subr_bus.c revision 306533
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/kern/subr_bus.c 306533 2016-09-30 22:05:47Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54#include <sys/systm.h>
55#include <sys/uio.h>
56#include <sys/bus.h>
57#include <sys/interrupt.h>
58#include <sys/cpuset.h>
59
60#include <net/vnet.h>
61
62#include <machine/cpu.h>
63#include <machine/stdarg.h>
64
65#include <vm/uma.h>
66#include <vm/vm.h>
67
68SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
69SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
70
71/*
72 * Used to attach drivers to devclasses.
73 */
74typedef struct driverlink *driverlink_t;
75struct driverlink {
76	kobj_class_t	driver;
77	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
78	int		pass;
79	TAILQ_ENTRY(driverlink) passlink;
80};
81
82/*
83 * Forward declarations
84 */
85typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
86typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
87typedef TAILQ_HEAD(device_list, device) device_list_t;
88
89struct devclass {
90	TAILQ_ENTRY(devclass) link;
91	devclass_t	parent;		/* parent in devclass hierarchy */
92	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
93	char		*name;
94	device_t	*devices;	/* array of devices indexed by unit */
95	int		maxunit;	/* size of devices array */
96	int		flags;
97#define DC_HAS_CHILDREN		1
98
99	struct sysctl_ctx_list sysctl_ctx;
100	struct sysctl_oid *sysctl_tree;
101};
102
103/**
104 * @brief Implementation of device.
105 */
106struct device {
107	/*
108	 * A device is a kernel object. The first field must be the
109	 * current ops table for the object.
110	 */
111	KOBJ_FIELDS;
112
113	/*
114	 * Device hierarchy.
115	 */
116	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
117	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
118	device_t	parent;		/**< parent of this device  */
119	device_list_t	children;	/**< list of child devices */
120
121	/*
122	 * Details of this device.
123	 */
124	driver_t	*driver;	/**< current driver */
125	devclass_t	devclass;	/**< current device class */
126	int		unit;		/**< current unit number */
127	char*		nameunit;	/**< name+unit e.g. foodev0 */
128	char*		desc;		/**< driver specific description */
129	int		busy;		/**< count of calls to device_busy() */
130	device_state_t	state;		/**< current device state  */
131	uint32_t	devflags;	/**< api level flags for device_get_flags() */
132	u_int		flags;		/**< internal device flags  */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144static void devctl2_init(void);
145
146#ifdef BUS_DEBUG
147
148static int bus_debug = 1;
149SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
150    "Bus debug level");
151
152#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154#define DRIVERNAME(d)	((d)? d->name : "no driver")
155#define DEVCLANAME(d)	((d)? d->name : "no devclass")
156
157/**
158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159 * prevent syslog from deleting initial spaces
160 */
161#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162
163static void print_device_short(device_t dev, int indent);
164static void print_device(device_t dev, int indent);
165void print_device_tree_short(device_t dev, int indent);
166void print_device_tree(device_t dev, int indent);
167static void print_driver_short(driver_t *driver, int indent);
168static void print_driver(driver_t *driver, int indent);
169static void print_driver_list(driver_list_t drivers, int indent);
170static void print_devclass_short(devclass_t dc, int indent);
171static void print_devclass(devclass_t dc, int indent);
172void print_devclass_list_short(void);
173void print_devclass_list(void);
174
175#else
176/* Make the compiler ignore the function calls */
177#define PDEBUG(a)			/* nop */
178#define DEVICENAME(d)			/* nop */
179#define DRIVERNAME(d)			/* nop */
180#define DEVCLANAME(d)			/* nop */
181
182#define print_device_short(d,i)		/* nop */
183#define print_device(d,i)		/* nop */
184#define print_device_tree_short(d,i)	/* nop */
185#define print_device_tree(d,i)		/* nop */
186#define print_driver_short(d,i)		/* nop */
187#define print_driver(d,i)		/* nop */
188#define print_driver_list(d,i)		/* nop */
189#define print_devclass_short(d,i)	/* nop */
190#define print_devclass(d,i)		/* nop */
191#define print_devclass_list_short()	/* nop */
192#define print_devclass_list()		/* nop */
193#endif
194
195/*
196 * dev sysctl tree
197 */
198
199enum {
200	DEVCLASS_SYSCTL_PARENT,
201};
202
203static int
204devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205{
206	devclass_t dc = (devclass_t)arg1;
207	const char *value;
208
209	switch (arg2) {
210	case DEVCLASS_SYSCTL_PARENT:
211		value = dc->parent ? dc->parent->name : "";
212		break;
213	default:
214		return (EINVAL);
215	}
216	return (SYSCTL_OUT_STR(req, value));
217}
218
219static void
220devclass_sysctl_init(devclass_t dc)
221{
222
223	if (dc->sysctl_tree != NULL)
224		return;
225	sysctl_ctx_init(&dc->sysctl_ctx);
226	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228	    CTLFLAG_RD, NULL, "");
229	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
231	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232	    "parent class");
233}
234
235enum {
236	DEVICE_SYSCTL_DESC,
237	DEVICE_SYSCTL_DRIVER,
238	DEVICE_SYSCTL_LOCATION,
239	DEVICE_SYSCTL_PNPINFO,
240	DEVICE_SYSCTL_PARENT,
241};
242
243static int
244device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245{
246	device_t dev = (device_t)arg1;
247	const char *value;
248	char *buf;
249	int error;
250
251	buf = NULL;
252	switch (arg2) {
253	case DEVICE_SYSCTL_DESC:
254		value = dev->desc ? dev->desc : "";
255		break;
256	case DEVICE_SYSCTL_DRIVER:
257		value = dev->driver ? dev->driver->name : "";
258		break;
259	case DEVICE_SYSCTL_LOCATION:
260		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261		bus_child_location_str(dev, buf, 1024);
262		break;
263	case DEVICE_SYSCTL_PNPINFO:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_pnpinfo_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PARENT:
268		value = dev->parent ? dev->parent->nameunit : "";
269		break;
270	default:
271		return (EINVAL);
272	}
273	error = SYSCTL_OUT_STR(req, value);
274	if (buf != NULL)
275		free(buf, M_BUS);
276	return (error);
277}
278
279static void
280device_sysctl_init(device_t dev)
281{
282	devclass_t dc = dev->devclass;
283	int domain;
284
285	if (dev->sysctl_tree != NULL)
286		return;
287	devclass_sysctl_init(dc);
288	sysctl_ctx_init(&dev->sysctl_ctx);
289	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291	    dev->nameunit + strlen(dc->name),
292	    CTLFLAG_RD, NULL, "");
293	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
295	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296	    "device description");
297	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
299	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300	    "device driver name");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304	    "device location relative to parent");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308	    "device identification");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312	    "parent device");
313	if (bus_get_domain(dev, &domain) == 0)
314		SYSCTL_ADD_INT(&dev->sysctl_ctx,
315		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
316		    CTLFLAG_RD, NULL, domain, "NUMA domain");
317}
318
319static void
320device_sysctl_update(device_t dev)
321{
322	devclass_t dc = dev->devclass;
323
324	if (dev->sysctl_tree == NULL)
325		return;
326	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
327}
328
329static void
330device_sysctl_fini(device_t dev)
331{
332	if (dev->sysctl_tree == NULL)
333		return;
334	sysctl_ctx_free(&dev->sysctl_ctx);
335	dev->sysctl_tree = NULL;
336}
337
338/*
339 * /dev/devctl implementation
340 */
341
342/*
343 * This design allows only one reader for /dev/devctl.  This is not desirable
344 * in the long run, but will get a lot of hair out of this implementation.
345 * Maybe we should make this device a clonable device.
346 *
347 * Also note: we specifically do not attach a device to the device_t tree
348 * to avoid potential chicken and egg problems.  One could argue that all
349 * of this belongs to the root node.  One could also further argue that the
350 * sysctl interface that we have not might more properly be an ioctl
351 * interface, but at this stage of the game, I'm not inclined to rock that
352 * boat.
353 *
354 * I'm also not sure that the SIGIO support is done correctly or not, as
355 * I copied it from a driver that had SIGIO support that likely hasn't been
356 * tested since 3.4 or 2.2.8!
357 */
358
359/* Deprecated way to adjust queue length */
360static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
361SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
362    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363    "devctl disable -- deprecated");
364
365#define DEVCTL_DEFAULT_QUEUE_LEN 1000
366static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
369    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
370
371static d_open_t		devopen;
372static d_close_t	devclose;
373static d_read_t		devread;
374static d_ioctl_t	devioctl;
375static d_poll_t		devpoll;
376static d_kqfilter_t	devkqfilter;
377
378static struct cdevsw dev_cdevsw = {
379	.d_version =	D_VERSION,
380	.d_open =	devopen,
381	.d_close =	devclose,
382	.d_read =	devread,
383	.d_ioctl =	devioctl,
384	.d_poll =	devpoll,
385	.d_kqfilter =	devkqfilter,
386	.d_name =	"devctl",
387};
388
389struct dev_event_info
390{
391	char *dei_data;
392	TAILQ_ENTRY(dev_event_info) dei_link;
393};
394
395TAILQ_HEAD(devq, dev_event_info);
396
397static struct dev_softc
398{
399	int	inuse;
400	int	nonblock;
401	int	queued;
402	int	async;
403	struct mtx mtx;
404	struct cv cv;
405	struct selinfo sel;
406	struct devq devq;
407	struct sigio *sigio;
408} devsoftc;
409
410static void	filt_devctl_detach(struct knote *kn);
411static int	filt_devctl_read(struct knote *kn, long hint);
412
413struct filterops devctl_rfiltops = {
414	.f_isfd = 1,
415	.f_detach = filt_devctl_detach,
416	.f_event = filt_devctl_read,
417};
418
419static struct cdev *devctl_dev;
420
421static void
422devinit(void)
423{
424	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
425	    UID_ROOT, GID_WHEEL, 0600, "devctl");
426	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
427	cv_init(&devsoftc.cv, "dev cv");
428	TAILQ_INIT(&devsoftc.devq);
429	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
430	devctl2_init();
431}
432
433static int
434devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435{
436
437	mtx_lock(&devsoftc.mtx);
438	if (devsoftc.inuse) {
439		mtx_unlock(&devsoftc.mtx);
440		return (EBUSY);
441	}
442	/* move to init */
443	devsoftc.inuse = 1;
444	mtx_unlock(&devsoftc.mtx);
445	return (0);
446}
447
448static int
449devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450{
451
452	mtx_lock(&devsoftc.mtx);
453	devsoftc.inuse = 0;
454	devsoftc.nonblock = 0;
455	devsoftc.async = 0;
456	cv_broadcast(&devsoftc.cv);
457	funsetown(&devsoftc.sigio);
458	mtx_unlock(&devsoftc.mtx);
459	return (0);
460}
461
462/*
463 * The read channel for this device is used to report changes to
464 * userland in realtime.  We are required to free the data as well as
465 * the n1 object because we allocate them separately.  Also note that
466 * we return one record at a time.  If you try to read this device a
467 * character at a time, you will lose the rest of the data.  Listening
468 * programs are expected to cope.
469 */
470static int
471devread(struct cdev *dev, struct uio *uio, int ioflag)
472{
473	struct dev_event_info *n1;
474	int rv;
475
476	mtx_lock(&devsoftc.mtx);
477	while (TAILQ_EMPTY(&devsoftc.devq)) {
478		if (devsoftc.nonblock) {
479			mtx_unlock(&devsoftc.mtx);
480			return (EAGAIN);
481		}
482		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483		if (rv) {
484			/*
485			 * Need to translate ERESTART to EINTR here? -- jake
486			 */
487			mtx_unlock(&devsoftc.mtx);
488			return (rv);
489		}
490	}
491	n1 = TAILQ_FIRST(&devsoftc.devq);
492	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493	devsoftc.queued--;
494	mtx_unlock(&devsoftc.mtx);
495	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496	free(n1->dei_data, M_BUS);
497	free(n1, M_BUS);
498	return (rv);
499}
500
501static	int
502devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503{
504	switch (cmd) {
505
506	case FIONBIO:
507		if (*(int*)data)
508			devsoftc.nonblock = 1;
509		else
510			devsoftc.nonblock = 0;
511		return (0);
512	case FIOASYNC:
513		if (*(int*)data)
514			devsoftc.async = 1;
515		else
516			devsoftc.async = 0;
517		return (0);
518	case FIOSETOWN:
519		return fsetown(*(int *)data, &devsoftc.sigio);
520	case FIOGETOWN:
521		*(int *)data = fgetown(&devsoftc.sigio);
522		return (0);
523
524		/* (un)Support for other fcntl() calls. */
525	case FIOCLEX:
526	case FIONCLEX:
527	case FIONREAD:
528	default:
529		break;
530	}
531	return (ENOTTY);
532}
533
534static	int
535devpoll(struct cdev *dev, int events, struct thread *td)
536{
537	int	revents = 0;
538
539	mtx_lock(&devsoftc.mtx);
540	if (events & (POLLIN | POLLRDNORM)) {
541		if (!TAILQ_EMPTY(&devsoftc.devq))
542			revents = events & (POLLIN | POLLRDNORM);
543		else
544			selrecord(td, &devsoftc.sel);
545	}
546	mtx_unlock(&devsoftc.mtx);
547
548	return (revents);
549}
550
551static int
552devkqfilter(struct cdev *dev, struct knote *kn)
553{
554	int error;
555
556	if (kn->kn_filter == EVFILT_READ) {
557		kn->kn_fop = &devctl_rfiltops;
558		knlist_add(&devsoftc.sel.si_note, kn, 0);
559		error = 0;
560	} else
561		error = EINVAL;
562	return (error);
563}
564
565static void
566filt_devctl_detach(struct knote *kn)
567{
568
569	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570}
571
572static int
573filt_devctl_read(struct knote *kn, long hint)
574{
575	kn->kn_data = devsoftc.queued;
576	return (kn->kn_data != 0);
577}
578
579/**
580 * @brief Return whether the userland process is running
581 */
582boolean_t
583devctl_process_running(void)
584{
585	return (devsoftc.inuse == 1);
586}
587
588/**
589 * @brief Queue data to be read from the devctl device
590 *
591 * Generic interface to queue data to the devctl device.  It is
592 * assumed that @p data is properly formatted.  It is further assumed
593 * that @p data is allocated using the M_BUS malloc type.
594 */
595void
596devctl_queue_data_f(char *data, int flags)
597{
598	struct dev_event_info *n1 = NULL, *n2 = NULL;
599
600	if (strlen(data) == 0)
601		goto out;
602	if (devctl_queue_length == 0)
603		goto out;
604	n1 = malloc(sizeof(*n1), M_BUS, flags);
605	if (n1 == NULL)
606		goto out;
607	n1->dei_data = data;
608	mtx_lock(&devsoftc.mtx);
609	if (devctl_queue_length == 0) {
610		mtx_unlock(&devsoftc.mtx);
611		free(n1->dei_data, M_BUS);
612		free(n1, M_BUS);
613		return;
614	}
615	/* Leave at least one spot in the queue... */
616	while (devsoftc.queued > devctl_queue_length - 1) {
617		n2 = TAILQ_FIRST(&devsoftc.devq);
618		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619		free(n2->dei_data, M_BUS);
620		free(n2, M_BUS);
621		devsoftc.queued--;
622	}
623	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624	devsoftc.queued++;
625	cv_broadcast(&devsoftc.cv);
626	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627	mtx_unlock(&devsoftc.mtx);
628	selwakeup(&devsoftc.sel);
629	if (devsoftc.async && devsoftc.sigio != NULL)
630		pgsigio(&devsoftc.sigio, SIGIO, 0);
631	return;
632out:
633	/*
634	 * We have to free data on all error paths since the caller
635	 * assumes it will be free'd when this item is dequeued.
636	 */
637	free(data, M_BUS);
638	return;
639}
640
641void
642devctl_queue_data(char *data)
643{
644
645	devctl_queue_data_f(data, M_NOWAIT);
646}
647
648/**
649 * @brief Send a 'notification' to userland, using standard ways
650 */
651void
652devctl_notify_f(const char *system, const char *subsystem, const char *type,
653    const char *data, int flags)
654{
655	int len = 0;
656	char *msg;
657
658	if (system == NULL)
659		return;		/* BOGUS!  Must specify system. */
660	if (subsystem == NULL)
661		return;		/* BOGUS!  Must specify subsystem. */
662	if (type == NULL)
663		return;		/* BOGUS!  Must specify type. */
664	len += strlen(" system=") + strlen(system);
665	len += strlen(" subsystem=") + strlen(subsystem);
666	len += strlen(" type=") + strlen(type);
667	/* add in the data message plus newline. */
668	if (data != NULL)
669		len += strlen(data);
670	len += 3;	/* '!', '\n', and NUL */
671	msg = malloc(len, M_BUS, flags);
672	if (msg == NULL)
673		return;		/* Drop it on the floor */
674	if (data != NULL)
675		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676		    system, subsystem, type, data);
677	else
678		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679		    system, subsystem, type);
680	devctl_queue_data_f(msg, flags);
681}
682
683void
684devctl_notify(const char *system, const char *subsystem, const char *type,
685    const char *data)
686{
687
688	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689}
690
691/*
692 * Common routine that tries to make sending messages as easy as possible.
693 * We allocate memory for the data, copy strings into that, but do not
694 * free it unless there's an error.  The dequeue part of the driver should
695 * free the data.  We don't send data when the device is disabled.  We do
696 * send data, even when we have no listeners, because we wish to avoid
697 * races relating to startup and restart of listening applications.
698 *
699 * devaddq is designed to string together the type of event, with the
700 * object of that event, plus the plug and play info and location info
701 * for that event.  This is likely most useful for devices, but less
702 * useful for other consumers of this interface.  Those should use
703 * the devctl_queue_data() interface instead.
704 */
705static void
706devaddq(const char *type, const char *what, device_t dev)
707{
708	char *data = NULL;
709	char *loc = NULL;
710	char *pnp = NULL;
711	const char *parstr;
712
713	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714		return;
715	data = malloc(1024, M_BUS, M_NOWAIT);
716	if (data == NULL)
717		goto bad;
718
719	/* get the bus specific location of this device */
720	loc = malloc(1024, M_BUS, M_NOWAIT);
721	if (loc == NULL)
722		goto bad;
723	*loc = '\0';
724	bus_child_location_str(dev, loc, 1024);
725
726	/* Get the bus specific pnp info of this device */
727	pnp = malloc(1024, M_BUS, M_NOWAIT);
728	if (pnp == NULL)
729		goto bad;
730	*pnp = '\0';
731	bus_child_pnpinfo_str(dev, pnp, 1024);
732
733	/* Get the parent of this device, or / if high enough in the tree. */
734	if (device_get_parent(dev) == NULL)
735		parstr = ".";	/* Or '/' ? */
736	else
737		parstr = device_get_nameunit(device_get_parent(dev));
738	/* String it all together. */
739	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740	  parstr);
741	free(loc, M_BUS);
742	free(pnp, M_BUS);
743	devctl_queue_data(data);
744	return;
745bad:
746	free(pnp, M_BUS);
747	free(loc, M_BUS);
748	free(data, M_BUS);
749	return;
750}
751
752/*
753 * A device was added to the tree.  We are called just after it successfully
754 * attaches (that is, probe and attach success for this device).  No call
755 * is made if a device is merely parented into the tree.  See devnomatch
756 * if probe fails.  If attach fails, no notification is sent (but maybe
757 * we should have a different message for this).
758 */
759static void
760devadded(device_t dev)
761{
762	devaddq("+", device_get_nameunit(dev), dev);
763}
764
765/*
766 * A device was removed from the tree.  We are called just before this
767 * happens.
768 */
769static void
770devremoved(device_t dev)
771{
772	devaddq("-", device_get_nameunit(dev), dev);
773}
774
775/*
776 * Called when there's no match for this device.  This is only called
777 * the first time that no match happens, so we don't keep getting this
778 * message.  Should that prove to be undesirable, we can change it.
779 * This is called when all drivers that can attach to a given bus
780 * decline to accept this device.  Other errors may not be detected.
781 */
782static void
783devnomatch(device_t dev)
784{
785	devaddq("?", "", dev);
786}
787
788static int
789sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790{
791	struct dev_event_info *n1;
792	int dis, error;
793
794	dis = (devctl_queue_length == 0);
795	error = sysctl_handle_int(oidp, &dis, 0, req);
796	if (error || !req->newptr)
797		return (error);
798	if (mtx_initialized(&devsoftc.mtx))
799		mtx_lock(&devsoftc.mtx);
800	if (dis) {
801		while (!TAILQ_EMPTY(&devsoftc.devq)) {
802			n1 = TAILQ_FIRST(&devsoftc.devq);
803			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
804			free(n1->dei_data, M_BUS);
805			free(n1, M_BUS);
806		}
807		devsoftc.queued = 0;
808		devctl_queue_length = 0;
809	} else {
810		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
811	}
812	if (mtx_initialized(&devsoftc.mtx))
813		mtx_unlock(&devsoftc.mtx);
814	return (0);
815}
816
817static int
818sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
819{
820	struct dev_event_info *n1;
821	int q, error;
822
823	q = devctl_queue_length;
824	error = sysctl_handle_int(oidp, &q, 0, req);
825	if (error || !req->newptr)
826		return (error);
827	if (q < 0)
828		return (EINVAL);
829	if (mtx_initialized(&devsoftc.mtx))
830		mtx_lock(&devsoftc.mtx);
831	devctl_queue_length = q;
832	while (devsoftc.queued > devctl_queue_length) {
833		n1 = TAILQ_FIRST(&devsoftc.devq);
834		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
835		free(n1->dei_data, M_BUS);
836		free(n1, M_BUS);
837		devsoftc.queued--;
838	}
839	if (mtx_initialized(&devsoftc.mtx))
840		mtx_unlock(&devsoftc.mtx);
841	return (0);
842}
843
844/**
845 * @brief safely quotes strings that might have double quotes in them.
846 *
847 * The devctl protocol relies on quoted strings having matching quotes.
848 * This routine quotes any internal quotes so the resulting string
849 * is safe to pass to snprintf to construct, for example pnp info strings.
850 * Strings are always terminated with a NUL, but may be truncated if longer
851 * than @p len bytes after quotes.
852 *
853 * @param dst	Buffer to hold the string. Must be at least @p len bytes long
854 * @param src	Original buffer.
855 * @param len	Length of buffer pointed to by @dst, including trailing NUL
856 */
857void
858devctl_safe_quote(char *dst, const char *src, size_t len)
859{
860	char *walker = dst, *ep = dst + len - 1;
861
862	if (len == 0)
863		return;
864	while (src != NULL && walker < ep)
865	{
866		if (*src == '"' || *src == '\\') {
867			if (ep - walker < 2)
868				break;
869			*walker++ = '\\';
870		}
871		*walker++ = *src++;
872	}
873	*walker = '\0';
874}
875
876/* End of /dev/devctl code */
877
878static TAILQ_HEAD(,device)	bus_data_devices;
879static int bus_data_generation = 1;
880
881static kobj_method_t null_methods[] = {
882	KOBJMETHOD_END
883};
884
885DEFINE_CLASS(null, null_methods, 0);
886
887/*
888 * Bus pass implementation
889 */
890
891static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
892int bus_current_pass = BUS_PASS_ROOT;
893
894/**
895 * @internal
896 * @brief Register the pass level of a new driver attachment
897 *
898 * Register a new driver attachment's pass level.  If no driver
899 * attachment with the same pass level has been added, then @p new
900 * will be added to the global passes list.
901 *
902 * @param new		the new driver attachment
903 */
904static void
905driver_register_pass(struct driverlink *new)
906{
907	struct driverlink *dl;
908
909	/* We only consider pass numbers during boot. */
910	if (bus_current_pass == BUS_PASS_DEFAULT)
911		return;
912
913	/*
914	 * Walk the passes list.  If we already know about this pass
915	 * then there is nothing to do.  If we don't, then insert this
916	 * driver link into the list.
917	 */
918	TAILQ_FOREACH(dl, &passes, passlink) {
919		if (dl->pass < new->pass)
920			continue;
921		if (dl->pass == new->pass)
922			return;
923		TAILQ_INSERT_BEFORE(dl, new, passlink);
924		return;
925	}
926	TAILQ_INSERT_TAIL(&passes, new, passlink);
927}
928
929/**
930 * @brief Raise the current bus pass
931 *
932 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
933 * method on the root bus to kick off a new device tree scan for each
934 * new pass level that has at least one driver.
935 */
936void
937bus_set_pass(int pass)
938{
939	struct driverlink *dl;
940
941	if (bus_current_pass > pass)
942		panic("Attempt to lower bus pass level");
943
944	TAILQ_FOREACH(dl, &passes, passlink) {
945		/* Skip pass values below the current pass level. */
946		if (dl->pass <= bus_current_pass)
947			continue;
948
949		/*
950		 * Bail once we hit a driver with a pass level that is
951		 * too high.
952		 */
953		if (dl->pass > pass)
954			break;
955
956		/*
957		 * Raise the pass level to the next level and rescan
958		 * the tree.
959		 */
960		bus_current_pass = dl->pass;
961		BUS_NEW_PASS(root_bus);
962	}
963
964	/*
965	 * If there isn't a driver registered for the requested pass,
966	 * then bus_current_pass might still be less than 'pass'.  Set
967	 * it to 'pass' in that case.
968	 */
969	if (bus_current_pass < pass)
970		bus_current_pass = pass;
971	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
972}
973
974/*
975 * Devclass implementation
976 */
977
978static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
979
980/**
981 * @internal
982 * @brief Find or create a device class
983 *
984 * If a device class with the name @p classname exists, return it,
985 * otherwise if @p create is non-zero create and return a new device
986 * class.
987 *
988 * If @p parentname is non-NULL, the parent of the devclass is set to
989 * the devclass of that name.
990 *
991 * @param classname	the devclass name to find or create
992 * @param parentname	the parent devclass name or @c NULL
993 * @param create	non-zero to create a devclass
994 */
995static devclass_t
996devclass_find_internal(const char *classname, const char *parentname,
997		       int create)
998{
999	devclass_t dc;
1000
1001	PDEBUG(("looking for %s", classname));
1002	if (!classname)
1003		return (NULL);
1004
1005	TAILQ_FOREACH(dc, &devclasses, link) {
1006		if (!strcmp(dc->name, classname))
1007			break;
1008	}
1009
1010	if (create && !dc) {
1011		PDEBUG(("creating %s", classname));
1012		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1013		    M_BUS, M_NOWAIT | M_ZERO);
1014		if (!dc)
1015			return (NULL);
1016		dc->parent = NULL;
1017		dc->name = (char*) (dc + 1);
1018		strcpy(dc->name, classname);
1019		TAILQ_INIT(&dc->drivers);
1020		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1021
1022		bus_data_generation_update();
1023	}
1024
1025	/*
1026	 * If a parent class is specified, then set that as our parent so
1027	 * that this devclass will support drivers for the parent class as
1028	 * well.  If the parent class has the same name don't do this though
1029	 * as it creates a cycle that can trigger an infinite loop in
1030	 * device_probe_child() if a device exists for which there is no
1031	 * suitable driver.
1032	 */
1033	if (parentname && dc && !dc->parent &&
1034	    strcmp(classname, parentname) != 0) {
1035		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1036		dc->parent->flags |= DC_HAS_CHILDREN;
1037	}
1038
1039	return (dc);
1040}
1041
1042/**
1043 * @brief Create a device class
1044 *
1045 * If a device class with the name @p classname exists, return it,
1046 * otherwise create and return a new device class.
1047 *
1048 * @param classname	the devclass name to find or create
1049 */
1050devclass_t
1051devclass_create(const char *classname)
1052{
1053	return (devclass_find_internal(classname, NULL, TRUE));
1054}
1055
1056/**
1057 * @brief Find a device class
1058 *
1059 * If a device class with the name @p classname exists, return it,
1060 * otherwise return @c NULL.
1061 *
1062 * @param classname	the devclass name to find
1063 */
1064devclass_t
1065devclass_find(const char *classname)
1066{
1067	return (devclass_find_internal(classname, NULL, FALSE));
1068}
1069
1070/**
1071 * @brief Register that a device driver has been added to a devclass
1072 *
1073 * Register that a device driver has been added to a devclass.  This
1074 * is called by devclass_add_driver to accomplish the recursive
1075 * notification of all the children classes of dc, as well as dc.
1076 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1077 * the devclass.
1078 *
1079 * We do a full search here of the devclass list at each iteration
1080 * level to save storing children-lists in the devclass structure.  If
1081 * we ever move beyond a few dozen devices doing this, we may need to
1082 * reevaluate...
1083 *
1084 * @param dc		the devclass to edit
1085 * @param driver	the driver that was just added
1086 */
1087static void
1088devclass_driver_added(devclass_t dc, driver_t *driver)
1089{
1090	devclass_t parent;
1091	int i;
1092
1093	/*
1094	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1095	 */
1096	for (i = 0; i < dc->maxunit; i++)
1097		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1098			BUS_DRIVER_ADDED(dc->devices[i], driver);
1099
1100	/*
1101	 * Walk through the children classes.  Since we only keep a
1102	 * single parent pointer around, we walk the entire list of
1103	 * devclasses looking for children.  We set the
1104	 * DC_HAS_CHILDREN flag when a child devclass is created on
1105	 * the parent, so we only walk the list for those devclasses
1106	 * that have children.
1107	 */
1108	if (!(dc->flags & DC_HAS_CHILDREN))
1109		return;
1110	parent = dc;
1111	TAILQ_FOREACH(dc, &devclasses, link) {
1112		if (dc->parent == parent)
1113			devclass_driver_added(dc, driver);
1114	}
1115}
1116
1117/**
1118 * @brief Add a device driver to a device class
1119 *
1120 * Add a device driver to a devclass. This is normally called
1121 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1122 * all devices in the devclass will be called to allow them to attempt
1123 * to re-probe any unmatched children.
1124 *
1125 * @param dc		the devclass to edit
1126 * @param driver	the driver to register
1127 */
1128int
1129devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1130{
1131	driverlink_t dl;
1132	const char *parentname;
1133
1134	PDEBUG(("%s", DRIVERNAME(driver)));
1135
1136	/* Don't allow invalid pass values. */
1137	if (pass <= BUS_PASS_ROOT)
1138		return (EINVAL);
1139
1140	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1141	if (!dl)
1142		return (ENOMEM);
1143
1144	/*
1145	 * Compile the driver's methods. Also increase the reference count
1146	 * so that the class doesn't get freed when the last instance
1147	 * goes. This means we can safely use static methods and avoids a
1148	 * double-free in devclass_delete_driver.
1149	 */
1150	kobj_class_compile((kobj_class_t) driver);
1151
1152	/*
1153	 * If the driver has any base classes, make the
1154	 * devclass inherit from the devclass of the driver's
1155	 * first base class. This will allow the system to
1156	 * search for drivers in both devclasses for children
1157	 * of a device using this driver.
1158	 */
1159	if (driver->baseclasses)
1160		parentname = driver->baseclasses[0]->name;
1161	else
1162		parentname = NULL;
1163	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1164
1165	dl->driver = driver;
1166	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1167	driver->refs++;		/* XXX: kobj_mtx */
1168	dl->pass = pass;
1169	driver_register_pass(dl);
1170
1171	devclass_driver_added(dc, driver);
1172	bus_data_generation_update();
1173	return (0);
1174}
1175
1176/**
1177 * @brief Register that a device driver has been deleted from a devclass
1178 *
1179 * Register that a device driver has been removed from a devclass.
1180 * This is called by devclass_delete_driver to accomplish the
1181 * recursive notification of all the children classes of busclass, as
1182 * well as busclass.  Each layer will attempt to detach the driver
1183 * from any devices that are children of the bus's devclass.  The function
1184 * will return an error if a device fails to detach.
1185 *
1186 * We do a full search here of the devclass list at each iteration
1187 * level to save storing children-lists in the devclass structure.  If
1188 * we ever move beyond a few dozen devices doing this, we may need to
1189 * reevaluate...
1190 *
1191 * @param busclass	the devclass of the parent bus
1192 * @param dc		the devclass of the driver being deleted
1193 * @param driver	the driver being deleted
1194 */
1195static int
1196devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1197{
1198	devclass_t parent;
1199	device_t dev;
1200	int error, i;
1201
1202	/*
1203	 * Disassociate from any devices.  We iterate through all the
1204	 * devices in the devclass of the driver and detach any which are
1205	 * using the driver and which have a parent in the devclass which
1206	 * we are deleting from.
1207	 *
1208	 * Note that since a driver can be in multiple devclasses, we
1209	 * should not detach devices which are not children of devices in
1210	 * the affected devclass.
1211	 */
1212	for (i = 0; i < dc->maxunit; i++) {
1213		if (dc->devices[i]) {
1214			dev = dc->devices[i];
1215			if (dev->driver == driver && dev->parent &&
1216			    dev->parent->devclass == busclass) {
1217				if ((error = device_detach(dev)) != 0)
1218					return (error);
1219				BUS_PROBE_NOMATCH(dev->parent, dev);
1220				devnomatch(dev);
1221				dev->flags |= DF_DONENOMATCH;
1222			}
1223		}
1224	}
1225
1226	/*
1227	 * Walk through the children classes.  Since we only keep a
1228	 * single parent pointer around, we walk the entire list of
1229	 * devclasses looking for children.  We set the
1230	 * DC_HAS_CHILDREN flag when a child devclass is created on
1231	 * the parent, so we only walk the list for those devclasses
1232	 * that have children.
1233	 */
1234	if (!(busclass->flags & DC_HAS_CHILDREN))
1235		return (0);
1236	parent = busclass;
1237	TAILQ_FOREACH(busclass, &devclasses, link) {
1238		if (busclass->parent == parent) {
1239			error = devclass_driver_deleted(busclass, dc, driver);
1240			if (error)
1241				return (error);
1242		}
1243	}
1244	return (0);
1245}
1246
1247/**
1248 * @brief Delete a device driver from a device class
1249 *
1250 * Delete a device driver from a devclass. This is normally called
1251 * automatically by DRIVER_MODULE().
1252 *
1253 * If the driver is currently attached to any devices,
1254 * devclass_delete_driver() will first attempt to detach from each
1255 * device. If one of the detach calls fails, the driver will not be
1256 * deleted.
1257 *
1258 * @param dc		the devclass to edit
1259 * @param driver	the driver to unregister
1260 */
1261int
1262devclass_delete_driver(devclass_t busclass, driver_t *driver)
1263{
1264	devclass_t dc = devclass_find(driver->name);
1265	driverlink_t dl;
1266	int error;
1267
1268	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1269
1270	if (!dc)
1271		return (0);
1272
1273	/*
1274	 * Find the link structure in the bus' list of drivers.
1275	 */
1276	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1277		if (dl->driver == driver)
1278			break;
1279	}
1280
1281	if (!dl) {
1282		PDEBUG(("%s not found in %s list", driver->name,
1283		    busclass->name));
1284		return (ENOENT);
1285	}
1286
1287	error = devclass_driver_deleted(busclass, dc, driver);
1288	if (error != 0)
1289		return (error);
1290
1291	TAILQ_REMOVE(&busclass->drivers, dl, link);
1292	free(dl, M_BUS);
1293
1294	/* XXX: kobj_mtx */
1295	driver->refs--;
1296	if (driver->refs == 0)
1297		kobj_class_free((kobj_class_t) driver);
1298
1299	bus_data_generation_update();
1300	return (0);
1301}
1302
1303/**
1304 * @brief Quiesces a set of device drivers from a device class
1305 *
1306 * Quiesce a device driver from a devclass. This is normally called
1307 * automatically by DRIVER_MODULE().
1308 *
1309 * If the driver is currently attached to any devices,
1310 * devclass_quiesece_driver() will first attempt to quiesce each
1311 * device.
1312 *
1313 * @param dc		the devclass to edit
1314 * @param driver	the driver to unregister
1315 */
1316static int
1317devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1318{
1319	devclass_t dc = devclass_find(driver->name);
1320	driverlink_t dl;
1321	device_t dev;
1322	int i;
1323	int error;
1324
1325	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1326
1327	if (!dc)
1328		return (0);
1329
1330	/*
1331	 * Find the link structure in the bus' list of drivers.
1332	 */
1333	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1334		if (dl->driver == driver)
1335			break;
1336	}
1337
1338	if (!dl) {
1339		PDEBUG(("%s not found in %s list", driver->name,
1340		    busclass->name));
1341		return (ENOENT);
1342	}
1343
1344	/*
1345	 * Quiesce all devices.  We iterate through all the devices in
1346	 * the devclass of the driver and quiesce any which are using
1347	 * the driver and which have a parent in the devclass which we
1348	 * are quiescing.
1349	 *
1350	 * Note that since a driver can be in multiple devclasses, we
1351	 * should not quiesce devices which are not children of
1352	 * devices in the affected devclass.
1353	 */
1354	for (i = 0; i < dc->maxunit; i++) {
1355		if (dc->devices[i]) {
1356			dev = dc->devices[i];
1357			if (dev->driver == driver && dev->parent &&
1358			    dev->parent->devclass == busclass) {
1359				if ((error = device_quiesce(dev)) != 0)
1360					return (error);
1361			}
1362		}
1363	}
1364
1365	return (0);
1366}
1367
1368/**
1369 * @internal
1370 */
1371static driverlink_t
1372devclass_find_driver_internal(devclass_t dc, const char *classname)
1373{
1374	driverlink_t dl;
1375
1376	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1377
1378	TAILQ_FOREACH(dl, &dc->drivers, link) {
1379		if (!strcmp(dl->driver->name, classname))
1380			return (dl);
1381	}
1382
1383	PDEBUG(("not found"));
1384	return (NULL);
1385}
1386
1387/**
1388 * @brief Return the name of the devclass
1389 */
1390const char *
1391devclass_get_name(devclass_t dc)
1392{
1393	return (dc->name);
1394}
1395
1396/**
1397 * @brief Find a device given a unit number
1398 *
1399 * @param dc		the devclass to search
1400 * @param unit		the unit number to search for
1401 *
1402 * @returns		the device with the given unit number or @c
1403 *			NULL if there is no such device
1404 */
1405device_t
1406devclass_get_device(devclass_t dc, int unit)
1407{
1408	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1409		return (NULL);
1410	return (dc->devices[unit]);
1411}
1412
1413/**
1414 * @brief Find the softc field of a device given a unit number
1415 *
1416 * @param dc		the devclass to search
1417 * @param unit		the unit number to search for
1418 *
1419 * @returns		the softc field of the device with the given
1420 *			unit number or @c NULL if there is no such
1421 *			device
1422 */
1423void *
1424devclass_get_softc(devclass_t dc, int unit)
1425{
1426	device_t dev;
1427
1428	dev = devclass_get_device(dc, unit);
1429	if (!dev)
1430		return (NULL);
1431
1432	return (device_get_softc(dev));
1433}
1434
1435/**
1436 * @brief Get a list of devices in the devclass
1437 *
1438 * An array containing a list of all the devices in the given devclass
1439 * is allocated and returned in @p *devlistp. The number of devices
1440 * in the array is returned in @p *devcountp. The caller should free
1441 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1442 *
1443 * @param dc		the devclass to examine
1444 * @param devlistp	points at location for array pointer return
1445 *			value
1446 * @param devcountp	points at location for array size return value
1447 *
1448 * @retval 0		success
1449 * @retval ENOMEM	the array allocation failed
1450 */
1451int
1452devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1453{
1454	int count, i;
1455	device_t *list;
1456
1457	count = devclass_get_count(dc);
1458	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1459	if (!list)
1460		return (ENOMEM);
1461
1462	count = 0;
1463	for (i = 0; i < dc->maxunit; i++) {
1464		if (dc->devices[i]) {
1465			list[count] = dc->devices[i];
1466			count++;
1467		}
1468	}
1469
1470	*devlistp = list;
1471	*devcountp = count;
1472
1473	return (0);
1474}
1475
1476/**
1477 * @brief Get a list of drivers in the devclass
1478 *
1479 * An array containing a list of pointers to all the drivers in the
1480 * given devclass is allocated and returned in @p *listp.  The number
1481 * of drivers in the array is returned in @p *countp. The caller should
1482 * free the array using @c free(p, M_TEMP).
1483 *
1484 * @param dc		the devclass to examine
1485 * @param listp		gives location for array pointer return value
1486 * @param countp	gives location for number of array elements
1487 *			return value
1488 *
1489 * @retval 0		success
1490 * @retval ENOMEM	the array allocation failed
1491 */
1492int
1493devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1494{
1495	driverlink_t dl;
1496	driver_t **list;
1497	int count;
1498
1499	count = 0;
1500	TAILQ_FOREACH(dl, &dc->drivers, link)
1501		count++;
1502	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1503	if (list == NULL)
1504		return (ENOMEM);
1505
1506	count = 0;
1507	TAILQ_FOREACH(dl, &dc->drivers, link) {
1508		list[count] = dl->driver;
1509		count++;
1510	}
1511	*listp = list;
1512	*countp = count;
1513
1514	return (0);
1515}
1516
1517/**
1518 * @brief Get the number of devices in a devclass
1519 *
1520 * @param dc		the devclass to examine
1521 */
1522int
1523devclass_get_count(devclass_t dc)
1524{
1525	int count, i;
1526
1527	count = 0;
1528	for (i = 0; i < dc->maxunit; i++)
1529		if (dc->devices[i])
1530			count++;
1531	return (count);
1532}
1533
1534/**
1535 * @brief Get the maximum unit number used in a devclass
1536 *
1537 * Note that this is one greater than the highest currently-allocated
1538 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1539 * that not even the devclass has been allocated yet.
1540 *
1541 * @param dc		the devclass to examine
1542 */
1543int
1544devclass_get_maxunit(devclass_t dc)
1545{
1546	if (dc == NULL)
1547		return (-1);
1548	return (dc->maxunit);
1549}
1550
1551/**
1552 * @brief Find a free unit number in a devclass
1553 *
1554 * This function searches for the first unused unit number greater
1555 * that or equal to @p unit.
1556 *
1557 * @param dc		the devclass to examine
1558 * @param unit		the first unit number to check
1559 */
1560int
1561devclass_find_free_unit(devclass_t dc, int unit)
1562{
1563	if (dc == NULL)
1564		return (unit);
1565	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1566		unit++;
1567	return (unit);
1568}
1569
1570/**
1571 * @brief Set the parent of a devclass
1572 *
1573 * The parent class is normally initialised automatically by
1574 * DRIVER_MODULE().
1575 *
1576 * @param dc		the devclass to edit
1577 * @param pdc		the new parent devclass
1578 */
1579void
1580devclass_set_parent(devclass_t dc, devclass_t pdc)
1581{
1582	dc->parent = pdc;
1583}
1584
1585/**
1586 * @brief Get the parent of a devclass
1587 *
1588 * @param dc		the devclass to examine
1589 */
1590devclass_t
1591devclass_get_parent(devclass_t dc)
1592{
1593	return (dc->parent);
1594}
1595
1596struct sysctl_ctx_list *
1597devclass_get_sysctl_ctx(devclass_t dc)
1598{
1599	return (&dc->sysctl_ctx);
1600}
1601
1602struct sysctl_oid *
1603devclass_get_sysctl_tree(devclass_t dc)
1604{
1605	return (dc->sysctl_tree);
1606}
1607
1608/**
1609 * @internal
1610 * @brief Allocate a unit number
1611 *
1612 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1613 * will do). The allocated unit number is returned in @p *unitp.
1614
1615 * @param dc		the devclass to allocate from
1616 * @param unitp		points at the location for the allocated unit
1617 *			number
1618 *
1619 * @retval 0		success
1620 * @retval EEXIST	the requested unit number is already allocated
1621 * @retval ENOMEM	memory allocation failure
1622 */
1623static int
1624devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1625{
1626	const char *s;
1627	int unit = *unitp;
1628
1629	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1630
1631	/* Ask the parent bus if it wants to wire this device. */
1632	if (unit == -1)
1633		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1634		    &unit);
1635
1636	/* If we were given a wired unit number, check for existing device */
1637	/* XXX imp XXX */
1638	if (unit != -1) {
1639		if (unit >= 0 && unit < dc->maxunit &&
1640		    dc->devices[unit] != NULL) {
1641			if (bootverbose)
1642				printf("%s: %s%d already exists; skipping it\n",
1643				    dc->name, dc->name, *unitp);
1644			return (EEXIST);
1645		}
1646	} else {
1647		/* Unwired device, find the next available slot for it */
1648		unit = 0;
1649		for (unit = 0;; unit++) {
1650			/* If there is an "at" hint for a unit then skip it. */
1651			if (resource_string_value(dc->name, unit, "at", &s) ==
1652			    0)
1653				continue;
1654
1655			/* If this device slot is already in use, skip it. */
1656			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1657				continue;
1658
1659			break;
1660		}
1661	}
1662
1663	/*
1664	 * We've selected a unit beyond the length of the table, so let's
1665	 * extend the table to make room for all units up to and including
1666	 * this one.
1667	 */
1668	if (unit >= dc->maxunit) {
1669		device_t *newlist, *oldlist;
1670		int newsize;
1671
1672		oldlist = dc->devices;
1673		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1674		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1675		if (!newlist)
1676			return (ENOMEM);
1677		if (oldlist != NULL)
1678			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1679		bzero(newlist + dc->maxunit,
1680		    sizeof(device_t) * (newsize - dc->maxunit));
1681		dc->devices = newlist;
1682		dc->maxunit = newsize;
1683		if (oldlist != NULL)
1684			free(oldlist, M_BUS);
1685	}
1686	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1687
1688	*unitp = unit;
1689	return (0);
1690}
1691
1692/**
1693 * @internal
1694 * @brief Add a device to a devclass
1695 *
1696 * A unit number is allocated for the device (using the device's
1697 * preferred unit number if any) and the device is registered in the
1698 * devclass. This allows the device to be looked up by its unit
1699 * number, e.g. by decoding a dev_t minor number.
1700 *
1701 * @param dc		the devclass to add to
1702 * @param dev		the device to add
1703 *
1704 * @retval 0		success
1705 * @retval EEXIST	the requested unit number is already allocated
1706 * @retval ENOMEM	memory allocation failure
1707 */
1708static int
1709devclass_add_device(devclass_t dc, device_t dev)
1710{
1711	int buflen, error;
1712
1713	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1714
1715	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1716	if (buflen < 0)
1717		return (ENOMEM);
1718	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1719	if (!dev->nameunit)
1720		return (ENOMEM);
1721
1722	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1723		free(dev->nameunit, M_BUS);
1724		dev->nameunit = NULL;
1725		return (error);
1726	}
1727	dc->devices[dev->unit] = dev;
1728	dev->devclass = dc;
1729	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1730
1731	return (0);
1732}
1733
1734/**
1735 * @internal
1736 * @brief Delete a device from a devclass
1737 *
1738 * The device is removed from the devclass's device list and its unit
1739 * number is freed.
1740
1741 * @param dc		the devclass to delete from
1742 * @param dev		the device to delete
1743 *
1744 * @retval 0		success
1745 */
1746static int
1747devclass_delete_device(devclass_t dc, device_t dev)
1748{
1749	if (!dc || !dev)
1750		return (0);
1751
1752	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1753
1754	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1755		panic("devclass_delete_device: inconsistent device class");
1756	dc->devices[dev->unit] = NULL;
1757	if (dev->flags & DF_WILDCARD)
1758		dev->unit = -1;
1759	dev->devclass = NULL;
1760	free(dev->nameunit, M_BUS);
1761	dev->nameunit = NULL;
1762
1763	return (0);
1764}
1765
1766/**
1767 * @internal
1768 * @brief Make a new device and add it as a child of @p parent
1769 *
1770 * @param parent	the parent of the new device
1771 * @param name		the devclass name of the new device or @c NULL
1772 *			to leave the devclass unspecified
1773 * @parem unit		the unit number of the new device of @c -1 to
1774 *			leave the unit number unspecified
1775 *
1776 * @returns the new device
1777 */
1778static device_t
1779make_device(device_t parent, const char *name, int unit)
1780{
1781	device_t dev;
1782	devclass_t dc;
1783
1784	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1785
1786	if (name) {
1787		dc = devclass_find_internal(name, NULL, TRUE);
1788		if (!dc) {
1789			printf("make_device: can't find device class %s\n",
1790			    name);
1791			return (NULL);
1792		}
1793	} else {
1794		dc = NULL;
1795	}
1796
1797	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1798	if (!dev)
1799		return (NULL);
1800
1801	dev->parent = parent;
1802	TAILQ_INIT(&dev->children);
1803	kobj_init((kobj_t) dev, &null_class);
1804	dev->driver = NULL;
1805	dev->devclass = NULL;
1806	dev->unit = unit;
1807	dev->nameunit = NULL;
1808	dev->desc = NULL;
1809	dev->busy = 0;
1810	dev->devflags = 0;
1811	dev->flags = DF_ENABLED;
1812	dev->order = 0;
1813	if (unit == -1)
1814		dev->flags |= DF_WILDCARD;
1815	if (name) {
1816		dev->flags |= DF_FIXEDCLASS;
1817		if (devclass_add_device(dc, dev)) {
1818			kobj_delete((kobj_t) dev, M_BUS);
1819			return (NULL);
1820		}
1821	}
1822	dev->ivars = NULL;
1823	dev->softc = NULL;
1824
1825	dev->state = DS_NOTPRESENT;
1826
1827	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1828	bus_data_generation_update();
1829
1830	return (dev);
1831}
1832
1833/**
1834 * @internal
1835 * @brief Print a description of a device.
1836 */
1837static int
1838device_print_child(device_t dev, device_t child)
1839{
1840	int retval = 0;
1841
1842	if (device_is_alive(child))
1843		retval += BUS_PRINT_CHILD(dev, child);
1844	else
1845		retval += device_printf(child, " not found\n");
1846
1847	return (retval);
1848}
1849
1850/**
1851 * @brief Create a new device
1852 *
1853 * This creates a new device and adds it as a child of an existing
1854 * parent device. The new device will be added after the last existing
1855 * child with order zero.
1856 *
1857 * @param dev		the device which will be the parent of the
1858 *			new child device
1859 * @param name		devclass name for new device or @c NULL if not
1860 *			specified
1861 * @param unit		unit number for new device or @c -1 if not
1862 *			specified
1863 *
1864 * @returns		the new device
1865 */
1866device_t
1867device_add_child(device_t dev, const char *name, int unit)
1868{
1869	return (device_add_child_ordered(dev, 0, name, unit));
1870}
1871
1872/**
1873 * @brief Create a new device
1874 *
1875 * This creates a new device and adds it as a child of an existing
1876 * parent device. The new device will be added after the last existing
1877 * child with the same order.
1878 *
1879 * @param dev		the device which will be the parent of the
1880 *			new child device
1881 * @param order		a value which is used to partially sort the
1882 *			children of @p dev - devices created using
1883 *			lower values of @p order appear first in @p
1884 *			dev's list of children
1885 * @param name		devclass name for new device or @c NULL if not
1886 *			specified
1887 * @param unit		unit number for new device or @c -1 if not
1888 *			specified
1889 *
1890 * @returns		the new device
1891 */
1892device_t
1893device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1894{
1895	device_t child;
1896	device_t place;
1897
1898	PDEBUG(("%s at %s with order %u as unit %d",
1899	    name, DEVICENAME(dev), order, unit));
1900	KASSERT(name != NULL || unit == -1,
1901	    ("child device with wildcard name and specific unit number"));
1902
1903	child = make_device(dev, name, unit);
1904	if (child == NULL)
1905		return (child);
1906	child->order = order;
1907
1908	TAILQ_FOREACH(place, &dev->children, link) {
1909		if (place->order > order)
1910			break;
1911	}
1912
1913	if (place) {
1914		/*
1915		 * The device 'place' is the first device whose order is
1916		 * greater than the new child.
1917		 */
1918		TAILQ_INSERT_BEFORE(place, child, link);
1919	} else {
1920		/*
1921		 * The new child's order is greater or equal to the order of
1922		 * any existing device. Add the child to the tail of the list.
1923		 */
1924		TAILQ_INSERT_TAIL(&dev->children, child, link);
1925	}
1926
1927	bus_data_generation_update();
1928	return (child);
1929}
1930
1931/**
1932 * @brief Delete a device
1933 *
1934 * This function deletes a device along with all of its children. If
1935 * the device currently has a driver attached to it, the device is
1936 * detached first using device_detach().
1937 *
1938 * @param dev		the parent device
1939 * @param child		the device to delete
1940 *
1941 * @retval 0		success
1942 * @retval non-zero	a unit error code describing the error
1943 */
1944int
1945device_delete_child(device_t dev, device_t child)
1946{
1947	int error;
1948	device_t grandchild;
1949
1950	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1951
1952	/* remove children first */
1953	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1954		error = device_delete_child(child, grandchild);
1955		if (error)
1956			return (error);
1957	}
1958
1959	if ((error = device_detach(child)) != 0)
1960		return (error);
1961	if (child->devclass)
1962		devclass_delete_device(child->devclass, child);
1963	if (child->parent)
1964		BUS_CHILD_DELETED(dev, child);
1965	TAILQ_REMOVE(&dev->children, child, link);
1966	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1967	kobj_delete((kobj_t) child, M_BUS);
1968
1969	bus_data_generation_update();
1970	return (0);
1971}
1972
1973/**
1974 * @brief Delete all children devices of the given device, if any.
1975 *
1976 * This function deletes all children devices of the given device, if
1977 * any, using the device_delete_child() function for each device it
1978 * finds. If a child device cannot be deleted, this function will
1979 * return an error code.
1980 *
1981 * @param dev		the parent device
1982 *
1983 * @retval 0		success
1984 * @retval non-zero	a device would not detach
1985 */
1986int
1987device_delete_children(device_t dev)
1988{
1989	device_t child;
1990	int error;
1991
1992	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1993
1994	error = 0;
1995
1996	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1997		error = device_delete_child(dev, child);
1998		if (error) {
1999			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
2000			break;
2001		}
2002	}
2003	return (error);
2004}
2005
2006/**
2007 * @brief Find a device given a unit number
2008 *
2009 * This is similar to devclass_get_devices() but only searches for
2010 * devices which have @p dev as a parent.
2011 *
2012 * @param dev		the parent device to search
2013 * @param unit		the unit number to search for.  If the unit is -1,
2014 *			return the first child of @p dev which has name
2015 *			@p classname (that is, the one with the lowest unit.)
2016 *
2017 * @returns		the device with the given unit number or @c
2018 *			NULL if there is no such device
2019 */
2020device_t
2021device_find_child(device_t dev, const char *classname, int unit)
2022{
2023	devclass_t dc;
2024	device_t child;
2025
2026	dc = devclass_find(classname);
2027	if (!dc)
2028		return (NULL);
2029
2030	if (unit != -1) {
2031		child = devclass_get_device(dc, unit);
2032		if (child && child->parent == dev)
2033			return (child);
2034	} else {
2035		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2036			child = devclass_get_device(dc, unit);
2037			if (child && child->parent == dev)
2038				return (child);
2039		}
2040	}
2041	return (NULL);
2042}
2043
2044/**
2045 * @internal
2046 */
2047static driverlink_t
2048first_matching_driver(devclass_t dc, device_t dev)
2049{
2050	if (dev->devclass)
2051		return (devclass_find_driver_internal(dc, dev->devclass->name));
2052	return (TAILQ_FIRST(&dc->drivers));
2053}
2054
2055/**
2056 * @internal
2057 */
2058static driverlink_t
2059next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2060{
2061	if (dev->devclass) {
2062		driverlink_t dl;
2063		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2064			if (!strcmp(dev->devclass->name, dl->driver->name))
2065				return (dl);
2066		return (NULL);
2067	}
2068	return (TAILQ_NEXT(last, link));
2069}
2070
2071/**
2072 * @internal
2073 */
2074int
2075device_probe_child(device_t dev, device_t child)
2076{
2077	devclass_t dc;
2078	driverlink_t best = NULL;
2079	driverlink_t dl;
2080	int result, pri = 0;
2081	int hasclass = (child->devclass != NULL);
2082
2083	GIANT_REQUIRED;
2084
2085	dc = dev->devclass;
2086	if (!dc)
2087		panic("device_probe_child: parent device has no devclass");
2088
2089	/*
2090	 * If the state is already probed, then return.  However, don't
2091	 * return if we can rebid this object.
2092	 */
2093	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2094		return (0);
2095
2096	for (; dc; dc = dc->parent) {
2097		for (dl = first_matching_driver(dc, child);
2098		     dl;
2099		     dl = next_matching_driver(dc, child, dl)) {
2100			/* If this driver's pass is too high, then ignore it. */
2101			if (dl->pass > bus_current_pass)
2102				continue;
2103
2104			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2105			result = device_set_driver(child, dl->driver);
2106			if (result == ENOMEM)
2107				return (result);
2108			else if (result != 0)
2109				continue;
2110			if (!hasclass) {
2111				if (device_set_devclass(child,
2112				    dl->driver->name) != 0) {
2113					char const * devname =
2114					    device_get_name(child);
2115					if (devname == NULL)
2116						devname = "(unknown)";
2117					printf("driver bug: Unable to set "
2118					    "devclass (class: %s "
2119					    "devname: %s)\n",
2120					    dl->driver->name,
2121					    devname);
2122					(void)device_set_driver(child, NULL);
2123					continue;
2124				}
2125			}
2126
2127			/* Fetch any flags for the device before probing. */
2128			resource_int_value(dl->driver->name, child->unit,
2129			    "flags", &child->devflags);
2130
2131			result = DEVICE_PROBE(child);
2132
2133			/* Reset flags and devclass before the next probe. */
2134			child->devflags = 0;
2135			if (!hasclass)
2136				(void)device_set_devclass(child, NULL);
2137
2138			/*
2139			 * If the driver returns SUCCESS, there can be
2140			 * no higher match for this device.
2141			 */
2142			if (result == 0) {
2143				best = dl;
2144				pri = 0;
2145				break;
2146			}
2147
2148			/*
2149			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2150			 * only match on devices whose driver was explicitly
2151			 * specified.
2152			 */
2153			if (result <= BUS_PROBE_NOWILDCARD &&
2154			    !(child->flags & DF_FIXEDCLASS)) {
2155				result = ENXIO;
2156			}
2157
2158			/*
2159			 * The driver returned an error so it
2160			 * certainly doesn't match.
2161			 */
2162			if (result > 0) {
2163				(void)device_set_driver(child, NULL);
2164				continue;
2165			}
2166
2167			/*
2168			 * A priority lower than SUCCESS, remember the
2169			 * best matching driver. Initialise the value
2170			 * of pri for the first match.
2171			 */
2172			if (best == NULL || result > pri) {
2173				best = dl;
2174				pri = result;
2175				continue;
2176			}
2177		}
2178		/*
2179		 * If we have an unambiguous match in this devclass,
2180		 * don't look in the parent.
2181		 */
2182		if (best && pri == 0)
2183			break;
2184	}
2185
2186	/*
2187	 * If we found a driver, change state and initialise the devclass.
2188	 */
2189	/* XXX What happens if we rebid and got no best? */
2190	if (best) {
2191		/*
2192		 * If this device was attached, and we were asked to
2193		 * rescan, and it is a different driver, then we have
2194		 * to detach the old driver and reattach this new one.
2195		 * Note, we don't have to check for DF_REBID here
2196		 * because if the state is > DS_ALIVE, we know it must
2197		 * be.
2198		 *
2199		 * This assumes that all DF_REBID drivers can have
2200		 * their probe routine called at any time and that
2201		 * they are idempotent as well as completely benign in
2202		 * normal operations.
2203		 *
2204		 * We also have to make sure that the detach
2205		 * succeeded, otherwise we fail the operation (or
2206		 * maybe it should just fail silently?  I'm torn).
2207		 */
2208		if (child->state > DS_ALIVE && best->driver != child->driver)
2209			if ((result = device_detach(dev)) != 0)
2210				return (result);
2211
2212		/* Set the winning driver, devclass, and flags. */
2213		if (!child->devclass) {
2214			result = device_set_devclass(child, best->driver->name);
2215			if (result != 0)
2216				return (result);
2217		}
2218		result = device_set_driver(child, best->driver);
2219		if (result != 0)
2220			return (result);
2221		resource_int_value(best->driver->name, child->unit,
2222		    "flags", &child->devflags);
2223
2224		if (pri < 0) {
2225			/*
2226			 * A bit bogus. Call the probe method again to make
2227			 * sure that we have the right description.
2228			 */
2229			DEVICE_PROBE(child);
2230#if 0
2231			child->flags |= DF_REBID;
2232#endif
2233		} else
2234			child->flags &= ~DF_REBID;
2235		child->state = DS_ALIVE;
2236
2237		bus_data_generation_update();
2238		return (0);
2239	}
2240
2241	return (ENXIO);
2242}
2243
2244/**
2245 * @brief Return the parent of a device
2246 */
2247device_t
2248device_get_parent(device_t dev)
2249{
2250	return (dev->parent);
2251}
2252
2253/**
2254 * @brief Get a list of children of a device
2255 *
2256 * An array containing a list of all the children of the given device
2257 * is allocated and returned in @p *devlistp. The number of devices
2258 * in the array is returned in @p *devcountp. The caller should free
2259 * the array using @c free(p, M_TEMP).
2260 *
2261 * @param dev		the device to examine
2262 * @param devlistp	points at location for array pointer return
2263 *			value
2264 * @param devcountp	points at location for array size return value
2265 *
2266 * @retval 0		success
2267 * @retval ENOMEM	the array allocation failed
2268 */
2269int
2270device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2271{
2272	int count;
2273	device_t child;
2274	device_t *list;
2275
2276	count = 0;
2277	TAILQ_FOREACH(child, &dev->children, link) {
2278		count++;
2279	}
2280	if (count == 0) {
2281		*devlistp = NULL;
2282		*devcountp = 0;
2283		return (0);
2284	}
2285
2286	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2287	if (!list)
2288		return (ENOMEM);
2289
2290	count = 0;
2291	TAILQ_FOREACH(child, &dev->children, link) {
2292		list[count] = child;
2293		count++;
2294	}
2295
2296	*devlistp = list;
2297	*devcountp = count;
2298
2299	return (0);
2300}
2301
2302/**
2303 * @brief Return the current driver for the device or @c NULL if there
2304 * is no driver currently attached
2305 */
2306driver_t *
2307device_get_driver(device_t dev)
2308{
2309	return (dev->driver);
2310}
2311
2312/**
2313 * @brief Return the current devclass for the device or @c NULL if
2314 * there is none.
2315 */
2316devclass_t
2317device_get_devclass(device_t dev)
2318{
2319	return (dev->devclass);
2320}
2321
2322/**
2323 * @brief Return the name of the device's devclass or @c NULL if there
2324 * is none.
2325 */
2326const char *
2327device_get_name(device_t dev)
2328{
2329	if (dev != NULL && dev->devclass)
2330		return (devclass_get_name(dev->devclass));
2331	return (NULL);
2332}
2333
2334/**
2335 * @brief Return a string containing the device's devclass name
2336 * followed by an ascii representation of the device's unit number
2337 * (e.g. @c "foo2").
2338 */
2339const char *
2340device_get_nameunit(device_t dev)
2341{
2342	return (dev->nameunit);
2343}
2344
2345/**
2346 * @brief Return the device's unit number.
2347 */
2348int
2349device_get_unit(device_t dev)
2350{
2351	return (dev->unit);
2352}
2353
2354/**
2355 * @brief Return the device's description string
2356 */
2357const char *
2358device_get_desc(device_t dev)
2359{
2360	return (dev->desc);
2361}
2362
2363/**
2364 * @brief Return the device's flags
2365 */
2366uint32_t
2367device_get_flags(device_t dev)
2368{
2369	return (dev->devflags);
2370}
2371
2372struct sysctl_ctx_list *
2373device_get_sysctl_ctx(device_t dev)
2374{
2375	return (&dev->sysctl_ctx);
2376}
2377
2378struct sysctl_oid *
2379device_get_sysctl_tree(device_t dev)
2380{
2381	return (dev->sysctl_tree);
2382}
2383
2384/**
2385 * @brief Print the name of the device followed by a colon and a space
2386 *
2387 * @returns the number of characters printed
2388 */
2389int
2390device_print_prettyname(device_t dev)
2391{
2392	const char *name = device_get_name(dev);
2393
2394	if (name == NULL)
2395		return (printf("unknown: "));
2396	return (printf("%s%d: ", name, device_get_unit(dev)));
2397}
2398
2399/**
2400 * @brief Print the name of the device followed by a colon, a space
2401 * and the result of calling vprintf() with the value of @p fmt and
2402 * the following arguments.
2403 *
2404 * @returns the number of characters printed
2405 */
2406int
2407device_printf(device_t dev, const char * fmt, ...)
2408{
2409	va_list ap;
2410	int retval;
2411
2412	retval = device_print_prettyname(dev);
2413	va_start(ap, fmt);
2414	retval += vprintf(fmt, ap);
2415	va_end(ap);
2416	return (retval);
2417}
2418
2419/**
2420 * @internal
2421 */
2422static void
2423device_set_desc_internal(device_t dev, const char* desc, int copy)
2424{
2425	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2426		free(dev->desc, M_BUS);
2427		dev->flags &= ~DF_DESCMALLOCED;
2428		dev->desc = NULL;
2429	}
2430
2431	if (copy && desc) {
2432		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2433		if (dev->desc) {
2434			strcpy(dev->desc, desc);
2435			dev->flags |= DF_DESCMALLOCED;
2436		}
2437	} else {
2438		/* Avoid a -Wcast-qual warning */
2439		dev->desc = (char *)(uintptr_t) desc;
2440	}
2441
2442	bus_data_generation_update();
2443}
2444
2445/**
2446 * @brief Set the device's description
2447 *
2448 * The value of @c desc should be a string constant that will not
2449 * change (at least until the description is changed in a subsequent
2450 * call to device_set_desc() or device_set_desc_copy()).
2451 */
2452void
2453device_set_desc(device_t dev, const char* desc)
2454{
2455	device_set_desc_internal(dev, desc, FALSE);
2456}
2457
2458/**
2459 * @brief Set the device's description
2460 *
2461 * The string pointed to by @c desc is copied. Use this function if
2462 * the device description is generated, (e.g. with sprintf()).
2463 */
2464void
2465device_set_desc_copy(device_t dev, const char* desc)
2466{
2467	device_set_desc_internal(dev, desc, TRUE);
2468}
2469
2470/**
2471 * @brief Set the device's flags
2472 */
2473void
2474device_set_flags(device_t dev, uint32_t flags)
2475{
2476	dev->devflags = flags;
2477}
2478
2479/**
2480 * @brief Return the device's softc field
2481 *
2482 * The softc is allocated and zeroed when a driver is attached, based
2483 * on the size field of the driver.
2484 */
2485void *
2486device_get_softc(device_t dev)
2487{
2488	return (dev->softc);
2489}
2490
2491/**
2492 * @brief Set the device's softc field
2493 *
2494 * Most drivers do not need to use this since the softc is allocated
2495 * automatically when the driver is attached.
2496 */
2497void
2498device_set_softc(device_t dev, void *softc)
2499{
2500	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2501		free(dev->softc, M_BUS_SC);
2502	dev->softc = softc;
2503	if (dev->softc)
2504		dev->flags |= DF_EXTERNALSOFTC;
2505	else
2506		dev->flags &= ~DF_EXTERNALSOFTC;
2507}
2508
2509/**
2510 * @brief Free claimed softc
2511 *
2512 * Most drivers do not need to use this since the softc is freed
2513 * automatically when the driver is detached.
2514 */
2515void
2516device_free_softc(void *softc)
2517{
2518	free(softc, M_BUS_SC);
2519}
2520
2521/**
2522 * @brief Claim softc
2523 *
2524 * This function can be used to let the driver free the automatically
2525 * allocated softc using "device_free_softc()". This function is
2526 * useful when the driver is refcounting the softc and the softc
2527 * cannot be freed when the "device_detach" method is called.
2528 */
2529void
2530device_claim_softc(device_t dev)
2531{
2532	if (dev->softc)
2533		dev->flags |= DF_EXTERNALSOFTC;
2534	else
2535		dev->flags &= ~DF_EXTERNALSOFTC;
2536}
2537
2538/**
2539 * @brief Get the device's ivars field
2540 *
2541 * The ivars field is used by the parent device to store per-device
2542 * state (e.g. the physical location of the device or a list of
2543 * resources).
2544 */
2545void *
2546device_get_ivars(device_t dev)
2547{
2548
2549	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2550	return (dev->ivars);
2551}
2552
2553/**
2554 * @brief Set the device's ivars field
2555 */
2556void
2557device_set_ivars(device_t dev, void * ivars)
2558{
2559
2560	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2561	dev->ivars = ivars;
2562}
2563
2564/**
2565 * @brief Return the device's state
2566 */
2567device_state_t
2568device_get_state(device_t dev)
2569{
2570	return (dev->state);
2571}
2572
2573/**
2574 * @brief Set the DF_ENABLED flag for the device
2575 */
2576void
2577device_enable(device_t dev)
2578{
2579	dev->flags |= DF_ENABLED;
2580}
2581
2582/**
2583 * @brief Clear the DF_ENABLED flag for the device
2584 */
2585void
2586device_disable(device_t dev)
2587{
2588	dev->flags &= ~DF_ENABLED;
2589}
2590
2591/**
2592 * @brief Increment the busy counter for the device
2593 */
2594void
2595device_busy(device_t dev)
2596{
2597	if (dev->state < DS_ATTACHING)
2598		panic("device_busy: called for unattached device");
2599	if (dev->busy == 0 && dev->parent)
2600		device_busy(dev->parent);
2601	dev->busy++;
2602	if (dev->state == DS_ATTACHED)
2603		dev->state = DS_BUSY;
2604}
2605
2606/**
2607 * @brief Decrement the busy counter for the device
2608 */
2609void
2610device_unbusy(device_t dev)
2611{
2612	if (dev->busy != 0 && dev->state != DS_BUSY &&
2613	    dev->state != DS_ATTACHING)
2614		panic("device_unbusy: called for non-busy device %s",
2615		    device_get_nameunit(dev));
2616	dev->busy--;
2617	if (dev->busy == 0) {
2618		if (dev->parent)
2619			device_unbusy(dev->parent);
2620		if (dev->state == DS_BUSY)
2621			dev->state = DS_ATTACHED;
2622	}
2623}
2624
2625/**
2626 * @brief Set the DF_QUIET flag for the device
2627 */
2628void
2629device_quiet(device_t dev)
2630{
2631	dev->flags |= DF_QUIET;
2632}
2633
2634/**
2635 * @brief Clear the DF_QUIET flag for the device
2636 */
2637void
2638device_verbose(device_t dev)
2639{
2640	dev->flags &= ~DF_QUIET;
2641}
2642
2643/**
2644 * @brief Return non-zero if the DF_QUIET flag is set on the device
2645 */
2646int
2647device_is_quiet(device_t dev)
2648{
2649	return ((dev->flags & DF_QUIET) != 0);
2650}
2651
2652/**
2653 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2654 */
2655int
2656device_is_enabled(device_t dev)
2657{
2658	return ((dev->flags & DF_ENABLED) != 0);
2659}
2660
2661/**
2662 * @brief Return non-zero if the device was successfully probed
2663 */
2664int
2665device_is_alive(device_t dev)
2666{
2667	return (dev->state >= DS_ALIVE);
2668}
2669
2670/**
2671 * @brief Return non-zero if the device currently has a driver
2672 * attached to it
2673 */
2674int
2675device_is_attached(device_t dev)
2676{
2677	return (dev->state >= DS_ATTACHED);
2678}
2679
2680/**
2681 * @brief Return non-zero if the device is currently suspended.
2682 */
2683int
2684device_is_suspended(device_t dev)
2685{
2686	return ((dev->flags & DF_SUSPENDED) != 0);
2687}
2688
2689/**
2690 * @brief Set the devclass of a device
2691 * @see devclass_add_device().
2692 */
2693int
2694device_set_devclass(device_t dev, const char *classname)
2695{
2696	devclass_t dc;
2697	int error;
2698
2699	if (!classname) {
2700		if (dev->devclass)
2701			devclass_delete_device(dev->devclass, dev);
2702		return (0);
2703	}
2704
2705	if (dev->devclass) {
2706		printf("device_set_devclass: device class already set\n");
2707		return (EINVAL);
2708	}
2709
2710	dc = devclass_find_internal(classname, NULL, TRUE);
2711	if (!dc)
2712		return (ENOMEM);
2713
2714	error = devclass_add_device(dc, dev);
2715
2716	bus_data_generation_update();
2717	return (error);
2718}
2719
2720/**
2721 * @brief Set the devclass of a device and mark the devclass fixed.
2722 * @see device_set_devclass()
2723 */
2724int
2725device_set_devclass_fixed(device_t dev, const char *classname)
2726{
2727	int error;
2728
2729	if (classname == NULL)
2730		return (EINVAL);
2731
2732	error = device_set_devclass(dev, classname);
2733	if (error)
2734		return (error);
2735	dev->flags |= DF_FIXEDCLASS;
2736	return (0);
2737}
2738
2739/**
2740 * @brief Set the driver of a device
2741 *
2742 * @retval 0		success
2743 * @retval EBUSY	the device already has a driver attached
2744 * @retval ENOMEM	a memory allocation failure occurred
2745 */
2746int
2747device_set_driver(device_t dev, driver_t *driver)
2748{
2749	if (dev->state >= DS_ATTACHED)
2750		return (EBUSY);
2751
2752	if (dev->driver == driver)
2753		return (0);
2754
2755	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2756		free(dev->softc, M_BUS_SC);
2757		dev->softc = NULL;
2758	}
2759	device_set_desc(dev, NULL);
2760	kobj_delete((kobj_t) dev, NULL);
2761	dev->driver = driver;
2762	if (driver) {
2763		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2764		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2765			dev->softc = malloc(driver->size, M_BUS_SC,
2766			    M_NOWAIT | M_ZERO);
2767			if (!dev->softc) {
2768				kobj_delete((kobj_t) dev, NULL);
2769				kobj_init((kobj_t) dev, &null_class);
2770				dev->driver = NULL;
2771				return (ENOMEM);
2772			}
2773		}
2774	} else {
2775		kobj_init((kobj_t) dev, &null_class);
2776	}
2777
2778	bus_data_generation_update();
2779	return (0);
2780}
2781
2782/**
2783 * @brief Probe a device, and return this status.
2784 *
2785 * This function is the core of the device autoconfiguration
2786 * system. Its purpose is to select a suitable driver for a device and
2787 * then call that driver to initialise the hardware appropriately. The
2788 * driver is selected by calling the DEVICE_PROBE() method of a set of
2789 * candidate drivers and then choosing the driver which returned the
2790 * best value. This driver is then attached to the device using
2791 * device_attach().
2792 *
2793 * The set of suitable drivers is taken from the list of drivers in
2794 * the parent device's devclass. If the device was originally created
2795 * with a specific class name (see device_add_child()), only drivers
2796 * with that name are probed, otherwise all drivers in the devclass
2797 * are probed. If no drivers return successful probe values in the
2798 * parent devclass, the search continues in the parent of that
2799 * devclass (see devclass_get_parent()) if any.
2800 *
2801 * @param dev		the device to initialise
2802 *
2803 * @retval 0		success
2804 * @retval ENXIO	no driver was found
2805 * @retval ENOMEM	memory allocation failure
2806 * @retval non-zero	some other unix error code
2807 * @retval -1		Device already attached
2808 */
2809int
2810device_probe(device_t dev)
2811{
2812	int error;
2813
2814	GIANT_REQUIRED;
2815
2816	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2817		return (-1);
2818
2819	if (!(dev->flags & DF_ENABLED)) {
2820		if (bootverbose && device_get_name(dev) != NULL) {
2821			device_print_prettyname(dev);
2822			printf("not probed (disabled)\n");
2823		}
2824		return (-1);
2825	}
2826	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2827		if (bus_current_pass == BUS_PASS_DEFAULT &&
2828		    !(dev->flags & DF_DONENOMATCH)) {
2829			BUS_PROBE_NOMATCH(dev->parent, dev);
2830			devnomatch(dev);
2831			dev->flags |= DF_DONENOMATCH;
2832		}
2833		return (error);
2834	}
2835	return (0);
2836}
2837
2838/**
2839 * @brief Probe a device and attach a driver if possible
2840 *
2841 * calls device_probe() and attaches if that was successful.
2842 */
2843int
2844device_probe_and_attach(device_t dev)
2845{
2846	int error;
2847
2848	GIANT_REQUIRED;
2849
2850	error = device_probe(dev);
2851	if (error == -1)
2852		return (0);
2853	else if (error != 0)
2854		return (error);
2855
2856	CURVNET_SET_QUIET(vnet0);
2857	error = device_attach(dev);
2858	CURVNET_RESTORE();
2859	return error;
2860}
2861
2862/**
2863 * @brief Attach a device driver to a device
2864 *
2865 * This function is a wrapper around the DEVICE_ATTACH() driver
2866 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2867 * device's sysctl tree, optionally prints a description of the device
2868 * and queues a notification event for user-based device management
2869 * services.
2870 *
2871 * Normally this function is only called internally from
2872 * device_probe_and_attach().
2873 *
2874 * @param dev		the device to initialise
2875 *
2876 * @retval 0		success
2877 * @retval ENXIO	no driver was found
2878 * @retval ENOMEM	memory allocation failure
2879 * @retval non-zero	some other unix error code
2880 */
2881int
2882device_attach(device_t dev)
2883{
2884	uint64_t attachtime;
2885	int error;
2886
2887	if (resource_disabled(dev->driver->name, dev->unit)) {
2888		device_disable(dev);
2889		if (bootverbose)
2890			 device_printf(dev, "disabled via hints entry\n");
2891		return (ENXIO);
2892	}
2893
2894	device_sysctl_init(dev);
2895	if (!device_is_quiet(dev))
2896		device_print_child(dev->parent, dev);
2897	attachtime = get_cyclecount();
2898	dev->state = DS_ATTACHING;
2899	if ((error = DEVICE_ATTACH(dev)) != 0) {
2900		printf("device_attach: %s%d attach returned %d\n",
2901		    dev->driver->name, dev->unit, error);
2902		if (!(dev->flags & DF_FIXEDCLASS))
2903			devclass_delete_device(dev->devclass, dev);
2904		(void)device_set_driver(dev, NULL);
2905		device_sysctl_fini(dev);
2906		KASSERT(dev->busy == 0, ("attach failed but busy"));
2907		dev->state = DS_NOTPRESENT;
2908		return (error);
2909	}
2910	attachtime = get_cyclecount() - attachtime;
2911	/*
2912	 * 4 bits per device is a reasonable value for desktop and server
2913	 * hardware with good get_cyclecount() implementations, but WILL
2914	 * need to be adjusted on other platforms.
2915	 */
2916#define	RANDOM_PROBE_BIT_GUESS	4
2917	if (bootverbose)
2918		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2919		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2920		    dev->driver->name, dev->unit);
2921	random_harvest_direct(&attachtime, sizeof(attachtime),
2922	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2923	device_sysctl_update(dev);
2924	if (dev->busy)
2925		dev->state = DS_BUSY;
2926	else
2927		dev->state = DS_ATTACHED;
2928	dev->flags &= ~DF_DONENOMATCH;
2929	devadded(dev);
2930	return (0);
2931}
2932
2933/**
2934 * @brief Detach a driver from a device
2935 *
2936 * This function is a wrapper around the DEVICE_DETACH() driver
2937 * method. If the call to DEVICE_DETACH() succeeds, it calls
2938 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2939 * notification event for user-based device management services and
2940 * cleans up the device's sysctl tree.
2941 *
2942 * @param dev		the device to un-initialise
2943 *
2944 * @retval 0		success
2945 * @retval ENXIO	no driver was found
2946 * @retval ENOMEM	memory allocation failure
2947 * @retval non-zero	some other unix error code
2948 */
2949int
2950device_detach(device_t dev)
2951{
2952	int error;
2953
2954	GIANT_REQUIRED;
2955
2956	PDEBUG(("%s", DEVICENAME(dev)));
2957	if (dev->state == DS_BUSY)
2958		return (EBUSY);
2959	if (dev->state != DS_ATTACHED)
2960		return (0);
2961
2962	if ((error = DEVICE_DETACH(dev)) != 0)
2963		return (error);
2964	devremoved(dev);
2965	if (!device_is_quiet(dev))
2966		device_printf(dev, "detached\n");
2967	if (dev->parent)
2968		BUS_CHILD_DETACHED(dev->parent, dev);
2969
2970	if (!(dev->flags & DF_FIXEDCLASS))
2971		devclass_delete_device(dev->devclass, dev);
2972
2973	dev->state = DS_NOTPRESENT;
2974	(void)device_set_driver(dev, NULL);
2975	device_sysctl_fini(dev);
2976
2977	return (0);
2978}
2979
2980/**
2981 * @brief Tells a driver to quiesce itself.
2982 *
2983 * This function is a wrapper around the DEVICE_QUIESCE() driver
2984 * method. If the call to DEVICE_QUIESCE() succeeds.
2985 *
2986 * @param dev		the device to quiesce
2987 *
2988 * @retval 0		success
2989 * @retval ENXIO	no driver was found
2990 * @retval ENOMEM	memory allocation failure
2991 * @retval non-zero	some other unix error code
2992 */
2993int
2994device_quiesce(device_t dev)
2995{
2996
2997	PDEBUG(("%s", DEVICENAME(dev)));
2998	if (dev->state == DS_BUSY)
2999		return (EBUSY);
3000	if (dev->state != DS_ATTACHED)
3001		return (0);
3002
3003	return (DEVICE_QUIESCE(dev));
3004}
3005
3006/**
3007 * @brief Notify a device of system shutdown
3008 *
3009 * This function calls the DEVICE_SHUTDOWN() driver method if the
3010 * device currently has an attached driver.
3011 *
3012 * @returns the value returned by DEVICE_SHUTDOWN()
3013 */
3014int
3015device_shutdown(device_t dev)
3016{
3017	if (dev->state < DS_ATTACHED)
3018		return (0);
3019	return (DEVICE_SHUTDOWN(dev));
3020}
3021
3022/**
3023 * @brief Set the unit number of a device
3024 *
3025 * This function can be used to override the unit number used for a
3026 * device (e.g. to wire a device to a pre-configured unit number).
3027 */
3028int
3029device_set_unit(device_t dev, int unit)
3030{
3031	devclass_t dc;
3032	int err;
3033
3034	dc = device_get_devclass(dev);
3035	if (unit < dc->maxunit && dc->devices[unit])
3036		return (EBUSY);
3037	err = devclass_delete_device(dc, dev);
3038	if (err)
3039		return (err);
3040	dev->unit = unit;
3041	err = devclass_add_device(dc, dev);
3042	if (err)
3043		return (err);
3044
3045	bus_data_generation_update();
3046	return (0);
3047}
3048
3049/*======================================*/
3050/*
3051 * Some useful method implementations to make life easier for bus drivers.
3052 */
3053
3054void
3055resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
3056{
3057
3058	bzero(args, sz);
3059	args->size = sz;
3060	args->memattr = VM_MEMATTR_UNCACHEABLE;
3061}
3062
3063/**
3064 * @brief Initialise a resource list.
3065 *
3066 * @param rl		the resource list to initialise
3067 */
3068void
3069resource_list_init(struct resource_list *rl)
3070{
3071	STAILQ_INIT(rl);
3072}
3073
3074/**
3075 * @brief Reclaim memory used by a resource list.
3076 *
3077 * This function frees the memory for all resource entries on the list
3078 * (if any).
3079 *
3080 * @param rl		the resource list to free
3081 */
3082void
3083resource_list_free(struct resource_list *rl)
3084{
3085	struct resource_list_entry *rle;
3086
3087	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3088		if (rle->res)
3089			panic("resource_list_free: resource entry is busy");
3090		STAILQ_REMOVE_HEAD(rl, link);
3091		free(rle, M_BUS);
3092	}
3093}
3094
3095/**
3096 * @brief Add a resource entry.
3097 *
3098 * This function adds a resource entry using the given @p type, @p
3099 * start, @p end and @p count values. A rid value is chosen by
3100 * searching sequentially for the first unused rid starting at zero.
3101 *
3102 * @param rl		the resource list to edit
3103 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3104 * @param start		the start address of the resource
3105 * @param end		the end address of the resource
3106 * @param count		XXX end-start+1
3107 */
3108int
3109resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3110    rman_res_t end, rman_res_t count)
3111{
3112	int rid;
3113
3114	rid = 0;
3115	while (resource_list_find(rl, type, rid) != NULL)
3116		rid++;
3117	resource_list_add(rl, type, rid, start, end, count);
3118	return (rid);
3119}
3120
3121/**
3122 * @brief Add or modify a resource entry.
3123 *
3124 * If an existing entry exists with the same type and rid, it will be
3125 * modified using the given values of @p start, @p end and @p
3126 * count. If no entry exists, a new one will be created using the
3127 * given values.  The resource list entry that matches is then returned.
3128 *
3129 * @param rl		the resource list to edit
3130 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3131 * @param rid		the resource identifier
3132 * @param start		the start address of the resource
3133 * @param end		the end address of the resource
3134 * @param count		XXX end-start+1
3135 */
3136struct resource_list_entry *
3137resource_list_add(struct resource_list *rl, int type, int rid,
3138    rman_res_t start, rman_res_t end, rman_res_t count)
3139{
3140	struct resource_list_entry *rle;
3141
3142	rle = resource_list_find(rl, type, rid);
3143	if (!rle) {
3144		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3145		    M_NOWAIT);
3146		if (!rle)
3147			panic("resource_list_add: can't record entry");
3148		STAILQ_INSERT_TAIL(rl, rle, link);
3149		rle->type = type;
3150		rle->rid = rid;
3151		rle->res = NULL;
3152		rle->flags = 0;
3153	}
3154
3155	if (rle->res)
3156		panic("resource_list_add: resource entry is busy");
3157
3158	rle->start = start;
3159	rle->end = end;
3160	rle->count = count;
3161	return (rle);
3162}
3163
3164/**
3165 * @brief Determine if a resource entry is busy.
3166 *
3167 * Returns true if a resource entry is busy meaning that it has an
3168 * associated resource that is not an unallocated "reserved" resource.
3169 *
3170 * @param rl		the resource list to search
3171 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3172 * @param rid		the resource identifier
3173 *
3174 * @returns Non-zero if the entry is busy, zero otherwise.
3175 */
3176int
3177resource_list_busy(struct resource_list *rl, int type, int rid)
3178{
3179	struct resource_list_entry *rle;
3180
3181	rle = resource_list_find(rl, type, rid);
3182	if (rle == NULL || rle->res == NULL)
3183		return (0);
3184	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3185		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3186		    ("reserved resource is active"));
3187		return (0);
3188	}
3189	return (1);
3190}
3191
3192/**
3193 * @brief Determine if a resource entry is reserved.
3194 *
3195 * Returns true if a resource entry is reserved meaning that it has an
3196 * associated "reserved" resource.  The resource can either be
3197 * allocated or unallocated.
3198 *
3199 * @param rl		the resource list to search
3200 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3201 * @param rid		the resource identifier
3202 *
3203 * @returns Non-zero if the entry is reserved, zero otherwise.
3204 */
3205int
3206resource_list_reserved(struct resource_list *rl, int type, int rid)
3207{
3208	struct resource_list_entry *rle;
3209
3210	rle = resource_list_find(rl, type, rid);
3211	if (rle != NULL && rle->flags & RLE_RESERVED)
3212		return (1);
3213	return (0);
3214}
3215
3216/**
3217 * @brief Find a resource entry by type and rid.
3218 *
3219 * @param rl		the resource list to search
3220 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3221 * @param rid		the resource identifier
3222 *
3223 * @returns the resource entry pointer or NULL if there is no such
3224 * entry.
3225 */
3226struct resource_list_entry *
3227resource_list_find(struct resource_list *rl, int type, int rid)
3228{
3229	struct resource_list_entry *rle;
3230
3231	STAILQ_FOREACH(rle, rl, link) {
3232		if (rle->type == type && rle->rid == rid)
3233			return (rle);
3234	}
3235	return (NULL);
3236}
3237
3238/**
3239 * @brief Delete a resource entry.
3240 *
3241 * @param rl		the resource list to edit
3242 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3243 * @param rid		the resource identifier
3244 */
3245void
3246resource_list_delete(struct resource_list *rl, int type, int rid)
3247{
3248	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3249
3250	if (rle) {
3251		if (rle->res != NULL)
3252			panic("resource_list_delete: resource has not been released");
3253		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3254		free(rle, M_BUS);
3255	}
3256}
3257
3258/**
3259 * @brief Allocate a reserved resource
3260 *
3261 * This can be used by busses to force the allocation of resources
3262 * that are always active in the system even if they are not allocated
3263 * by a driver (e.g. PCI BARs).  This function is usually called when
3264 * adding a new child to the bus.  The resource is allocated from the
3265 * parent bus when it is reserved.  The resource list entry is marked
3266 * with RLE_RESERVED to note that it is a reserved resource.
3267 *
3268 * Subsequent attempts to allocate the resource with
3269 * resource_list_alloc() will succeed the first time and will set
3270 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3271 * resource that has been allocated is released with
3272 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3273 * the actual resource remains allocated.  The resource can be released to
3274 * the parent bus by calling resource_list_unreserve().
3275 *
3276 * @param rl		the resource list to allocate from
3277 * @param bus		the parent device of @p child
3278 * @param child		the device for which the resource is being reserved
3279 * @param type		the type of resource to allocate
3280 * @param rid		a pointer to the resource identifier
3281 * @param start		hint at the start of the resource range - pass
3282 *			@c 0 for any start address
3283 * @param end		hint at the end of the resource range - pass
3284 *			@c ~0 for any end address
3285 * @param count		hint at the size of range required - pass @c 1
3286 *			for any size
3287 * @param flags		any extra flags to control the resource
3288 *			allocation - see @c RF_XXX flags in
3289 *			<sys/rman.h> for details
3290 *
3291 * @returns		the resource which was allocated or @c NULL if no
3292 *			resource could be allocated
3293 */
3294struct resource *
3295resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3296    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3297{
3298	struct resource_list_entry *rle = NULL;
3299	int passthrough = (device_get_parent(child) != bus);
3300	struct resource *r;
3301
3302	if (passthrough)
3303		panic(
3304    "resource_list_reserve() should only be called for direct children");
3305	if (flags & RF_ACTIVE)
3306		panic(
3307    "resource_list_reserve() should only reserve inactive resources");
3308
3309	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3310	    flags);
3311	if (r != NULL) {
3312		rle = resource_list_find(rl, type, *rid);
3313		rle->flags |= RLE_RESERVED;
3314	}
3315	return (r);
3316}
3317
3318/**
3319 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3320 *
3321 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3322 * and passing the allocation up to the parent of @p bus. This assumes
3323 * that the first entry of @c device_get_ivars(child) is a struct
3324 * resource_list. This also handles 'passthrough' allocations where a
3325 * child is a remote descendant of bus by passing the allocation up to
3326 * the parent of bus.
3327 *
3328 * Typically, a bus driver would store a list of child resources
3329 * somewhere in the child device's ivars (see device_get_ivars()) and
3330 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3331 * then call resource_list_alloc() to perform the allocation.
3332 *
3333 * @param rl		the resource list to allocate from
3334 * @param bus		the parent device of @p child
3335 * @param child		the device which is requesting an allocation
3336 * @param type		the type of resource to allocate
3337 * @param rid		a pointer to the resource identifier
3338 * @param start		hint at the start of the resource range - pass
3339 *			@c 0 for any start address
3340 * @param end		hint at the end of the resource range - pass
3341 *			@c ~0 for any end address
3342 * @param count		hint at the size of range required - pass @c 1
3343 *			for any size
3344 * @param flags		any extra flags to control the resource
3345 *			allocation - see @c RF_XXX flags in
3346 *			<sys/rman.h> for details
3347 *
3348 * @returns		the resource which was allocated or @c NULL if no
3349 *			resource could be allocated
3350 */
3351struct resource *
3352resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3353    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3354{
3355	struct resource_list_entry *rle = NULL;
3356	int passthrough = (device_get_parent(child) != bus);
3357	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3358
3359	if (passthrough) {
3360		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3361		    type, rid, start, end, count, flags));
3362	}
3363
3364	rle = resource_list_find(rl, type, *rid);
3365
3366	if (!rle)
3367		return (NULL);		/* no resource of that type/rid */
3368
3369	if (rle->res) {
3370		if (rle->flags & RLE_RESERVED) {
3371			if (rle->flags & RLE_ALLOCATED)
3372				return (NULL);
3373			if ((flags & RF_ACTIVE) &&
3374			    bus_activate_resource(child, type, *rid,
3375			    rle->res) != 0)
3376				return (NULL);
3377			rle->flags |= RLE_ALLOCATED;
3378			return (rle->res);
3379		}
3380		device_printf(bus,
3381		    "resource entry %#x type %d for child %s is busy\n", *rid,
3382		    type, device_get_nameunit(child));
3383		return (NULL);
3384	}
3385
3386	if (isdefault) {
3387		start = rle->start;
3388		count = ulmax(count, rle->count);
3389		end = ulmax(rle->end, start + count - 1);
3390	}
3391
3392	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3393	    type, rid, start, end, count, flags);
3394
3395	/*
3396	 * Record the new range.
3397	 */
3398	if (rle->res) {
3399		rle->start = rman_get_start(rle->res);
3400		rle->end = rman_get_end(rle->res);
3401		rle->count = count;
3402	}
3403
3404	return (rle->res);
3405}
3406
3407/**
3408 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3409 *
3410 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3411 * used with resource_list_alloc().
3412 *
3413 * @param rl		the resource list which was allocated from
3414 * @param bus		the parent device of @p child
3415 * @param child		the device which is requesting a release
3416 * @param type		the type of resource to release
3417 * @param rid		the resource identifier
3418 * @param res		the resource to release
3419 *
3420 * @retval 0		success
3421 * @retval non-zero	a standard unix error code indicating what
3422 *			error condition prevented the operation
3423 */
3424int
3425resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3426    int type, int rid, struct resource *res)
3427{
3428	struct resource_list_entry *rle = NULL;
3429	int passthrough = (device_get_parent(child) != bus);
3430	int error;
3431
3432	if (passthrough) {
3433		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3434		    type, rid, res));
3435	}
3436
3437	rle = resource_list_find(rl, type, rid);
3438
3439	if (!rle)
3440		panic("resource_list_release: can't find resource");
3441	if (!rle->res)
3442		panic("resource_list_release: resource entry is not busy");
3443	if (rle->flags & RLE_RESERVED) {
3444		if (rle->flags & RLE_ALLOCATED) {
3445			if (rman_get_flags(res) & RF_ACTIVE) {
3446				error = bus_deactivate_resource(child, type,
3447				    rid, res);
3448				if (error)
3449					return (error);
3450			}
3451			rle->flags &= ~RLE_ALLOCATED;
3452			return (0);
3453		}
3454		return (EINVAL);
3455	}
3456
3457	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3458	    type, rid, res);
3459	if (error)
3460		return (error);
3461
3462	rle->res = NULL;
3463	return (0);
3464}
3465
3466/**
3467 * @brief Release all active resources of a given type
3468 *
3469 * Release all active resources of a specified type.  This is intended
3470 * to be used to cleanup resources leaked by a driver after detach or
3471 * a failed attach.
3472 *
3473 * @param rl		the resource list which was allocated from
3474 * @param bus		the parent device of @p child
3475 * @param child		the device whose active resources are being released
3476 * @param type		the type of resources to release
3477 *
3478 * @retval 0		success
3479 * @retval EBUSY	at least one resource was active
3480 */
3481int
3482resource_list_release_active(struct resource_list *rl, device_t bus,
3483    device_t child, int type)
3484{
3485	struct resource_list_entry *rle;
3486	int error, retval;
3487
3488	retval = 0;
3489	STAILQ_FOREACH(rle, rl, link) {
3490		if (rle->type != type)
3491			continue;
3492		if (rle->res == NULL)
3493			continue;
3494		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3495		    RLE_RESERVED)
3496			continue;
3497		retval = EBUSY;
3498		error = resource_list_release(rl, bus, child, type,
3499		    rman_get_rid(rle->res), rle->res);
3500		if (error != 0)
3501			device_printf(bus,
3502			    "Failed to release active resource: %d\n", error);
3503	}
3504	return (retval);
3505}
3506
3507
3508/**
3509 * @brief Fully release a reserved resource
3510 *
3511 * Fully releases a resource reserved via resource_list_reserve().
3512 *
3513 * @param rl		the resource list which was allocated from
3514 * @param bus		the parent device of @p child
3515 * @param child		the device whose reserved resource is being released
3516 * @param type		the type of resource to release
3517 * @param rid		the resource identifier
3518 * @param res		the resource to release
3519 *
3520 * @retval 0		success
3521 * @retval non-zero	a standard unix error code indicating what
3522 *			error condition prevented the operation
3523 */
3524int
3525resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3526    int type, int rid)
3527{
3528	struct resource_list_entry *rle = NULL;
3529	int passthrough = (device_get_parent(child) != bus);
3530
3531	if (passthrough)
3532		panic(
3533    "resource_list_unreserve() should only be called for direct children");
3534
3535	rle = resource_list_find(rl, type, rid);
3536
3537	if (!rle)
3538		panic("resource_list_unreserve: can't find resource");
3539	if (!(rle->flags & RLE_RESERVED))
3540		return (EINVAL);
3541	if (rle->flags & RLE_ALLOCATED)
3542		return (EBUSY);
3543	rle->flags &= ~RLE_RESERVED;
3544	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3545}
3546
3547/**
3548 * @brief Print a description of resources in a resource list
3549 *
3550 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3551 * The name is printed if at least one resource of the given type is available.
3552 * The format is used to print resource start and end.
3553 *
3554 * @param rl		the resource list to print
3555 * @param name		the name of @p type, e.g. @c "memory"
3556 * @param type		type type of resource entry to print
3557 * @param format	printf(9) format string to print resource
3558 *			start and end values
3559 *
3560 * @returns		the number of characters printed
3561 */
3562int
3563resource_list_print_type(struct resource_list *rl, const char *name, int type,
3564    const char *format)
3565{
3566	struct resource_list_entry *rle;
3567	int printed, retval;
3568
3569	printed = 0;
3570	retval = 0;
3571	/* Yes, this is kinda cheating */
3572	STAILQ_FOREACH(rle, rl, link) {
3573		if (rle->type == type) {
3574			if (printed == 0)
3575				retval += printf(" %s ", name);
3576			else
3577				retval += printf(",");
3578			printed++;
3579			retval += printf(format, rle->start);
3580			if (rle->count > 1) {
3581				retval += printf("-");
3582				retval += printf(format, rle->start +
3583						 rle->count - 1);
3584			}
3585		}
3586	}
3587	return (retval);
3588}
3589
3590/**
3591 * @brief Releases all the resources in a list.
3592 *
3593 * @param rl		The resource list to purge.
3594 *
3595 * @returns		nothing
3596 */
3597void
3598resource_list_purge(struct resource_list *rl)
3599{
3600	struct resource_list_entry *rle;
3601
3602	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3603		if (rle->res)
3604			bus_release_resource(rman_get_device(rle->res),
3605			    rle->type, rle->rid, rle->res);
3606		STAILQ_REMOVE_HEAD(rl, link);
3607		free(rle, M_BUS);
3608	}
3609}
3610
3611device_t
3612bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3613{
3614
3615	return (device_add_child_ordered(dev, order, name, unit));
3616}
3617
3618/**
3619 * @brief Helper function for implementing DEVICE_PROBE()
3620 *
3621 * This function can be used to help implement the DEVICE_PROBE() for
3622 * a bus (i.e. a device which has other devices attached to it). It
3623 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3624 * devclass.
3625 */
3626int
3627bus_generic_probe(device_t dev)
3628{
3629	devclass_t dc = dev->devclass;
3630	driverlink_t dl;
3631
3632	TAILQ_FOREACH(dl, &dc->drivers, link) {
3633		/*
3634		 * If this driver's pass is too high, then ignore it.
3635		 * For most drivers in the default pass, this will
3636		 * never be true.  For early-pass drivers they will
3637		 * only call the identify routines of eligible drivers
3638		 * when this routine is called.  Drivers for later
3639		 * passes should have their identify routines called
3640		 * on early-pass busses during BUS_NEW_PASS().
3641		 */
3642		if (dl->pass > bus_current_pass)
3643			continue;
3644		DEVICE_IDENTIFY(dl->driver, dev);
3645	}
3646
3647	return (0);
3648}
3649
3650/**
3651 * @brief Helper function for implementing DEVICE_ATTACH()
3652 *
3653 * This function can be used to help implement the DEVICE_ATTACH() for
3654 * a bus. It calls device_probe_and_attach() for each of the device's
3655 * children.
3656 */
3657int
3658bus_generic_attach(device_t dev)
3659{
3660	device_t child;
3661
3662	TAILQ_FOREACH(child, &dev->children, link) {
3663		device_probe_and_attach(child);
3664	}
3665
3666	return (0);
3667}
3668
3669/**
3670 * @brief Helper function for implementing DEVICE_DETACH()
3671 *
3672 * This function can be used to help implement the DEVICE_DETACH() for
3673 * a bus. It calls device_detach() for each of the device's
3674 * children.
3675 */
3676int
3677bus_generic_detach(device_t dev)
3678{
3679	device_t child;
3680	int error;
3681
3682	if (dev->state != DS_ATTACHED)
3683		return (EBUSY);
3684
3685	TAILQ_FOREACH(child, &dev->children, link) {
3686		if ((error = device_detach(child)) != 0)
3687			return (error);
3688	}
3689
3690	return (0);
3691}
3692
3693/**
3694 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3695 *
3696 * This function can be used to help implement the DEVICE_SHUTDOWN()
3697 * for a bus. It calls device_shutdown() for each of the device's
3698 * children.
3699 */
3700int
3701bus_generic_shutdown(device_t dev)
3702{
3703	device_t child;
3704
3705	TAILQ_FOREACH(child, &dev->children, link) {
3706		device_shutdown(child);
3707	}
3708
3709	return (0);
3710}
3711
3712/**
3713 * @brief Default function for suspending a child device.
3714 *
3715 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3716 */
3717int
3718bus_generic_suspend_child(device_t dev, device_t child)
3719{
3720	int	error;
3721
3722	error = DEVICE_SUSPEND(child);
3723
3724	if (error == 0)
3725		child->flags |= DF_SUSPENDED;
3726
3727	return (error);
3728}
3729
3730/**
3731 * @brief Default function for resuming a child device.
3732 *
3733 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3734 */
3735int
3736bus_generic_resume_child(device_t dev, device_t child)
3737{
3738
3739	DEVICE_RESUME(child);
3740	child->flags &= ~DF_SUSPENDED;
3741
3742	return (0);
3743}
3744
3745/**
3746 * @brief Helper function for implementing DEVICE_SUSPEND()
3747 *
3748 * This function can be used to help implement the DEVICE_SUSPEND()
3749 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3750 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3751 * operation is aborted and any devices which were suspended are
3752 * resumed immediately by calling their DEVICE_RESUME() methods.
3753 */
3754int
3755bus_generic_suspend(device_t dev)
3756{
3757	int		error;
3758	device_t	child, child2;
3759
3760	TAILQ_FOREACH(child, &dev->children, link) {
3761		error = BUS_SUSPEND_CHILD(dev, child);
3762		if (error) {
3763			for (child2 = TAILQ_FIRST(&dev->children);
3764			     child2 && child2 != child;
3765			     child2 = TAILQ_NEXT(child2, link))
3766				BUS_RESUME_CHILD(dev, child2);
3767			return (error);
3768		}
3769	}
3770	return (0);
3771}
3772
3773/**
3774 * @brief Helper function for implementing DEVICE_RESUME()
3775 *
3776 * This function can be used to help implement the DEVICE_RESUME() for
3777 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3778 */
3779int
3780bus_generic_resume(device_t dev)
3781{
3782	device_t	child;
3783
3784	TAILQ_FOREACH(child, &dev->children, link) {
3785		BUS_RESUME_CHILD(dev, child);
3786		/* if resume fails, there's nothing we can usefully do... */
3787	}
3788	return (0);
3789}
3790
3791/**
3792 * @brief Helper function for implementing BUS_PRINT_CHILD().
3793 *
3794 * This function prints the first part of the ascii representation of
3795 * @p child, including its name, unit and description (if any - see
3796 * device_set_desc()).
3797 *
3798 * @returns the number of characters printed
3799 */
3800int
3801bus_print_child_header(device_t dev, device_t child)
3802{
3803	int	retval = 0;
3804
3805	if (device_get_desc(child)) {
3806		retval += device_printf(child, "<%s>", device_get_desc(child));
3807	} else {
3808		retval += printf("%s", device_get_nameunit(child));
3809	}
3810
3811	return (retval);
3812}
3813
3814/**
3815 * @brief Helper function for implementing BUS_PRINT_CHILD().
3816 *
3817 * This function prints the last part of the ascii representation of
3818 * @p child, which consists of the string @c " on " followed by the
3819 * name and unit of the @p dev.
3820 *
3821 * @returns the number of characters printed
3822 */
3823int
3824bus_print_child_footer(device_t dev, device_t child)
3825{
3826	return (printf(" on %s\n", device_get_nameunit(dev)));
3827}
3828
3829/**
3830 * @brief Helper function for implementing BUS_PRINT_CHILD().
3831 *
3832 * This function prints out the VM domain for the given device.
3833 *
3834 * @returns the number of characters printed
3835 */
3836int
3837bus_print_child_domain(device_t dev, device_t child)
3838{
3839	int domain;
3840
3841	/* No domain? Don't print anything */
3842	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3843		return (0);
3844
3845	return (printf(" numa-domain %d", domain));
3846}
3847
3848/**
3849 * @brief Helper function for implementing BUS_PRINT_CHILD().
3850 *
3851 * This function simply calls bus_print_child_header() followed by
3852 * bus_print_child_footer().
3853 *
3854 * @returns the number of characters printed
3855 */
3856int
3857bus_generic_print_child(device_t dev, device_t child)
3858{
3859	int	retval = 0;
3860
3861	retval += bus_print_child_header(dev, child);
3862	retval += bus_print_child_domain(dev, child);
3863	retval += bus_print_child_footer(dev, child);
3864
3865	return (retval);
3866}
3867
3868/**
3869 * @brief Stub function for implementing BUS_READ_IVAR().
3870 *
3871 * @returns ENOENT
3872 */
3873int
3874bus_generic_read_ivar(device_t dev, device_t child, int index,
3875    uintptr_t * result)
3876{
3877	return (ENOENT);
3878}
3879
3880/**
3881 * @brief Stub function for implementing BUS_WRITE_IVAR().
3882 *
3883 * @returns ENOENT
3884 */
3885int
3886bus_generic_write_ivar(device_t dev, device_t child, int index,
3887    uintptr_t value)
3888{
3889	return (ENOENT);
3890}
3891
3892/**
3893 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3894 *
3895 * @returns NULL
3896 */
3897struct resource_list *
3898bus_generic_get_resource_list(device_t dev, device_t child)
3899{
3900	return (NULL);
3901}
3902
3903/**
3904 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3905 *
3906 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3907 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3908 * and then calls device_probe_and_attach() for each unattached child.
3909 */
3910void
3911bus_generic_driver_added(device_t dev, driver_t *driver)
3912{
3913	device_t child;
3914
3915	DEVICE_IDENTIFY(driver, dev);
3916	TAILQ_FOREACH(child, &dev->children, link) {
3917		if (child->state == DS_NOTPRESENT ||
3918		    (child->flags & DF_REBID))
3919			device_probe_and_attach(child);
3920	}
3921}
3922
3923/**
3924 * @brief Helper function for implementing BUS_NEW_PASS().
3925 *
3926 * This implementing of BUS_NEW_PASS() first calls the identify
3927 * routines for any drivers that probe at the current pass.  Then it
3928 * walks the list of devices for this bus.  If a device is already
3929 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3930 * device is not already attached, it attempts to attach a driver to
3931 * it.
3932 */
3933void
3934bus_generic_new_pass(device_t dev)
3935{
3936	driverlink_t dl;
3937	devclass_t dc;
3938	device_t child;
3939
3940	dc = dev->devclass;
3941	TAILQ_FOREACH(dl, &dc->drivers, link) {
3942		if (dl->pass == bus_current_pass)
3943			DEVICE_IDENTIFY(dl->driver, dev);
3944	}
3945	TAILQ_FOREACH(child, &dev->children, link) {
3946		if (child->state >= DS_ATTACHED)
3947			BUS_NEW_PASS(child);
3948		else if (child->state == DS_NOTPRESENT)
3949			device_probe_and_attach(child);
3950	}
3951}
3952
3953/**
3954 * @brief Helper function for implementing BUS_MAP_INTR().
3955 *
3956 * This simple implementation of BUS_MAP_INTR() simply calls the
3957 * BUS_MAP_INTR() method of the parent of @p dev.
3958 */
3959int
3960bus_generic_map_intr(device_t dev, device_t child, int *rid, rman_res_t *start,
3961    rman_res_t *end, rman_res_t *count, struct intr_map_data **imd)
3962{
3963	/* Propagate up the bus hierarchy until someone handles it. */
3964	if (dev->parent)
3965		return (BUS_MAP_INTR(dev->parent, child, rid, start, end, count,
3966		    imd));
3967	return (EINVAL);
3968}
3969
3970/**
3971 * @brief Helper function for implementing BUS_SETUP_INTR().
3972 *
3973 * This simple implementation of BUS_SETUP_INTR() simply calls the
3974 * BUS_SETUP_INTR() method of the parent of @p dev.
3975 */
3976int
3977bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3978    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3979    void **cookiep)
3980{
3981	/* Propagate up the bus hierarchy until someone handles it. */
3982	if (dev->parent)
3983		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3984		    filter, intr, arg, cookiep));
3985	return (EINVAL);
3986}
3987
3988/**
3989 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3990 *
3991 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3992 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3993 */
3994int
3995bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3996    void *cookie)
3997{
3998	/* Propagate up the bus hierarchy until someone handles it. */
3999	if (dev->parent)
4000		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
4001	return (EINVAL);
4002}
4003
4004/**
4005 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4006 *
4007 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
4008 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
4009 */
4010int
4011bus_generic_adjust_resource(device_t dev, device_t child, int type,
4012    struct resource *r, rman_res_t start, rman_res_t end)
4013{
4014	/* Propagate up the bus hierarchy until someone handles it. */
4015	if (dev->parent)
4016		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
4017		    end));
4018	return (EINVAL);
4019}
4020
4021/**
4022 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4023 *
4024 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4025 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4026 */
4027struct resource *
4028bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4029    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4030{
4031	/* Propagate up the bus hierarchy until someone handles it. */
4032	if (dev->parent)
4033		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4034		    start, end, count, flags));
4035	return (NULL);
4036}
4037
4038/**
4039 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4040 *
4041 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4042 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4043 */
4044int
4045bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4046    struct resource *r)
4047{
4048	/* Propagate up the bus hierarchy until someone handles it. */
4049	if (dev->parent)
4050		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4051		    r));
4052	return (EINVAL);
4053}
4054
4055/**
4056 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4057 *
4058 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4059 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4060 */
4061int
4062bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4063    struct resource *r)
4064{
4065	/* Propagate up the bus hierarchy until someone handles it. */
4066	if (dev->parent)
4067		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4068		    r));
4069	return (EINVAL);
4070}
4071
4072/**
4073 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4074 *
4075 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4076 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4077 */
4078int
4079bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4080    int rid, struct resource *r)
4081{
4082	/* Propagate up the bus hierarchy until someone handles it. */
4083	if (dev->parent)
4084		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4085		    r));
4086	return (EINVAL);
4087}
4088
4089/**
4090 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4091 *
4092 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4093 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4094 */
4095int
4096bus_generic_map_resource(device_t dev, device_t child, int type,
4097    struct resource *r, struct resource_map_request *args,
4098    struct resource_map *map)
4099{
4100	/* Propagate up the bus hierarchy until someone handles it. */
4101	if (dev->parent)
4102		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
4103		    map));
4104	return (EINVAL);
4105}
4106
4107/**
4108 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4109 *
4110 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4111 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4112 */
4113int
4114bus_generic_unmap_resource(device_t dev, device_t child, int type,
4115    struct resource *r, struct resource_map *map)
4116{
4117	/* Propagate up the bus hierarchy until someone handles it. */
4118	if (dev->parent)
4119		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
4120	return (EINVAL);
4121}
4122
4123/**
4124 * @brief Helper function for implementing BUS_BIND_INTR().
4125 *
4126 * This simple implementation of BUS_BIND_INTR() simply calls the
4127 * BUS_BIND_INTR() method of the parent of @p dev.
4128 */
4129int
4130bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4131    int cpu)
4132{
4133
4134	/* Propagate up the bus hierarchy until someone handles it. */
4135	if (dev->parent)
4136		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4137	return (EINVAL);
4138}
4139
4140/**
4141 * @brief Helper function for implementing BUS_CONFIG_INTR().
4142 *
4143 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4144 * BUS_CONFIG_INTR() method of the parent of @p dev.
4145 */
4146int
4147bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4148    enum intr_polarity pol)
4149{
4150
4151	/* Propagate up the bus hierarchy until someone handles it. */
4152	if (dev->parent)
4153		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4154	return (EINVAL);
4155}
4156
4157/**
4158 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4159 *
4160 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4161 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4162 */
4163int
4164bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4165    void *cookie, const char *descr)
4166{
4167
4168	/* Propagate up the bus hierarchy until someone handles it. */
4169	if (dev->parent)
4170		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4171		    descr));
4172	return (EINVAL);
4173}
4174
4175/**
4176 * @brief Helper function for implementing BUS_GET_CPUS().
4177 *
4178 * This simple implementation of BUS_GET_CPUS() simply calls the
4179 * BUS_GET_CPUS() method of the parent of @p dev.
4180 */
4181int
4182bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4183    size_t setsize, cpuset_t *cpuset)
4184{
4185
4186	/* Propagate up the bus hierarchy until someone handles it. */
4187	if (dev->parent != NULL)
4188		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4189	return (EINVAL);
4190}
4191
4192/**
4193 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4194 *
4195 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4196 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4197 */
4198bus_dma_tag_t
4199bus_generic_get_dma_tag(device_t dev, device_t child)
4200{
4201
4202	/* Propagate up the bus hierarchy until someone handles it. */
4203	if (dev->parent != NULL)
4204		return (BUS_GET_DMA_TAG(dev->parent, child));
4205	return (NULL);
4206}
4207
4208/**
4209 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4210 *
4211 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4212 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4213 */
4214bus_space_tag_t
4215bus_generic_get_bus_tag(device_t dev, device_t child)
4216{
4217
4218	/* Propagate up the bus hierarchy until someone handles it. */
4219	if (dev->parent != NULL)
4220		return (BUS_GET_BUS_TAG(dev->parent, child));
4221	return ((bus_space_tag_t)0);
4222}
4223
4224/**
4225 * @brief Helper function for implementing BUS_GET_RESOURCE().
4226 *
4227 * This implementation of BUS_GET_RESOURCE() uses the
4228 * resource_list_find() function to do most of the work. It calls
4229 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4230 * search.
4231 */
4232int
4233bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4234    rman_res_t *startp, rman_res_t *countp)
4235{
4236	struct resource_list *		rl = NULL;
4237	struct resource_list_entry *	rle = NULL;
4238
4239	rl = BUS_GET_RESOURCE_LIST(dev, child);
4240	if (!rl)
4241		return (EINVAL);
4242
4243	rle = resource_list_find(rl, type, rid);
4244	if (!rle)
4245		return (ENOENT);
4246
4247	if (startp)
4248		*startp = rle->start;
4249	if (countp)
4250		*countp = rle->count;
4251
4252	return (0);
4253}
4254
4255/**
4256 * @brief Helper function for implementing BUS_SET_RESOURCE().
4257 *
4258 * This implementation of BUS_SET_RESOURCE() uses the
4259 * resource_list_add() function to do most of the work. It calls
4260 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4261 * edit.
4262 */
4263int
4264bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4265    rman_res_t start, rman_res_t count)
4266{
4267	struct resource_list *		rl = NULL;
4268
4269	rl = BUS_GET_RESOURCE_LIST(dev, child);
4270	if (!rl)
4271		return (EINVAL);
4272
4273	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4274
4275	return (0);
4276}
4277
4278/**
4279 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4280 *
4281 * This implementation of BUS_DELETE_RESOURCE() uses the
4282 * resource_list_delete() function to do most of the work. It calls
4283 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4284 * edit.
4285 */
4286void
4287bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4288{
4289	struct resource_list *		rl = NULL;
4290
4291	rl = BUS_GET_RESOURCE_LIST(dev, child);
4292	if (!rl)
4293		return;
4294
4295	resource_list_delete(rl, type, rid);
4296
4297	return;
4298}
4299
4300/**
4301 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4302 *
4303 * This implementation of BUS_RELEASE_RESOURCE() uses the
4304 * resource_list_release() function to do most of the work. It calls
4305 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4306 */
4307int
4308bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4309    int rid, struct resource *r)
4310{
4311	struct resource_list *		rl = NULL;
4312
4313	if (device_get_parent(child) != dev)
4314		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4315		    type, rid, r));
4316
4317	rl = BUS_GET_RESOURCE_LIST(dev, child);
4318	if (!rl)
4319		return (EINVAL);
4320
4321	return (resource_list_release(rl, dev, child, type, rid, r));
4322}
4323
4324/**
4325 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4326 *
4327 * This implementation of BUS_ALLOC_RESOURCE() uses the
4328 * resource_list_alloc() function to do most of the work. It calls
4329 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4330 */
4331struct resource *
4332bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4333    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4334{
4335	struct resource_list *		rl = NULL;
4336
4337	if (device_get_parent(child) != dev)
4338		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4339		    type, rid, start, end, count, flags));
4340
4341	rl = BUS_GET_RESOURCE_LIST(dev, child);
4342	if (!rl)
4343		return (NULL);
4344
4345	return (resource_list_alloc(rl, dev, child, type, rid,
4346	    start, end, count, flags));
4347}
4348
4349/**
4350 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4351 *
4352 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4353 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4354 */
4355int
4356bus_generic_child_present(device_t dev, device_t child)
4357{
4358	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4359}
4360
4361int
4362bus_generic_get_domain(device_t dev, device_t child, int *domain)
4363{
4364
4365	if (dev->parent)
4366		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4367
4368	return (ENOENT);
4369}
4370
4371/**
4372 * @brief Helper function for implementing BUS_RESCAN().
4373 *
4374 * This null implementation of BUS_RESCAN() always fails to indicate
4375 * the bus does not support rescanning.
4376 */
4377int
4378bus_null_rescan(device_t dev)
4379{
4380
4381	return (ENXIO);
4382}
4383
4384/*
4385 * Some convenience functions to make it easier for drivers to use the
4386 * resource-management functions.  All these really do is hide the
4387 * indirection through the parent's method table, making for slightly
4388 * less-wordy code.  In the future, it might make sense for this code
4389 * to maintain some sort of a list of resources allocated by each device.
4390 */
4391
4392int
4393bus_alloc_resources(device_t dev, struct resource_spec *rs,
4394    struct resource **res)
4395{
4396	int i;
4397
4398	for (i = 0; rs[i].type != -1; i++)
4399		res[i] = NULL;
4400	for (i = 0; rs[i].type != -1; i++) {
4401		res[i] = bus_alloc_resource_any(dev,
4402		    rs[i].type, &rs[i].rid, rs[i].flags);
4403		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4404			bus_release_resources(dev, rs, res);
4405			return (ENXIO);
4406		}
4407	}
4408	return (0);
4409}
4410
4411void
4412bus_release_resources(device_t dev, const struct resource_spec *rs,
4413    struct resource **res)
4414{
4415	int i;
4416
4417	for (i = 0; rs[i].type != -1; i++)
4418		if (res[i] != NULL) {
4419			bus_release_resource(
4420			    dev, rs[i].type, rs[i].rid, res[i]);
4421			res[i] = NULL;
4422		}
4423}
4424
4425#ifdef INTRNG
4426/**
4427 * @internal
4428 *
4429 * This can be converted to bus method later. (XXX)
4430 */
4431static struct intr_map_data *
4432bus_extend_resource(device_t dev, int type, int *rid, rman_res_t *start,
4433    rman_res_t *end, rman_res_t *count)
4434{
4435	struct intr_map_data *imd;
4436	struct resource_list *rl;
4437	int rv;
4438
4439	if (dev->parent == NULL)
4440		return (NULL);
4441	if (type != SYS_RES_IRQ)
4442		return (NULL);
4443
4444	if (!RMAN_IS_DEFAULT_RANGE(*start, *end))
4445		return (NULL);
4446	rl = BUS_GET_RESOURCE_LIST(dev->parent, dev);
4447	if (rl != NULL) {
4448		if (resource_list_find(rl, type, *rid) != NULL)
4449			return (NULL);
4450	}
4451	rv = BUS_MAP_INTR(dev->parent, dev, rid, start, end, count, &imd);
4452	if (rv != 0)
4453		return (NULL);
4454	if (rl != NULL)
4455		resource_list_add(rl, type, *rid, *start, *end, *count);
4456	return (imd);
4457}
4458#endif
4459
4460/**
4461 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4462 *
4463 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4464 * parent of @p dev.
4465 */
4466struct resource *
4467bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4468    rman_res_t end, rman_res_t count, u_int flags)
4469{
4470	struct resource *res;
4471#ifdef INTRNG
4472	struct intr_map_data *imd;
4473#endif
4474
4475	if (dev->parent == NULL)
4476		return (NULL);
4477
4478#ifdef INTRNG
4479	imd = bus_extend_resource(dev, type, rid, &start, &end, &count);
4480#endif
4481	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4482	    count, flags);
4483#ifdef INTRNG
4484	if (imd != NULL) {
4485		if (res != NULL && rman_get_virtual(res) == NULL)
4486			rman_set_virtual(res, imd);
4487		else
4488			imd->destruct(imd);
4489	}
4490#endif
4491	return (res);
4492}
4493
4494/**
4495 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4496 *
4497 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4498 * parent of @p dev.
4499 */
4500int
4501bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4502    rman_res_t end)
4503{
4504	if (dev->parent == NULL)
4505		return (EINVAL);
4506	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4507}
4508
4509/**
4510 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4511 *
4512 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4513 * parent of @p dev.
4514 */
4515int
4516bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4517{
4518	if (dev->parent == NULL)
4519		return (EINVAL);
4520	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4521}
4522
4523/**
4524 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4525 *
4526 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4527 * parent of @p dev.
4528 */
4529int
4530bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4531{
4532	if (dev->parent == NULL)
4533		return (EINVAL);
4534	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4535}
4536
4537/**
4538 * @brief Wrapper function for BUS_MAP_RESOURCE().
4539 *
4540 * This function simply calls the BUS_MAP_RESOURCE() method of the
4541 * parent of @p dev.
4542 */
4543int
4544bus_map_resource(device_t dev, int type, struct resource *r,
4545    struct resource_map_request *args, struct resource_map *map)
4546{
4547	if (dev->parent == NULL)
4548		return (EINVAL);
4549	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
4550}
4551
4552/**
4553 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4554 *
4555 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4556 * parent of @p dev.
4557 */
4558int
4559bus_unmap_resource(device_t dev, int type, struct resource *r,
4560    struct resource_map *map)
4561{
4562	if (dev->parent == NULL)
4563		return (EINVAL);
4564	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
4565}
4566
4567/**
4568 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4569 *
4570 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4571 * parent of @p dev.
4572 */
4573int
4574bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4575{
4576	int rv;
4577#ifdef INTRNG
4578	struct intr_map_data *imd;
4579#endif
4580
4581	if (dev->parent == NULL)
4582		return (EINVAL);
4583
4584#ifdef INTRNG
4585	imd = (type == SYS_RES_IRQ) ? rman_get_virtual(r) : NULL;
4586#endif
4587	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
4588#ifdef INTRNG
4589	if (imd != NULL)
4590		imd->destruct(imd);
4591#endif
4592	return (rv);
4593}
4594
4595/**
4596 * @brief Wrapper function for BUS_SETUP_INTR().
4597 *
4598 * This function simply calls the BUS_SETUP_INTR() method of the
4599 * parent of @p dev.
4600 */
4601int
4602bus_setup_intr(device_t dev, struct resource *r, int flags,
4603    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4604{
4605	int error;
4606
4607	if (dev->parent == NULL)
4608		return (EINVAL);
4609	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4610	    arg, cookiep);
4611	if (error != 0)
4612		return (error);
4613	if (handler != NULL && !(flags & INTR_MPSAFE))
4614		device_printf(dev, "[GIANT-LOCKED]\n");
4615	return (0);
4616}
4617
4618/**
4619 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4620 *
4621 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4622 * parent of @p dev.
4623 */
4624int
4625bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4626{
4627	if (dev->parent == NULL)
4628		return (EINVAL);
4629	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4630}
4631
4632/**
4633 * @brief Wrapper function for BUS_BIND_INTR().
4634 *
4635 * This function simply calls the BUS_BIND_INTR() method of the
4636 * parent of @p dev.
4637 */
4638int
4639bus_bind_intr(device_t dev, struct resource *r, int cpu)
4640{
4641	if (dev->parent == NULL)
4642		return (EINVAL);
4643	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4644}
4645
4646/**
4647 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4648 *
4649 * This function first formats the requested description into a
4650 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4651 * the parent of @p dev.
4652 */
4653int
4654bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4655    const char *fmt, ...)
4656{
4657	va_list ap;
4658	char descr[MAXCOMLEN + 1];
4659
4660	if (dev->parent == NULL)
4661		return (EINVAL);
4662	va_start(ap, fmt);
4663	vsnprintf(descr, sizeof(descr), fmt, ap);
4664	va_end(ap);
4665	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4666}
4667
4668/**
4669 * @brief Wrapper function for BUS_SET_RESOURCE().
4670 *
4671 * This function simply calls the BUS_SET_RESOURCE() method of the
4672 * parent of @p dev.
4673 */
4674int
4675bus_set_resource(device_t dev, int type, int rid,
4676    rman_res_t start, rman_res_t count)
4677{
4678	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4679	    start, count));
4680}
4681
4682/**
4683 * @brief Wrapper function for BUS_GET_RESOURCE().
4684 *
4685 * This function simply calls the BUS_GET_RESOURCE() method of the
4686 * parent of @p dev.
4687 */
4688int
4689bus_get_resource(device_t dev, int type, int rid,
4690    rman_res_t *startp, rman_res_t *countp)
4691{
4692	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4693	    startp, countp));
4694}
4695
4696/**
4697 * @brief Wrapper function for BUS_GET_RESOURCE().
4698 *
4699 * This function simply calls the BUS_GET_RESOURCE() method of the
4700 * parent of @p dev and returns the start value.
4701 */
4702rman_res_t
4703bus_get_resource_start(device_t dev, int type, int rid)
4704{
4705	rman_res_t start;
4706	rman_res_t count;
4707	int error;
4708
4709	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4710	    &start, &count);
4711	if (error)
4712		return (0);
4713	return (start);
4714}
4715
4716/**
4717 * @brief Wrapper function for BUS_GET_RESOURCE().
4718 *
4719 * This function simply calls the BUS_GET_RESOURCE() method of the
4720 * parent of @p dev and returns the count value.
4721 */
4722rman_res_t
4723bus_get_resource_count(device_t dev, int type, int rid)
4724{
4725	rman_res_t start;
4726	rman_res_t count;
4727	int error;
4728
4729	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4730	    &start, &count);
4731	if (error)
4732		return (0);
4733	return (count);
4734}
4735
4736/**
4737 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4738 *
4739 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4740 * parent of @p dev.
4741 */
4742void
4743bus_delete_resource(device_t dev, int type, int rid)
4744{
4745	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4746}
4747
4748/**
4749 * @brief Wrapper function for BUS_CHILD_PRESENT().
4750 *
4751 * This function simply calls the BUS_CHILD_PRESENT() method of the
4752 * parent of @p dev.
4753 */
4754int
4755bus_child_present(device_t child)
4756{
4757	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4758}
4759
4760/**
4761 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4762 *
4763 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4764 * parent of @p dev.
4765 */
4766int
4767bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4768{
4769	device_t parent;
4770
4771	parent = device_get_parent(child);
4772	if (parent == NULL) {
4773		*buf = '\0';
4774		return (0);
4775	}
4776	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4777}
4778
4779/**
4780 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4781 *
4782 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4783 * parent of @p dev.
4784 */
4785int
4786bus_child_location_str(device_t child, char *buf, size_t buflen)
4787{
4788	device_t parent;
4789
4790	parent = device_get_parent(child);
4791	if (parent == NULL) {
4792		*buf = '\0';
4793		return (0);
4794	}
4795	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4796}
4797
4798/**
4799 * @brief Wrapper function for BUS_GET_CPUS().
4800 *
4801 * This function simply calls the BUS_GET_CPUS() method of the
4802 * parent of @p dev.
4803 */
4804int
4805bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4806{
4807	device_t parent;
4808
4809	parent = device_get_parent(dev);
4810	if (parent == NULL)
4811		return (EINVAL);
4812	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4813}
4814
4815/**
4816 * @brief Wrapper function for BUS_GET_DMA_TAG().
4817 *
4818 * This function simply calls the BUS_GET_DMA_TAG() method of the
4819 * parent of @p dev.
4820 */
4821bus_dma_tag_t
4822bus_get_dma_tag(device_t dev)
4823{
4824	device_t parent;
4825
4826	parent = device_get_parent(dev);
4827	if (parent == NULL)
4828		return (NULL);
4829	return (BUS_GET_DMA_TAG(parent, dev));
4830}
4831
4832/**
4833 * @brief Wrapper function for BUS_GET_BUS_TAG().
4834 *
4835 * This function simply calls the BUS_GET_BUS_TAG() method of the
4836 * parent of @p dev.
4837 */
4838bus_space_tag_t
4839bus_get_bus_tag(device_t dev)
4840{
4841	device_t parent;
4842
4843	parent = device_get_parent(dev);
4844	if (parent == NULL)
4845		return ((bus_space_tag_t)0);
4846	return (BUS_GET_BUS_TAG(parent, dev));
4847}
4848
4849/**
4850 * @brief Wrapper function for BUS_GET_DOMAIN().
4851 *
4852 * This function simply calls the BUS_GET_DOMAIN() method of the
4853 * parent of @p dev.
4854 */
4855int
4856bus_get_domain(device_t dev, int *domain)
4857{
4858	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4859}
4860
4861/* Resume all devices and then notify userland that we're up again. */
4862static int
4863root_resume(device_t dev)
4864{
4865	int error;
4866
4867	error = bus_generic_resume(dev);
4868	if (error == 0)
4869		devctl_notify("kern", "power", "resume", NULL);
4870	return (error);
4871}
4872
4873static int
4874root_print_child(device_t dev, device_t child)
4875{
4876	int	retval = 0;
4877
4878	retval += bus_print_child_header(dev, child);
4879	retval += printf("\n");
4880
4881	return (retval);
4882}
4883
4884static int
4885root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4886    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4887{
4888	/*
4889	 * If an interrupt mapping gets to here something bad has happened.
4890	 */
4891	panic("root_setup_intr");
4892}
4893
4894/*
4895 * If we get here, assume that the device is permanent and really is
4896 * present in the system.  Removable bus drivers are expected to intercept
4897 * this call long before it gets here.  We return -1 so that drivers that
4898 * really care can check vs -1 or some ERRNO returned higher in the food
4899 * chain.
4900 */
4901static int
4902root_child_present(device_t dev, device_t child)
4903{
4904	return (-1);
4905}
4906
4907static int
4908root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4909    cpuset_t *cpuset)
4910{
4911
4912	switch (op) {
4913	case INTR_CPUS:
4914		/* Default to returning the set of all CPUs. */
4915		if (setsize != sizeof(cpuset_t))
4916			return (EINVAL);
4917		*cpuset = all_cpus;
4918		return (0);
4919	default:
4920		return (EINVAL);
4921	}
4922}
4923
4924static kobj_method_t root_methods[] = {
4925	/* Device interface */
4926	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4927	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4928	KOBJMETHOD(device_resume,	root_resume),
4929
4930	/* Bus interface */
4931	KOBJMETHOD(bus_print_child,	root_print_child),
4932	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4933	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4934	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4935	KOBJMETHOD(bus_child_present,	root_child_present),
4936	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4937
4938	KOBJMETHOD_END
4939};
4940
4941static driver_t root_driver = {
4942	"root",
4943	root_methods,
4944	1,			/* no softc */
4945};
4946
4947device_t	root_bus;
4948devclass_t	root_devclass;
4949
4950static int
4951root_bus_module_handler(module_t mod, int what, void* arg)
4952{
4953	switch (what) {
4954	case MOD_LOAD:
4955		TAILQ_INIT(&bus_data_devices);
4956		kobj_class_compile((kobj_class_t) &root_driver);
4957		root_bus = make_device(NULL, "root", 0);
4958		root_bus->desc = "System root bus";
4959		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4960		root_bus->driver = &root_driver;
4961		root_bus->state = DS_ATTACHED;
4962		root_devclass = devclass_find_internal("root", NULL, FALSE);
4963		devinit();
4964		return (0);
4965
4966	case MOD_SHUTDOWN:
4967		device_shutdown(root_bus);
4968		return (0);
4969	default:
4970		return (EOPNOTSUPP);
4971	}
4972
4973	return (0);
4974}
4975
4976static moduledata_t root_bus_mod = {
4977	"rootbus",
4978	root_bus_module_handler,
4979	NULL
4980};
4981DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4982
4983/**
4984 * @brief Automatically configure devices
4985 *
4986 * This function begins the autoconfiguration process by calling
4987 * device_probe_and_attach() for each child of the @c root0 device.
4988 */
4989void
4990root_bus_configure(void)
4991{
4992
4993	PDEBUG(("."));
4994
4995	/* Eventually this will be split up, but this is sufficient for now. */
4996	bus_set_pass(BUS_PASS_DEFAULT);
4997}
4998
4999/**
5000 * @brief Module handler for registering device drivers
5001 *
5002 * This module handler is used to automatically register device
5003 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5004 * devclass_add_driver() for the driver described by the
5005 * driver_module_data structure pointed to by @p arg
5006 */
5007int
5008driver_module_handler(module_t mod, int what, void *arg)
5009{
5010	struct driver_module_data *dmd;
5011	devclass_t bus_devclass;
5012	kobj_class_t driver;
5013	int error, pass;
5014
5015	dmd = (struct driver_module_data *)arg;
5016	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5017	error = 0;
5018
5019	switch (what) {
5020	case MOD_LOAD:
5021		if (dmd->dmd_chainevh)
5022			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5023
5024		pass = dmd->dmd_pass;
5025		driver = dmd->dmd_driver;
5026		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5027		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5028		error = devclass_add_driver(bus_devclass, driver, pass,
5029		    dmd->dmd_devclass);
5030		break;
5031
5032	case MOD_UNLOAD:
5033		PDEBUG(("Unloading module: driver %s from bus %s",
5034		    DRIVERNAME(dmd->dmd_driver),
5035		    dmd->dmd_busname));
5036		error = devclass_delete_driver(bus_devclass,
5037		    dmd->dmd_driver);
5038
5039		if (!error && dmd->dmd_chainevh)
5040			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5041		break;
5042	case MOD_QUIESCE:
5043		PDEBUG(("Quiesce module: driver %s from bus %s",
5044		    DRIVERNAME(dmd->dmd_driver),
5045		    dmd->dmd_busname));
5046		error = devclass_quiesce_driver(bus_devclass,
5047		    dmd->dmd_driver);
5048
5049		if (!error && dmd->dmd_chainevh)
5050			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5051		break;
5052	default:
5053		error = EOPNOTSUPP;
5054		break;
5055	}
5056
5057	return (error);
5058}
5059
5060/**
5061 * @brief Enumerate all hinted devices for this bus.
5062 *
5063 * Walks through the hints for this bus and calls the bus_hinted_child
5064 * routine for each one it fines.  It searches first for the specific
5065 * bus that's being probed for hinted children (eg isa0), and then for
5066 * generic children (eg isa).
5067 *
5068 * @param	dev	bus device to enumerate
5069 */
5070void
5071bus_enumerate_hinted_children(device_t bus)
5072{
5073	int i;
5074	const char *dname, *busname;
5075	int dunit;
5076
5077	/*
5078	 * enumerate all devices on the specific bus
5079	 */
5080	busname = device_get_nameunit(bus);
5081	i = 0;
5082	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5083		BUS_HINTED_CHILD(bus, dname, dunit);
5084
5085	/*
5086	 * and all the generic ones.
5087	 */
5088	busname = device_get_name(bus);
5089	i = 0;
5090	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5091		BUS_HINTED_CHILD(bus, dname, dunit);
5092}
5093
5094#ifdef BUS_DEBUG
5095
5096/* the _short versions avoid iteration by not calling anything that prints
5097 * more than oneliners. I love oneliners.
5098 */
5099
5100static void
5101print_device_short(device_t dev, int indent)
5102{
5103	if (!dev)
5104		return;
5105
5106	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5107	    dev->unit, dev->desc,
5108	    (dev->parent? "":"no "),
5109	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5110	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5111	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5112	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5113	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5114	    (dev->flags&DF_REBID? "rebiddable,":""),
5115	    (dev->ivars? "":"no "),
5116	    (dev->softc? "":"no "),
5117	    dev->busy));
5118}
5119
5120static void
5121print_device(device_t dev, int indent)
5122{
5123	if (!dev)
5124		return;
5125
5126	print_device_short(dev, indent);
5127
5128	indentprintf(("Parent:\n"));
5129	print_device_short(dev->parent, indent+1);
5130	indentprintf(("Driver:\n"));
5131	print_driver_short(dev->driver, indent+1);
5132	indentprintf(("Devclass:\n"));
5133	print_devclass_short(dev->devclass, indent+1);
5134}
5135
5136void
5137print_device_tree_short(device_t dev, int indent)
5138/* print the device and all its children (indented) */
5139{
5140	device_t child;
5141
5142	if (!dev)
5143		return;
5144
5145	print_device_short(dev, indent);
5146
5147	TAILQ_FOREACH(child, &dev->children, link) {
5148		print_device_tree_short(child, indent+1);
5149	}
5150}
5151
5152void
5153print_device_tree(device_t dev, int indent)
5154/* print the device and all its children (indented) */
5155{
5156	device_t child;
5157
5158	if (!dev)
5159		return;
5160
5161	print_device(dev, indent);
5162
5163	TAILQ_FOREACH(child, &dev->children, link) {
5164		print_device_tree(child, indent+1);
5165	}
5166}
5167
5168static void
5169print_driver_short(driver_t *driver, int indent)
5170{
5171	if (!driver)
5172		return;
5173
5174	indentprintf(("driver %s: softc size = %zd\n",
5175	    driver->name, driver->size));
5176}
5177
5178static void
5179print_driver(driver_t *driver, int indent)
5180{
5181	if (!driver)
5182		return;
5183
5184	print_driver_short(driver, indent);
5185}
5186
5187static void
5188print_driver_list(driver_list_t drivers, int indent)
5189{
5190	driverlink_t driver;
5191
5192	TAILQ_FOREACH(driver, &drivers, link) {
5193		print_driver(driver->driver, indent);
5194	}
5195}
5196
5197static void
5198print_devclass_short(devclass_t dc, int indent)
5199{
5200	if ( !dc )
5201		return;
5202
5203	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5204}
5205
5206static void
5207print_devclass(devclass_t dc, int indent)
5208{
5209	int i;
5210
5211	if ( !dc )
5212		return;
5213
5214	print_devclass_short(dc, indent);
5215	indentprintf(("Drivers:\n"));
5216	print_driver_list(dc->drivers, indent+1);
5217
5218	indentprintf(("Devices:\n"));
5219	for (i = 0; i < dc->maxunit; i++)
5220		if (dc->devices[i])
5221			print_device(dc->devices[i], indent+1);
5222}
5223
5224void
5225print_devclass_list_short(void)
5226{
5227	devclass_t dc;
5228
5229	printf("Short listing of devclasses, drivers & devices:\n");
5230	TAILQ_FOREACH(dc, &devclasses, link) {
5231		print_devclass_short(dc, 0);
5232	}
5233}
5234
5235void
5236print_devclass_list(void)
5237{
5238	devclass_t dc;
5239
5240	printf("Full listing of devclasses, drivers & devices:\n");
5241	TAILQ_FOREACH(dc, &devclasses, link) {
5242		print_devclass(dc, 0);
5243	}
5244}
5245
5246#endif
5247
5248/*
5249 * User-space access to the device tree.
5250 *
5251 * We implement a small set of nodes:
5252 *
5253 * hw.bus			Single integer read method to obtain the
5254 *				current generation count.
5255 * hw.bus.devices		Reads the entire device tree in flat space.
5256 * hw.bus.rman			Resource manager interface
5257 *
5258 * We might like to add the ability to scan devclasses and/or drivers to
5259 * determine what else is currently loaded/available.
5260 */
5261
5262static int
5263sysctl_bus(SYSCTL_HANDLER_ARGS)
5264{
5265	struct u_businfo	ubus;
5266
5267	ubus.ub_version = BUS_USER_VERSION;
5268	ubus.ub_generation = bus_data_generation;
5269
5270	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5271}
5272SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5273    "bus-related data");
5274
5275static int
5276sysctl_devices(SYSCTL_HANDLER_ARGS)
5277{
5278	int			*name = (int *)arg1;
5279	u_int			namelen = arg2;
5280	int			index;
5281	struct device		*dev;
5282	struct u_device		udev;	/* XXX this is a bit big */
5283	int			error;
5284
5285	if (namelen != 2)
5286		return (EINVAL);
5287
5288	if (bus_data_generation_check(name[0]))
5289		return (EINVAL);
5290
5291	index = name[1];
5292
5293	/*
5294	 * Scan the list of devices, looking for the requested index.
5295	 */
5296	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5297		if (index-- == 0)
5298			break;
5299	}
5300	if (dev == NULL)
5301		return (ENOENT);
5302
5303	/*
5304	 * Populate the return array.
5305	 */
5306	bzero(&udev, sizeof(udev));
5307	udev.dv_handle = (uintptr_t)dev;
5308	udev.dv_parent = (uintptr_t)dev->parent;
5309	if (dev->nameunit != NULL)
5310		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5311	if (dev->desc != NULL)
5312		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5313	if (dev->driver != NULL && dev->driver->name != NULL)
5314		strlcpy(udev.dv_drivername, dev->driver->name,
5315		    sizeof(udev.dv_drivername));
5316	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5317	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5318	udev.dv_devflags = dev->devflags;
5319	udev.dv_flags = dev->flags;
5320	udev.dv_state = dev->state;
5321	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5322	return (error);
5323}
5324
5325SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5326    "system device tree");
5327
5328int
5329bus_data_generation_check(int generation)
5330{
5331	if (generation != bus_data_generation)
5332		return (1);
5333
5334	/* XXX generate optimised lists here? */
5335	return (0);
5336}
5337
5338void
5339bus_data_generation_update(void)
5340{
5341	bus_data_generation++;
5342}
5343
5344int
5345bus_free_resource(device_t dev, int type, struct resource *r)
5346{
5347	if (r == NULL)
5348		return (0);
5349	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5350}
5351
5352device_t
5353device_lookup_by_name(const char *name)
5354{
5355	device_t dev;
5356
5357	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5358		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5359			return (dev);
5360	}
5361	return (NULL);
5362}
5363
5364/*
5365 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5366 * implicit semantics on open, so it could not be reused for this.
5367 * Another option would be to call this /dev/bus?
5368 */
5369static int
5370find_device(struct devreq *req, device_t *devp)
5371{
5372	device_t dev;
5373
5374	/*
5375	 * First, ensure that the name is nul terminated.
5376	 */
5377	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5378		return (EINVAL);
5379
5380	/*
5381	 * Second, try to find an attached device whose name matches
5382	 * 'name'.
5383	 */
5384	dev = device_lookup_by_name(req->dr_name);
5385	if (dev != NULL) {
5386		*devp = dev;
5387		return (0);
5388	}
5389
5390	/* Finally, give device enumerators a chance. */
5391	dev = NULL;
5392	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5393	if (dev == NULL)
5394		return (ENOENT);
5395	*devp = dev;
5396	return (0);
5397}
5398
5399static bool
5400driver_exists(device_t bus, const char *driver)
5401{
5402	devclass_t dc;
5403
5404	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5405		if (devclass_find_driver_internal(dc, driver) != NULL)
5406			return (true);
5407	}
5408	return (false);
5409}
5410
5411static int
5412devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5413    struct thread *td)
5414{
5415	struct devreq *req;
5416	device_t dev;
5417	int error, old;
5418
5419	/* Locate the device to control. */
5420	mtx_lock(&Giant);
5421	req = (struct devreq *)data;
5422	switch (cmd) {
5423	case DEV_ATTACH:
5424	case DEV_DETACH:
5425	case DEV_ENABLE:
5426	case DEV_DISABLE:
5427	case DEV_SUSPEND:
5428	case DEV_RESUME:
5429	case DEV_SET_DRIVER:
5430	case DEV_CLEAR_DRIVER:
5431	case DEV_RESCAN:
5432	case DEV_DELETE:
5433		error = priv_check(td, PRIV_DRIVER);
5434		if (error == 0)
5435			error = find_device(req, &dev);
5436		break;
5437	default:
5438		error = ENOTTY;
5439		break;
5440	}
5441	if (error) {
5442		mtx_unlock(&Giant);
5443		return (error);
5444	}
5445
5446	/* Perform the requested operation. */
5447	switch (cmd) {
5448	case DEV_ATTACH:
5449		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5450			error = EBUSY;
5451		else if (!device_is_enabled(dev))
5452			error = ENXIO;
5453		else
5454			error = device_probe_and_attach(dev);
5455		break;
5456	case DEV_DETACH:
5457		if (!device_is_attached(dev)) {
5458			error = ENXIO;
5459			break;
5460		}
5461		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5462			error = device_quiesce(dev);
5463			if (error)
5464				break;
5465		}
5466		error = device_detach(dev);
5467		break;
5468	case DEV_ENABLE:
5469		if (device_is_enabled(dev)) {
5470			error = EBUSY;
5471			break;
5472		}
5473
5474		/*
5475		 * If the device has been probed but not attached (e.g.
5476		 * when it has been disabled by a loader hint), just
5477		 * attach the device rather than doing a full probe.
5478		 */
5479		device_enable(dev);
5480		if (device_is_alive(dev)) {
5481			/*
5482			 * If the device was disabled via a hint, clear
5483			 * the hint.
5484			 */
5485			if (resource_disabled(dev->driver->name, dev->unit))
5486				resource_unset_value(dev->driver->name,
5487				    dev->unit, "disabled");
5488			error = device_attach(dev);
5489		} else
5490			error = device_probe_and_attach(dev);
5491		break;
5492	case DEV_DISABLE:
5493		if (!device_is_enabled(dev)) {
5494			error = ENXIO;
5495			break;
5496		}
5497
5498		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5499			error = device_quiesce(dev);
5500			if (error)
5501				break;
5502		}
5503
5504		/*
5505		 * Force DF_FIXEDCLASS on around detach to preserve
5506		 * the existing name.
5507		 */
5508		old = dev->flags;
5509		dev->flags |= DF_FIXEDCLASS;
5510		error = device_detach(dev);
5511		if (!(old & DF_FIXEDCLASS))
5512			dev->flags &= ~DF_FIXEDCLASS;
5513		if (error == 0)
5514			device_disable(dev);
5515		break;
5516	case DEV_SUSPEND:
5517		if (device_is_suspended(dev)) {
5518			error = EBUSY;
5519			break;
5520		}
5521		if (device_get_parent(dev) == NULL) {
5522			error = EINVAL;
5523			break;
5524		}
5525		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5526		break;
5527	case DEV_RESUME:
5528		if (!device_is_suspended(dev)) {
5529			error = EINVAL;
5530			break;
5531		}
5532		if (device_get_parent(dev) == NULL) {
5533			error = EINVAL;
5534			break;
5535		}
5536		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5537		break;
5538	case DEV_SET_DRIVER: {
5539		devclass_t dc;
5540		char driver[128];
5541
5542		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5543		if (error)
5544			break;
5545		if (driver[0] == '\0') {
5546			error = EINVAL;
5547			break;
5548		}
5549		if (dev->devclass != NULL &&
5550		    strcmp(driver, dev->devclass->name) == 0)
5551			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5552			break;
5553
5554		/*
5555		 * Scan drivers for this device's bus looking for at
5556		 * least one matching driver.
5557		 */
5558		if (dev->parent == NULL) {
5559			error = EINVAL;
5560			break;
5561		}
5562		if (!driver_exists(dev->parent, driver)) {
5563			error = ENOENT;
5564			break;
5565		}
5566		dc = devclass_create(driver);
5567		if (dc == NULL) {
5568			error = ENOMEM;
5569			break;
5570		}
5571
5572		/* Detach device if necessary. */
5573		if (device_is_attached(dev)) {
5574			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5575				error = device_detach(dev);
5576			else
5577				error = EBUSY;
5578			if (error)
5579				break;
5580		}
5581
5582		/* Clear any previously-fixed device class and unit. */
5583		if (dev->flags & DF_FIXEDCLASS)
5584			devclass_delete_device(dev->devclass, dev);
5585		dev->flags |= DF_WILDCARD;
5586		dev->unit = -1;
5587
5588		/* Force the new device class. */
5589		error = devclass_add_device(dc, dev);
5590		if (error)
5591			break;
5592		dev->flags |= DF_FIXEDCLASS;
5593		error = device_probe_and_attach(dev);
5594		break;
5595	}
5596	case DEV_CLEAR_DRIVER:
5597		if (!(dev->flags & DF_FIXEDCLASS)) {
5598			error = 0;
5599			break;
5600		}
5601		if (device_is_attached(dev)) {
5602			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5603				error = device_detach(dev);
5604			else
5605				error = EBUSY;
5606			if (error)
5607				break;
5608		}
5609
5610		dev->flags &= ~DF_FIXEDCLASS;
5611		dev->flags |= DF_WILDCARD;
5612		devclass_delete_device(dev->devclass, dev);
5613		error = device_probe_and_attach(dev);
5614		break;
5615	case DEV_RESCAN:
5616		if (!device_is_attached(dev)) {
5617			error = ENXIO;
5618			break;
5619		}
5620		error = BUS_RESCAN(dev);
5621		break;
5622	case DEV_DELETE: {
5623		device_t parent;
5624
5625		parent = device_get_parent(dev);
5626		if (parent == NULL) {
5627			error = EINVAL;
5628			break;
5629		}
5630		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5631			if (bus_child_present(dev) != 0) {
5632				error = EBUSY;
5633				break;
5634			}
5635		}
5636
5637		error = device_delete_child(parent, dev);
5638		break;
5639	}
5640	}
5641	mtx_unlock(&Giant);
5642	return (error);
5643}
5644
5645static struct cdevsw devctl2_cdevsw = {
5646	.d_version =	D_VERSION,
5647	.d_ioctl =	devctl2_ioctl,
5648	.d_name =	"devctl2",
5649};
5650
5651static void
5652devctl2_init(void)
5653{
5654
5655	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5656	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5657}
5658