *
3105 * This function adds a resource entry using the given @p type, @p
3106 * start, @p end and @p count values. A rid value is chosen by
3107 * searching sequentially for the first unused rid starting at zero.
3108 *
3109 * @param rl		the resource list to edit
3110 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3111 * @param start		the start address of the resource
3112 * @param end		the end address of the resource
3113 * @param count		XXX end-start+1
3114 */
3115int
3116resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3117    rman_res_t end, rman_res_t count)
3118{
3119	int rid;
3120
3121	rid = 0;
3122	while (resource_list_find(rl, type, rid) != NULL)
3123		rid++;
3124	resource_list_add(rl, type, rid, start, end, count);
3125	return (rid);
3126}
3127
3128/**
3129 * @brief Add or modify a resource entry.
3130 *
3131 * If an existing entry exists with the same type and rid, it will be
3132 * modified using the given values of @p start, @p end and @p
3133 * count. If no entry exists, a new one will be created using the
3134 * given values.  The resource list entry that matches is then returned.
3135 *
3136 * @param rl		the resource list to edit
3137 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3138 * @param rid		the resource identifier
3139 * @param start		the start address of the resource
3140 * @param end		the end address of the resource
3141 * @param count		XXX end-start+1
3142 */
3143struct resource_list_entry *
3144resource_list_add(struct resource_list *rl, int type, int rid,
3145    rman_res_t start, rman_res_t end, rman_res_t count)
3146{
3147	struct resource_list_entry *rle;
3148
3149	rle = resource_list_find(rl, type, rid);
3150	if (!rle) {
3151		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3152		    M_NOWAIT);
3153		if (!rle)
3154			panic("resource_list_add: can't record entry");
3155		STAILQ_INSERT_TAIL(rl, rle, link);
3156		rle->type = type;
3157		rle->rid = rid;
3158		rle->res = NULL;
3159		rle->flags = 0;
3160	}
3161
3162	if (rle->res)
3163		panic("resource_list_add: resource entry is busy");
3164
3165	rle->start = start;
3166	rle->end = end;
3167	rle->count = count;
3168	return (rle);
3169}
3170
3171/**
3172 * @brief Determine if a resource entry is busy.
3173 *
3174 * Returns true if a resource entry is busy meaning that it has an
3175 * associated resource that is not an unallocated "reserved" resource.
3176 *
3177 * @param rl		the resource list to search
3178 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3179 * @param rid		the resource identifier
3180 *
3181 * @returns Non-zero if the entry is busy, zero otherwise.
3182 */
3183int
3184resource_list_busy(struct resource_list *rl, int type, int rid)
3185{
3186	struct resource_list_entry *rle;
3187
3188	rle = resource_list_find(rl, type, rid);
3189	if (rle == NULL || rle->res == NULL)
3190		return (0);
3191	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3192		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3193		    ("reserved resource is active"));
3194		return (0);
3195	}
3196	return (1);
3197}
3198
3199/**
3200 * @brief Determine if a resource entry is reserved.
3201 *
3202 * Returns true if a resource entry is reserved meaning that it has an
3203 * associated "reserved" resource.  The resource can either be
3204 * allocated or unallocated.
3205 *
3206 * @param rl		the resource list to search
3207 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3208 * @param rid		the resource identifier
3209 *
3210 * @returns Non-zero if the entry is reserved, zero otherwise.
3211 */
3212int
3213resource_list_reserved(struct resource_list *rl, int type, int rid)
3214{
3215	struct resource_list_entry *rle;
3216
3217	rle = resource_list_find(rl, type, rid);
3218	if (rle != NULL && rle->flags & RLE_RESERVED)
3219		return (1);
3220	return (0);
3221}
3222
3223/**
3224 * @brief Find a resource entry by type and rid.
3225 *
3226 * @param rl		the resource list to search
3227 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3228 * @param rid		the resource identifier
3229 *
3230 * @returns the resource entry pointer or NULL if there is no such
3231 * entry.
3232 */
3233struct resource_list_entry *
3234resource_list_find(struct resource_list *rl, int type, int rid)
3235{
3236	struct resource_list_entry *rle;
3237
3238	STAILQ_FOREACH(rle, rl, link) {
3239		if (rle->type == type && rle->rid == rid)
3240			return (rle);
3241	}
3242	return (NULL);
3243}
3244
3245/**
3246 * @brief Delete a resource entry.
3247 *
3248 * @param rl		the resource list to edit
3249 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3250 * @param rid		the resource identifier
3251 */
3252void
3253resource_list_delete(struct resource_list *rl, int type, int rid)
3254{
3255	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3256
3257	if (rle) {
3258		if (rle->res != NULL)
3259			panic("resource_list_delete: resource has not been released");
3260		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3261		free(rle, M_BUS);
3262	}
3263}
3264
3265/**
3266 * @brief Allocate a reserved resource
3267 *
3268 * This can be used by busses to force the allocation of resources
3269 * that are always active in the system even if they are not allocated
3270 * by a driver (e.g. PCI BARs).  This function is usually called when
3271 * adding a new child to the bus.  The resource is allocated from the
3272 * parent bus when it is reserved.  The resource list entry is marked
3273 * with RLE_RESERVED to note that it is a reserved resource.
3274 *
3275 * Subsequent attempts to allocate the resource with
3276 * resource_list_alloc() will succeed the first time and will set
3277 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3278 * resource that has been allocated is released with
3279 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3280 * the actual resource remains allocated.  The resource can be released to
3281 * the parent bus by calling resource_list_unreserve().
3282 *
3283 * @param rl		the resource list to allocate from
3284 * @param bus		the parent device of @p child
3285 * @param child		the device for which the resource is being reserved
3286 * @param type		the type of resource to allocate
3287 * @param rid		a pointer to the resource identifier
3288 * @param start		hint at the start of the resource range - pass
3289 *			@c 0 for any start address
3290 * @param end		hint at the end of the resource range - pass
3291 *			@c ~0 for any end address
3292 * @param count		hint at the size of range required - pass @c 1
3293 *			for any size
3294 * @param flags		any extra flags to control the resource
3295 *			allocation - see @c RF_XXX flags in
3296 *			<sys/rman.h> for details
3297 *
3298 * @returns		the resource which was allocated or @c NULL if no
3299 *			resource could be allocated
3300 */
3301struct resource *
3302resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3303    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3304{
3305	struct resource_list_entry *rle = NULL;
3306	int passthrough = (device_get_parent(child) != bus);
3307	struct resource *r;
3308
3309	if (passthrough)
3310		panic(
3311    "resource_list_reserve() should only be called for direct children");
3312	if (flags & RF_ACTIVE)
3313		panic(
3314    "resource_list_reserve() should only reserve inactive resources");
3315
3316	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3317	    flags);
3318	if (r != NULL) {
3319		rle = resource_list_find(rl, type, *rid);
3320		rle->flags |= RLE_RESERVED;
3321	}
3322	return (r);
3323}
3324
3325/**
3326 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3327 *
3328 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3329 * and passing the allocation up to the parent of @p bus. This assumes
3330 * that the first entry of @c device_get_ivars(child) is a struct
3331 * resource_list. This also handles 'passthrough' allocations where a
3332 * child is a remote descendant of bus by passing the allocation up to
3333 * the parent of bus.
3334 *
3335 * Typically, a bus driver would store a list of child resources
3336 * somewhere in the child device's ivars (see device_get_ivars()) and
3337 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3338 * then call resource_list_alloc() to perform the allocation.
3339 *
3340 * @param rl		the resource list to allocate from
3341 * @param bus		the parent device of @p child
3342 * @param child		the device which is requesting an allocation
3343 * @param type		the type of resource to allocate
3344 * @param rid		a pointer to the resource identifier
3345 * @param start		hint at the start of the resource range - pass
3346 *			@c 0 for any start address
3347 * @param end		hint at the end of the resource range - pass
3348 *			@c ~0 for any end address
3349 * @param count		hint at the size of range required - pass @c 1
3350 *			for any size
3351 * @param flags		any extra flags to control the resource
3352 *			allocation - see @c RF_XXX flags in
3353 *			<sys/rman.h> for details
3354 *
3355 * @returns		the resource which was allocated or @c NULL if no
3356 *			resource could be allocated
3357 */
3358struct resource *
3359resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3360    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3361{
3362	struct resource_list_entry *rle = NULL;
3363	int passthrough = (device_get_parent(child) != bus);
3364	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3365
3366	if (passthrough) {
3367		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3368		    type, rid, start, end, count, flags));
3369	}
3370
3371	rle = resource_list_find(rl, type, *rid);
3372
3373	if (!rle)
3374		return (NULL);		/* no resource of that type/rid */
3375
3376	if (rle->res) {
3377		if (rle->flags & RLE_RESERVED) {
3378			if (rle->flags & RLE_ALLOCATED)
3379				return (NULL);
3380			if ((flags & RF_ACTIVE) &&
3381			    bus_activate_resource(child, type, *rid,
3382			    rle->res) != 0)
3383				return (NULL);
3384			rle->flags |= RLE_ALLOCATED;
3385			return (rle->res);
3386		}
3387		device_printf(bus,
3388		    "resource entry %#x type %d for child %s is busy\n", *rid,
3389		    type, device_get_nameunit(child));
3390		return (NULL);
3391	}
3392
3393	if (isdefault) {
3394		start = rle->start;
3395		count = ulmax(count, rle->count);
3396		end = ulmax(rle->end, start + count - 1);
3397	}
3398
3399	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3400	    type, rid, start, end, count, flags);
3401
3402	/*
3403	 * Record the new range.
3404	 */
3405	if (rle->res) {
3406		rle->start = rman_get_start(rle->res);
3407		rle->end = rman_get_end(rle->res);
3408		rle->count = count;
3409	}
3410
3411	return (rle->res);
3412}
3413
3414/**
3415 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3416 *
3417 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3418 * used with resource_list_alloc().
3419 *
3420 * @param rl		the resource list which was allocated from
3421 * @param bus		the parent device of @p child
3422 * @param child		the device which is requesting a release
3423 * @param type		the type of resource to release
3424 * @param rid		the resource identifier
3425 * @param res		the resource to release
3426 *
3427 * @retval 0		success
3428 * @retval non-zero	a standard unix error code indicating what
3429 *			error condition prevented the operation
3430 */
3431int
3432resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3433    int type, int rid, struct resource *res)
3434{
3435	struct resource_list_entry *rle = NULL;
3436	int passthrough = (device_get_parent(child) != bus);
3437	int error;
3438
3439	if (passthrough) {
3440		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3441		    type, rid, res));
3442	}
3443
3444	rle = resource_list_find(rl, type, rid);
3445
3446	if (!rle)
3447		panic("resource_list_release: can't find resource");
3448	if (!rle->res)
3449		panic("resource_list_release: resource entry is not busy");
3450	if (rle->flags & RLE_RESERVED) {
3451		if (rle->flags & RLE_ALLOCATED) {
3452			if (rman_get_flags(res) & RF_ACTIVE) {
3453				error = bus_deactivate_resource(child, type,
3454				    rid, res);
3455				if (error)
3456					return (error);
3457			}
3458			rle->flags &= ~RLE_ALLOCATED;
3459			return (0);
3460		}
3461		return (EINVAL);
3462	}
3463
3464	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3465	    type, rid, res);
3466	if (error)
3467		return (error);
3468
3469	rle->res = NULL;
3470	return (0);
3471}
3472
3473/**
3474 * @brief Release all active resources of a given type
3475 *
3476 * Release all active resources of a specified type.  This is intended
3477 * to be used to cleanup resources leaked by a driver after detach or
3478 * a failed attach.
3479 *
3480 * @param rl		the resource list which was allocated from
3481 * @param bus		the parent device of @p child
3482 * @param child		the device whose active resources are being released
3483 * @param type		the type of resources to release
3484 *
3485 * @retval 0		success
3486 * @retval EBUSY	at least one resource was active
3487 */
3488int
3489resource_list_release_active(struct resource_list *rl, device_t bus,
3490    device_t child, int type)
3491{
3492	struct resource_list_entry *rle;
3493	int error, retval;
3494
3495	retval = 0;
3496	STAILQ_FOREACH(rle, rl, link) {
3497		if (rle->type != type)
3498			continue;
3499		if (rle->res == NULL)
3500			continue;
3501		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3502		    RLE_RESERVED)
3503			continue;
3504		retval = EBUSY;
3505		error = resource_list_release(rl, bus, child, type,
3506		    rman_get_rid(rle->res), rle->res);
3507		if (error != 0)
3508			device_printf(bus,
3509			    "Failed to release active resource: %d\n", error);
3510	}
3511	return (retval);
3512}
3513
3514
3515/**
3516 * @brief Fully release a reserved resource
3517 *
3518 * Fully releases a resource reserved via resource_list_reserve().
3519 *
3520 * @param rl		the resource list which was allocated from
3521 * @param bus		the parent device of @p child
3522 * @param child		the device whose reserved resource is being released
3523 * @param type		the type of resource to release
3524 * @param rid		the resource identifier
3525 * @param res		the resource to release
3526 *
3527 * @retval 0		success
3528 * @retval non-zero	a standard unix error code indicating what
3529 *			error condition prevented the operation
3530 */
3531int
3532resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3533    int type, int rid)
3534{
3535	struct resource_list_entry *rle = NULL;
3536	int passthrough = (device_get_parent(child) != bus);
3537
3538	if (passthrough)
3539		panic(
3540    "resource_list_unreserve() should only be called for direct children");
3541
3542	rle = resource_list_find(rl, type, rid);
3543
3544	if (!rle)
3545		panic("resource_list_unreserve: can't find resource");
3546	if (!(rle->flags & RLE_RESERVED))
3547		return (EINVAL);
3548	if (rle->flags & RLE_ALLOCATED)
3549		return (EBUSY);
3550	rle->flags &= ~RLE_RESERVED;
3551	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3552}
3553
3554/**
3555 * @brief Print a description of resources in a resource list
3556 *
3557 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3558 * The name is printed if at least one resource of the given type is available.
3559 * The format is used to print resource start and end.
3560 *
3561 * @param rl		the resource list to print
3562 * @param name		the name of @p type, e.g. @c "memory"
3563 * @param type		type type of resource entry to print
3564 * @param format	printf(9) format string to print resource
3565 *			start and end values
3566 *
3567 * @returns		the number of characters printed
3568 */
3569int
3570resource_list_print_type(struct resource_list *rl, const char *name, int type,
3571    const char *format)
3572{
3573	struct resource_list_entry *rle;
3574	int printed, retval;
3575
3576	printed = 0;
3577	retval = 0;
3578	/* Yes, this is kinda cheating */
3579	STAILQ_FOREACH(rle, rl, link) {
3580		if (rle->type == type) {
3581			if (printed == 0)
3582				retval += printf(" %s ", name);
3583			else
3584				retval += printf(",");
3585			printed++;
3586			retval += printf(format, rle->start);
3587			if (rle->count > 1) {
3588				retval += printf("-");
3589				retval += printf(format, rle->start +
3590						 rle->count - 1);
3591			}
3592		}
3593	}
3594	return (retval);
3595}
3596
3597/**
3598 * @brief Releases all the resources in a list.
3599 *
3600 * @param rl		The resource list to purge.
3601 *
3602 * @returns		nothing
3603 */
3604void
3605resource_list_purge(struct resource_list *rl)
3606{
3607	struct resource_list_entry *rle;
3608
3609	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3610		if (rle->res)
3611			bus_release_resource(rman_get_device(rle->res),
3612			    rle->type, rle->rid, rle->res);
3613		STAILQ_REMOVE_HEAD(rl, link);
3614		free(rle, M_BUS);
3615	}
3616}
3617
3618device_t
3619bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3620{
3621
3622	return (device_add_child_ordered(dev, order, name, unit));
3623}
3624
3625/**
3626 * @brief Helper function for implementing DEVICE_PROBE()
3627 *
3628 * This function can be used to help implement the DEVICE_PROBE() for
3629 * a bus (i.e. a device which has other devices attached to it). It
3630 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3631 * devclass.
3632 */
3633int
3634bus_generic_probe(device_t dev)
3635{
3636	devclass_t dc = dev->devclass;
3637	driverlink_t dl;
3638
3639	TAILQ_FOREACH(dl, &dc->drivers, link) {
3640		/*
3641		 * If this driver's pass is too high, then ignore it.
3642		 * For most drivers in the default pass, this will
3643		 * never be true.  For early-pass drivers they will
3644		 * only call the identify routines of eligible drivers
3645		 * when this routine is called.  Drivers for later
3646		 * passes should have their identify routines called
3647		 * on early-pass busses during BUS_NEW_PASS().
3648		 */
3649		if (dl->pass > bus_current_pass)
3650			continue;
3651		DEVICE_IDENTIFY(dl->driver, dev);
3652	}
3653
3654	return (0);
3655}
3656
3657/**
3658 * @brief Helper function for implementing DEVICE_ATTACH()
3659 *
3660 * This function can be used to help implement the DEVICE_ATTACH() for
3661 * a bus. It calls device_probe_and_attach() for each of the device's
3662 * children.
3663 */
3664int
3665bus_generic_attach(device_t dev)
3666{
3667	device_t child;
3668
3669	TAILQ_FOREACH(child, &dev->children, link) {
3670		device_probe_and_attach(child);
3671	}
3672
3673	return (0);
3674}
3675
3676/**
3677 * @brief Helper function for implementing DEVICE_DETACH()
3678 *
3679 * This function can be used to help implement the DEVICE_DETACH() for
3680 * a bus. It calls device_detach() for each of the device's
3681 * children.
3682 */
3683int
3684bus_generic_detach(device_t dev)
3685{
3686	device_t child;
3687	int error;
3688
3689	if (dev->state != DS_ATTACHED)
3690		return (EBUSY);
3691
3692	TAILQ_FOREACH(child, &dev->children, link) {
3693		if ((error = device_detach(child)) != 0)
3694			return (error);
3695	}
3696
3697	return (0);
3698}
3699
3700/**
3701 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3702 *
3703 * This function can be used to help implement the DEVICE_SHUTDOWN()
3704 * for a bus. It calls device_shutdown() for each of the device's
3705 * children.
3706 */
3707int
3708bus_generic_shutdown(device_t dev)
3709{
3710	device_t child;
3711
3712	TAILQ_FOREACH(child, &dev->children, link) {
3713		device_shutdown(child);
3714	}
3715
3716	return (0);
3717}
3718
3719/**
3720 * @brief Default function for suspending a child device.
3721 *
3722 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3723 */
3724int
3725bus_generic_suspend_child(device_t dev, device_t child)
3726{
3727	int	error;
3728
3729	error = DEVICE_SUSPEND(child);
3730
3731	if (error == 0)
3732		child->flags |= DF_SUSPENDED;
3733
3734	return (error);
3735}
3736
3737/**
3738 * @brief Default function for resuming a child device.
3739 *
3740 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3741 */
3742int
3743bus_generic_resume_child(device_t dev, device_t child)
3744{
3745
3746	DEVICE_RESUME(child);
3747	child->flags &= ~DF_SUSPENDED;
3748
3749	return (0);
3750}
3751
3752/**
3753 * @brief Helper function for implementing DEVICE_SUSPEND()
3754 *
3755 * This function can be used to help implement the DEVICE_SUSPEND()
3756 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3757 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3758 * operation is aborted and any devices which were suspended are
3759 * resumed immediately by calling their DEVICE_RESUME() methods.
3760 */
3761int
3762bus_generic_suspend(device_t dev)
3763{
3764	int		error;
3765	device_t	child, child2;
3766
3767	TAILQ_FOREACH(child, &dev->children, link) {
3768		error = BUS_SUSPEND_CHILD(dev, child);
3769		if (error) {
3770			for (child2 = TAILQ_FIRST(&dev->children);
3771			     child2 && child2 != child;
3772			     child2 = TAILQ_NEXT(child2, link))
3773				BUS_RESUME_CHILD(dev, child2);
3774			return (error);
3775		}
3776	}
3777	return (0);
3778}
3779
3780/**
3781 * @brief Helper function for implementing DEVICE_RESUME()
3782 *
3783 * This function can be used to help implement the DEVICE_RESUME() for
3784 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3785 */
3786int
3787bus_generic_resume(device_t dev)
3788{
3789	device_t	child;
3790
3791	TAILQ_FOREACH(child, &dev->children, link) {
3792		BUS_RESUME_CHILD(dev, child);
3793		/* if resume fails, there's nothing we can usefully do... */
3794	}
3795	return (0);
3796}
3797
3798/**
3799 * @brief Helper function for implementing BUS_PRINT_CHILD().
3800 *
3801 * This function prints the first part of the ascii representation of
3802 * @p child, including its name, unit and description (if any - see
3803 * device_set_desc()).
3804 *
3805 * @returns the number of characters printed
3806 */
3807int
3808bus_print_child_header(device_t dev, device_t child)
3809{
3810	int	retval = 0;
3811
3812	if (device_get_desc(child)) {
3813		retval += device_printf(child, "<%s>", device_get_desc(child));
3814	} else {
3815		retval += printf("%s", device_get_nameunit(child));
3816	}
3817
3818	return (retval);
3819}
3820
3821/**
3822 * @brief Helper function for implementing BUS_PRINT_CHILD().
3823 *
3824 * This function prints the last part of the ascii representation of
3825 * @p child, which consists of the string @c " on " followed by the
3826 * name and unit of the @p dev.
3827 *
3828 * @returns the number of characters printed
3829 */
3830int
3831bus_print_child_footer(device_t dev, device_t child)
3832{
3833	return (printf(" on %s\n", device_get_nameunit(dev)));
3834}
3835
3836/**
3837 * @brief Helper function for implementing BUS_PRINT_CHILD().
3838 *
3839 * This function prints out the VM domain for the given device.
3840 *
3841 * @returns the number of characters printed
3842 */
3843int
3844bus_print_child_domain(device_t dev, device_t child)
3845{
3846	int domain;
3847
3848	/* No domain? Don't print anything */
3849	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3850		return (0);
3851
3852	return (printf(" numa-domain %d", domain));
3853}
3854
3855/**
3856 * @brief Helper function for implementing BUS_PRINT_CHILD().
3857 *
3858 * This function simply calls bus_print_child_header() followed by
3859 * bus_print_child_footer().
3860 *
3861 * @returns the number of characters printed
3862 */
3863int
3864bus_generic_print_child(device_t dev, device_t child)
3865{
3866	int	retval = 0;
3867
3868	retval += bus_print_child_header(dev, child);
3869	retval += bus_print_child_domain(dev, child);
3870	retval += bus_print_child_footer(dev, child);
3871
3872	return (retval);
3873}
3874
3875/**
3876 * @brief Stub function for implementing BUS_READ_IVAR().
3877 *
3878 * @returns ENOENT
3879 */
3880int
3881bus_generic_read_ivar(device_t dev, device_t child, int index,
3882    uintptr_t * result)
3883{
3884	return (ENOENT);
3885}
3886
3887/**
3888 * @brief Stub function for implementing BUS_WRITE_IVAR().
3889 *
3890 * @returns ENOENT
3891 */
3892int
3893bus_generic_write_ivar(device_t dev, device_t child, int index,
3894    uintptr_t value)
3895{
3896	return (ENOENT);
3897}
3898
3899/**
3900 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3901 *
3902 * @returns NULL
3903 */
3904struct resource_list *
3905bus_generic_get_resource_list(device_t dev, device_t child)
3906{
3907	return (NULL);
3908}
3909
3910/**
3911 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3912 *
3913 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3914 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3915 * and then calls device_probe_and_attach() for each unattached child.
3916 */
3917void
3918bus_generic_driver_added(device_t dev, driver_t *driver)
3919{
3920	device_t child;
3921
3922	DEVICE_IDENTIFY(driver, dev);
3923	TAILQ_FOREACH(child, &dev->children, link) {
3924		if (child->state == DS_NOTPRESENT ||
3925		    (child->flags & DF_REBID))
3926			device_probe_and_attach(child);
3927	}
3928}
3929
3930/**
3931 * @brief Helper function for implementing BUS_NEW_PASS().
3932 *
3933 * This implementing of BUS_NEW_PASS() first calls the identify
3934 * routines for any drivers that probe at the current pass.  Then it
3935 * walks the list of devices for this bus.  If a device is already
3936 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3937 * device is not already attached, it attempts to attach a driver to
3938 * it.
3939 */
3940void
3941bus_generic_new_pass(device_t dev)
3942{
3943	driverlink_t dl;
3944	devclass_t dc;
3945	device_t child;
3946
3947	dc = dev->devclass;
3948	TAILQ_FOREACH(dl, &dc->drivers, link) {
3949		if (dl->pass == bus_current_pass)
3950			DEVICE_IDENTIFY(dl->driver, dev);
3951	}
3952	TAILQ_FOREACH(child, &dev->children, link) {
3953		if (child->state >= DS_ATTACHED)
3954			BUS_NEW_PASS(child);
3955		else if (child->state == DS_NOTPRESENT)
3956			device_probe_and_attach(child);
3957	}
3958}
3959
3960/**
3961 * @brief Helper function for implementing BUS_MAP_INTR().
3962 *
3963 * This simple implementation of BUS_MAP_INTR() simply calls the
3964 * BUS_MAP_INTR() method of the parent of @p dev.
3965 */
3966int
3967bus_generic_map_intr(device_t dev, device_t child, int *rid, rman_res_t *start,
3968    rman_res_t *end, rman_res_t *count, struct intr_map_data **imd)
3969{
3970	/* Propagate up the bus hierarchy until someone handles it. */
3971	if (dev->parent)
3972		return (BUS_MAP_INTR(dev->parent, child, rid, start, end, count,
3973		    imd));
3974	return (EINVAL);
3975}
3976
3977/**
3978 * @brief Helper function for implementing BUS_SETUP_INTR().
3979 *
3980 * This simple implementation of BUS_SETUP_INTR() simply calls the
3981 * BUS_SETUP_INTR() method of the parent of @p dev.
3982 */
3983int
3984bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3985    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3986    void **cookiep)
3987{
3988	/* Propagate up the bus hierarchy until someone handles it. */
3989	if (dev->parent)
3990		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3991		    filter, intr, arg, cookiep));
3992	return (EINVAL);
3993}
3994
3995/**
3996 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3997 *
3998 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3999 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
4000 */
4001int
4002bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
4003    void *cookie)
4004{
4005	/* Propagate up the bus hierarchy until someone handles it. */
4006	if (dev->parent)
4007		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4008	return (EINVAL);
4009}
4010
4011/**
4012 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4013 *
4014 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4015 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4016 */
4017int
4018bus_generic_adjust_resource(device_t dev, device_t child, int type,
4019    struct resource *r, rman_res_t start, rman_res_t end)
4020{
4021	/* Propagate up the bus hierarchy until someone handles it. */
4022	if (dev->parent)
4023		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4024		    end));
4025	return (EINVAL);
4026}
4027
4028/**
4029 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4030 *
4031 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4032 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4033 */
4034struct resource *
4035bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4036    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4037{
4038	/* Propagate up the bus hierarchy until someone handles it. */
4039	if (dev->parent)
4040		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4041		    start, end, count, flags));
4042	return (NULL);
4043}
4044
4045/**
4046 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4047 *
4048 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4049 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4050 */
4051int
4052bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4053    struct resource *r)
4054{
4055	/* Propagate up the bus hierarchy until someone handles it. */
4056	if (dev->parent)
4057		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4058		    r));
4059	return (EINVAL);
4060}
4061
4062/**
4063 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4064 *
4065 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4066 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4067 */
4068int
4069bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4070    struct resource *r)
4071{
4072	/* Propagate up the bus hierarchy until someone handles it. */
4073	if (dev->parent)
4074		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4075		    r));
4076	return (EINVAL);
4077}
4078
4079/**
4080 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4081 *
4082 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4083 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4084 */
4085int
4086bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4087    int rid, struct resource *r)
4088{
4089	/* Propagate up the bus hierarchy until someone handles it. */
4090	if (dev->parent)
4091		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4092		    r));
4093	return (EINVAL);
4094}
4095
4096/**
4097 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4098 *
4099 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4100 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4101 */
4102int
4103bus_generic_map_resource(device_t dev, device_t child, int type,
4104    struct resource *r, struct resource_map_request *args,
4105    struct resource_map *map)
4106{
4107	/* Propagate up the bus hierarchy until someone handles it. */
4108	if (dev->parent)
4109		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4110		    map));
4111	return (EINVAL);
4112}
4113
4114/**
4115 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4116 *
4117 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4118 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4119 */
4120int
4121bus_generic_unmap_resource(device_t dev, device_t child, int type,
4122    struct resource *r, struct resource_map *map)
4123{
4124	/* Propagate up the bus hierarchy until someone handles it. */
4125	if (dev->parent)
4126		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4127	return (EINVAL);
4128}
4129
4130/**
4131 * @brief Helper function for implementing BUS_BIND_INTR().
4132 *
4133 * This simple implementation of BUS_BIND_INTR() simply calls the
4134 * BUS_BIND_INTR() method of the parent of @p dev.
4135 */
4136int
4137bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4138    int cpu)
4139{
4140
4141	/* Propagate up the bus hierarchy until someone handles it. */
4142	if (dev->parent)
4143		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4144	return (EINVAL);
4145}
4146
4147/**
4148 * @brief Helper function for implementing BUS_CONFIG_INTR().
4149 *
4150 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4151 * BUS_CONFIG_INTR() method of the parent of @p dev.
4152 */
4153int
4154bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4155    enum intr_polarity pol)
4156{
4157
4158	/* Propagate up the bus hierarchy until someone handles it. */
4159	if (dev->parent)
4160		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4161	return (EINVAL);
4162}
4163
4164/**
4165 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4166 *
4167 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4168 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4169 */
4170int
4171bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4172    void *cookie, const char *descr)
4173{
4174
4175	/* Propagate up the bus hierarchy until someone handles it. */
4176	if (dev->parent)
4177		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4178		    descr));
4179	return (EINVAL);
4180}
4181
4182/**
4183 * @brief Helper function for implementing BUS_GET_CPUS().
4184 *
4185 * This simple implementation of BUS_GET_CPUS() simply calls the
4186 * BUS_GET_CPUS() method of the parent of @p dev.
4187 */
4188int
4189bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4190    size_t setsize, cpuset_t *cpuset)
4191{
4192
4193	/* Propagate up the bus hierarchy until someone handles it. */
4194	if (dev->parent != NULL)
4195		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4196	return (EINVAL);
4197}
4198
4199/**
4200 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4201 *
4202 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4203 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4204 */
4205bus_dma_tag_t
4206bus_generic_get_dma_tag(device_t dev, device_t child)
4207{
4208
4209	/* Propagate up the bus hierarchy until someone handles it. */
4210	if (dev->parent != NULL)
4211		return (BUS_GET_DMA_TAG(dev->parent, child));
4212	return (NULL);
4213}
4214
4215/**
4216 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4217 *
4218 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4219 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4220 */
4221bus_space_tag_t
4222bus_generic_get_bus_tag(device_t dev, device_t child)
4223{
4224
4225	/* Propagate up the bus hierarchy until someone handles it. */
4226	if (dev->parent != NULL)
4227		return (BUS_GET_BUS_TAG(dev->parent, child));
4228	return ((bus_space_tag_t)0);
4229}
4230
4231/**
4232 * @brief Helper function for implementing BUS_GET_RESOURCE().
4233 *
4234 * This implementation of BUS_GET_RESOURCE() uses the
4235 * resource_list_find() function to do most of the work. It calls
4236 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4237 * search.
4238 */
4239int
4240bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4241    rman_res_t *startp, rman_res_t *countp)
4242{
4243	struct resource_list *		rl = NULL;
4244	struct resource_list_entry *	rle = NULL;
4245
4246	rl = BUS_GET_RESOURCE_LIST(dev, child);
4247	if (!rl)
4248		return (EINVAL);
4249
4250	rle = resource_list_find(rl, type, rid);
4251	if (!rle)
4252		return (ENOENT);
4253
4254	if (startp)
4255		*startp = rle->start;
4256	if (countp)
4257		*countp = rle->count;
4258
4259	return (0);
4260}
4261
4262/**
4263 * @brief Helper function for implementing BUS_SET_RESOURCE().
4264 *
4265 * This implementation of BUS_SET_RESOURCE() uses the
4266 * resource_list_add() function to do most of the work. It calls
4267 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4268 * edit.
4269 */
4270int
4271bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4272    rman_res_t start, rman_res_t count)
4273{
4274	struct resource_list *		rl = NULL;
4275
4276	rl = BUS_GET_RESOURCE_LIST(dev, child);
4277	if (!rl)
4278		return (EINVAL);
4279
4280	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4281
4282	return (0);
4283}
4284
4285/**
4286 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4287 *
4288 * This implementation of BUS_DELETE_RESOURCE() uses the
4289 * resource_list_delete() function to do most of the work. It calls
4290 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4291 * edit.
4292 */
4293void
4294bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4295{
4296	struct resource_list *		rl = NULL;
4297
4298	rl = BUS_GET_RESOURCE_LIST(dev, child);
4299	if (!rl)
4300		return;
4301
4302	resource_list_delete(rl, type, rid);
4303
4304	return;
4305}
4306
4307/**
4308 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4309 *
4310 * This implementation of BUS_RELEASE_RESOURCE() uses the
4311 * resource_list_release() function to do most of the work. It calls
4312 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4313 */
4314int
4315bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4316    int rid, struct resource *r)
4317{
4318	struct resource_list *		rl = NULL;
4319
4320	if (device_get_parent(child) != dev)
4321		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4322		    type, rid, r));
4323
4324	rl = BUS_GET_RESOURCE_LIST(dev, child);
4325	if (!rl)
4326		return (EINVAL);
4327
4328	return (resource_list_release(rl, dev, child, type, rid, r));
4329}
4330
4331/**
4332 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4333 *
4334 * This implementation of BUS_ALLOC_RESOURCE() uses the
4335 * resource_list_alloc() function to do most of the work. It calls
4336 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4337 */
4338struct resource *
4339bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4340    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4341{
4342	struct resource_list *		rl = NULL;
4343
4344	if (device_get_parent(child) != dev)
4345		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4346		    type, rid, start, end, count, flags));
4347
4348	rl = BUS_GET_RESOURCE_LIST(dev, child);
4349	if (!rl)
4350		return (NULL);
4351
4352	return (resource_list_alloc(rl, dev, child, type, rid,
4353	    start, end, count, flags));
4354}
4355
4356/**
4357 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4358 *
4359 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4360 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4361 */
4362int
4363bus_generic_child_present(device_t dev, device_t child)
4364{
4365	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4366}
4367
4368int
4369bus_generic_get_domain(device_t dev, device_t child, int *domain)
4370{
4371
4372	if (dev->parent)
4373		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4374
4375	return (ENOENT);
4376}
4377
4378/**
4379 * @brief Helper function for implementing BUS_RESCAN().
4380 *
4381 * This null implementation of BUS_RESCAN() always fails to indicate
4382 * the bus does not support rescanning.
4383 */
4384int
4385bus_null_rescan(device_t dev)
4386{
4387
4388	return (ENXIO);
4389}
4390
4391/*
4392 * Some convenience functions to make it easier for drivers to use the
4393 * resource-management functions.  All these really do is hide the
4394 * indirection through the parent's method table, making for slightly
4395 * less-wordy code.  In the future, it might make sense for this code
4396 * to maintain some sort of a list of resources allocated by each device.
4397 */
4398
4399int
4400bus_alloc_resources(device_t dev, struct resource_spec *rs,
4401    struct resource **res)
4402{
4403	int i;
4404
4405	for (i = 0; rs[i].type != -1; i++)
4406		res[i] = NULL;
4407	for (i = 0; rs[i].type != -1; i++) {
4408		res[i] = bus_alloc_resource_any(dev,
4409		    rs[i].type, &rs[i].rid, rs[i].flags);
4410		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4411			bus_release_resources(dev, rs, res);
4412			return (ENXIO);
4413		}
4414	}
4415	return (0);
4416}
4417
4418void
4419bus_release_resources(device_t dev, const struct resource_spec *rs,
4420    struct resource **res)
4421{
4422	int i;
4423
4424	for (i = 0; rs[i].type != -1; i++)
4425		if (res[i] != NULL) {
4426			bus_release_resource(
4427			    dev, rs[i].type, rs[i].rid, res[i]);
4428			res[i] = NULL;
4429		}
4430}
4431
4432#ifdef INTRNG
4433/**
4434 * @internal
4435 *
4436 * This can be converted to bus method later. (XXX)
4437 */
4438static struct intr_map_data *
4439bus_extend_resource(device_t dev, int type, int *rid, rman_res_t *start,
4440    rman_res_t *end, rman_res_t *count)
4441{
4442	struct intr_map_data *imd;
4443	struct resource_list *rl;
4444	int rv;
4445
4446	if (dev->parent == NULL)
4447		return (NULL);
4448	if (type != SYS_RES_IRQ)
4449		return (NULL);
4450
4451	if (!RMAN_IS_DEFAULT_RANGE(*start, *end))
4452		return (NULL);
4453	rl = BUS_GET_RESOURCE_LIST(dev->parent, dev);
4454	if (rl != NULL) {
4455		if (resource_list_find(rl, type, *rid) != NULL)
4456			return (NULL);
4457	}
4458	rv = BUS_MAP_INTR(dev->parent, dev, rid, start, end, count, &imd);
4459	if (rv != 0)
4460		return (NULL);
4461	if (rl != NULL)
4462		resource_list_add(rl, type, *rid, *start, *end, *count);
4463	return (imd);
4464}
4465#endif
4466
4467/**
4468 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4469 *
4470 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4471 * parent of @p dev.
4472 */
4473struct resource *
4474bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4475    rman_res_t end, rman_res_t count, u_int flags)
4476{
4477	struct resource *res;
4478#ifdef INTRNG
4479	struct intr_map_data *imd;
4480#endif
4481
4482	if (dev->parent == NULL)
4483		return (NULL);
4484
4485#ifdef INTRNG
4486	imd = bus_extend_resource(dev, type, rid, &start, &end, &count);
4487#endif
4488	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4489	    count, flags);
4490#ifdef INTRNG
4491	if (imd != NULL) {
4492		if (res != NULL && rman_get_virtual(res) == NULL)
4493			rman_set_virtual(res, imd);
4494		else
4495			imd->destruct(imd);
4496	}
4497#endif
4498	return (res);
4499}
4500
4501/**
4502 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4503 *
4504 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4505 * parent of @p dev.
4506 */
4507int
4508bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4509    rman_res_t end)
4510{
4511	if (dev->parent == NULL)
4512		return (EINVAL);
4513	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4514}
4515
4516/**
4517 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4518 *
4519 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4520 * parent of @p dev.
4521 */
4522int
4523bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4524{
4525	if (dev->parent == NULL)
4526		return (EINVAL);
4527	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4528}
4529
4530/**
4531 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4532 *
4533 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4534 * parent of @p dev.
4535 */
4536int
4537bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4538{
4539	if (dev->parent == NULL)
4540		return (EINVAL);
4541	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4542}
4543
4544/**
4545 * @brief Wrapper function for BUS_MAP_RESOURCE().
4546 *
4547 * This function simply calls the BUS_MAP_RESOURCE() method of the
4548 * parent of @p dev.
4549 */
4550int
4551bus_map_resource(device_t dev, int type, struct resource *r,
4552    struct resource_map_request *args, struct resource_map *map)
4553{
4554	if (dev->parent == NULL)
4555		return (EINVAL);
4556	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4557}
4558
4559/**
4560 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4561 *
4562 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4563 * parent of @p dev.
4564 */
4565int
4566bus_unmap_resource(device_t dev, int type, struct resource *r,
4567    struct resource_map *map)
4568{
4569	if (dev->parent == NULL)
4570		return (EINVAL);
4571	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4572}
4573
4574/**
4575 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4576 *
4577 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4578 * parent of @p dev.
4579 */
4580int
4581bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4582{
4583	int rv;
4584#ifdef INTRNG
4585	struct intr_map_data *imd;
4586#endif
4587
4588	if (dev->parent == NULL)
4589		return (EINVAL);
4590
4591#ifdef INTRNG
4592	imd = (type == SYS_RES_IRQ) ? rman_get_virtual(r) : NULL;
4593#endif
4594	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4595#ifdef INTRNG
4596	if (imd != NULL)
4597		imd->destruct(imd);
4598#endif
4599	return (rv);
4600}
4601
4602/**
4603 * @brief Wrapper function for BUS_SETUP_INTR().
4604 *
4605 * This function simply calls the BUS_SETUP_INTR() method of the
4606 * parent of @p dev.
4607 */
4608int
4609bus_setup_intr(device_t dev, struct resource *r, int flags,
4610    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4611{
4612	int error;
4613
4614	if (dev->parent == NULL)
4615		return (EINVAL);
4616	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4617	    arg, cookiep);
4618	if (error != 0)
4619		return (error);
4620	if (handler != NULL && !(flags & INTR_MPSAFE))
4621		device_printf(dev, "[GIANT-LOCKED]\n");
4622	return (0);
4623}
4624
4625/**
4626 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4627 *
4628 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4629 * parent of @p dev.
4630 */
4631int
4632bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4633{
4634	if (dev->parent == NULL)
4635		return (EINVAL);
4636	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4637}
4638
4639/**
4640 * @brief Wrapper function for BUS_BIND_INTR().
4641 *
4642 * This function simply calls the BUS_BIND_INTR() method of the
4643 * parent of @p dev.
4644 */
4645int
4646bus_bind_intr(device_t dev, struct resource *r, int cpu)
4647{
4648	if (dev->parent == NULL)
4649		return (EINVAL);
4650	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4651}
4652
4653/**
4654 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4655 *
4656 * This function first formats the requested description into a
4657 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4658 * the parent of @p dev.
4659 */
4660int
4661bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4662    const char *fmt, ...)
4663{
4664	va_list ap;
4665	char descr[MAXCOMLEN + 1];
4666
4667	if (dev->parent == NULL)
4668		return (EINVAL);
4669	va_start(ap, fmt);
4670	vsnprintf(descr, sizeof(descr), fmt, ap);
4671	va_end(ap);
4672	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4673}
4674
4675/**
4676 * @brief Wrapper function for BUS_SET_RESOURCE().
4677 *
4678 * This function simply calls the BUS_SET_RESOURCE() method of the
4679 * parent of @p dev.
4680 */
4681int
4682bus_set_resource(device_t dev, int type, int rid,
4683    rman_res_t start, rman_res_t count)
4684{
4685	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4686	    start, count));
4687}
4688
4689/**
4690 * @brief Wrapper function for BUS_GET_RESOURCE().
4691 *
4692 * This function simply calls the BUS_GET_RESOURCE() method of the
4693 * parent of @p dev.
4694 */
4695int
4696bus_get_resource(device_t dev, int type, int rid,
4697    rman_res_t *startp, rman_res_t *countp)
4698{
4699	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4700	    startp, countp));
4701}
4702
4703/**
4704 * @brief Wrapper function for BUS_GET_RESOURCE().
4705 *
4706 * This function simply calls the BUS_GET_RESOURCE() method of the
4707 * parent of @p dev and returns the start value.
4708 */
4709rman_res_t
4710bus_get_resource_start(device_t dev, int type, int rid)
4711{
4712	rman_res_t start;
4713	rman_res_t count;
4714	int error;
4715
4716	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4717	    &start, &count);
4718	if (error)
4719		return (0);
4720	return (start);
4721}
4722
4723/**
4724 * @brief Wrapper function for BUS_GET_RESOURCE().
4725 *
4726 * This function simply calls the BUS_GET_RESOURCE() method of the
4727 * parent of @p dev and returns the count value.
4728 */
4729rman_res_t
4730bus_get_resource_count(device_t dev, int type, int rid)
4731{
4732	rman_res_t start;
4733	rman_res_t count;
4734	int error;
4735
4736	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4737	    &start, &count);
4738	if (error)
4739		return (0);
4740	return (count);
4741}
4742
4743/**
4744 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4745 *
4746 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4747 * parent of @p dev.
4748 */
4749void
4750bus_delete_resource(device_t dev, int type, int rid)
4751{
4752	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4753}
4754
4755/**
4756 * @brief Wrapper function for BUS_CHILD_PRESENT().
4757 *
4758 * This function simply calls the BUS_CHILD_PRESENT() method of the
4759 * parent of @p dev.
4760 */
4761int
4762bus_child_present(device_t child)
4763{
4764	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4765}
4766
4767/**
4768 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4769 *
4770 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4771 * parent of @p dev.
4772 */
4773int
4774bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4775{
4776	device_t parent;
4777
4778	parent = device_get_parent(child);
4779	if (parent == NULL) {
4780		*buf = '\0';
4781		return (0);
4782	}
4783	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4784}
4785
4786/**
4787 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4788 *
4789 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4790 * parent of @p dev.
4791 */
4792int
4793bus_child_location_str(device_t child, char *buf, size_t buflen)
4794{
4795	device_t parent;
4796
4797	parent = device_get_parent(child);
4798	if (parent == NULL) {
4799		*buf = '\0';
4800		return (0);
4801	}
4802	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4803}
4804
4805/**
4806 * @brief Wrapper function for BUS_GET_CPUS().
4807 *
4808 * This function simply calls the BUS_GET_CPUS() method of the
4809 * parent of @p dev.
4810 */
4811int
4812bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4813{
4814	device_t parent;
4815
4816	parent = device_get_parent(dev);
4817	if (parent == NULL)
4818		return (EINVAL);
4819	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4820}
4821
4822/**
4823 * @brief Wrapper function for BUS_GET_DMA_TAG().
4824 *
4825 * This function simply calls the BUS_GET_DMA_TAG() method of the
4826 * parent of @p dev.
4827 */
4828bus_dma_tag_t
4829bus_get_dma_tag(device_t dev)
4830{
4831	device_t parent;
4832
4833	parent = device_get_parent(dev);
4834	if (parent == NULL)
4835		return (NULL);
4836	return (BUS_GET_DMA_TAG(parent, dev));
4837}
4838
4839/**
4840 * @brief Wrapper function for BUS_GET_BUS_TAG().
4841 *
4842 * This function simply calls the BUS_GET_BUS_TAG() method of the
4843 * parent of @p dev.
4844 */
4845bus_space_tag_t
4846bus_get_bus_tag(device_t dev)
4847{
4848	device_t parent;
4849
4850	parent = device_get_parent(dev);
4851	if (parent == NULL)
4852		return ((bus_space_tag_t)0);
4853	return (BUS_GET_BUS_TAG(parent, dev));
4854}
4855
4856/**
4857 * @brief Wrapper function for BUS_GET_DOMAIN().
4858 *
4859 * This function simply calls the BUS_GET_DOMAIN() method of the
4860 * parent of @p dev.
4861 */
4862int
4863bus_get_domain(device_t dev, int *domain)
4864{
4865	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4866}
4867
4868/* Resume all devices and then notify userland that we're up again. */
4869static int
4870root_resume(device_t dev)
4871{
4872	int error;
4873
4874	error = bus_generic_resume(dev);
4875	if (error == 0)
4876		devctl_notify("kern", "power", "resume", NULL);
4877	return (error);
4878}
4879
4880static int
4881root_print_child(device_t dev, device_t child)
4882{
4883	int	retval = 0;
4884
4885	retval += bus_print_child_header(dev, child);
4886	retval += printf("\n");
4887
4888	return (retval);
4889}
4890
4891static int
4892root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4893    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4894{
4895	/*
4896	 * If an interrupt mapping gets to here something bad has happened.
4897	 */
4898	panic("root_setup_intr");
4899}
4900
4901/*
4902 * If we get here, assume that the device is permanent and really is
4903 * present in the system.  Removable bus drivers are expected to intercept
4904 * this call long before it gets here.  We return -1 so that drivers that
4905 * really care can check vs -1 or some ERRNO returned higher in the food
4906 * chain.
4907 */
4908static int
4909root_child_present(device_t dev, device_t child)
4910{
4911	return (-1);
4912}
4913
4914static int
4915root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4916    cpuset_t *cpuset)
4917{
4918
4919	switch (op) {
4920	case INTR_CPUS:
4921		/* Default to returning the set of all CPUs. */
4922		if (setsize != sizeof(cpuset_t))
4923			return (EINVAL);
4924		*cpuset = all_cpus;
4925		return (0);
4926	default:
4927		return (EINVAL);
4928	}
4929}
4930
4931static kobj_method_t root_methods[] = {
4932	/* Device interface */
4933	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4934	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4935	KOBJMETHOD(device_resume,	root_resume),
4936
4937	/* Bus interface */
4938	KOBJMETHOD(bus_print_child,	root_print_child),
4939	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4940	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4941	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4942	KOBJMETHOD(bus_child_present,	root_child_present),
4943	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4944
4945	KOBJMETHOD_END
4946};
4947
4948static driver_t root_driver = {
4949	"root",
4950	root_methods,
4951	1,			/* no softc */
4952};
4953
4954device_t	root_bus;
4955devclass_t	root_devclass;
4956
4957static int
4958root_bus_module_handler(module_t mod, int what, void* arg)
4959{
4960	switch (what) {
4961	case MOD_LOAD:
4962		TAILQ_INIT(&bus_data_devices);
4963		kobj_class_compile((kobj_class_t) &root_driver);
4964		root_bus = make_device(NULL, "root", 0);
4965		root_bus->desc = "System root bus";
4966		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4967		root_bus->driver = &root_driver;
4968		root_bus->state = DS_ATTACHED;
4969		root_devclass = devclass_find_internal("root", NULL, FALSE);
4970		devinit();
4971		return (0);
4972
4973	case MOD_SHUTDOWN:
4974		device_shutdown(root_bus);
4975		return (0);
4976	default:
4977		return (EOPNOTSUPP);
4978	}
4979
4980	return (0);
4981}
4982
4983static moduledata_t root_bus_mod = {
4984	"rootbus",
4985	root_bus_module_handler,
4986	NULL
4987};
4988DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4989
4990/**
4991 * @brief Automatically configure devices
4992 *
4993 * This function begins the autoconfiguration process by calling
4994 * device_probe_and_attach() for each child of the @c root0 device.
4995 */
4996void
4997root_bus_configure(void)
4998{
4999
5000	PDEBUG(("."));
5001
5002	/* Eventually this will be split up, but this is sufficient for now. */
5003	bus_set_pass(BUS_PASS_DEFAULT);
5004}
5005
5006/**
5007 * @brief Module handler for registering device drivers
5008 *
5009 * This module handler is used to automatically register device
5010 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5011 * devclass_add_driver() for the driver described by the
5012 * driver_module_data structure pointed to by @p arg
5013 */
5014int
5015driver_module_handler(module_t mod, int what, void *arg)
5016{
5017	struct driver_module_data *dmd;
5018	devclass_t bus_devclass;
5019	kobj_class_t driver;
5020	int error, pass;
5021
5022	dmd = (struct driver_module_data *)arg;
5023	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5024	error = 0;
5025
5026	switch (what) {
5027	case MOD_LOAD:
5028		if (dmd->dmd_chainevh)
5029			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5030
5031		pass = dmd->dmd_pass;
5032		driver = dmd->dmd_driver;
5033		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5034		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5035		error = devclass_add_driver(bus_devclass, driver, pass,
5036		    dmd->dmd_devclass);
5037		break;
5038
5039	case MOD_UNLOAD:
5040		PDEBUG(("Unloading module: driver %s from bus %s",
5041		    DRIVERNAME(dmd->dmd_driver),
5042		    dmd->dmd_busname));
5043		error = devclass_delete_driver(bus_devclass,
5044		    dmd->dmd_driver);
5045
5046		if (!error && dmd->dmd_chainevh)
5047			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5048		break;
5049	case MOD_QUIESCE:
5050		PDEBUG(("Quiesce module: driver %s from bus %s",
5051		    DRIVERNAME(dmd->dmd_driver),
5052		    dmd->dmd_busname));
5053		error = devclass_quiesce_driver(bus_devclass,
5054		    dmd->dmd_driver);
5055
5056		if (!error && dmd->dmd_chainevh)
5057			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5058		break;
5059	default:
5060		error = EOPNOTSUPP;
5061		break;
5062	}
5063
5064	return (error);
5065}
5066
5067/**
5068 * @brief Enumerate all hinted devices for this bus.
5069 *
5070 * Walks through the hints for this bus and calls the bus_hinted_child
5071 * routine for each one it fines.  It searches first for the specific
5072 * bus that's being probed for hinted children (eg isa0), and then for
5073 * generic children (eg isa).
5074 *
5075 * @param	dev	bus device to enumerate
5076 */
5077void
5078bus_enumerate_hinted_children(device_t bus)
5079{
5080	int i;
5081	const char *dname, *busname;
5082	int dunit;
5083
5084	/*
5085	 * enumerate all devices on the specific bus
5086	 */
5087	busname = device_get_nameunit(bus);
5088	i = 0;
5089	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5090		BUS_HINTED_CHILD(bus, dname, dunit);
5091
5092	/*
5093	 * and all the generic ones.
5094	 */
5095	busname = device_get_name(bus);
5096	i = 0;
5097	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5098		BUS_HINTED_CHILD(bus, dname, dunit);
5099}
5100
5101#ifdef BUS_DEBUG
5102
5103/* the _short versions avoid iteration by not calling anything that prints
5104 * more than oneliners. I love oneliners.
5105 */
5106
5107static void
5108print_device_short(device_t dev, int indent)
5109{
5110	if (!dev)
5111		return;
5112
5113	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5114	    dev->unit, dev->desc,
5115	    (dev->parent? "":"no "),
5116	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5117	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5118	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5119	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5120	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5121	    (dev->flags&DF_REBID? "rebiddable,":""),
5122	    (dev->ivars? "":"no "),
5123	    (dev->softc? "":"no "),
5124	    dev->busy));
5125}
5126
5127static void
5128print_device(device_t dev, int indent)
5129{
5130	if (!dev)
5131		return;
5132
5133	print_device_short(dev, indent);
5134
5135	indentprintf(("Parent:\n"));
5136	print_device_short(dev->parent, indent+1);
5137	indentprintf(("Driver:\n"));
5138	print_driver_short(dev->driver, indent+1);
5139	indentprintf(("Devclass:\n"));
5140	print_devclass_short(dev->devclass, indent+1);
5141}
5142
5143void
5144print_device_tree_short(device_t dev, int indent)
5145/* print the device and all its children (indented) */
5146{
5147	device_t child;
5148
5149	if (!dev)
5150		return;
5151
5152	print_device_short(dev, indent);
5153
5154	TAILQ_FOREACH(child, &dev->children, link) {
5155		print_device_tree_short(child, indent+1);
5156	}
5157}
5158
5159void
5160print_device_tree(device_t dev, int indent)
5161/* print the device and all its children (indented) */
5162{
5163	device_t child;
5164
5165	if (!dev)
5166		return;
5167
5168	print_device(dev, indent);
5169
5170	TAILQ_FOREACH(child, &dev->children, link) {
5171		print_device_tree(child, indent+1);
5172	}
5173}
5174
5175static void
5176print_driver_short(driver_t *driver, int indent)
5177{
5178	if (!driver)
5179		return;
5180
5181	indentprintf(("driver %s: softc size = %zd\n",
5182	    driver->name, driver->size));
5183}
5184
5185static void
5186print_driver(driver_t *driver, int indent)
5187{
5188	if (!driver)
5189		return;
5190
5191	print_driver_short(driver, indent);
5192}
5193
5194static void
5195print_driver_list(driver_list_t drivers, int indent)
5196{
5197	driverlink_t driver;
5198
5199	TAILQ_FOREACH(driver, &drivers, link) {
5200		print_driver(driver->driver, indent);
5201	}
5202}
5203
5204static void
5205print_devclass_short(devclass_t dc, int indent)
5206{
5207	if ( !dc )
5208		return;
5209
5210	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5211}
5212
5213static void
5214print_devclass(devclass_t dc, int indent)
5215{
5216	int i;
5217
5218	if ( !dc )
5219		return;
5220
5221	print_devclass_short(dc, indent);
5222	indentprintf(("Drivers:\n"));
5223	print_driver_list(dc->drivers, indent+1);
5224
5225	indentprintf(("Devices:\n"));
5226	for (i = 0; i < dc->maxunit; i++)
5227		if (dc->devices[i])
5228			print_device(dc->devices[i], indent+1);
5229}
5230
5231void
5232print_devclass_list_short(void)
5233{
5234	devclass_t dc;
5235
5236	printf("Short listing of devclasses, drivers & devices:\n");
5237	TAILQ_FOREACH(dc, &devclasses, link) {
5238		print_devclass_short(dc, 0);
5239	}
5240}
5241
5242void
5243print_devclass_list(void)
5244{
5245	devclass_t dc;
5246
5247	printf("Full listing of devclasses, drivers & devices:\n");
5248	TAILQ_FOREACH(dc, &devclasses, link) {
5249		print_devclass(dc, 0);
5250	}
5251}
5252
5253#endif
5254
5255/*
5256 * User-space access to the device tree.
5257 *
5258 * We implement a small set of nodes:
5259 *
5260 * hw.bus			Single integer read method to obtain the
5261 *				current generation count.
5262 * hw.bus.devices		Reads the entire device tree in flat space.
5263 * hw.bus.rman			Resource manager interface
5264 *
5265 * We might like to add the ability to scan devclasses and/or drivers to
5266 * determine what else is currently loaded/available.
5267 */
5268
5269static int
5270sysctl_bus(SYSCTL_HANDLER_ARGS)
5271{
5272	struct u_businfo	ubus;
5273
5274	ubus.ub_version = BUS_USER_VERSION;
5275	ubus.ub_generation = bus_data_generation;
5276
5277	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5278}
5279SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5280    "bus-related data");
5281
5282static int
5283sysctl_devices(SYSCTL_HANDLER_ARGS)
5284{
5285	int			*name = (int *)arg1;
5286	u_int			namelen = arg2;
5287	int			index;
5288	struct device		*dev;
5289	struct u_device		udev;	/* XXX this is a bit big */
5290	int			error;
5291
5292	if (namelen != 2)
5293		return (EINVAL);
5294
5295	if (bus_data_generation_check(name[0]))
5296		return (EINVAL);
5297
5298	index = name[1];
5299
5300	/*
5301	 * Scan the list of devices, looking for the requested index.
5302	 */
5303	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5304		if (index-- == 0)
5305			break;
5306	}
5307	if (dev == NULL)
5308		return (ENOENT);
5309
5310	/*
5311	 * Populate the return array.
5312	 */
5313	bzero(&udev, sizeof(udev));
5314	udev.dv_handle = (uintptr_t)dev;
5315	udev.dv_parent = (uintptr_t)dev->parent;
5316	if (dev->nameunit != NULL)
5317		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5318	if (dev->desc != NULL)
5319		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5320	if (dev->driver != NULL && dev->driver->name != NULL)
5321		strlcpy(udev.dv_drivername, dev->driver->name,
5322		    sizeof(udev.dv_drivername));
5323	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5324	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5325	udev.dv_devflags = dev->devflags;
5326	udev.dv_flags = dev->flags;
5327	udev.dv_state = dev->state;
5328	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5329	return (error);
5330}
5331
5332SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5333    "system device tree");
5334
5335int
5336bus_data_generation_check(int generation)
5337{
5338	if (generation != bus_data_generation)
5339		return (1);
5340
5341	/* XXX generate optimised lists here? */
5342	return (0);
5343}
5344
5345void
5346bus_data_generation_update(void)
5347{
5348	bus_data_generation++;
5349}
5350
5351int
5352bus_free_resource(device_t dev, int type, struct resource *r)
5353{
5354	if (r == NULL)
5355		return (0);
5356	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5357}
5358
5359device_t
5360device_lookup_by_name(const char *name)
5361{
5362	device_t dev;
5363
5364	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5365		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5366			return (dev);
5367	}
5368	return (NULL);
5369}
5370
5371/*
5372 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5373 * implicit semantics on open, so it could not be reused for this.
5374 * Another option would be to call this /dev/bus?
5375 */
5376static int
5377find_device(struct devreq *req, device_t *devp)
5378{
5379	device_t dev;
5380
5381	/*
5382	 * First, ensure that the name is nul terminated.
5383	 */
5384	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5385		return (EINVAL);
5386
5387	/*
5388	 * Second, try to find an attached device whose name matches
5389	 * 'name'.
5390	 */
5391	dev = device_lookup_by_name(req->dr_name);
5392	if (dev != NULL) {
5393		*devp = dev;
5394		return (0);
5395	}
5396
5397	/* Finally, give device enumerators a chance. */
5398	dev = NULL;
5399	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5400	if (dev == NULL)
5401		return (ENOENT);
5402	*devp = dev;
5403	return (0);
5404}
5405
5406static bool
5407driver_exists(device_t bus, const char *driver)
5408{
5409	devclass_t dc;
5410
5411	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5412		if (devclass_find_driver_internal(dc, driver) != NULL)
5413			return (true);
5414	}
5415	return (false);
5416}
5417
5418static int
5419devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5420    struct thread *td)
5421{
5422	struct devreq *req;
5423	device_t dev;
5424	int error, old;
5425
5426	/* Locate the device to control. */
5427	mtx_lock(&Giant);
5428	req = (struct devreq *)data;
5429	switch (cmd) {
5430	case DEV_ATTACH:
5431	case DEV_DETACH:
5432	case DEV_ENABLE:
5433	case DEV_DISABLE:
5434	case DEV_SUSPEND:
5435	case DEV_RESUME:
5436	case DEV_SET_DRIVER:
5437	case DEV_CLEAR_DRIVER:
5438	case DEV_RESCAN:
5439	case DEV_DELETE:
5440		error = priv_check(td, PRIV_DRIVER);
5441		if (error == 0)
5442			error = find_device(req, &dev);
5443		break;
5444	default:
5445		error = ENOTTY;
5446		break;
5447	}
5448	if (error) {
5449		mtx_unlock(&Giant);
5450		return (error);
5451	}
5452
5453	/* Perform the requested operation. */
5454	switch (cmd) {
5455	case DEV_ATTACH:
5456		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5457			error = EBUSY;
5458		else if (!device_is_enabled(dev))
5459			error = ENXIO;
5460		else
5461			error = device_probe_and_attach(dev);
5462		break;
5463	case DEV_DETACH:
5464		if (!device_is_attached(dev)) {
5465			error = ENXIO;
5466			break;
5467		}
5468		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5469			error = device_quiesce(dev);
5470			if (error)
5471				break;
5472		}
5473		error = device_detach(dev);
5474		break;
5475	case DEV_ENABLE:
5476		if (device_is_enabled(dev)) {
5477			error = EBUSY;
5478			break;
5479		}
5480
5481		/*
5482		 * If the device has been probed but not attached (e.g.
5483		 * when it has been disabled by a loader hint), just
5484		 * attach the device rather than doing a full probe.
5485		 */
5486		device_enable(dev);
5487		if (device_is_alive(dev)) {
5488			/*
5489			 * If the device was disabled via a hint, clear
5490			 * the hint.
5491			 */
5492			if (resource_disabled(dev->driver->name, dev->unit))
5493				resource_unset_value(dev->driver->name,
5494				    dev->unit, "disabled");
5495			error = device_attach(dev);
5496		} else
5497			error = device_probe_and_attach(dev);
5498		break;
5499	case DEV_DISABLE:
5500		if (!device_is_enabled(dev)) {
5501			error = ENXIO;
5502			break;
5503		}
5504
5505		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5506			error = device_quiesce(dev);
5507			if (error)
5508				break;
5509		}
5510
5511		/*
5512		 * Force DF_FIXEDCLASS on around detach to preserve
5513		 * the existing name.
5514		 */
5515		old = dev->flags;
5516		dev->flags |= DF_FIXEDCLASS;
5517		error = device_detach(dev);
5518		if (!(old & DF_FIXEDCLASS))
5519			dev->flags &= ~DF_FIXEDCLASS;
5520		if (error == 0)
5521			device_disable(dev);
5522		break;
5523	case DEV_SUSPEND:
5524		if (device_is_suspended(dev)) {
5525			error = EBUSY;
5526			break;
5527		}
5528		if (device_get_parent(dev) == NULL) {
5529			error = EINVAL;
5530			break;
5531		}
5532		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5533		break;
5534	case DEV_RESUME:
5535		if (!device_is_suspended(dev)) {
5536			error = EINVAL;
5537			break;
5538		}
5539		if (device_get_parent(dev) == NULL) {
5540			error = EINVAL;
5541			break;
5542		}
5543		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5544		break;
5545	case DEV_SET_DRIVER: {
5546		devclass_t dc;
5547		char driver[128];
5548
5549		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5550		if (error)
5551			break;
5552		if (driver[0] == '\0') {
5553			error = EINVAL;
5554			break;
5555		}
5556		if (dev->devclass != NULL &&
5557		    strcmp(driver, dev->devclass->name) == 0)
5558			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5559			break;
5560
5561		/*
5562		 * Scan drivers for this device's bus looking for at
5563		 * least one matching driver.
5564		 */
5565		if (dev->parent == NULL) {
5566			error = EINVAL;
5567			break;
5568		}
5569		if (!driver_exists(dev->parent, driver)) {
5570			error = ENOENT;
5571			break;
5572		}
5573		dc = devclass_create(driver);
5574		if (dc == NULL) {
5575			error = ENOMEM;
5576			break;
5577		}
5578
5579		/* Detach device if necessary. */
5580		if (device_is_attached(dev)) {
5581			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5582				error = device_detach(dev);
5583			else
5584				error = EBUSY;
5585			if (error)
5586				break;
5587		}
5588
5589		/* Clear any previously-fixed device class and unit. */
5590		if (dev->flags & DF_FIXEDCLASS)
5591			devclass_delete_device(dev->devclass, dev);
5592		dev->flags |= DF_WILDCARD;
5593		dev->unit = -1;
5594
5595		/* Force the new device class. */
5596		error = devclass_add_device(dc, dev);
5597		if (error)
5598			break;
5599		dev->flags |= DF_FIXEDCLASS;
5600		error = device_probe_and_attach(dev);
5601		break;
5602	}
5603	case DEV_CLEAR_DRIVER:
5604		if (!(dev->flags & DF_FIXEDCLASS)) {
5605			error = 0;
5606			break;
5607		}
5608		if (device_is_attached(dev)) {
5609			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5610				error = device_detach(dev);
5611			else
5612				error = EBUSY;
5613			if (error)
5614				break;
5615		}
5616
5617		dev->flags &= ~DF_FIXEDCLASS;
5618		dev->flags |= DF_WILDCARD;
5619		devclass_delete_device(dev->devclass, dev);
5620		error = device_probe_and_attach(dev);
5621		break;
5622	case DEV_RESCAN:
5623		if (!device_is_attached(dev)) {
5624			error = ENXIO;
5625			break;
5626		}
5627		error = BUS_RESCAN(dev);
5628		break;
5629	case DEV_DELETE: {
5630		device_t parent;
5631
5632		parent = device_get_parent(dev);
5633		if (parent == NULL) {
5634			error = EINVAL;
5635			break;
5636		}
5637		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5638			if (bus_child_present(dev) != 0) {
5639				error = EBUSY;
5640				break;
5641			}
5642		}
5643
5644		error = device_delete_child(parent, dev);
5645		break;
5646	}
5647	}
5648	mtx_unlock(&Giant);
5649	return (error);
5650}
5651
5652static struct cdevsw devctl2_cdevsw = {
5653	.d_version =	D_VERSION,
5654	.d_ioctl =	devctl2_ioctl,
5655	.d_name =	"devctl2",
5656};
5657
5658static void
5659devctl2_init(void)
5660{
5661
5662	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5663	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5664}
5665