subr_bus.c revision 299286
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 299286 2016-05-09 20:50:21Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/smp.h>
53#include <sys/sysctl.h>
54#include <sys/systm.h>
55#include <sys/uio.h>
56#include <sys/bus.h>
57#include <sys/interrupt.h>
58#include <sys/cpuset.h>
59
60#include <net/vnet.h>
61
62#include <machine/cpu.h>
63#include <machine/stdarg.h>
64
65#include <vm/uma.h>
66
67SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
68SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
69
70/*
71 * Used to attach drivers to devclasses.
72 */
73typedef struct driverlink *driverlink_t;
74struct driverlink {
75	kobj_class_t	driver;
76	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
77	int		pass;
78	TAILQ_ENTRY(driverlink) passlink;
79};
80
81/*
82 * Forward declarations
83 */
84typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
85typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
86typedef TAILQ_HEAD(device_list, device) device_list_t;
87
88struct devclass {
89	TAILQ_ENTRY(devclass) link;
90	devclass_t	parent;		/* parent in devclass hierarchy */
91	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
92	char		*name;
93	device_t	*devices;	/* array of devices indexed by unit */
94	int		maxunit;	/* size of devices array */
95	int		flags;
96#define DC_HAS_CHILDREN		1
97
98	struct sysctl_ctx_list sysctl_ctx;
99	struct sysctl_oid *sysctl_tree;
100};
101
102/**
103 * @brief Implementation of device.
104 */
105struct device {
106	/*
107	 * A device is a kernel object. The first field must be the
108	 * current ops table for the object.
109	 */
110	KOBJ_FIELDS;
111
112	/*
113	 * Device hierarchy.
114	 */
115	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
116	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
117	device_t	parent;		/**< parent of this device  */
118	device_list_t	children;	/**< list of child devices */
119
120	/*
121	 * Details of this device.
122	 */
123	driver_t	*driver;	/**< current driver */
124	devclass_t	devclass;	/**< current device class */
125	int		unit;		/**< current unit number */
126	char*		nameunit;	/**< name+unit e.g. foodev0 */
127	char*		desc;		/**< driver specific description */
128	int		busy;		/**< count of calls to device_busy() */
129	device_state_t	state;		/**< current device state  */
130	uint32_t	devflags;	/**< api level flags for device_get_flags() */
131	u_int		flags;		/**< internal device flags  */
132	u_int	order;			/**< order from device_add_child_ordered() */
133	void	*ivars;			/**< instance variables  */
134	void	*softc;			/**< current driver's variables  */
135
136	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
137	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
138};
139
140static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
141static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
142
143static void devctl2_init(void);
144
145#ifdef BUS_DEBUG
146
147static int bus_debug = 1;
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
149    "Bus debug level");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT_STR(req, value));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT_STR(req, value);
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282	int domain;
283
284	if (dev->sysctl_tree != NULL)
285		return;
286	devclass_sysctl_init(dc);
287	sysctl_ctx_init(&dev->sysctl_ctx);
288	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
289	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
290	    dev->nameunit + strlen(dc->name),
291	    CTLFLAG_RD, NULL, "");
292	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
293	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
294	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
295	    "device description");
296	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
298	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
299	    "device driver name");
300	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
302	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
303	    "device location relative to parent");
304	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
306	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
307	    "device identification");
308	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
310	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
311	    "parent device");
312	if (bus_get_domain(dev, &domain) == 0)
313		SYSCTL_ADD_INT(&dev->sysctl_ctx,
314		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
315		    CTLFLAG_RD, NULL, domain, "NUMA domain");
316}
317
318static void
319device_sysctl_update(device_t dev)
320{
321	devclass_t dc = dev->devclass;
322
323	if (dev->sysctl_tree == NULL)
324		return;
325	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
326}
327
328static void
329device_sysctl_fini(device_t dev)
330{
331	if (dev->sysctl_tree == NULL)
332		return;
333	sysctl_ctx_free(&dev->sysctl_ctx);
334	dev->sysctl_tree = NULL;
335}
336
337/*
338 * /dev/devctl implementation
339 */
340
341/*
342 * This design allows only one reader for /dev/devctl.  This is not desirable
343 * in the long run, but will get a lot of hair out of this implementation.
344 * Maybe we should make this device a clonable device.
345 *
346 * Also note: we specifically do not attach a device to the device_t tree
347 * to avoid potential chicken and egg problems.  One could argue that all
348 * of this belongs to the root node.  One could also further argue that the
349 * sysctl interface that we have not might more properly be an ioctl
350 * interface, but at this stage of the game, I'm not inclined to rock that
351 * boat.
352 *
353 * I'm also not sure that the SIGIO support is done correctly or not, as
354 * I copied it from a driver that had SIGIO support that likely hasn't been
355 * tested since 3.4 or 2.2.8!
356 */
357
358/* Deprecated way to adjust queue length */
359static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
360SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
361    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
362    "devctl disable -- deprecated");
363
364#define DEVCTL_DEFAULT_QUEUE_LEN 1000
365static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
366static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
367SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
368    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
369
370static d_open_t		devopen;
371static d_close_t	devclose;
372static d_read_t		devread;
373static d_ioctl_t	devioctl;
374static d_poll_t		devpoll;
375static d_kqfilter_t	devkqfilter;
376
377static struct cdevsw dev_cdevsw = {
378	.d_version =	D_VERSION,
379	.d_open =	devopen,
380	.d_close =	devclose,
381	.d_read =	devread,
382	.d_ioctl =	devioctl,
383	.d_poll =	devpoll,
384	.d_kqfilter =	devkqfilter,
385	.d_name =	"devctl",
386};
387
388struct dev_event_info
389{
390	char *dei_data;
391	TAILQ_ENTRY(dev_event_info) dei_link;
392};
393
394TAILQ_HEAD(devq, dev_event_info);
395
396static struct dev_softc
397{
398	int	inuse;
399	int	nonblock;
400	int	queued;
401	int	async;
402	struct mtx mtx;
403	struct cv cv;
404	struct selinfo sel;
405	struct devq devq;
406	struct sigio *sigio;
407} devsoftc;
408
409static void	filt_devctl_detach(struct knote *kn);
410static int	filt_devctl_read(struct knote *kn, long hint);
411
412struct filterops devctl_rfiltops = {
413	.f_isfd = 1,
414	.f_detach = filt_devctl_detach,
415	.f_event = filt_devctl_read,
416};
417
418static struct cdev *devctl_dev;
419
420static void
421devinit(void)
422{
423	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
424	    UID_ROOT, GID_WHEEL, 0600, "devctl");
425	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
426	cv_init(&devsoftc.cv, "dev cv");
427	TAILQ_INIT(&devsoftc.devq);
428	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
429	devctl2_init();
430}
431
432static int
433devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
434{
435
436	mtx_lock(&devsoftc.mtx);
437	if (devsoftc.inuse) {
438		mtx_unlock(&devsoftc.mtx);
439		return (EBUSY);
440	}
441	/* move to init */
442	devsoftc.inuse = 1;
443	mtx_unlock(&devsoftc.mtx);
444	return (0);
445}
446
447static int
448devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
449{
450
451	mtx_lock(&devsoftc.mtx);
452	devsoftc.inuse = 0;
453	devsoftc.nonblock = 0;
454	devsoftc.async = 0;
455	cv_broadcast(&devsoftc.cv);
456	funsetown(&devsoftc.sigio);
457	mtx_unlock(&devsoftc.mtx);
458	return (0);
459}
460
461/*
462 * The read channel for this device is used to report changes to
463 * userland in realtime.  We are required to free the data as well as
464 * the n1 object because we allocate them separately.  Also note that
465 * we return one record at a time.  If you try to read this device a
466 * character at a time, you will lose the rest of the data.  Listening
467 * programs are expected to cope.
468 */
469static int
470devread(struct cdev *dev, struct uio *uio, int ioflag)
471{
472	struct dev_event_info *n1;
473	int rv;
474
475	mtx_lock(&devsoftc.mtx);
476	while (TAILQ_EMPTY(&devsoftc.devq)) {
477		if (devsoftc.nonblock) {
478			mtx_unlock(&devsoftc.mtx);
479			return (EAGAIN);
480		}
481		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
482		if (rv) {
483			/*
484			 * Need to translate ERESTART to EINTR here? -- jake
485			 */
486			mtx_unlock(&devsoftc.mtx);
487			return (rv);
488		}
489	}
490	n1 = TAILQ_FIRST(&devsoftc.devq);
491	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
492	devsoftc.queued--;
493	mtx_unlock(&devsoftc.mtx);
494	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
495	free(n1->dei_data, M_BUS);
496	free(n1, M_BUS);
497	return (rv);
498}
499
500static	int
501devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
502{
503	switch (cmd) {
504
505	case FIONBIO:
506		if (*(int*)data)
507			devsoftc.nonblock = 1;
508		else
509			devsoftc.nonblock = 0;
510		return (0);
511	case FIOASYNC:
512		if (*(int*)data)
513			devsoftc.async = 1;
514		else
515			devsoftc.async = 0;
516		return (0);
517	case FIOSETOWN:
518		return fsetown(*(int *)data, &devsoftc.sigio);
519	case FIOGETOWN:
520		*(int *)data = fgetown(&devsoftc.sigio);
521		return (0);
522
523		/* (un)Support for other fcntl() calls. */
524	case FIOCLEX:
525	case FIONCLEX:
526	case FIONREAD:
527	default:
528		break;
529	}
530	return (ENOTTY);
531}
532
533static	int
534devpoll(struct cdev *dev, int events, struct thread *td)
535{
536	int	revents = 0;
537
538	mtx_lock(&devsoftc.mtx);
539	if (events & (POLLIN | POLLRDNORM)) {
540		if (!TAILQ_EMPTY(&devsoftc.devq))
541			revents = events & (POLLIN | POLLRDNORM);
542		else
543			selrecord(td, &devsoftc.sel);
544	}
545	mtx_unlock(&devsoftc.mtx);
546
547	return (revents);
548}
549
550static int
551devkqfilter(struct cdev *dev, struct knote *kn)
552{
553	int error;
554
555	if (kn->kn_filter == EVFILT_READ) {
556		kn->kn_fop = &devctl_rfiltops;
557		knlist_add(&devsoftc.sel.si_note, kn, 0);
558		error = 0;
559	} else
560		error = EINVAL;
561	return (error);
562}
563
564static void
565filt_devctl_detach(struct knote *kn)
566{
567
568	knlist_remove(&devsoftc.sel.si_note, kn, 0);
569}
570
571static int
572filt_devctl_read(struct knote *kn, long hint)
573{
574	kn->kn_data = devsoftc.queued;
575	return (kn->kn_data != 0);
576}
577
578/**
579 * @brief Return whether the userland process is running
580 */
581boolean_t
582devctl_process_running(void)
583{
584	return (devsoftc.inuse == 1);
585}
586
587/**
588 * @brief Queue data to be read from the devctl device
589 *
590 * Generic interface to queue data to the devctl device.  It is
591 * assumed that @p data is properly formatted.  It is further assumed
592 * that @p data is allocated using the M_BUS malloc type.
593 */
594void
595devctl_queue_data_f(char *data, int flags)
596{
597	struct dev_event_info *n1 = NULL, *n2 = NULL;
598
599	if (strlen(data) == 0)
600		goto out;
601	if (devctl_queue_length == 0)
602		goto out;
603	n1 = malloc(sizeof(*n1), M_BUS, flags);
604	if (n1 == NULL)
605		goto out;
606	n1->dei_data = data;
607	mtx_lock(&devsoftc.mtx);
608	if (devctl_queue_length == 0) {
609		mtx_unlock(&devsoftc.mtx);
610		free(n1->dei_data, M_BUS);
611		free(n1, M_BUS);
612		return;
613	}
614	/* Leave at least one spot in the queue... */
615	while (devsoftc.queued > devctl_queue_length - 1) {
616		n2 = TAILQ_FIRST(&devsoftc.devq);
617		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
618		free(n2->dei_data, M_BUS);
619		free(n2, M_BUS);
620		devsoftc.queued--;
621	}
622	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
623	devsoftc.queued++;
624	cv_broadcast(&devsoftc.cv);
625	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
626	mtx_unlock(&devsoftc.mtx);
627	selwakeup(&devsoftc.sel);
628	if (devsoftc.async && devsoftc.sigio != NULL)
629		pgsigio(&devsoftc.sigio, SIGIO, 0);
630	return;
631out:
632	/*
633	 * We have to free data on all error paths since the caller
634	 * assumes it will be free'd when this item is dequeued.
635	 */
636	free(data, M_BUS);
637	return;
638}
639
640void
641devctl_queue_data(char *data)
642{
643
644	devctl_queue_data_f(data, M_NOWAIT);
645}
646
647/**
648 * @brief Send a 'notification' to userland, using standard ways
649 */
650void
651devctl_notify_f(const char *system, const char *subsystem, const char *type,
652    const char *data, int flags)
653{
654	int len = 0;
655	char *msg;
656
657	if (system == NULL)
658		return;		/* BOGUS!  Must specify system. */
659	if (subsystem == NULL)
660		return;		/* BOGUS!  Must specify subsystem. */
661	if (type == NULL)
662		return;		/* BOGUS!  Must specify type. */
663	len += strlen(" system=") + strlen(system);
664	len += strlen(" subsystem=") + strlen(subsystem);
665	len += strlen(" type=") + strlen(type);
666	/* add in the data message plus newline. */
667	if (data != NULL)
668		len += strlen(data);
669	len += 3;	/* '!', '\n', and NUL */
670	msg = malloc(len, M_BUS, flags);
671	if (msg == NULL)
672		return;		/* Drop it on the floor */
673	if (data != NULL)
674		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
675		    system, subsystem, type, data);
676	else
677		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
678		    system, subsystem, type);
679	devctl_queue_data_f(msg, flags);
680}
681
682void
683devctl_notify(const char *system, const char *subsystem, const char *type,
684    const char *data)
685{
686
687	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
688}
689
690/*
691 * Common routine that tries to make sending messages as easy as possible.
692 * We allocate memory for the data, copy strings into that, but do not
693 * free it unless there's an error.  The dequeue part of the driver should
694 * free the data.  We don't send data when the device is disabled.  We do
695 * send data, even when we have no listeners, because we wish to avoid
696 * races relating to startup and restart of listening applications.
697 *
698 * devaddq is designed to string together the type of event, with the
699 * object of that event, plus the plug and play info and location info
700 * for that event.  This is likely most useful for devices, but less
701 * useful for other consumers of this interface.  Those should use
702 * the devctl_queue_data() interface instead.
703 */
704static void
705devaddq(const char *type, const char *what, device_t dev)
706{
707	char *data = NULL;
708	char *loc = NULL;
709	char *pnp = NULL;
710	const char *parstr;
711
712	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
713		return;
714	data = malloc(1024, M_BUS, M_NOWAIT);
715	if (data == NULL)
716		goto bad;
717
718	/* get the bus specific location of this device */
719	loc = malloc(1024, M_BUS, M_NOWAIT);
720	if (loc == NULL)
721		goto bad;
722	*loc = '\0';
723	bus_child_location_str(dev, loc, 1024);
724
725	/* Get the bus specific pnp info of this device */
726	pnp = malloc(1024, M_BUS, M_NOWAIT);
727	if (pnp == NULL)
728		goto bad;
729	*pnp = '\0';
730	bus_child_pnpinfo_str(dev, pnp, 1024);
731
732	/* Get the parent of this device, or / if high enough in the tree. */
733	if (device_get_parent(dev) == NULL)
734		parstr = ".";	/* Or '/' ? */
735	else
736		parstr = device_get_nameunit(device_get_parent(dev));
737	/* String it all together. */
738	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
739	  parstr);
740	free(loc, M_BUS);
741	free(pnp, M_BUS);
742	devctl_queue_data(data);
743	return;
744bad:
745	free(pnp, M_BUS);
746	free(loc, M_BUS);
747	free(data, M_BUS);
748	return;
749}
750
751/*
752 * A device was added to the tree.  We are called just after it successfully
753 * attaches (that is, probe and attach success for this device).  No call
754 * is made if a device is merely parented into the tree.  See devnomatch
755 * if probe fails.  If attach fails, no notification is sent (but maybe
756 * we should have a different message for this).
757 */
758static void
759devadded(device_t dev)
760{
761	devaddq("+", device_get_nameunit(dev), dev);
762}
763
764/*
765 * A device was removed from the tree.  We are called just before this
766 * happens.
767 */
768static void
769devremoved(device_t dev)
770{
771	devaddq("-", device_get_nameunit(dev), dev);
772}
773
774/*
775 * Called when there's no match for this device.  This is only called
776 * the first time that no match happens, so we don't keep getting this
777 * message.  Should that prove to be undesirable, we can change it.
778 * This is called when all drivers that can attach to a given bus
779 * decline to accept this device.  Other errors may not be detected.
780 */
781static void
782devnomatch(device_t dev)
783{
784	devaddq("?", "", dev);
785}
786
787static int
788sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
789{
790	struct dev_event_info *n1;
791	int dis, error;
792
793	dis = (devctl_queue_length == 0);
794	error = sysctl_handle_int(oidp, &dis, 0, req);
795	if (error || !req->newptr)
796		return (error);
797	if (mtx_initialized(&devsoftc.mtx))
798		mtx_lock(&devsoftc.mtx);
799	if (dis) {
800		while (!TAILQ_EMPTY(&devsoftc.devq)) {
801			n1 = TAILQ_FIRST(&devsoftc.devq);
802			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
803			free(n1->dei_data, M_BUS);
804			free(n1, M_BUS);
805		}
806		devsoftc.queued = 0;
807		devctl_queue_length = 0;
808	} else {
809		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
810	}
811	if (mtx_initialized(&devsoftc.mtx))
812		mtx_unlock(&devsoftc.mtx);
813	return (0);
814}
815
816static int
817sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
818{
819	struct dev_event_info *n1;
820	int q, error;
821
822	q = devctl_queue_length;
823	error = sysctl_handle_int(oidp, &q, 0, req);
824	if (error || !req->newptr)
825		return (error);
826	if (q < 0)
827		return (EINVAL);
828	if (mtx_initialized(&devsoftc.mtx))
829		mtx_lock(&devsoftc.mtx);
830	devctl_queue_length = q;
831	while (devsoftc.queued > devctl_queue_length) {
832		n1 = TAILQ_FIRST(&devsoftc.devq);
833		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
834		free(n1->dei_data, M_BUS);
835		free(n1, M_BUS);
836		devsoftc.queued--;
837	}
838	if (mtx_initialized(&devsoftc.mtx))
839		mtx_unlock(&devsoftc.mtx);
840	return (0);
841}
842
843/**
844 * @brief safely quotes strings that might have double quotes in them.
845 *
846 * The devctl protocol relies on quoted strings having matching quotes.
847 * This routine quotes any internal quotes so the resulting string
848 * is safe to pass to snprintf to construct, for example pnp info strings.
849 * Strings are always terminated with a NUL, but may be truncated if longer
850 * than @p len bytes after quotes.
851 *
852 * @param dst	Buffer to hold the string. Must be at least @p len bytes long
853 * @param src	Original buffer.
854 * @param len	Length of buffer pointed to by @dst, including trailing NUL
855 */
856void
857devctl_safe_quote(char *dst, const char *src, size_t len)
858{
859	char *walker = dst, *ep = dst + len - 1;
860
861	if (len == 0)
862		return;
863	while (src != NULL && walker < ep)
864	{
865		if (*src == '"') {
866			if (ep - walker < 2)
867				break;
868			*walker++ = '\\';
869		}
870		*walker++ = *src++;
871	}
872	*walker = '\0';
873}
874
875/* End of /dev/devctl code */
876
877static TAILQ_HEAD(,device)	bus_data_devices;
878static int bus_data_generation = 1;
879
880static kobj_method_t null_methods[] = {
881	KOBJMETHOD_END
882};
883
884DEFINE_CLASS(null, null_methods, 0);
885
886/*
887 * Bus pass implementation
888 */
889
890static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
891int bus_current_pass = BUS_PASS_ROOT;
892
893/**
894 * @internal
895 * @brief Register the pass level of a new driver attachment
896 *
897 * Register a new driver attachment's pass level.  If no driver
898 * attachment with the same pass level has been added, then @p new
899 * will be added to the global passes list.
900 *
901 * @param new		the new driver attachment
902 */
903static void
904driver_register_pass(struct driverlink *new)
905{
906	struct driverlink *dl;
907
908	/* We only consider pass numbers during boot. */
909	if (bus_current_pass == BUS_PASS_DEFAULT)
910		return;
911
912	/*
913	 * Walk the passes list.  If we already know about this pass
914	 * then there is nothing to do.  If we don't, then insert this
915	 * driver link into the list.
916	 */
917	TAILQ_FOREACH(dl, &passes, passlink) {
918		if (dl->pass < new->pass)
919			continue;
920		if (dl->pass == new->pass)
921			return;
922		TAILQ_INSERT_BEFORE(dl, new, passlink);
923		return;
924	}
925	TAILQ_INSERT_TAIL(&passes, new, passlink);
926}
927
928/**
929 * @brief Raise the current bus pass
930 *
931 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
932 * method on the root bus to kick off a new device tree scan for each
933 * new pass level that has at least one driver.
934 */
935void
936bus_set_pass(int pass)
937{
938	struct driverlink *dl;
939
940	if (bus_current_pass > pass)
941		panic("Attempt to lower bus pass level");
942
943	TAILQ_FOREACH(dl, &passes, passlink) {
944		/* Skip pass values below the current pass level. */
945		if (dl->pass <= bus_current_pass)
946			continue;
947
948		/*
949		 * Bail once we hit a driver with a pass level that is
950		 * too high.
951		 */
952		if (dl->pass > pass)
953			break;
954
955		/*
956		 * Raise the pass level to the next level and rescan
957		 * the tree.
958		 */
959		bus_current_pass = dl->pass;
960		BUS_NEW_PASS(root_bus);
961	}
962
963	/*
964	 * If there isn't a driver registered for the requested pass,
965	 * then bus_current_pass might still be less than 'pass'.  Set
966	 * it to 'pass' in that case.
967	 */
968	if (bus_current_pass < pass)
969		bus_current_pass = pass;
970	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
971}
972
973/*
974 * Devclass implementation
975 */
976
977static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
978
979/**
980 * @internal
981 * @brief Find or create a device class
982 *
983 * If a device class with the name @p classname exists, return it,
984 * otherwise if @p create is non-zero create and return a new device
985 * class.
986 *
987 * If @p parentname is non-NULL, the parent of the devclass is set to
988 * the devclass of that name.
989 *
990 * @param classname	the devclass name to find or create
991 * @param parentname	the parent devclass name or @c NULL
992 * @param create	non-zero to create a devclass
993 */
994static devclass_t
995devclass_find_internal(const char *classname, const char *parentname,
996		       int create)
997{
998	devclass_t dc;
999
1000	PDEBUG(("looking for %s", classname));
1001	if (!classname)
1002		return (NULL);
1003
1004	TAILQ_FOREACH(dc, &devclasses, link) {
1005		if (!strcmp(dc->name, classname))
1006			break;
1007	}
1008
1009	if (create && !dc) {
1010		PDEBUG(("creating %s", classname));
1011		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
1012		    M_BUS, M_NOWAIT | M_ZERO);
1013		if (!dc)
1014			return (NULL);
1015		dc->parent = NULL;
1016		dc->name = (char*) (dc + 1);
1017		strcpy(dc->name, classname);
1018		TAILQ_INIT(&dc->drivers);
1019		TAILQ_INSERT_TAIL(&devclasses, dc, link);
1020
1021		bus_data_generation_update();
1022	}
1023
1024	/*
1025	 * If a parent class is specified, then set that as our parent so
1026	 * that this devclass will support drivers for the parent class as
1027	 * well.  If the parent class has the same name don't do this though
1028	 * as it creates a cycle that can trigger an infinite loop in
1029	 * device_probe_child() if a device exists for which there is no
1030	 * suitable driver.
1031	 */
1032	if (parentname && dc && !dc->parent &&
1033	    strcmp(classname, parentname) != 0) {
1034		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1035		dc->parent->flags |= DC_HAS_CHILDREN;
1036	}
1037
1038	return (dc);
1039}
1040
1041/**
1042 * @brief Create a device class
1043 *
1044 * If a device class with the name @p classname exists, return it,
1045 * otherwise create and return a new device class.
1046 *
1047 * @param classname	the devclass name to find or create
1048 */
1049devclass_t
1050devclass_create(const char *classname)
1051{
1052	return (devclass_find_internal(classname, NULL, TRUE));
1053}
1054
1055/**
1056 * @brief Find a device class
1057 *
1058 * If a device class with the name @p classname exists, return it,
1059 * otherwise return @c NULL.
1060 *
1061 * @param classname	the devclass name to find
1062 */
1063devclass_t
1064devclass_find(const char *classname)
1065{
1066	return (devclass_find_internal(classname, NULL, FALSE));
1067}
1068
1069/**
1070 * @brief Register that a device driver has been added to a devclass
1071 *
1072 * Register that a device driver has been added to a devclass.  This
1073 * is called by devclass_add_driver to accomplish the recursive
1074 * notification of all the children classes of dc, as well as dc.
1075 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1076 * the devclass.
1077 *
1078 * We do a full search here of the devclass list at each iteration
1079 * level to save storing children-lists in the devclass structure.  If
1080 * we ever move beyond a few dozen devices doing this, we may need to
1081 * reevaluate...
1082 *
1083 * @param dc		the devclass to edit
1084 * @param driver	the driver that was just added
1085 */
1086static void
1087devclass_driver_added(devclass_t dc, driver_t *driver)
1088{
1089	devclass_t parent;
1090	int i;
1091
1092	/*
1093	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1094	 */
1095	for (i = 0; i < dc->maxunit; i++)
1096		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1097			BUS_DRIVER_ADDED(dc->devices[i], driver);
1098
1099	/*
1100	 * Walk through the children classes.  Since we only keep a
1101	 * single parent pointer around, we walk the entire list of
1102	 * devclasses looking for children.  We set the
1103	 * DC_HAS_CHILDREN flag when a child devclass is created on
1104	 * the parent, so we only walk the list for those devclasses
1105	 * that have children.
1106	 */
1107	if (!(dc->flags & DC_HAS_CHILDREN))
1108		return;
1109	parent = dc;
1110	TAILQ_FOREACH(dc, &devclasses, link) {
1111		if (dc->parent == parent)
1112			devclass_driver_added(dc, driver);
1113	}
1114}
1115
1116/**
1117 * @brief Add a device driver to a device class
1118 *
1119 * Add a device driver to a devclass. This is normally called
1120 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1121 * all devices in the devclass will be called to allow them to attempt
1122 * to re-probe any unmatched children.
1123 *
1124 * @param dc		the devclass to edit
1125 * @param driver	the driver to register
1126 */
1127int
1128devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1129{
1130	driverlink_t dl;
1131	const char *parentname;
1132
1133	PDEBUG(("%s", DRIVERNAME(driver)));
1134
1135	/* Don't allow invalid pass values. */
1136	if (pass <= BUS_PASS_ROOT)
1137		return (EINVAL);
1138
1139	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1140	if (!dl)
1141		return (ENOMEM);
1142
1143	/*
1144	 * Compile the driver's methods. Also increase the reference count
1145	 * so that the class doesn't get freed when the last instance
1146	 * goes. This means we can safely use static methods and avoids a
1147	 * double-free in devclass_delete_driver.
1148	 */
1149	kobj_class_compile((kobj_class_t) driver);
1150
1151	/*
1152	 * If the driver has any base classes, make the
1153	 * devclass inherit from the devclass of the driver's
1154	 * first base class. This will allow the system to
1155	 * search for drivers in both devclasses for children
1156	 * of a device using this driver.
1157	 */
1158	if (driver->baseclasses)
1159		parentname = driver->baseclasses[0]->name;
1160	else
1161		parentname = NULL;
1162	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1163
1164	dl->driver = driver;
1165	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1166	driver->refs++;		/* XXX: kobj_mtx */
1167	dl->pass = pass;
1168	driver_register_pass(dl);
1169
1170	devclass_driver_added(dc, driver);
1171	bus_data_generation_update();
1172	return (0);
1173}
1174
1175/**
1176 * @brief Register that a device driver has been deleted from a devclass
1177 *
1178 * Register that a device driver has been removed from a devclass.
1179 * This is called by devclass_delete_driver to accomplish the
1180 * recursive notification of all the children classes of busclass, as
1181 * well as busclass.  Each layer will attempt to detach the driver
1182 * from any devices that are children of the bus's devclass.  The function
1183 * will return an error if a device fails to detach.
1184 *
1185 * We do a full search here of the devclass list at each iteration
1186 * level to save storing children-lists in the devclass structure.  If
1187 * we ever move beyond a few dozen devices doing this, we may need to
1188 * reevaluate...
1189 *
1190 * @param busclass	the devclass of the parent bus
1191 * @param dc		the devclass of the driver being deleted
1192 * @param driver	the driver being deleted
1193 */
1194static int
1195devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1196{
1197	devclass_t parent;
1198	device_t dev;
1199	int error, i;
1200
1201	/*
1202	 * Disassociate from any devices.  We iterate through all the
1203	 * devices in the devclass of the driver and detach any which are
1204	 * using the driver and which have a parent in the devclass which
1205	 * we are deleting from.
1206	 *
1207	 * Note that since a driver can be in multiple devclasses, we
1208	 * should not detach devices which are not children of devices in
1209	 * the affected devclass.
1210	 */
1211	for (i = 0; i < dc->maxunit; i++) {
1212		if (dc->devices[i]) {
1213			dev = dc->devices[i];
1214			if (dev->driver == driver && dev->parent &&
1215			    dev->parent->devclass == busclass) {
1216				if ((error = device_detach(dev)) != 0)
1217					return (error);
1218				BUS_PROBE_NOMATCH(dev->parent, dev);
1219				devnomatch(dev);
1220				dev->flags |= DF_DONENOMATCH;
1221			}
1222		}
1223	}
1224
1225	/*
1226	 * Walk through the children classes.  Since we only keep a
1227	 * single parent pointer around, we walk the entire list of
1228	 * devclasses looking for children.  We set the
1229	 * DC_HAS_CHILDREN flag when a child devclass is created on
1230	 * the parent, so we only walk the list for those devclasses
1231	 * that have children.
1232	 */
1233	if (!(busclass->flags & DC_HAS_CHILDREN))
1234		return (0);
1235	parent = busclass;
1236	TAILQ_FOREACH(busclass, &devclasses, link) {
1237		if (busclass->parent == parent) {
1238			error = devclass_driver_deleted(busclass, dc, driver);
1239			if (error)
1240				return (error);
1241		}
1242	}
1243	return (0);
1244}
1245
1246/**
1247 * @brief Delete a device driver from a device class
1248 *
1249 * Delete a device driver from a devclass. This is normally called
1250 * automatically by DRIVER_MODULE().
1251 *
1252 * If the driver is currently attached to any devices,
1253 * devclass_delete_driver() will first attempt to detach from each
1254 * device. If one of the detach calls fails, the driver will not be
1255 * deleted.
1256 *
1257 * @param dc		the devclass to edit
1258 * @param driver	the driver to unregister
1259 */
1260int
1261devclass_delete_driver(devclass_t busclass, driver_t *driver)
1262{
1263	devclass_t dc = devclass_find(driver->name);
1264	driverlink_t dl;
1265	int error;
1266
1267	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1268
1269	if (!dc)
1270		return (0);
1271
1272	/*
1273	 * Find the link structure in the bus' list of drivers.
1274	 */
1275	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1276		if (dl->driver == driver)
1277			break;
1278	}
1279
1280	if (!dl) {
1281		PDEBUG(("%s not found in %s list", driver->name,
1282		    busclass->name));
1283		return (ENOENT);
1284	}
1285
1286	error = devclass_driver_deleted(busclass, dc, driver);
1287	if (error != 0)
1288		return (error);
1289
1290	TAILQ_REMOVE(&busclass->drivers, dl, link);
1291	free(dl, M_BUS);
1292
1293	/* XXX: kobj_mtx */
1294	driver->refs--;
1295	if (driver->refs == 0)
1296		kobj_class_free((kobj_class_t) driver);
1297
1298	bus_data_generation_update();
1299	return (0);
1300}
1301
1302/**
1303 * @brief Quiesces a set of device drivers from a device class
1304 *
1305 * Quiesce a device driver from a devclass. This is normally called
1306 * automatically by DRIVER_MODULE().
1307 *
1308 * If the driver is currently attached to any devices,
1309 * devclass_quiesece_driver() will first attempt to quiesce each
1310 * device.
1311 *
1312 * @param dc		the devclass to edit
1313 * @param driver	the driver to unregister
1314 */
1315static int
1316devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1317{
1318	devclass_t dc = devclass_find(driver->name);
1319	driverlink_t dl;
1320	device_t dev;
1321	int i;
1322	int error;
1323
1324	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1325
1326	if (!dc)
1327		return (0);
1328
1329	/*
1330	 * Find the link structure in the bus' list of drivers.
1331	 */
1332	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1333		if (dl->driver == driver)
1334			break;
1335	}
1336
1337	if (!dl) {
1338		PDEBUG(("%s not found in %s list", driver->name,
1339		    busclass->name));
1340		return (ENOENT);
1341	}
1342
1343	/*
1344	 * Quiesce all devices.  We iterate through all the devices in
1345	 * the devclass of the driver and quiesce any which are using
1346	 * the driver and which have a parent in the devclass which we
1347	 * are quiescing.
1348	 *
1349	 * Note that since a driver can be in multiple devclasses, we
1350	 * should not quiesce devices which are not children of
1351	 * devices in the affected devclass.
1352	 */
1353	for (i = 0; i < dc->maxunit; i++) {
1354		if (dc->devices[i]) {
1355			dev = dc->devices[i];
1356			if (dev->driver == driver && dev->parent &&
1357			    dev->parent->devclass == busclass) {
1358				if ((error = device_quiesce(dev)) != 0)
1359					return (error);
1360			}
1361		}
1362	}
1363
1364	return (0);
1365}
1366
1367/**
1368 * @internal
1369 */
1370static driverlink_t
1371devclass_find_driver_internal(devclass_t dc, const char *classname)
1372{
1373	driverlink_t dl;
1374
1375	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1376
1377	TAILQ_FOREACH(dl, &dc->drivers, link) {
1378		if (!strcmp(dl->driver->name, classname))
1379			return (dl);
1380	}
1381
1382	PDEBUG(("not found"));
1383	return (NULL);
1384}
1385
1386/**
1387 * @brief Return the name of the devclass
1388 */
1389const char *
1390devclass_get_name(devclass_t dc)
1391{
1392	return (dc->name);
1393}
1394
1395/**
1396 * @brief Find a device given a unit number
1397 *
1398 * @param dc		the devclass to search
1399 * @param unit		the unit number to search for
1400 *
1401 * @returns		the device with the given unit number or @c
1402 *			NULL if there is no such device
1403 */
1404device_t
1405devclass_get_device(devclass_t dc, int unit)
1406{
1407	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1408		return (NULL);
1409	return (dc->devices[unit]);
1410}
1411
1412/**
1413 * @brief Find the softc field of a device given a unit number
1414 *
1415 * @param dc		the devclass to search
1416 * @param unit		the unit number to search for
1417 *
1418 * @returns		the softc field of the device with the given
1419 *			unit number or @c NULL if there is no such
1420 *			device
1421 */
1422void *
1423devclass_get_softc(devclass_t dc, int unit)
1424{
1425	device_t dev;
1426
1427	dev = devclass_get_device(dc, unit);
1428	if (!dev)
1429		return (NULL);
1430
1431	return (device_get_softc(dev));
1432}
1433
1434/**
1435 * @brief Get a list of devices in the devclass
1436 *
1437 * An array containing a list of all the devices in the given devclass
1438 * is allocated and returned in @p *devlistp. The number of devices
1439 * in the array is returned in @p *devcountp. The caller should free
1440 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1441 *
1442 * @param dc		the devclass to examine
1443 * @param devlistp	points at location for array pointer return
1444 *			value
1445 * @param devcountp	points at location for array size return value
1446 *
1447 * @retval 0		success
1448 * @retval ENOMEM	the array allocation failed
1449 */
1450int
1451devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1452{
1453	int count, i;
1454	device_t *list;
1455
1456	count = devclass_get_count(dc);
1457	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1458	if (!list)
1459		return (ENOMEM);
1460
1461	count = 0;
1462	for (i = 0; i < dc->maxunit; i++) {
1463		if (dc->devices[i]) {
1464			list[count] = dc->devices[i];
1465			count++;
1466		}
1467	}
1468
1469	*devlistp = list;
1470	*devcountp = count;
1471
1472	return (0);
1473}
1474
1475/**
1476 * @brief Get a list of drivers in the devclass
1477 *
1478 * An array containing a list of pointers to all the drivers in the
1479 * given devclass is allocated and returned in @p *listp.  The number
1480 * of drivers in the array is returned in @p *countp. The caller should
1481 * free the array using @c free(p, M_TEMP).
1482 *
1483 * @param dc		the devclass to examine
1484 * @param listp		gives location for array pointer return value
1485 * @param countp	gives location for number of array elements
1486 *			return value
1487 *
1488 * @retval 0		success
1489 * @retval ENOMEM	the array allocation failed
1490 */
1491int
1492devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1493{
1494	driverlink_t dl;
1495	driver_t **list;
1496	int count;
1497
1498	count = 0;
1499	TAILQ_FOREACH(dl, &dc->drivers, link)
1500		count++;
1501	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1502	if (list == NULL)
1503		return (ENOMEM);
1504
1505	count = 0;
1506	TAILQ_FOREACH(dl, &dc->drivers, link) {
1507		list[count] = dl->driver;
1508		count++;
1509	}
1510	*listp = list;
1511	*countp = count;
1512
1513	return (0);
1514}
1515
1516/**
1517 * @brief Get the number of devices in a devclass
1518 *
1519 * @param dc		the devclass to examine
1520 */
1521int
1522devclass_get_count(devclass_t dc)
1523{
1524	int count, i;
1525
1526	count = 0;
1527	for (i = 0; i < dc->maxunit; i++)
1528		if (dc->devices[i])
1529			count++;
1530	return (count);
1531}
1532
1533/**
1534 * @brief Get the maximum unit number used in a devclass
1535 *
1536 * Note that this is one greater than the highest currently-allocated
1537 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1538 * that not even the devclass has been allocated yet.
1539 *
1540 * @param dc		the devclass to examine
1541 */
1542int
1543devclass_get_maxunit(devclass_t dc)
1544{
1545	if (dc == NULL)
1546		return (-1);
1547	return (dc->maxunit);
1548}
1549
1550/**
1551 * @brief Find a free unit number in a devclass
1552 *
1553 * This function searches for the first unused unit number greater
1554 * that or equal to @p unit.
1555 *
1556 * @param dc		the devclass to examine
1557 * @param unit		the first unit number to check
1558 */
1559int
1560devclass_find_free_unit(devclass_t dc, int unit)
1561{
1562	if (dc == NULL)
1563		return (unit);
1564	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1565		unit++;
1566	return (unit);
1567}
1568
1569/**
1570 * @brief Set the parent of a devclass
1571 *
1572 * The parent class is normally initialised automatically by
1573 * DRIVER_MODULE().
1574 *
1575 * @param dc		the devclass to edit
1576 * @param pdc		the new parent devclass
1577 */
1578void
1579devclass_set_parent(devclass_t dc, devclass_t pdc)
1580{
1581	dc->parent = pdc;
1582}
1583
1584/**
1585 * @brief Get the parent of a devclass
1586 *
1587 * @param dc		the devclass to examine
1588 */
1589devclass_t
1590devclass_get_parent(devclass_t dc)
1591{
1592	return (dc->parent);
1593}
1594
1595struct sysctl_ctx_list *
1596devclass_get_sysctl_ctx(devclass_t dc)
1597{
1598	return (&dc->sysctl_ctx);
1599}
1600
1601struct sysctl_oid *
1602devclass_get_sysctl_tree(devclass_t dc)
1603{
1604	return (dc->sysctl_tree);
1605}
1606
1607/**
1608 * @internal
1609 * @brief Allocate a unit number
1610 *
1611 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1612 * will do). The allocated unit number is returned in @p *unitp.
1613
1614 * @param dc		the devclass to allocate from
1615 * @param unitp		points at the location for the allocated unit
1616 *			number
1617 *
1618 * @retval 0		success
1619 * @retval EEXIST	the requested unit number is already allocated
1620 * @retval ENOMEM	memory allocation failure
1621 */
1622static int
1623devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1624{
1625	const char *s;
1626	int unit = *unitp;
1627
1628	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1629
1630	/* Ask the parent bus if it wants to wire this device. */
1631	if (unit == -1)
1632		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1633		    &unit);
1634
1635	/* If we were given a wired unit number, check for existing device */
1636	/* XXX imp XXX */
1637	if (unit != -1) {
1638		if (unit >= 0 && unit < dc->maxunit &&
1639		    dc->devices[unit] != NULL) {
1640			if (bootverbose)
1641				printf("%s: %s%d already exists; skipping it\n",
1642				    dc->name, dc->name, *unitp);
1643			return (EEXIST);
1644		}
1645	} else {
1646		/* Unwired device, find the next available slot for it */
1647		unit = 0;
1648		for (unit = 0;; unit++) {
1649			/* If there is an "at" hint for a unit then skip it. */
1650			if (resource_string_value(dc->name, unit, "at", &s) ==
1651			    0)
1652				continue;
1653
1654			/* If this device slot is already in use, skip it. */
1655			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1656				continue;
1657
1658			break;
1659		}
1660	}
1661
1662	/*
1663	 * We've selected a unit beyond the length of the table, so let's
1664	 * extend the table to make room for all units up to and including
1665	 * this one.
1666	 */
1667	if (unit >= dc->maxunit) {
1668		device_t *newlist, *oldlist;
1669		int newsize;
1670
1671		oldlist = dc->devices;
1672		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1673		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1674		if (!newlist)
1675			return (ENOMEM);
1676		if (oldlist != NULL)
1677			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1678		bzero(newlist + dc->maxunit,
1679		    sizeof(device_t) * (newsize - dc->maxunit));
1680		dc->devices = newlist;
1681		dc->maxunit = newsize;
1682		if (oldlist != NULL)
1683			free(oldlist, M_BUS);
1684	}
1685	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1686
1687	*unitp = unit;
1688	return (0);
1689}
1690
1691/**
1692 * @internal
1693 * @brief Add a device to a devclass
1694 *
1695 * A unit number is allocated for the device (using the device's
1696 * preferred unit number if any) and the device is registered in the
1697 * devclass. This allows the device to be looked up by its unit
1698 * number, e.g. by decoding a dev_t minor number.
1699 *
1700 * @param dc		the devclass to add to
1701 * @param dev		the device to add
1702 *
1703 * @retval 0		success
1704 * @retval EEXIST	the requested unit number is already allocated
1705 * @retval ENOMEM	memory allocation failure
1706 */
1707static int
1708devclass_add_device(devclass_t dc, device_t dev)
1709{
1710	int buflen, error;
1711
1712	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1713
1714	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1715	if (buflen < 0)
1716		return (ENOMEM);
1717	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1718	if (!dev->nameunit)
1719		return (ENOMEM);
1720
1721	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1722		free(dev->nameunit, M_BUS);
1723		dev->nameunit = NULL;
1724		return (error);
1725	}
1726	dc->devices[dev->unit] = dev;
1727	dev->devclass = dc;
1728	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1729
1730	return (0);
1731}
1732
1733/**
1734 * @internal
1735 * @brief Delete a device from a devclass
1736 *
1737 * The device is removed from the devclass's device list and its unit
1738 * number is freed.
1739
1740 * @param dc		the devclass to delete from
1741 * @param dev		the device to delete
1742 *
1743 * @retval 0		success
1744 */
1745static int
1746devclass_delete_device(devclass_t dc, device_t dev)
1747{
1748	if (!dc || !dev)
1749		return (0);
1750
1751	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1752
1753	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1754		panic("devclass_delete_device: inconsistent device class");
1755	dc->devices[dev->unit] = NULL;
1756	if (dev->flags & DF_WILDCARD)
1757		dev->unit = -1;
1758	dev->devclass = NULL;
1759	free(dev->nameunit, M_BUS);
1760	dev->nameunit = NULL;
1761
1762	return (0);
1763}
1764
1765/**
1766 * @internal
1767 * @brief Make a new device and add it as a child of @p parent
1768 *
1769 * @param parent	the parent of the new device
1770 * @param name		the devclass name of the new device or @c NULL
1771 *			to leave the devclass unspecified
1772 * @parem unit		the unit number of the new device of @c -1 to
1773 *			leave the unit number unspecified
1774 *
1775 * @returns the new device
1776 */
1777static device_t
1778make_device(device_t parent, const char *name, int unit)
1779{
1780	device_t dev;
1781	devclass_t dc;
1782
1783	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1784
1785	if (name) {
1786		dc = devclass_find_internal(name, NULL, TRUE);
1787		if (!dc) {
1788			printf("make_device: can't find device class %s\n",
1789			    name);
1790			return (NULL);
1791		}
1792	} else {
1793		dc = NULL;
1794	}
1795
1796	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1797	if (!dev)
1798		return (NULL);
1799
1800	dev->parent = parent;
1801	TAILQ_INIT(&dev->children);
1802	kobj_init((kobj_t) dev, &null_class);
1803	dev->driver = NULL;
1804	dev->devclass = NULL;
1805	dev->unit = unit;
1806	dev->nameunit = NULL;
1807	dev->desc = NULL;
1808	dev->busy = 0;
1809	dev->devflags = 0;
1810	dev->flags = DF_ENABLED;
1811	dev->order = 0;
1812	if (unit == -1)
1813		dev->flags |= DF_WILDCARD;
1814	if (name) {
1815		dev->flags |= DF_FIXEDCLASS;
1816		if (devclass_add_device(dc, dev)) {
1817			kobj_delete((kobj_t) dev, M_BUS);
1818			return (NULL);
1819		}
1820	}
1821	dev->ivars = NULL;
1822	dev->softc = NULL;
1823
1824	dev->state = DS_NOTPRESENT;
1825
1826	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1827	bus_data_generation_update();
1828
1829	return (dev);
1830}
1831
1832/**
1833 * @internal
1834 * @brief Print a description of a device.
1835 */
1836static int
1837device_print_child(device_t dev, device_t child)
1838{
1839	int retval = 0;
1840
1841	if (device_is_alive(child))
1842		retval += BUS_PRINT_CHILD(dev, child);
1843	else
1844		retval += device_printf(child, " not found\n");
1845
1846	return (retval);
1847}
1848
1849/**
1850 * @brief Create a new device
1851 *
1852 * This creates a new device and adds it as a child of an existing
1853 * parent device. The new device will be added after the last existing
1854 * child with order zero.
1855 *
1856 * @param dev		the device which will be the parent of the
1857 *			new child device
1858 * @param name		devclass name for new device or @c NULL if not
1859 *			specified
1860 * @param unit		unit number for new device or @c -1 if not
1861 *			specified
1862 *
1863 * @returns		the new device
1864 */
1865device_t
1866device_add_child(device_t dev, const char *name, int unit)
1867{
1868	return (device_add_child_ordered(dev, 0, name, unit));
1869}
1870
1871/**
1872 * @brief Create a new device
1873 *
1874 * This creates a new device and adds it as a child of an existing
1875 * parent device. The new device will be added after the last existing
1876 * child with the same order.
1877 *
1878 * @param dev		the device which will be the parent of the
1879 *			new child device
1880 * @param order		a value which is used to partially sort the
1881 *			children of @p dev - devices created using
1882 *			lower values of @p order appear first in @p
1883 *			dev's list of children
1884 * @param name		devclass name for new device or @c NULL if not
1885 *			specified
1886 * @param unit		unit number for new device or @c -1 if not
1887 *			specified
1888 *
1889 * @returns		the new device
1890 */
1891device_t
1892device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1893{
1894	device_t child;
1895	device_t place;
1896
1897	PDEBUG(("%s at %s with order %u as unit %d",
1898	    name, DEVICENAME(dev), order, unit));
1899	KASSERT(name != NULL || unit == -1,
1900	    ("child device with wildcard name and specific unit number"));
1901
1902	child = make_device(dev, name, unit);
1903	if (child == NULL)
1904		return (child);
1905	child->order = order;
1906
1907	TAILQ_FOREACH(place, &dev->children, link) {
1908		if (place->order > order)
1909			break;
1910	}
1911
1912	if (place) {
1913		/*
1914		 * The device 'place' is the first device whose order is
1915		 * greater than the new child.
1916		 */
1917		TAILQ_INSERT_BEFORE(place, child, link);
1918	} else {
1919		/*
1920		 * The new child's order is greater or equal to the order of
1921		 * any existing device. Add the child to the tail of the list.
1922		 */
1923		TAILQ_INSERT_TAIL(&dev->children, child, link);
1924	}
1925
1926	bus_data_generation_update();
1927	return (child);
1928}
1929
1930/**
1931 * @brief Delete a device
1932 *
1933 * This function deletes a device along with all of its children. If
1934 * the device currently has a driver attached to it, the device is
1935 * detached first using device_detach().
1936 *
1937 * @param dev		the parent device
1938 * @param child		the device to delete
1939 *
1940 * @retval 0		success
1941 * @retval non-zero	a unit error code describing the error
1942 */
1943int
1944device_delete_child(device_t dev, device_t child)
1945{
1946	int error;
1947	device_t grandchild;
1948
1949	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1950
1951	/* remove children first */
1952	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1953		error = device_delete_child(child, grandchild);
1954		if (error)
1955			return (error);
1956	}
1957
1958	if ((error = device_detach(child)) != 0)
1959		return (error);
1960	if (child->devclass)
1961		devclass_delete_device(child->devclass, child);
1962	if (child->parent)
1963		BUS_CHILD_DELETED(dev, child);
1964	TAILQ_REMOVE(&dev->children, child, link);
1965	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1966	kobj_delete((kobj_t) child, M_BUS);
1967
1968	bus_data_generation_update();
1969	return (0);
1970}
1971
1972/**
1973 * @brief Delete all children devices of the given device, if any.
1974 *
1975 * This function deletes all children devices of the given device, if
1976 * any, using the device_delete_child() function for each device it
1977 * finds. If a child device cannot be deleted, this function will
1978 * return an error code.
1979 *
1980 * @param dev		the parent device
1981 *
1982 * @retval 0		success
1983 * @retval non-zero	a device would not detach
1984 */
1985int
1986device_delete_children(device_t dev)
1987{
1988	device_t child;
1989	int error;
1990
1991	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1992
1993	error = 0;
1994
1995	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1996		error = device_delete_child(dev, child);
1997		if (error) {
1998			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1999			break;
2000		}
2001	}
2002	return (error);
2003}
2004
2005/**
2006 * @brief Find a device given a unit number
2007 *
2008 * This is similar to devclass_get_devices() but only searches for
2009 * devices which have @p dev as a parent.
2010 *
2011 * @param dev		the parent device to search
2012 * @param unit		the unit number to search for.  If the unit is -1,
2013 *			return the first child of @p dev which has name
2014 *			@p classname (that is, the one with the lowest unit.)
2015 *
2016 * @returns		the device with the given unit number or @c
2017 *			NULL if there is no such device
2018 */
2019device_t
2020device_find_child(device_t dev, const char *classname, int unit)
2021{
2022	devclass_t dc;
2023	device_t child;
2024
2025	dc = devclass_find(classname);
2026	if (!dc)
2027		return (NULL);
2028
2029	if (unit != -1) {
2030		child = devclass_get_device(dc, unit);
2031		if (child && child->parent == dev)
2032			return (child);
2033	} else {
2034		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2035			child = devclass_get_device(dc, unit);
2036			if (child && child->parent == dev)
2037				return (child);
2038		}
2039	}
2040	return (NULL);
2041}
2042
2043/**
2044 * @internal
2045 */
2046static driverlink_t
2047first_matching_driver(devclass_t dc, device_t dev)
2048{
2049	if (dev->devclass)
2050		return (devclass_find_driver_internal(dc, dev->devclass->name));
2051	return (TAILQ_FIRST(&dc->drivers));
2052}
2053
2054/**
2055 * @internal
2056 */
2057static driverlink_t
2058next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2059{
2060	if (dev->devclass) {
2061		driverlink_t dl;
2062		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2063			if (!strcmp(dev->devclass->name, dl->driver->name))
2064				return (dl);
2065		return (NULL);
2066	}
2067	return (TAILQ_NEXT(last, link));
2068}
2069
2070/**
2071 * @internal
2072 */
2073int
2074device_probe_child(device_t dev, device_t child)
2075{
2076	devclass_t dc;
2077	driverlink_t best = NULL;
2078	driverlink_t dl;
2079	int result, pri = 0;
2080	int hasclass = (child->devclass != NULL);
2081
2082	GIANT_REQUIRED;
2083
2084	dc = dev->devclass;
2085	if (!dc)
2086		panic("device_probe_child: parent device has no devclass");
2087
2088	/*
2089	 * If the state is already probed, then return.  However, don't
2090	 * return if we can rebid this object.
2091	 */
2092	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2093		return (0);
2094
2095	for (; dc; dc = dc->parent) {
2096		for (dl = first_matching_driver(dc, child);
2097		     dl;
2098		     dl = next_matching_driver(dc, child, dl)) {
2099			/* If this driver's pass is too high, then ignore it. */
2100			if (dl->pass > bus_current_pass)
2101				continue;
2102
2103			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2104			result = device_set_driver(child, dl->driver);
2105			if (result == ENOMEM)
2106				return (result);
2107			else if (result != 0)
2108				continue;
2109			if (!hasclass) {
2110				if (device_set_devclass(child,
2111				    dl->driver->name) != 0) {
2112					char const * devname =
2113					    device_get_name(child);
2114					if (devname == NULL)
2115						devname = "(unknown)";
2116					printf("driver bug: Unable to set "
2117					    "devclass (class: %s "
2118					    "devname: %s)\n",
2119					    dl->driver->name,
2120					    devname);
2121					(void)device_set_driver(child, NULL);
2122					continue;
2123				}
2124			}
2125
2126			/* Fetch any flags for the device before probing. */
2127			resource_int_value(dl->driver->name, child->unit,
2128			    "flags", &child->devflags);
2129
2130			result = DEVICE_PROBE(child);
2131
2132			/* Reset flags and devclass before the next probe. */
2133			child->devflags = 0;
2134			if (!hasclass)
2135				(void)device_set_devclass(child, NULL);
2136
2137			/*
2138			 * If the driver returns SUCCESS, there can be
2139			 * no higher match for this device.
2140			 */
2141			if (result == 0) {
2142				best = dl;
2143				pri = 0;
2144				break;
2145			}
2146
2147			/*
2148			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2149			 * only match on devices whose driver was explicitly
2150			 * specified.
2151			 */
2152			if (result <= BUS_PROBE_NOWILDCARD &&
2153			    !(child->flags & DF_FIXEDCLASS)) {
2154				result = ENXIO;
2155			}
2156
2157			/*
2158			 * The driver returned an error so it
2159			 * certainly doesn't match.
2160			 */
2161			if (result > 0) {
2162				(void)device_set_driver(child, NULL);
2163				continue;
2164			}
2165
2166			/*
2167			 * A priority lower than SUCCESS, remember the
2168			 * best matching driver. Initialise the value
2169			 * of pri for the first match.
2170			 */
2171			if (best == NULL || result > pri) {
2172				best = dl;
2173				pri = result;
2174				continue;
2175			}
2176		}
2177		/*
2178		 * If we have an unambiguous match in this devclass,
2179		 * don't look in the parent.
2180		 */
2181		if (best && pri == 0)
2182			break;
2183	}
2184
2185	/*
2186	 * If we found a driver, change state and initialise the devclass.
2187	 */
2188	/* XXX What happens if we rebid and got no best? */
2189	if (best) {
2190		/*
2191		 * If this device was attached, and we were asked to
2192		 * rescan, and it is a different driver, then we have
2193		 * to detach the old driver and reattach this new one.
2194		 * Note, we don't have to check for DF_REBID here
2195		 * because if the state is > DS_ALIVE, we know it must
2196		 * be.
2197		 *
2198		 * This assumes that all DF_REBID drivers can have
2199		 * their probe routine called at any time and that
2200		 * they are idempotent as well as completely benign in
2201		 * normal operations.
2202		 *
2203		 * We also have to make sure that the detach
2204		 * succeeded, otherwise we fail the operation (or
2205		 * maybe it should just fail silently?  I'm torn).
2206		 */
2207		if (child->state > DS_ALIVE && best->driver != child->driver)
2208			if ((result = device_detach(dev)) != 0)
2209				return (result);
2210
2211		/* Set the winning driver, devclass, and flags. */
2212		if (!child->devclass) {
2213			result = device_set_devclass(child, best->driver->name);
2214			if (result != 0)
2215				return (result);
2216		}
2217		result = device_set_driver(child, best->driver);
2218		if (result != 0)
2219			return (result);
2220		resource_int_value(best->driver->name, child->unit,
2221		    "flags", &child->devflags);
2222
2223		if (pri < 0) {
2224			/*
2225			 * A bit bogus. Call the probe method again to make
2226			 * sure that we have the right description.
2227			 */
2228			DEVICE_PROBE(child);
2229#if 0
2230			child->flags |= DF_REBID;
2231#endif
2232		} else
2233			child->flags &= ~DF_REBID;
2234		child->state = DS_ALIVE;
2235
2236		bus_data_generation_update();
2237		return (0);
2238	}
2239
2240	return (ENXIO);
2241}
2242
2243/**
2244 * @brief Return the parent of a device
2245 */
2246device_t
2247device_get_parent(device_t dev)
2248{
2249	return (dev->parent);
2250}
2251
2252/**
2253 * @brief Get a list of children of a device
2254 *
2255 * An array containing a list of all the children of the given device
2256 * is allocated and returned in @p *devlistp. The number of devices
2257 * in the array is returned in @p *devcountp. The caller should free
2258 * the array using @c free(p, M_TEMP).
2259 *
2260 * @param dev		the device to examine
2261 * @param devlistp	points at location for array pointer return
2262 *			value
2263 * @param devcountp	points at location for array size return value
2264 *
2265 * @retval 0		success
2266 * @retval ENOMEM	the array allocation failed
2267 */
2268int
2269device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2270{
2271	int count;
2272	device_t child;
2273	device_t *list;
2274
2275	count = 0;
2276	TAILQ_FOREACH(child, &dev->children, link) {
2277		count++;
2278	}
2279	if (count == 0) {
2280		*devlistp = NULL;
2281		*devcountp = 0;
2282		return (0);
2283	}
2284
2285	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2286	if (!list)
2287		return (ENOMEM);
2288
2289	count = 0;
2290	TAILQ_FOREACH(child, &dev->children, link) {
2291		list[count] = child;
2292		count++;
2293	}
2294
2295	*devlistp = list;
2296	*devcountp = count;
2297
2298	return (0);
2299}
2300
2301/**
2302 * @brief Return the current driver for the device or @c NULL if there
2303 * is no driver currently attached
2304 */
2305driver_t *
2306device_get_driver(device_t dev)
2307{
2308	return (dev->driver);
2309}
2310
2311/**
2312 * @brief Return the current devclass for the device or @c NULL if
2313 * there is none.
2314 */
2315devclass_t
2316device_get_devclass(device_t dev)
2317{
2318	return (dev->devclass);
2319}
2320
2321/**
2322 * @brief Return the name of the device's devclass or @c NULL if there
2323 * is none.
2324 */
2325const char *
2326device_get_name(device_t dev)
2327{
2328	if (dev != NULL && dev->devclass)
2329		return (devclass_get_name(dev->devclass));
2330	return (NULL);
2331}
2332
2333/**
2334 * @brief Return a string containing the device's devclass name
2335 * followed by an ascii representation of the device's unit number
2336 * (e.g. @c "foo2").
2337 */
2338const char *
2339device_get_nameunit(device_t dev)
2340{
2341	return (dev->nameunit);
2342}
2343
2344/**
2345 * @brief Return the device's unit number.
2346 */
2347int
2348device_get_unit(device_t dev)
2349{
2350	return (dev->unit);
2351}
2352
2353/**
2354 * @brief Return the device's description string
2355 */
2356const char *
2357device_get_desc(device_t dev)
2358{
2359	return (dev->desc);
2360}
2361
2362/**
2363 * @brief Return the device's flags
2364 */
2365uint32_t
2366device_get_flags(device_t dev)
2367{
2368	return (dev->devflags);
2369}
2370
2371struct sysctl_ctx_list *
2372device_get_sysctl_ctx(device_t dev)
2373{
2374	return (&dev->sysctl_ctx);
2375}
2376
2377struct sysctl_oid *
2378device_get_sysctl_tree(device_t dev)
2379{
2380	return (dev->sysctl_tree);
2381}
2382
2383/**
2384 * @brief Print the name of the device followed by a colon and a space
2385 *
2386 * @returns the number of characters printed
2387 */
2388int
2389device_print_prettyname(device_t dev)
2390{
2391	const char *name = device_get_name(dev);
2392
2393	if (name == NULL)
2394		return (printf("unknown: "));
2395	return (printf("%s%d: ", name, device_get_unit(dev)));
2396}
2397
2398/**
2399 * @brief Print the name of the device followed by a colon, a space
2400 * and the result of calling vprintf() with the value of @p fmt and
2401 * the following arguments.
2402 *
2403 * @returns the number of characters printed
2404 */
2405int
2406device_printf(device_t dev, const char * fmt, ...)
2407{
2408	va_list ap;
2409	int retval;
2410
2411	retval = device_print_prettyname(dev);
2412	va_start(ap, fmt);
2413	retval += vprintf(fmt, ap);
2414	va_end(ap);
2415	return (retval);
2416}
2417
2418/**
2419 * @internal
2420 */
2421static void
2422device_set_desc_internal(device_t dev, const char* desc, int copy)
2423{
2424	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2425		free(dev->desc, M_BUS);
2426		dev->flags &= ~DF_DESCMALLOCED;
2427		dev->desc = NULL;
2428	}
2429
2430	if (copy && desc) {
2431		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2432		if (dev->desc) {
2433			strcpy(dev->desc, desc);
2434			dev->flags |= DF_DESCMALLOCED;
2435		}
2436	} else {
2437		/* Avoid a -Wcast-qual warning */
2438		dev->desc = (char *)(uintptr_t) desc;
2439	}
2440
2441	bus_data_generation_update();
2442}
2443
2444/**
2445 * @brief Set the device's description
2446 *
2447 * The value of @c desc should be a string constant that will not
2448 * change (at least until the description is changed in a subsequent
2449 * call to device_set_desc() or device_set_desc_copy()).
2450 */
2451void
2452device_set_desc(device_t dev, const char* desc)
2453{
2454	device_set_desc_internal(dev, desc, FALSE);
2455}
2456
2457/**
2458 * @brief Set the device's description
2459 *
2460 * The string pointed to by @c desc is copied. Use this function if
2461 * the device description is generated, (e.g. with sprintf()).
2462 */
2463void
2464device_set_desc_copy(device_t dev, const char* desc)
2465{
2466	device_set_desc_internal(dev, desc, TRUE);
2467}
2468
2469/**
2470 * @brief Set the device's flags
2471 */
2472void
2473device_set_flags(device_t dev, uint32_t flags)
2474{
2475	dev->devflags = flags;
2476}
2477
2478/**
2479 * @brief Return the device's softc field
2480 *
2481 * The softc is allocated and zeroed when a driver is attached, based
2482 * on the size field of the driver.
2483 */
2484void *
2485device_get_softc(device_t dev)
2486{
2487	return (dev->softc);
2488}
2489
2490/**
2491 * @brief Set the device's softc field
2492 *
2493 * Most drivers do not need to use this since the softc is allocated
2494 * automatically when the driver is attached.
2495 */
2496void
2497device_set_softc(device_t dev, void *softc)
2498{
2499	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2500		free(dev->softc, M_BUS_SC);
2501	dev->softc = softc;
2502	if (dev->softc)
2503		dev->flags |= DF_EXTERNALSOFTC;
2504	else
2505		dev->flags &= ~DF_EXTERNALSOFTC;
2506}
2507
2508/**
2509 * @brief Free claimed softc
2510 *
2511 * Most drivers do not need to use this since the softc is freed
2512 * automatically when the driver is detached.
2513 */
2514void
2515device_free_softc(void *softc)
2516{
2517	free(softc, M_BUS_SC);
2518}
2519
2520/**
2521 * @brief Claim softc
2522 *
2523 * This function can be used to let the driver free the automatically
2524 * allocated softc using "device_free_softc()". This function is
2525 * useful when the driver is refcounting the softc and the softc
2526 * cannot be freed when the "device_detach" method is called.
2527 */
2528void
2529device_claim_softc(device_t dev)
2530{
2531	if (dev->softc)
2532		dev->flags |= DF_EXTERNALSOFTC;
2533	else
2534		dev->flags &= ~DF_EXTERNALSOFTC;
2535}
2536
2537/**
2538 * @brief Get the device's ivars field
2539 *
2540 * The ivars field is used by the parent device to store per-device
2541 * state (e.g. the physical location of the device or a list of
2542 * resources).
2543 */
2544void *
2545device_get_ivars(device_t dev)
2546{
2547
2548	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2549	return (dev->ivars);
2550}
2551
2552/**
2553 * @brief Set the device's ivars field
2554 */
2555void
2556device_set_ivars(device_t dev, void * ivars)
2557{
2558
2559	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2560	dev->ivars = ivars;
2561}
2562
2563/**
2564 * @brief Return the device's state
2565 */
2566device_state_t
2567device_get_state(device_t dev)
2568{
2569	return (dev->state);
2570}
2571
2572/**
2573 * @brief Set the DF_ENABLED flag for the device
2574 */
2575void
2576device_enable(device_t dev)
2577{
2578	dev->flags |= DF_ENABLED;
2579}
2580
2581/**
2582 * @brief Clear the DF_ENABLED flag for the device
2583 */
2584void
2585device_disable(device_t dev)
2586{
2587	dev->flags &= ~DF_ENABLED;
2588}
2589
2590/**
2591 * @brief Increment the busy counter for the device
2592 */
2593void
2594device_busy(device_t dev)
2595{
2596	if (dev->state < DS_ATTACHING)
2597		panic("device_busy: called for unattached device");
2598	if (dev->busy == 0 && dev->parent)
2599		device_busy(dev->parent);
2600	dev->busy++;
2601	if (dev->state == DS_ATTACHED)
2602		dev->state = DS_BUSY;
2603}
2604
2605/**
2606 * @brief Decrement the busy counter for the device
2607 */
2608void
2609device_unbusy(device_t dev)
2610{
2611	if (dev->busy != 0 && dev->state != DS_BUSY &&
2612	    dev->state != DS_ATTACHING)
2613		panic("device_unbusy: called for non-busy device %s",
2614		    device_get_nameunit(dev));
2615	dev->busy--;
2616	if (dev->busy == 0) {
2617		if (dev->parent)
2618			device_unbusy(dev->parent);
2619		if (dev->state == DS_BUSY)
2620			dev->state = DS_ATTACHED;
2621	}
2622}
2623
2624/**
2625 * @brief Set the DF_QUIET flag for the device
2626 */
2627void
2628device_quiet(device_t dev)
2629{
2630	dev->flags |= DF_QUIET;
2631}
2632
2633/**
2634 * @brief Clear the DF_QUIET flag for the device
2635 */
2636void
2637device_verbose(device_t dev)
2638{
2639	dev->flags &= ~DF_QUIET;
2640}
2641
2642/**
2643 * @brief Return non-zero if the DF_QUIET flag is set on the device
2644 */
2645int
2646device_is_quiet(device_t dev)
2647{
2648	return ((dev->flags & DF_QUIET) != 0);
2649}
2650
2651/**
2652 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2653 */
2654int
2655device_is_enabled(device_t dev)
2656{
2657	return ((dev->flags & DF_ENABLED) != 0);
2658}
2659
2660/**
2661 * @brief Return non-zero if the device was successfully probed
2662 */
2663int
2664device_is_alive(device_t dev)
2665{
2666	return (dev->state >= DS_ALIVE);
2667}
2668
2669/**
2670 * @brief Return non-zero if the device currently has a driver
2671 * attached to it
2672 */
2673int
2674device_is_attached(device_t dev)
2675{
2676	return (dev->state >= DS_ATTACHED);
2677}
2678
2679/**
2680 * @brief Return non-zero if the device is currently suspended.
2681 */
2682int
2683device_is_suspended(device_t dev)
2684{
2685	return ((dev->flags & DF_SUSPENDED) != 0);
2686}
2687
2688/**
2689 * @brief Set the devclass of a device
2690 * @see devclass_add_device().
2691 */
2692int
2693device_set_devclass(device_t dev, const char *classname)
2694{
2695	devclass_t dc;
2696	int error;
2697
2698	if (!classname) {
2699		if (dev->devclass)
2700			devclass_delete_device(dev->devclass, dev);
2701		return (0);
2702	}
2703
2704	if (dev->devclass) {
2705		printf("device_set_devclass: device class already set\n");
2706		return (EINVAL);
2707	}
2708
2709	dc = devclass_find_internal(classname, NULL, TRUE);
2710	if (!dc)
2711		return (ENOMEM);
2712
2713	error = devclass_add_device(dc, dev);
2714
2715	bus_data_generation_update();
2716	return (error);
2717}
2718
2719/**
2720 * @brief Set the devclass of a device and mark the devclass fixed.
2721 * @see device_set_devclass()
2722 */
2723int
2724device_set_devclass_fixed(device_t dev, const char *classname)
2725{
2726	int error;
2727
2728	if (classname == NULL)
2729		return (EINVAL);
2730
2731	error = device_set_devclass(dev, classname);
2732	if (error)
2733		return (error);
2734	dev->flags |= DF_FIXEDCLASS;
2735	return (0);
2736}
2737
2738/**
2739 * @brief Set the driver of a device
2740 *
2741 * @retval 0		success
2742 * @retval EBUSY	the device already has a driver attached
2743 * @retval ENOMEM	a memory allocation failure occurred
2744 */
2745int
2746device_set_driver(device_t dev, driver_t *driver)
2747{
2748	if (dev->state >= DS_ATTACHED)
2749		return (EBUSY);
2750
2751	if (dev->driver == driver)
2752		return (0);
2753
2754	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2755		free(dev->softc, M_BUS_SC);
2756		dev->softc = NULL;
2757	}
2758	device_set_desc(dev, NULL);
2759	kobj_delete((kobj_t) dev, NULL);
2760	dev->driver = driver;
2761	if (driver) {
2762		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2763		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2764			dev->softc = malloc(driver->size, M_BUS_SC,
2765			    M_NOWAIT | M_ZERO);
2766			if (!dev->softc) {
2767				kobj_delete((kobj_t) dev, NULL);
2768				kobj_init((kobj_t) dev, &null_class);
2769				dev->driver = NULL;
2770				return (ENOMEM);
2771			}
2772		}
2773	} else {
2774		kobj_init((kobj_t) dev, &null_class);
2775	}
2776
2777	bus_data_generation_update();
2778	return (0);
2779}
2780
2781/**
2782 * @brief Probe a device, and return this status.
2783 *
2784 * This function is the core of the device autoconfiguration
2785 * system. Its purpose is to select a suitable driver for a device and
2786 * then call that driver to initialise the hardware appropriately. The
2787 * driver is selected by calling the DEVICE_PROBE() method of a set of
2788 * candidate drivers and then choosing the driver which returned the
2789 * best value. This driver is then attached to the device using
2790 * device_attach().
2791 *
2792 * The set of suitable drivers is taken from the list of drivers in
2793 * the parent device's devclass. If the device was originally created
2794 * with a specific class name (see device_add_child()), only drivers
2795 * with that name are probed, otherwise all drivers in the devclass
2796 * are probed. If no drivers return successful probe values in the
2797 * parent devclass, the search continues in the parent of that
2798 * devclass (see devclass_get_parent()) if any.
2799 *
2800 * @param dev		the device to initialise
2801 *
2802 * @retval 0		success
2803 * @retval ENXIO	no driver was found
2804 * @retval ENOMEM	memory allocation failure
2805 * @retval non-zero	some other unix error code
2806 * @retval -1		Device already attached
2807 */
2808int
2809device_probe(device_t dev)
2810{
2811	int error;
2812
2813	GIANT_REQUIRED;
2814
2815	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2816		return (-1);
2817
2818	if (!(dev->flags & DF_ENABLED)) {
2819		if (bootverbose && device_get_name(dev) != NULL) {
2820			device_print_prettyname(dev);
2821			printf("not probed (disabled)\n");
2822		}
2823		return (-1);
2824	}
2825	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2826		if (bus_current_pass == BUS_PASS_DEFAULT &&
2827		    !(dev->flags & DF_DONENOMATCH)) {
2828			BUS_PROBE_NOMATCH(dev->parent, dev);
2829			devnomatch(dev);
2830			dev->flags |= DF_DONENOMATCH;
2831		}
2832		return (error);
2833	}
2834	return (0);
2835}
2836
2837/**
2838 * @brief Probe a device and attach a driver if possible
2839 *
2840 * calls device_probe() and attaches if that was successful.
2841 */
2842int
2843device_probe_and_attach(device_t dev)
2844{
2845	int error;
2846
2847	GIANT_REQUIRED;
2848
2849	error = device_probe(dev);
2850	if (error == -1)
2851		return (0);
2852	else if (error != 0)
2853		return (error);
2854
2855	CURVNET_SET_QUIET(vnet0);
2856	error = device_attach(dev);
2857	CURVNET_RESTORE();
2858	return error;
2859}
2860
2861/**
2862 * @brief Attach a device driver to a device
2863 *
2864 * This function is a wrapper around the DEVICE_ATTACH() driver
2865 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2866 * device's sysctl tree, optionally prints a description of the device
2867 * and queues a notification event for user-based device management
2868 * services.
2869 *
2870 * Normally this function is only called internally from
2871 * device_probe_and_attach().
2872 *
2873 * @param dev		the device to initialise
2874 *
2875 * @retval 0		success
2876 * @retval ENXIO	no driver was found
2877 * @retval ENOMEM	memory allocation failure
2878 * @retval non-zero	some other unix error code
2879 */
2880int
2881device_attach(device_t dev)
2882{
2883	uint64_t attachtime;
2884	int error;
2885
2886	if (resource_disabled(dev->driver->name, dev->unit)) {
2887		device_disable(dev);
2888		if (bootverbose)
2889			 device_printf(dev, "disabled via hints entry\n");
2890		return (ENXIO);
2891	}
2892
2893	device_sysctl_init(dev);
2894	if (!device_is_quiet(dev))
2895		device_print_child(dev->parent, dev);
2896	attachtime = get_cyclecount();
2897	dev->state = DS_ATTACHING;
2898	if ((error = DEVICE_ATTACH(dev)) != 0) {
2899		printf("device_attach: %s%d attach returned %d\n",
2900		    dev->driver->name, dev->unit, error);
2901		if (!(dev->flags & DF_FIXEDCLASS))
2902			devclass_delete_device(dev->devclass, dev);
2903		(void)device_set_driver(dev, NULL);
2904		device_sysctl_fini(dev);
2905		KASSERT(dev->busy == 0, ("attach failed but busy"));
2906		dev->state = DS_NOTPRESENT;
2907		return (error);
2908	}
2909	attachtime = get_cyclecount() - attachtime;
2910	/*
2911	 * 4 bits per device is a reasonable value for desktop and server
2912	 * hardware with good get_cyclecount() implementations, but WILL
2913	 * need to be adjusted on other platforms.
2914	 */
2915#define	RANDOM_PROBE_BIT_GUESS	4
2916	if (bootverbose)
2917		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2918		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2919		    dev->driver->name, dev->unit);
2920	random_harvest_direct(&attachtime, sizeof(attachtime),
2921	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2922	device_sysctl_update(dev);
2923	if (dev->busy)
2924		dev->state = DS_BUSY;
2925	else
2926		dev->state = DS_ATTACHED;
2927	dev->flags &= ~DF_DONENOMATCH;
2928	devadded(dev);
2929	return (0);
2930}
2931
2932/**
2933 * @brief Detach a driver from a device
2934 *
2935 * This function is a wrapper around the DEVICE_DETACH() driver
2936 * method. If the call to DEVICE_DETACH() succeeds, it calls
2937 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2938 * notification event for user-based device management services and
2939 * cleans up the device's sysctl tree.
2940 *
2941 * @param dev		the device to un-initialise
2942 *
2943 * @retval 0		success
2944 * @retval ENXIO	no driver was found
2945 * @retval ENOMEM	memory allocation failure
2946 * @retval non-zero	some other unix error code
2947 */
2948int
2949device_detach(device_t dev)
2950{
2951	int error;
2952
2953	GIANT_REQUIRED;
2954
2955	PDEBUG(("%s", DEVICENAME(dev)));
2956	if (dev->state == DS_BUSY)
2957		return (EBUSY);
2958	if (dev->state != DS_ATTACHED)
2959		return (0);
2960
2961	if ((error = DEVICE_DETACH(dev)) != 0)
2962		return (error);
2963	devremoved(dev);
2964	if (!device_is_quiet(dev))
2965		device_printf(dev, "detached\n");
2966	if (dev->parent)
2967		BUS_CHILD_DETACHED(dev->parent, dev);
2968
2969	if (!(dev->flags & DF_FIXEDCLASS))
2970		devclass_delete_device(dev->devclass, dev);
2971
2972	dev->state = DS_NOTPRESENT;
2973	(void)device_set_driver(dev, NULL);
2974	device_sysctl_fini(dev);
2975
2976	return (0);
2977}
2978
2979/**
2980 * @brief Tells a driver to quiesce itself.
2981 *
2982 * This function is a wrapper around the DEVICE_QUIESCE() driver
2983 * method. If the call to DEVICE_QUIESCE() succeeds.
2984 *
2985 * @param dev		the device to quiesce
2986 *
2987 * @retval 0		success
2988 * @retval ENXIO	no driver was found
2989 * @retval ENOMEM	memory allocation failure
2990 * @retval non-zero	some other unix error code
2991 */
2992int
2993device_quiesce(device_t dev)
2994{
2995
2996	PDEBUG(("%s", DEVICENAME(dev)));
2997	if (dev->state == DS_BUSY)
2998		return (EBUSY);
2999	if (dev->state != DS_ATTACHED)
3000		return (0);
3001
3002	return (DEVICE_QUIESCE(dev));
3003}
3004
3005/**
3006 * @brief Notify a device of system shutdown
3007 *
3008 * This function calls the DEVICE_SHUTDOWN() driver method if the
3009 * device currently has an attached driver.
3010 *
3011 * @returns the value returned by DEVICE_SHUTDOWN()
3012 */
3013int
3014device_shutdown(device_t dev)
3015{
3016	if (dev->state < DS_ATTACHED)
3017		return (0);
3018	return (DEVICE_SHUTDOWN(dev));
3019}
3020
3021/**
3022 * @brief Set the unit number of a device
3023 *
3024 * This function can be used to override the unit number used for a
3025 * device (e.g. to wire a device to a pre-configured unit number).
3026 */
3027int
3028device_set_unit(device_t dev, int unit)
3029{
3030	devclass_t dc;
3031	int err;
3032
3033	dc = device_get_devclass(dev);
3034	if (unit < dc->maxunit && dc->devices[unit])
3035		return (EBUSY);
3036	err = devclass_delete_device(dc, dev);
3037	if (err)
3038		return (err);
3039	dev->unit = unit;
3040	err = devclass_add_device(dc, dev);
3041	if (err)
3042		return (err);
3043
3044	bus_data_generation_update();
3045	return (0);
3046}
3047
3048/*======================================*/
3049/*
3050 * Some useful method implementations to make life easier for bus drivers.
3051 */
3052
3053/**
3054 * @brief Initialise a resource list.
3055 *
3056 * @param rl		the resource list to initialise
3057 */
3058void
3059resource_list_init(struct resource_list *rl)
3060{
3061	STAILQ_INIT(rl);
3062}
3063
3064/**
3065 * @brief Reclaim memory used by a resource list.
3066 *
3067 * This function frees the memory for all resource entries on the list
3068 * (if any).
3069 *
3070 * @param rl		the resource list to free
3071 */
3072void
3073resource_list_free(struct resource_list *rl)
3074{
3075	struct resource_list_entry *rle;
3076
3077	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3078		if (rle->res)
3079			panic("resource_list_free: resource entry is busy");
3080		STAILQ_REMOVE_HEAD(rl, link);
3081		free(rle, M_BUS);
3082	}
3083}
3084
3085/**
3086 * @brief Add a resource entry.
3087 *
3088 * This function adds a resource entry using the given @p type, @p
3089 * start, @p end and @p count values. A rid value is chosen by
3090 * searching sequentially for the first unused rid starting at zero.
3091 *
3092 * @param rl		the resource list to edit
3093 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3094 * @param start		the start address of the resource
3095 * @param end		the end address of the resource
3096 * @param count		XXX end-start+1
3097 */
3098int
3099resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3100    rman_res_t end, rman_res_t count)
3101{
3102	int rid;
3103
3104	rid = 0;
3105	while (resource_list_find(rl, type, rid) != NULL)
3106		rid++;
3107	resource_list_add(rl, type, rid, start, end, count);
3108	return (rid);
3109}
3110
3111/**
3112 * @brief Add or modify a resource entry.
3113 *
3114 * If an existing entry exists with the same type and rid, it will be
3115 * modified using the given values of @p start, @p end and @p
3116 * count. If no entry exists, a new one will be created using the
3117 * given values.  The resource list entry that matches is then returned.
3118 *
3119 * @param rl		the resource list to edit
3120 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3121 * @param rid		the resource identifier
3122 * @param start		the start address of the resource
3123 * @param end		the end address of the resource
3124 * @param count		XXX end-start+1
3125 */
3126struct resource_list_entry *
3127resource_list_add(struct resource_list *rl, int type, int rid,
3128    rman_res_t start, rman_res_t end, rman_res_t count)
3129{
3130	struct resource_list_entry *rle;
3131
3132	rle = resource_list_find(rl, type, rid);
3133	if (!rle) {
3134		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3135		    M_NOWAIT);
3136		if (!rle)
3137			panic("resource_list_add: can't record entry");
3138		STAILQ_INSERT_TAIL(rl, rle, link);
3139		rle->type = type;
3140		rle->rid = rid;
3141		rle->res = NULL;
3142		rle->flags = 0;
3143	}
3144
3145	if (rle->res)
3146		panic("resource_list_add: resource entry is busy");
3147
3148	rle->start = start;
3149	rle->end = end;
3150	rle->count = count;
3151	return (rle);
3152}
3153
3154/**
3155 * @brief Determine if a resource entry is busy.
3156 *
3157 * Returns true if a resource entry is busy meaning that it has an
3158 * associated resource that is not an unallocated "reserved" resource.
3159 *
3160 * @param rl		the resource list to search
3161 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3162 * @param rid		the resource identifier
3163 *
3164 * @returns Non-zero if the entry is busy, zero otherwise.
3165 */
3166int
3167resource_list_busy(struct resource_list *rl, int type, int rid)
3168{
3169	struct resource_list_entry *rle;
3170
3171	rle = resource_list_find(rl, type, rid);
3172	if (rle == NULL || rle->res == NULL)
3173		return (0);
3174	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3175		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3176		    ("reserved resource is active"));
3177		return (0);
3178	}
3179	return (1);
3180}
3181
3182/**
3183 * @brief Determine if a resource entry is reserved.
3184 *
3185 * Returns true if a resource entry is reserved meaning that it has an
3186 * associated "reserved" resource.  The resource can either be
3187 * allocated or unallocated.
3188 *
3189 * @param rl		the resource list to search
3190 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3191 * @param rid		the resource identifier
3192 *
3193 * @returns Non-zero if the entry is reserved, zero otherwise.
3194 */
3195int
3196resource_list_reserved(struct resource_list *rl, int type, int rid)
3197{
3198	struct resource_list_entry *rle;
3199
3200	rle = resource_list_find(rl, type, rid);
3201	if (rle != NULL && rle->flags & RLE_RESERVED)
3202		return (1);
3203	return (0);
3204}
3205
3206/**
3207 * @brief Find a resource entry by type and rid.
3208 *
3209 * @param rl		the resource list to search
3210 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3211 * @param rid		the resource identifier
3212 *
3213 * @returns the resource entry pointer or NULL if there is no such
3214 * entry.
3215 */
3216struct resource_list_entry *
3217resource_list_find(struct resource_list *rl, int type, int rid)
3218{
3219	struct resource_list_entry *rle;
3220
3221	STAILQ_FOREACH(rle, rl, link) {
3222		if (rle->type == type && rle->rid == rid)
3223			return (rle);
3224	}
3225	return (NULL);
3226}
3227
3228/**
3229 * @brief Delete a resource entry.
3230 *
3231 * @param rl		the resource list to edit
3232 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3233 * @param rid		the resource identifier
3234 */
3235void
3236resource_list_delete(struct resource_list *rl, int type, int rid)
3237{
3238	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3239
3240	if (rle) {
3241		if (rle->res != NULL)
3242			panic("resource_list_delete: resource has not been released");
3243		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3244		free(rle, M_BUS);
3245	}
3246}
3247
3248/**
3249 * @brief Allocate a reserved resource
3250 *
3251 * This can be used by busses to force the allocation of resources
3252 * that are always active in the system even if they are not allocated
3253 * by a driver (e.g. PCI BARs).  This function is usually called when
3254 * adding a new child to the bus.  The resource is allocated from the
3255 * parent bus when it is reserved.  The resource list entry is marked
3256 * with RLE_RESERVED to note that it is a reserved resource.
3257 *
3258 * Subsequent attempts to allocate the resource with
3259 * resource_list_alloc() will succeed the first time and will set
3260 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3261 * resource that has been allocated is released with
3262 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3263 * the actual resource remains allocated.  The resource can be released to
3264 * the parent bus by calling resource_list_unreserve().
3265 *
3266 * @param rl		the resource list to allocate from
3267 * @param bus		the parent device of @p child
3268 * @param child		the device for which the resource is being reserved
3269 * @param type		the type of resource to allocate
3270 * @param rid		a pointer to the resource identifier
3271 * @param start		hint at the start of the resource range - pass
3272 *			@c 0 for any start address
3273 * @param end		hint at the end of the resource range - pass
3274 *			@c ~0 for any end address
3275 * @param count		hint at the size of range required - pass @c 1
3276 *			for any size
3277 * @param flags		any extra flags to control the resource
3278 *			allocation - see @c RF_XXX flags in
3279 *			<sys/rman.h> for details
3280 *
3281 * @returns		the resource which was allocated or @c NULL if no
3282 *			resource could be allocated
3283 */
3284struct resource *
3285resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3286    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3287{
3288	struct resource_list_entry *rle = NULL;
3289	int passthrough = (device_get_parent(child) != bus);
3290	struct resource *r;
3291
3292	if (passthrough)
3293		panic(
3294    "resource_list_reserve() should only be called for direct children");
3295	if (flags & RF_ACTIVE)
3296		panic(
3297    "resource_list_reserve() should only reserve inactive resources");
3298
3299	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3300	    flags);
3301	if (r != NULL) {
3302		rle = resource_list_find(rl, type, *rid);
3303		rle->flags |= RLE_RESERVED;
3304	}
3305	return (r);
3306}
3307
3308/**
3309 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3310 *
3311 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3312 * and passing the allocation up to the parent of @p bus. This assumes
3313 * that the first entry of @c device_get_ivars(child) is a struct
3314 * resource_list. This also handles 'passthrough' allocations where a
3315 * child is a remote descendant of bus by passing the allocation up to
3316 * the parent of bus.
3317 *
3318 * Typically, a bus driver would store a list of child resources
3319 * somewhere in the child device's ivars (see device_get_ivars()) and
3320 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3321 * then call resource_list_alloc() to perform the allocation.
3322 *
3323 * @param rl		the resource list to allocate from
3324 * @param bus		the parent device of @p child
3325 * @param child		the device which is requesting an allocation
3326 * @param type		the type of resource to allocate
3327 * @param rid		a pointer to the resource identifier
3328 * @param start		hint at the start of the resource range - pass
3329 *			@c 0 for any start address
3330 * @param end		hint at the end of the resource range - pass
3331 *			@c ~0 for any end address
3332 * @param count		hint at the size of range required - pass @c 1
3333 *			for any size
3334 * @param flags		any extra flags to control the resource
3335 *			allocation - see @c RF_XXX flags in
3336 *			<sys/rman.h> for details
3337 *
3338 * @returns		the resource which was allocated or @c NULL if no
3339 *			resource could be allocated
3340 */
3341struct resource *
3342resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3343    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3344{
3345	struct resource_list_entry *rle = NULL;
3346	int passthrough = (device_get_parent(child) != bus);
3347	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3348
3349	if (passthrough) {
3350		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3351		    type, rid, start, end, count, flags));
3352	}
3353
3354	rle = resource_list_find(rl, type, *rid);
3355
3356	if (!rle)
3357		return (NULL);		/* no resource of that type/rid */
3358
3359	if (rle->res) {
3360		if (rle->flags & RLE_RESERVED) {
3361			if (rle->flags & RLE_ALLOCATED)
3362				return (NULL);
3363			if ((flags & RF_ACTIVE) &&
3364			    bus_activate_resource(child, type, *rid,
3365			    rle->res) != 0)
3366				return (NULL);
3367			rle->flags |= RLE_ALLOCATED;
3368			return (rle->res);
3369		}
3370		device_printf(bus,
3371		    "resource entry %#x type %d for child %s is busy\n", *rid,
3372		    type, device_get_nameunit(child));
3373		return (NULL);
3374	}
3375
3376	if (isdefault) {
3377		start = rle->start;
3378		count = ulmax(count, rle->count);
3379		end = ulmax(rle->end, start + count - 1);
3380	}
3381
3382	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3383	    type, rid, start, end, count, flags);
3384
3385	/*
3386	 * Record the new range.
3387	 */
3388	if (rle->res) {
3389		rle->start = rman_get_start(rle->res);
3390		rle->end = rman_get_end(rle->res);
3391		rle->count = count;
3392	}
3393
3394	return (rle->res);
3395}
3396
3397/**
3398 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3399 *
3400 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3401 * used with resource_list_alloc().
3402 *
3403 * @param rl		the resource list which was allocated from
3404 * @param bus		the parent device of @p child
3405 * @param child		the device which is requesting a release
3406 * @param type		the type of resource to release
3407 * @param rid		the resource identifier
3408 * @param res		the resource to release
3409 *
3410 * @retval 0		success
3411 * @retval non-zero	a standard unix error code indicating what
3412 *			error condition prevented the operation
3413 */
3414int
3415resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3416    int type, int rid, struct resource *res)
3417{
3418	struct resource_list_entry *rle = NULL;
3419	int passthrough = (device_get_parent(child) != bus);
3420	int error;
3421
3422	if (passthrough) {
3423		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3424		    type, rid, res));
3425	}
3426
3427	rle = resource_list_find(rl, type, rid);
3428
3429	if (!rle)
3430		panic("resource_list_release: can't find resource");
3431	if (!rle->res)
3432		panic("resource_list_release: resource entry is not busy");
3433	if (rle->flags & RLE_RESERVED) {
3434		if (rle->flags & RLE_ALLOCATED) {
3435			if (rman_get_flags(res) & RF_ACTIVE) {
3436				error = bus_deactivate_resource(child, type,
3437				    rid, res);
3438				if (error)
3439					return (error);
3440			}
3441			rle->flags &= ~RLE_ALLOCATED;
3442			return (0);
3443		}
3444		return (EINVAL);
3445	}
3446
3447	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3448	    type, rid, res);
3449	if (error)
3450		return (error);
3451
3452	rle->res = NULL;
3453	return (0);
3454}
3455
3456/**
3457 * @brief Release all active resources of a given type
3458 *
3459 * Release all active resources of a specified type.  This is intended
3460 * to be used to cleanup resources leaked by a driver after detach or
3461 * a failed attach.
3462 *
3463 * @param rl		the resource list which was allocated from
3464 * @param bus		the parent device of @p child
3465 * @param child		the device whose active resources are being released
3466 * @param type		the type of resources to release
3467 *
3468 * @retval 0		success
3469 * @retval EBUSY	at least one resource was active
3470 */
3471int
3472resource_list_release_active(struct resource_list *rl, device_t bus,
3473    device_t child, int type)
3474{
3475	struct resource_list_entry *rle;
3476	int error, retval;
3477
3478	retval = 0;
3479	STAILQ_FOREACH(rle, rl, link) {
3480		if (rle->type != type)
3481			continue;
3482		if (rle->res == NULL)
3483			continue;
3484		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3485		    RLE_RESERVED)
3486			continue;
3487		retval = EBUSY;
3488		error = resource_list_release(rl, bus, child, type,
3489		    rman_get_rid(rle->res), rle->res);
3490		if (error != 0)
3491			device_printf(bus,
3492			    "Failed to release active resource: %d\n", error);
3493	}
3494	return (retval);
3495}
3496
3497
3498/**
3499 * @brief Fully release a reserved resource
3500 *
3501 * Fully releases a resource reserved via resource_list_reserve().
3502 *
3503 * @param rl		the resource list which was allocated from
3504 * @param bus		the parent device of @p child
3505 * @param child		the device whose reserved resource is being released
3506 * @param type		the type of resource to release
3507 * @param rid		the resource identifier
3508 * @param res		the resource to release
3509 *
3510 * @retval 0		success
3511 * @retval non-zero	a standard unix error code indicating what
3512 *			error condition prevented the operation
3513 */
3514int
3515resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3516    int type, int rid)
3517{
3518	struct resource_list_entry *rle = NULL;
3519	int passthrough = (device_get_parent(child) != bus);
3520
3521	if (passthrough)
3522		panic(
3523    "resource_list_unreserve() should only be called for direct children");
3524
3525	rle = resource_list_find(rl, type, rid);
3526
3527	if (!rle)
3528		panic("resource_list_unreserve: can't find resource");
3529	if (!(rle->flags & RLE_RESERVED))
3530		return (EINVAL);
3531	if (rle->flags & RLE_ALLOCATED)
3532		return (EBUSY);
3533	rle->flags &= ~RLE_RESERVED;
3534	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3535}
3536
3537/**
3538 * @brief Print a description of resources in a resource list
3539 *
3540 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3541 * The name is printed if at least one resource of the given type is available.
3542 * The format is used to print resource start and end.
3543 *
3544 * @param rl		the resource list to print
3545 * @param name		the name of @p type, e.g. @c "memory"
3546 * @param type		type type of resource entry to print
3547 * @param format	printf(9) format string to print resource
3548 *			start and end values
3549 *
3550 * @returns		the number of characters printed
3551 */
3552int
3553resource_list_print_type(struct resource_list *rl, const char *name, int type,
3554    const char *format)
3555{
3556	struct resource_list_entry *rle;
3557	int printed, retval;
3558
3559	printed = 0;
3560	retval = 0;
3561	/* Yes, this is kinda cheating */
3562	STAILQ_FOREACH(rle, rl, link) {
3563		if (rle->type == type) {
3564			if (printed == 0)
3565				retval += printf(" %s ", name);
3566			else
3567				retval += printf(",");
3568			printed++;
3569			retval += printf(format, rle->start);
3570			if (rle->count > 1) {
3571				retval += printf("-");
3572				retval += printf(format, rle->start +
3573						 rle->count - 1);
3574			}
3575		}
3576	}
3577	return (retval);
3578}
3579
3580/**
3581 * @brief Releases all the resources in a list.
3582 *
3583 * @param rl		The resource list to purge.
3584 *
3585 * @returns		nothing
3586 */
3587void
3588resource_list_purge(struct resource_list *rl)
3589{
3590	struct resource_list_entry *rle;
3591
3592	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3593		if (rle->res)
3594			bus_release_resource(rman_get_device(rle->res),
3595			    rle->type, rle->rid, rle->res);
3596		STAILQ_REMOVE_HEAD(rl, link);
3597		free(rle, M_BUS);
3598	}
3599}
3600
3601device_t
3602bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3603{
3604
3605	return (device_add_child_ordered(dev, order, name, unit));
3606}
3607
3608/**
3609 * @brief Helper function for implementing DEVICE_PROBE()
3610 *
3611 * This function can be used to help implement the DEVICE_PROBE() for
3612 * a bus (i.e. a device which has other devices attached to it). It
3613 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3614 * devclass.
3615 */
3616int
3617bus_generic_probe(device_t dev)
3618{
3619	devclass_t dc = dev->devclass;
3620	driverlink_t dl;
3621
3622	TAILQ_FOREACH(dl, &dc->drivers, link) {
3623		/*
3624		 * If this driver's pass is too high, then ignore it.
3625		 * For most drivers in the default pass, this will
3626		 * never be true.  For early-pass drivers they will
3627		 * only call the identify routines of eligible drivers
3628		 * when this routine is called.  Drivers for later
3629		 * passes should have their identify routines called
3630		 * on early-pass busses during BUS_NEW_PASS().
3631		 */
3632		if (dl->pass > bus_current_pass)
3633			continue;
3634		DEVICE_IDENTIFY(dl->driver, dev);
3635	}
3636
3637	return (0);
3638}
3639
3640/**
3641 * @brief Helper function for implementing DEVICE_ATTACH()
3642 *
3643 * This function can be used to help implement the DEVICE_ATTACH() for
3644 * a bus. It calls device_probe_and_attach() for each of the device's
3645 * children.
3646 */
3647int
3648bus_generic_attach(device_t dev)
3649{
3650	device_t child;
3651
3652	TAILQ_FOREACH(child, &dev->children, link) {
3653		device_probe_and_attach(child);
3654	}
3655
3656	return (0);
3657}
3658
3659/**
3660 * @brief Helper function for implementing DEVICE_DETACH()
3661 *
3662 * This function can be used to help implement the DEVICE_DETACH() for
3663 * a bus. It calls device_detach() for each of the device's
3664 * children.
3665 */
3666int
3667bus_generic_detach(device_t dev)
3668{
3669	device_t child;
3670	int error;
3671
3672	if (dev->state != DS_ATTACHED)
3673		return (EBUSY);
3674
3675	TAILQ_FOREACH(child, &dev->children, link) {
3676		if ((error = device_detach(child)) != 0)
3677			return (error);
3678	}
3679
3680	return (0);
3681}
3682
3683/**
3684 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3685 *
3686 * This function can be used to help implement the DEVICE_SHUTDOWN()
3687 * for a bus. It calls device_shutdown() for each of the device's
3688 * children.
3689 */
3690int
3691bus_generic_shutdown(device_t dev)
3692{
3693	device_t child;
3694
3695	TAILQ_FOREACH(child, &dev->children, link) {
3696		device_shutdown(child);
3697	}
3698
3699	return (0);
3700}
3701
3702/**
3703 * @brief Default function for suspending a child device.
3704 *
3705 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3706 */
3707int
3708bus_generic_suspend_child(device_t dev, device_t child)
3709{
3710	int	error;
3711
3712	error = DEVICE_SUSPEND(child);
3713
3714	if (error == 0)
3715		child->flags |= DF_SUSPENDED;
3716
3717	return (error);
3718}
3719
3720/**
3721 * @brief Default function for resuming a child device.
3722 *
3723 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3724 */
3725int
3726bus_generic_resume_child(device_t dev, device_t child)
3727{
3728
3729	DEVICE_RESUME(child);
3730	child->flags &= ~DF_SUSPENDED;
3731
3732	return (0);
3733}
3734
3735/**
3736 * @brief Helper function for implementing DEVICE_SUSPEND()
3737 *
3738 * This function can be used to help implement the DEVICE_SUSPEND()
3739 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3740 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3741 * operation is aborted and any devices which were suspended are
3742 * resumed immediately by calling their DEVICE_RESUME() methods.
3743 */
3744int
3745bus_generic_suspend(device_t dev)
3746{
3747	int		error;
3748	device_t	child, child2;
3749
3750	TAILQ_FOREACH(child, &dev->children, link) {
3751		error = BUS_SUSPEND_CHILD(dev, child);
3752		if (error) {
3753			for (child2 = TAILQ_FIRST(&dev->children);
3754			     child2 && child2 != child;
3755			     child2 = TAILQ_NEXT(child2, link))
3756				BUS_RESUME_CHILD(dev, child2);
3757			return (error);
3758		}
3759	}
3760	return (0);
3761}
3762
3763/**
3764 * @brief Helper function for implementing DEVICE_RESUME()
3765 *
3766 * This function can be used to help implement the DEVICE_RESUME() for
3767 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3768 */
3769int
3770bus_generic_resume(device_t dev)
3771{
3772	device_t	child;
3773
3774	TAILQ_FOREACH(child, &dev->children, link) {
3775		BUS_RESUME_CHILD(dev, child);
3776		/* if resume fails, there's nothing we can usefully do... */
3777	}
3778	return (0);
3779}
3780
3781/**
3782 * @brief Helper function for implementing BUS_PRINT_CHILD().
3783 *
3784 * This function prints the first part of the ascii representation of
3785 * @p child, including its name, unit and description (if any - see
3786 * device_set_desc()).
3787 *
3788 * @returns the number of characters printed
3789 */
3790int
3791bus_print_child_header(device_t dev, device_t child)
3792{
3793	int	retval = 0;
3794
3795	if (device_get_desc(child)) {
3796		retval += device_printf(child, "<%s>", device_get_desc(child));
3797	} else {
3798		retval += printf("%s", device_get_nameunit(child));
3799	}
3800
3801	return (retval);
3802}
3803
3804/**
3805 * @brief Helper function for implementing BUS_PRINT_CHILD().
3806 *
3807 * This function prints the last part of the ascii representation of
3808 * @p child, which consists of the string @c " on " followed by the
3809 * name and unit of the @p dev.
3810 *
3811 * @returns the number of characters printed
3812 */
3813int
3814bus_print_child_footer(device_t dev, device_t child)
3815{
3816	return (printf(" on %s\n", device_get_nameunit(dev)));
3817}
3818
3819/**
3820 * @brief Helper function for implementing BUS_PRINT_CHILD().
3821 *
3822 * This function prints out the VM domain for the given device.
3823 *
3824 * @returns the number of characters printed
3825 */
3826int
3827bus_print_child_domain(device_t dev, device_t child)
3828{
3829	int domain;
3830
3831	/* No domain? Don't print anything */
3832	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3833		return (0);
3834
3835	return (printf(" numa-domain %d", domain));
3836}
3837
3838/**
3839 * @brief Helper function for implementing BUS_PRINT_CHILD().
3840 *
3841 * This function simply calls bus_print_child_header() followed by
3842 * bus_print_child_footer().
3843 *
3844 * @returns the number of characters printed
3845 */
3846int
3847bus_generic_print_child(device_t dev, device_t child)
3848{
3849	int	retval = 0;
3850
3851	retval += bus_print_child_header(dev, child);
3852	retval += bus_print_child_domain(dev, child);
3853	retval += bus_print_child_footer(dev, child);
3854
3855	return (retval);
3856}
3857
3858/**
3859 * @brief Stub function for implementing BUS_READ_IVAR().
3860 *
3861 * @returns ENOENT
3862 */
3863int
3864bus_generic_read_ivar(device_t dev, device_t child, int index,
3865    uintptr_t * result)
3866{
3867	return (ENOENT);
3868}
3869
3870/**
3871 * @brief Stub function for implementing BUS_WRITE_IVAR().
3872 *
3873 * @returns ENOENT
3874 */
3875int
3876bus_generic_write_ivar(device_t dev, device_t child, int index,
3877    uintptr_t value)
3878{
3879	return (ENOENT);
3880}
3881
3882/**
3883 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3884 *
3885 * @returns NULL
3886 */
3887struct resource_list *
3888bus_generic_get_resource_list(device_t dev, device_t child)
3889{
3890	return (NULL);
3891}
3892
3893/**
3894 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3895 *
3896 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3897 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3898 * and then calls device_probe_and_attach() for each unattached child.
3899 */
3900void
3901bus_generic_driver_added(device_t dev, driver_t *driver)
3902{
3903	device_t child;
3904
3905	DEVICE_IDENTIFY(driver, dev);
3906	TAILQ_FOREACH(child, &dev->children, link) {
3907		if (child->state == DS_NOTPRESENT ||
3908		    (child->flags & DF_REBID))
3909			device_probe_and_attach(child);
3910	}
3911}
3912
3913/**
3914 * @brief Helper function for implementing BUS_NEW_PASS().
3915 *
3916 * This implementing of BUS_NEW_PASS() first calls the identify
3917 * routines for any drivers that probe at the current pass.  Then it
3918 * walks the list of devices for this bus.  If a device is already
3919 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3920 * device is not already attached, it attempts to attach a driver to
3921 * it.
3922 */
3923void
3924bus_generic_new_pass(device_t dev)
3925{
3926	driverlink_t dl;
3927	devclass_t dc;
3928	device_t child;
3929
3930	dc = dev->devclass;
3931	TAILQ_FOREACH(dl, &dc->drivers, link) {
3932		if (dl->pass == bus_current_pass)
3933			DEVICE_IDENTIFY(dl->driver, dev);
3934	}
3935	TAILQ_FOREACH(child, &dev->children, link) {
3936		if (child->state >= DS_ATTACHED)
3937			BUS_NEW_PASS(child);
3938		else if (child->state == DS_NOTPRESENT)
3939			device_probe_and_attach(child);
3940	}
3941}
3942
3943/**
3944 * @brief Helper function for implementing BUS_SETUP_INTR().
3945 *
3946 * This simple implementation of BUS_SETUP_INTR() simply calls the
3947 * BUS_SETUP_INTR() method of the parent of @p dev.
3948 */
3949int
3950bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3951    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3952    void **cookiep)
3953{
3954	/* Propagate up the bus hierarchy until someone handles it. */
3955	if (dev->parent)
3956		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3957		    filter, intr, arg, cookiep));
3958	return (EINVAL);
3959}
3960
3961/**
3962 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3963 *
3964 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3965 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3966 */
3967int
3968bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3969    void *cookie)
3970{
3971	/* Propagate up the bus hierarchy until someone handles it. */
3972	if (dev->parent)
3973		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3974	return (EINVAL);
3975}
3976
3977/**
3978 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3979 *
3980 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3981 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3982 */
3983int
3984bus_generic_adjust_resource(device_t dev, device_t child, int type,
3985    struct resource *r, rman_res_t start, rman_res_t end)
3986{
3987	/* Propagate up the bus hierarchy until someone handles it. */
3988	if (dev->parent)
3989		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3990		    end));
3991	return (EINVAL);
3992}
3993
3994/**
3995 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3996 *
3997 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3998 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3999 */
4000struct resource *
4001bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4002    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4003{
4004	/* Propagate up the bus hierarchy until someone handles it. */
4005	if (dev->parent)
4006		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4007		    start, end, count, flags));
4008	return (NULL);
4009}
4010
4011/**
4012 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4013 *
4014 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4015 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4016 */
4017int
4018bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
4019    struct resource *r)
4020{
4021	/* Propagate up the bus hierarchy until someone handles it. */
4022	if (dev->parent)
4023		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
4024		    r));
4025	return (EINVAL);
4026}
4027
4028/**
4029 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4030 *
4031 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4032 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4033 */
4034int
4035bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4036    struct resource *r)
4037{
4038	/* Propagate up the bus hierarchy until someone handles it. */
4039	if (dev->parent)
4040		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4041		    r));
4042	return (EINVAL);
4043}
4044
4045/**
4046 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4047 *
4048 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4049 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4050 */
4051int
4052bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4053    int rid, struct resource *r)
4054{
4055	/* Propagate up the bus hierarchy until someone handles it. */
4056	if (dev->parent)
4057		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4058		    r));
4059	return (EINVAL);
4060}
4061
4062/**
4063 * @brief Helper function for implementing BUS_BIND_INTR().
4064 *
4065 * This simple implementation of BUS_BIND_INTR() simply calls the
4066 * BUS_BIND_INTR() method of the parent of @p dev.
4067 */
4068int
4069bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4070    int cpu)
4071{
4072
4073	/* Propagate up the bus hierarchy until someone handles it. */
4074	if (dev->parent)
4075		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4076	return (EINVAL);
4077}
4078
4079/**
4080 * @brief Helper function for implementing BUS_CONFIG_INTR().
4081 *
4082 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4083 * BUS_CONFIG_INTR() method of the parent of @p dev.
4084 */
4085int
4086bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4087    enum intr_polarity pol)
4088{
4089
4090	/* Propagate up the bus hierarchy until someone handles it. */
4091	if (dev->parent)
4092		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4093	return (EINVAL);
4094}
4095
4096/**
4097 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4098 *
4099 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4100 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4101 */
4102int
4103bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4104    void *cookie, const char *descr)
4105{
4106
4107	/* Propagate up the bus hierarchy until someone handles it. */
4108	if (dev->parent)
4109		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4110		    descr));
4111	return (EINVAL);
4112}
4113
4114/**
4115 * @brief Helper function for implementing BUS_GET_CPUS().
4116 *
4117 * This simple implementation of BUS_GET_CPUS() simply calls the
4118 * BUS_GET_CPUS() method of the parent of @p dev.
4119 */
4120int
4121bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4122    size_t setsize, cpuset_t *cpuset)
4123{
4124
4125	/* Propagate up the bus hierarchy until someone handles it. */
4126	if (dev->parent != NULL)
4127		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4128	return (EINVAL);
4129}
4130
4131/**
4132 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4133 *
4134 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4135 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4136 */
4137bus_dma_tag_t
4138bus_generic_get_dma_tag(device_t dev, device_t child)
4139{
4140
4141	/* Propagate up the bus hierarchy until someone handles it. */
4142	if (dev->parent != NULL)
4143		return (BUS_GET_DMA_TAG(dev->parent, child));
4144	return (NULL);
4145}
4146
4147/**
4148 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4149 *
4150 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4151 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4152 */
4153bus_space_tag_t
4154bus_generic_get_bus_tag(device_t dev, device_t child)
4155{
4156
4157	/* Propagate up the bus hierarchy until someone handles it. */
4158	if (dev->parent != NULL)
4159		return (BUS_GET_BUS_TAG(dev->parent, child));
4160	return ((bus_space_tag_t)0);
4161}
4162
4163/**
4164 * @brief Helper function for implementing BUS_GET_RESOURCE().
4165 *
4166 * This implementation of BUS_GET_RESOURCE() uses the
4167 * resource_list_find() function to do most of the work. It calls
4168 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4169 * search.
4170 */
4171int
4172bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4173    rman_res_t *startp, rman_res_t *countp)
4174{
4175	struct resource_list *		rl = NULL;
4176	struct resource_list_entry *	rle = NULL;
4177
4178	rl = BUS_GET_RESOURCE_LIST(dev, child);
4179	if (!rl)
4180		return (EINVAL);
4181
4182	rle = resource_list_find(rl, type, rid);
4183	if (!rle)
4184		return (ENOENT);
4185
4186	if (startp)
4187		*startp = rle->start;
4188	if (countp)
4189		*countp = rle->count;
4190
4191	return (0);
4192}
4193
4194/**
4195 * @brief Helper function for implementing BUS_SET_RESOURCE().
4196 *
4197 * This implementation of BUS_SET_RESOURCE() uses the
4198 * resource_list_add() function to do most of the work. It calls
4199 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4200 * edit.
4201 */
4202int
4203bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4204    rman_res_t start, rman_res_t count)
4205{
4206	struct resource_list *		rl = NULL;
4207
4208	rl = BUS_GET_RESOURCE_LIST(dev, child);
4209	if (!rl)
4210		return (EINVAL);
4211
4212	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4213
4214	return (0);
4215}
4216
4217/**
4218 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4219 *
4220 * This implementation of BUS_DELETE_RESOURCE() uses the
4221 * resource_list_delete() function to do most of the work. It calls
4222 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4223 * edit.
4224 */
4225void
4226bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4227{
4228	struct resource_list *		rl = NULL;
4229
4230	rl = BUS_GET_RESOURCE_LIST(dev, child);
4231	if (!rl)
4232		return;
4233
4234	resource_list_delete(rl, type, rid);
4235
4236	return;
4237}
4238
4239/**
4240 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4241 *
4242 * This implementation of BUS_RELEASE_RESOURCE() uses the
4243 * resource_list_release() function to do most of the work. It calls
4244 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4245 */
4246int
4247bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4248    int rid, struct resource *r)
4249{
4250	struct resource_list *		rl = NULL;
4251
4252	if (device_get_parent(child) != dev)
4253		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4254		    type, rid, r));
4255
4256	rl = BUS_GET_RESOURCE_LIST(dev, child);
4257	if (!rl)
4258		return (EINVAL);
4259
4260	return (resource_list_release(rl, dev, child, type, rid, r));
4261}
4262
4263/**
4264 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4265 *
4266 * This implementation of BUS_ALLOC_RESOURCE() uses the
4267 * resource_list_alloc() function to do most of the work. It calls
4268 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4269 */
4270struct resource *
4271bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4272    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4273{
4274	struct resource_list *		rl = NULL;
4275
4276	if (device_get_parent(child) != dev)
4277		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4278		    type, rid, start, end, count, flags));
4279
4280	rl = BUS_GET_RESOURCE_LIST(dev, child);
4281	if (!rl)
4282		return (NULL);
4283
4284	return (resource_list_alloc(rl, dev, child, type, rid,
4285	    start, end, count, flags));
4286}
4287
4288/**
4289 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4290 *
4291 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4292 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4293 */
4294int
4295bus_generic_child_present(device_t dev, device_t child)
4296{
4297	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4298}
4299
4300int
4301bus_generic_get_domain(device_t dev, device_t child, int *domain)
4302{
4303
4304	if (dev->parent)
4305		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4306
4307	return (ENOENT);
4308}
4309
4310/**
4311 * @brief Helper function for implementing BUS_RESCAN().
4312 *
4313 * This null implementation of BUS_RESCAN() always fails to indicate
4314 * the bus does not support rescanning.
4315 */
4316int
4317bus_null_rescan(device_t dev)
4318{
4319
4320	return (ENXIO);
4321}
4322
4323/*
4324 * Some convenience functions to make it easier for drivers to use the
4325 * resource-management functions.  All these really do is hide the
4326 * indirection through the parent's method table, making for slightly
4327 * less-wordy code.  In the future, it might make sense for this code
4328 * to maintain some sort of a list of resources allocated by each device.
4329 */
4330
4331int
4332bus_alloc_resources(device_t dev, struct resource_spec *rs,
4333    struct resource **res)
4334{
4335	int i;
4336
4337	for (i = 0; rs[i].type != -1; i++)
4338		res[i] = NULL;
4339	for (i = 0; rs[i].type != -1; i++) {
4340		res[i] = bus_alloc_resource_any(dev,
4341		    rs[i].type, &rs[i].rid, rs[i].flags);
4342		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4343			bus_release_resources(dev, rs, res);
4344			return (ENXIO);
4345		}
4346	}
4347	return (0);
4348}
4349
4350void
4351bus_release_resources(device_t dev, const struct resource_spec *rs,
4352    struct resource **res)
4353{
4354	int i;
4355
4356	for (i = 0; rs[i].type != -1; i++)
4357		if (res[i] != NULL) {
4358			bus_release_resource(
4359			    dev, rs[i].type, rs[i].rid, res[i]);
4360			res[i] = NULL;
4361		}
4362}
4363
4364/**
4365 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4366 *
4367 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4368 * parent of @p dev.
4369 */
4370struct resource *
4371bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end,
4372    rman_res_t count, u_int flags)
4373{
4374	if (dev->parent == NULL)
4375		return (NULL);
4376	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4377	    count, flags));
4378}
4379
4380/**
4381 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4382 *
4383 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4384 * parent of @p dev.
4385 */
4386int
4387bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4388    rman_res_t end)
4389{
4390	if (dev->parent == NULL)
4391		return (EINVAL);
4392	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4393}
4394
4395/**
4396 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4397 *
4398 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4399 * parent of @p dev.
4400 */
4401int
4402bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4403{
4404	if (dev->parent == NULL)
4405		return (EINVAL);
4406	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4407}
4408
4409/**
4410 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4411 *
4412 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4413 * parent of @p dev.
4414 */
4415int
4416bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4417{
4418	if (dev->parent == NULL)
4419		return (EINVAL);
4420	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4421}
4422
4423/**
4424 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4425 *
4426 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4427 * parent of @p dev.
4428 */
4429int
4430bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4431{
4432	if (dev->parent == NULL)
4433		return (EINVAL);
4434	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4435}
4436
4437/**
4438 * @brief Wrapper function for BUS_SETUP_INTR().
4439 *
4440 * This function simply calls the BUS_SETUP_INTR() method of the
4441 * parent of @p dev.
4442 */
4443int
4444bus_setup_intr(device_t dev, struct resource *r, int flags,
4445    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4446{
4447	int error;
4448
4449	if (dev->parent == NULL)
4450		return (EINVAL);
4451	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4452	    arg, cookiep);
4453	if (error != 0)
4454		return (error);
4455	if (handler != NULL && !(flags & INTR_MPSAFE))
4456		device_printf(dev, "[GIANT-LOCKED]\n");
4457	return (0);
4458}
4459
4460/**
4461 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4462 *
4463 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4464 * parent of @p dev.
4465 */
4466int
4467bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4468{
4469	if (dev->parent == NULL)
4470		return (EINVAL);
4471	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4472}
4473
4474/**
4475 * @brief Wrapper function for BUS_BIND_INTR().
4476 *
4477 * This function simply calls the BUS_BIND_INTR() method of the
4478 * parent of @p dev.
4479 */
4480int
4481bus_bind_intr(device_t dev, struct resource *r, int cpu)
4482{
4483	if (dev->parent == NULL)
4484		return (EINVAL);
4485	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4486}
4487
4488/**
4489 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4490 *
4491 * This function first formats the requested description into a
4492 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4493 * the parent of @p dev.
4494 */
4495int
4496bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4497    const char *fmt, ...)
4498{
4499	va_list ap;
4500	char descr[MAXCOMLEN + 1];
4501
4502	if (dev->parent == NULL)
4503		return (EINVAL);
4504	va_start(ap, fmt);
4505	vsnprintf(descr, sizeof(descr), fmt, ap);
4506	va_end(ap);
4507	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4508}
4509
4510/**
4511 * @brief Wrapper function for BUS_SET_RESOURCE().
4512 *
4513 * This function simply calls the BUS_SET_RESOURCE() method of the
4514 * parent of @p dev.
4515 */
4516int
4517bus_set_resource(device_t dev, int type, int rid,
4518    rman_res_t start, rman_res_t count)
4519{
4520	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4521	    start, count));
4522}
4523
4524/**
4525 * @brief Wrapper function for BUS_GET_RESOURCE().
4526 *
4527 * This function simply calls the BUS_GET_RESOURCE() method of the
4528 * parent of @p dev.
4529 */
4530int
4531bus_get_resource(device_t dev, int type, int rid,
4532    rman_res_t *startp, rman_res_t *countp)
4533{
4534	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4535	    startp, countp));
4536}
4537
4538/**
4539 * @brief Wrapper function for BUS_GET_RESOURCE().
4540 *
4541 * This function simply calls the BUS_GET_RESOURCE() method of the
4542 * parent of @p dev and returns the start value.
4543 */
4544rman_res_t
4545bus_get_resource_start(device_t dev, int type, int rid)
4546{
4547	rman_res_t start;
4548	rman_res_t count;
4549	int error;
4550
4551	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4552	    &start, &count);
4553	if (error)
4554		return (0);
4555	return (start);
4556}
4557
4558/**
4559 * @brief Wrapper function for BUS_GET_RESOURCE().
4560 *
4561 * This function simply calls the BUS_GET_RESOURCE() method of the
4562 * parent of @p dev and returns the count value.
4563 */
4564rman_res_t
4565bus_get_resource_count(device_t dev, int type, int rid)
4566{
4567	rman_res_t start;
4568	rman_res_t count;
4569	int error;
4570
4571	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4572	    &start, &count);
4573	if (error)
4574		return (0);
4575	return (count);
4576}
4577
4578/**
4579 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4580 *
4581 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4582 * parent of @p dev.
4583 */
4584void
4585bus_delete_resource(device_t dev, int type, int rid)
4586{
4587	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4588}
4589
4590/**
4591 * @brief Wrapper function for BUS_CHILD_PRESENT().
4592 *
4593 * This function simply calls the BUS_CHILD_PRESENT() method of the
4594 * parent of @p dev.
4595 */
4596int
4597bus_child_present(device_t child)
4598{
4599	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4600}
4601
4602/**
4603 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4604 *
4605 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4606 * parent of @p dev.
4607 */
4608int
4609bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4610{
4611	device_t parent;
4612
4613	parent = device_get_parent(child);
4614	if (parent == NULL) {
4615		*buf = '\0';
4616		return (0);
4617	}
4618	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4619}
4620
4621/**
4622 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4623 *
4624 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4625 * parent of @p dev.
4626 */
4627int
4628bus_child_location_str(device_t child, char *buf, size_t buflen)
4629{
4630	device_t parent;
4631
4632	parent = device_get_parent(child);
4633	if (parent == NULL) {
4634		*buf = '\0';
4635		return (0);
4636	}
4637	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4638}
4639
4640/**
4641 * @brief Wrapper function for BUS_GET_CPUS().
4642 *
4643 * This function simply calls the BUS_GET_CPUS() method of the
4644 * parent of @p dev.
4645 */
4646int
4647bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4648{
4649	device_t parent;
4650
4651	parent = device_get_parent(dev);
4652	if (parent == NULL)
4653		return (EINVAL);
4654	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4655}
4656
4657/**
4658 * @brief Wrapper function for BUS_GET_DMA_TAG().
4659 *
4660 * This function simply calls the BUS_GET_DMA_TAG() method of the
4661 * parent of @p dev.
4662 */
4663bus_dma_tag_t
4664bus_get_dma_tag(device_t dev)
4665{
4666	device_t parent;
4667
4668	parent = device_get_parent(dev);
4669	if (parent == NULL)
4670		return (NULL);
4671	return (BUS_GET_DMA_TAG(parent, dev));
4672}
4673
4674/**
4675 * @brief Wrapper function for BUS_GET_BUS_TAG().
4676 *
4677 * This function simply calls the BUS_GET_BUS_TAG() method of the
4678 * parent of @p dev.
4679 */
4680bus_space_tag_t
4681bus_get_bus_tag(device_t dev)
4682{
4683	device_t parent;
4684
4685	parent = device_get_parent(dev);
4686	if (parent == NULL)
4687		return ((bus_space_tag_t)0);
4688	return (BUS_GET_BUS_TAG(parent, dev));
4689}
4690
4691/**
4692 * @brief Wrapper function for BUS_GET_DOMAIN().
4693 *
4694 * This function simply calls the BUS_GET_DOMAIN() method of the
4695 * parent of @p dev.
4696 */
4697int
4698bus_get_domain(device_t dev, int *domain)
4699{
4700	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4701}
4702
4703/* Resume all devices and then notify userland that we're up again. */
4704static int
4705root_resume(device_t dev)
4706{
4707	int error;
4708
4709	error = bus_generic_resume(dev);
4710	if (error == 0)
4711		devctl_notify("kern", "power", "resume", NULL);
4712	return (error);
4713}
4714
4715static int
4716root_print_child(device_t dev, device_t child)
4717{
4718	int	retval = 0;
4719
4720	retval += bus_print_child_header(dev, child);
4721	retval += printf("\n");
4722
4723	return (retval);
4724}
4725
4726static int
4727root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4728    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4729{
4730	/*
4731	 * If an interrupt mapping gets to here something bad has happened.
4732	 */
4733	panic("root_setup_intr");
4734}
4735
4736/*
4737 * If we get here, assume that the device is permanent and really is
4738 * present in the system.  Removable bus drivers are expected to intercept
4739 * this call long before it gets here.  We return -1 so that drivers that
4740 * really care can check vs -1 or some ERRNO returned higher in the food
4741 * chain.
4742 */
4743static int
4744root_child_present(device_t dev, device_t child)
4745{
4746	return (-1);
4747}
4748
4749static int
4750root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
4751    cpuset_t *cpuset)
4752{
4753
4754	switch (op) {
4755	case INTR_CPUS:
4756		/* Default to returning the set of all CPUs. */
4757		if (setsize != sizeof(cpuset_t))
4758			return (EINVAL);
4759		*cpuset = all_cpus;
4760		return (0);
4761	default:
4762		return (EINVAL);
4763	}
4764}
4765
4766static kobj_method_t root_methods[] = {
4767	/* Device interface */
4768	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4769	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4770	KOBJMETHOD(device_resume,	root_resume),
4771
4772	/* Bus interface */
4773	KOBJMETHOD(bus_print_child,	root_print_child),
4774	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4775	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4776	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4777	KOBJMETHOD(bus_child_present,	root_child_present),
4778	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
4779
4780	KOBJMETHOD_END
4781};
4782
4783static driver_t root_driver = {
4784	"root",
4785	root_methods,
4786	1,			/* no softc */
4787};
4788
4789device_t	root_bus;
4790devclass_t	root_devclass;
4791
4792static int
4793root_bus_module_handler(module_t mod, int what, void* arg)
4794{
4795	switch (what) {
4796	case MOD_LOAD:
4797		TAILQ_INIT(&bus_data_devices);
4798		kobj_class_compile((kobj_class_t) &root_driver);
4799		root_bus = make_device(NULL, "root", 0);
4800		root_bus->desc = "System root bus";
4801		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4802		root_bus->driver = &root_driver;
4803		root_bus->state = DS_ATTACHED;
4804		root_devclass = devclass_find_internal("root", NULL, FALSE);
4805		devinit();
4806		return (0);
4807
4808	case MOD_SHUTDOWN:
4809		device_shutdown(root_bus);
4810		return (0);
4811	default:
4812		return (EOPNOTSUPP);
4813	}
4814
4815	return (0);
4816}
4817
4818static moduledata_t root_bus_mod = {
4819	"rootbus",
4820	root_bus_module_handler,
4821	NULL
4822};
4823DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4824
4825/**
4826 * @brief Automatically configure devices
4827 *
4828 * This function begins the autoconfiguration process by calling
4829 * device_probe_and_attach() for each child of the @c root0 device.
4830 */
4831void
4832root_bus_configure(void)
4833{
4834
4835	PDEBUG(("."));
4836
4837	/* Eventually this will be split up, but this is sufficient for now. */
4838	bus_set_pass(BUS_PASS_DEFAULT);
4839}
4840
4841/**
4842 * @brief Module handler for registering device drivers
4843 *
4844 * This module handler is used to automatically register device
4845 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4846 * devclass_add_driver() for the driver described by the
4847 * driver_module_data structure pointed to by @p arg
4848 */
4849int
4850driver_module_handler(module_t mod, int what, void *arg)
4851{
4852	struct driver_module_data *dmd;
4853	devclass_t bus_devclass;
4854	kobj_class_t driver;
4855	int error, pass;
4856
4857	dmd = (struct driver_module_data *)arg;
4858	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4859	error = 0;
4860
4861	switch (what) {
4862	case MOD_LOAD:
4863		if (dmd->dmd_chainevh)
4864			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4865
4866		pass = dmd->dmd_pass;
4867		driver = dmd->dmd_driver;
4868		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4869		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4870		error = devclass_add_driver(bus_devclass, driver, pass,
4871		    dmd->dmd_devclass);
4872		break;
4873
4874	case MOD_UNLOAD:
4875		PDEBUG(("Unloading module: driver %s from bus %s",
4876		    DRIVERNAME(dmd->dmd_driver),
4877		    dmd->dmd_busname));
4878		error = devclass_delete_driver(bus_devclass,
4879		    dmd->dmd_driver);
4880
4881		if (!error && dmd->dmd_chainevh)
4882			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4883		break;
4884	case MOD_QUIESCE:
4885		PDEBUG(("Quiesce module: driver %s from bus %s",
4886		    DRIVERNAME(dmd->dmd_driver),
4887		    dmd->dmd_busname));
4888		error = devclass_quiesce_driver(bus_devclass,
4889		    dmd->dmd_driver);
4890
4891		if (!error && dmd->dmd_chainevh)
4892			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4893		break;
4894	default:
4895		error = EOPNOTSUPP;
4896		break;
4897	}
4898
4899	return (error);
4900}
4901
4902/**
4903 * @brief Enumerate all hinted devices for this bus.
4904 *
4905 * Walks through the hints for this bus and calls the bus_hinted_child
4906 * routine for each one it fines.  It searches first for the specific
4907 * bus that's being probed for hinted children (eg isa0), and then for
4908 * generic children (eg isa).
4909 *
4910 * @param	dev	bus device to enumerate
4911 */
4912void
4913bus_enumerate_hinted_children(device_t bus)
4914{
4915	int i;
4916	const char *dname, *busname;
4917	int dunit;
4918
4919	/*
4920	 * enumerate all devices on the specific bus
4921	 */
4922	busname = device_get_nameunit(bus);
4923	i = 0;
4924	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4925		BUS_HINTED_CHILD(bus, dname, dunit);
4926
4927	/*
4928	 * and all the generic ones.
4929	 */
4930	busname = device_get_name(bus);
4931	i = 0;
4932	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4933		BUS_HINTED_CHILD(bus, dname, dunit);
4934}
4935
4936#ifdef BUS_DEBUG
4937
4938/* the _short versions avoid iteration by not calling anything that prints
4939 * more than oneliners. I love oneliners.
4940 */
4941
4942static void
4943print_device_short(device_t dev, int indent)
4944{
4945	if (!dev)
4946		return;
4947
4948	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4949	    dev->unit, dev->desc,
4950	    (dev->parent? "":"no "),
4951	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4952	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4953	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4954	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4955	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4956	    (dev->flags&DF_REBID? "rebiddable,":""),
4957	    (dev->ivars? "":"no "),
4958	    (dev->softc? "":"no "),
4959	    dev->busy));
4960}
4961
4962static void
4963print_device(device_t dev, int indent)
4964{
4965	if (!dev)
4966		return;
4967
4968	print_device_short(dev, indent);
4969
4970	indentprintf(("Parent:\n"));
4971	print_device_short(dev->parent, indent+1);
4972	indentprintf(("Driver:\n"));
4973	print_driver_short(dev->driver, indent+1);
4974	indentprintf(("Devclass:\n"));
4975	print_devclass_short(dev->devclass, indent+1);
4976}
4977
4978void
4979print_device_tree_short(device_t dev, int indent)
4980/* print the device and all its children (indented) */
4981{
4982	device_t child;
4983
4984	if (!dev)
4985		return;
4986
4987	print_device_short(dev, indent);
4988
4989	TAILQ_FOREACH(child, &dev->children, link) {
4990		print_device_tree_short(child, indent+1);
4991	}
4992}
4993
4994void
4995print_device_tree(device_t dev, int indent)
4996/* print the device and all its children (indented) */
4997{
4998	device_t child;
4999
5000	if (!dev)
5001		return;
5002
5003	print_device(dev, indent);
5004
5005	TAILQ_FOREACH(child, &dev->children, link) {
5006		print_device_tree(child, indent+1);
5007	}
5008}
5009
5010static void
5011print_driver_short(driver_t *driver, int indent)
5012{
5013	if (!driver)
5014		return;
5015
5016	indentprintf(("driver %s: softc size = %zd\n",
5017	    driver->name, driver->size));
5018}
5019
5020static void
5021print_driver(driver_t *driver, int indent)
5022{
5023	if (!driver)
5024		return;
5025
5026	print_driver_short(driver, indent);
5027}
5028
5029static void
5030print_driver_list(driver_list_t drivers, int indent)
5031{
5032	driverlink_t driver;
5033
5034	TAILQ_FOREACH(driver, &drivers, link) {
5035		print_driver(driver->driver, indent);
5036	}
5037}
5038
5039static void
5040print_devclass_short(devclass_t dc, int indent)
5041{
5042	if ( !dc )
5043		return;
5044
5045	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5046}
5047
5048static void
5049print_devclass(devclass_t dc, int indent)
5050{
5051	int i;
5052
5053	if ( !dc )
5054		return;
5055
5056	print_devclass_short(dc, indent);
5057	indentprintf(("Drivers:\n"));
5058	print_driver_list(dc->drivers, indent+1);
5059
5060	indentprintf(("Devices:\n"));
5061	for (i = 0; i < dc->maxunit; i++)
5062		if (dc->devices[i])
5063			print_device(dc->devices[i], indent+1);
5064}
5065
5066void
5067print_devclass_list_short(void)
5068{
5069	devclass_t dc;
5070
5071	printf("Short listing of devclasses, drivers & devices:\n");
5072	TAILQ_FOREACH(dc, &devclasses, link) {
5073		print_devclass_short(dc, 0);
5074	}
5075}
5076
5077void
5078print_devclass_list(void)
5079{
5080	devclass_t dc;
5081
5082	printf("Full listing of devclasses, drivers & devices:\n");
5083	TAILQ_FOREACH(dc, &devclasses, link) {
5084		print_devclass(dc, 0);
5085	}
5086}
5087
5088#endif
5089
5090/*
5091 * User-space access to the device tree.
5092 *
5093 * We implement a small set of nodes:
5094 *
5095 * hw.bus			Single integer read method to obtain the
5096 *				current generation count.
5097 * hw.bus.devices		Reads the entire device tree in flat space.
5098 * hw.bus.rman			Resource manager interface
5099 *
5100 * We might like to add the ability to scan devclasses and/or drivers to
5101 * determine what else is currently loaded/available.
5102 */
5103
5104static int
5105sysctl_bus(SYSCTL_HANDLER_ARGS)
5106{
5107	struct u_businfo	ubus;
5108
5109	ubus.ub_version = BUS_USER_VERSION;
5110	ubus.ub_generation = bus_data_generation;
5111
5112	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5113}
5114SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5115    "bus-related data");
5116
5117static int
5118sysctl_devices(SYSCTL_HANDLER_ARGS)
5119{
5120	int			*name = (int *)arg1;
5121	u_int			namelen = arg2;
5122	int			index;
5123	struct device		*dev;
5124	struct u_device		udev;	/* XXX this is a bit big */
5125	int			error;
5126
5127	if (namelen != 2)
5128		return (EINVAL);
5129
5130	if (bus_data_generation_check(name[0]))
5131		return (EINVAL);
5132
5133	index = name[1];
5134
5135	/*
5136	 * Scan the list of devices, looking for the requested index.
5137	 */
5138	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5139		if (index-- == 0)
5140			break;
5141	}
5142	if (dev == NULL)
5143		return (ENOENT);
5144
5145	/*
5146	 * Populate the return array.
5147	 */
5148	bzero(&udev, sizeof(udev));
5149	udev.dv_handle = (uintptr_t)dev;
5150	udev.dv_parent = (uintptr_t)dev->parent;
5151	if (dev->nameunit != NULL)
5152		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5153	if (dev->desc != NULL)
5154		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5155	if (dev->driver != NULL && dev->driver->name != NULL)
5156		strlcpy(udev.dv_drivername, dev->driver->name,
5157		    sizeof(udev.dv_drivername));
5158	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5159	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5160	udev.dv_devflags = dev->devflags;
5161	udev.dv_flags = dev->flags;
5162	udev.dv_state = dev->state;
5163	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5164	return (error);
5165}
5166
5167SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5168    "system device tree");
5169
5170int
5171bus_data_generation_check(int generation)
5172{
5173	if (generation != bus_data_generation)
5174		return (1);
5175
5176	/* XXX generate optimised lists here? */
5177	return (0);
5178}
5179
5180void
5181bus_data_generation_update(void)
5182{
5183	bus_data_generation++;
5184}
5185
5186int
5187bus_free_resource(device_t dev, int type, struct resource *r)
5188{
5189	if (r == NULL)
5190		return (0);
5191	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5192}
5193
5194device_t
5195device_lookup_by_name(const char *name)
5196{
5197	device_t dev;
5198
5199	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5200		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5201			return (dev);
5202	}
5203	return (NULL);
5204}
5205
5206/*
5207 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5208 * implicit semantics on open, so it could not be reused for this.
5209 * Another option would be to call this /dev/bus?
5210 */
5211static int
5212find_device(struct devreq *req, device_t *devp)
5213{
5214	device_t dev;
5215
5216	/*
5217	 * First, ensure that the name is nul terminated.
5218	 */
5219	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5220		return (EINVAL);
5221
5222	/*
5223	 * Second, try to find an attached device whose name matches
5224	 * 'name'.
5225	 */
5226	dev = device_lookup_by_name(req->dr_name);
5227	if (dev != NULL) {
5228		*devp = dev;
5229		return (0);
5230	}
5231
5232	/* Finally, give device enumerators a chance. */
5233	dev = NULL;
5234	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5235	if (dev == NULL)
5236		return (ENOENT);
5237	*devp = dev;
5238	return (0);
5239}
5240
5241static bool
5242driver_exists(device_t bus, const char *driver)
5243{
5244	devclass_t dc;
5245
5246	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5247		if (devclass_find_driver_internal(dc, driver) != NULL)
5248			return (true);
5249	}
5250	return (false);
5251}
5252
5253static int
5254devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5255    struct thread *td)
5256{
5257	struct devreq *req;
5258	device_t dev;
5259	int error, old;
5260
5261	/* Locate the device to control. */
5262	mtx_lock(&Giant);
5263	req = (struct devreq *)data;
5264	switch (cmd) {
5265	case DEV_ATTACH:
5266	case DEV_DETACH:
5267	case DEV_ENABLE:
5268	case DEV_DISABLE:
5269	case DEV_SUSPEND:
5270	case DEV_RESUME:
5271	case DEV_SET_DRIVER:
5272	case DEV_RESCAN:
5273	case DEV_DELETE:
5274		error = priv_check(td, PRIV_DRIVER);
5275		if (error == 0)
5276			error = find_device(req, &dev);
5277		break;
5278	default:
5279		error = ENOTTY;
5280		break;
5281	}
5282	if (error) {
5283		mtx_unlock(&Giant);
5284		return (error);
5285	}
5286
5287	/* Perform the requested operation. */
5288	switch (cmd) {
5289	case DEV_ATTACH:
5290		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5291			error = EBUSY;
5292		else if (!device_is_enabled(dev))
5293			error = ENXIO;
5294		else
5295			error = device_probe_and_attach(dev);
5296		break;
5297	case DEV_DETACH:
5298		if (!device_is_attached(dev)) {
5299			error = ENXIO;
5300			break;
5301		}
5302		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5303			error = device_quiesce(dev);
5304			if (error)
5305				break;
5306		}
5307		error = device_detach(dev);
5308		break;
5309	case DEV_ENABLE:
5310		if (device_is_enabled(dev)) {
5311			error = EBUSY;
5312			break;
5313		}
5314
5315		/*
5316		 * If the device has been probed but not attached (e.g.
5317		 * when it has been disabled by a loader hint), just
5318		 * attach the device rather than doing a full probe.
5319		 */
5320		device_enable(dev);
5321		if (device_is_alive(dev)) {
5322			/*
5323			 * If the device was disabled via a hint, clear
5324			 * the hint.
5325			 */
5326			if (resource_disabled(dev->driver->name, dev->unit))
5327				resource_unset_value(dev->driver->name,
5328				    dev->unit, "disabled");
5329			error = device_attach(dev);
5330		} else
5331			error = device_probe_and_attach(dev);
5332		break;
5333	case DEV_DISABLE:
5334		if (!device_is_enabled(dev)) {
5335			error = ENXIO;
5336			break;
5337		}
5338
5339		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5340			error = device_quiesce(dev);
5341			if (error)
5342				break;
5343		}
5344
5345		/*
5346		 * Force DF_FIXEDCLASS on around detach to preserve
5347		 * the existing name.
5348		 */
5349		old = dev->flags;
5350		dev->flags |= DF_FIXEDCLASS;
5351		error = device_detach(dev);
5352		if (!(old & DF_FIXEDCLASS))
5353			dev->flags &= ~DF_FIXEDCLASS;
5354		if (error == 0)
5355			device_disable(dev);
5356		break;
5357	case DEV_SUSPEND:
5358		if (device_is_suspended(dev)) {
5359			error = EBUSY;
5360			break;
5361		}
5362		if (device_get_parent(dev) == NULL) {
5363			error = EINVAL;
5364			break;
5365		}
5366		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5367		break;
5368	case DEV_RESUME:
5369		if (!device_is_suspended(dev)) {
5370			error = EINVAL;
5371			break;
5372		}
5373		if (device_get_parent(dev) == NULL) {
5374			error = EINVAL;
5375			break;
5376		}
5377		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5378		break;
5379	case DEV_SET_DRIVER: {
5380		devclass_t dc;
5381		char driver[128];
5382
5383		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5384		if (error)
5385			break;
5386		if (driver[0] == '\0') {
5387			error = EINVAL;
5388			break;
5389		}
5390		if (dev->devclass != NULL &&
5391		    strcmp(driver, dev->devclass->name) == 0)
5392			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5393			break;
5394
5395		/*
5396		 * Scan drivers for this device's bus looking for at
5397		 * least one matching driver.
5398		 */
5399		if (dev->parent == NULL) {
5400			error = EINVAL;
5401			break;
5402		}
5403		if (!driver_exists(dev->parent, driver)) {
5404			error = ENOENT;
5405			break;
5406		}
5407		dc = devclass_create(driver);
5408		if (dc == NULL) {
5409			error = ENOMEM;
5410			break;
5411		}
5412
5413		/* Detach device if necessary. */
5414		if (device_is_attached(dev)) {
5415			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5416				error = device_detach(dev);
5417			else
5418				error = EBUSY;
5419			if (error)
5420				break;
5421		}
5422
5423		/* Clear any previously-fixed device class and unit. */
5424		if (dev->flags & DF_FIXEDCLASS)
5425			devclass_delete_device(dev->devclass, dev);
5426		dev->flags |= DF_WILDCARD;
5427		dev->unit = -1;
5428
5429		/* Force the new device class. */
5430		error = devclass_add_device(dc, dev);
5431		if (error)
5432			break;
5433		dev->flags |= DF_FIXEDCLASS;
5434		error = device_probe_and_attach(dev);
5435		break;
5436	}
5437	case DEV_RESCAN:
5438		if (!device_is_attached(dev)) {
5439			error = ENXIO;
5440			break;
5441		}
5442		error = BUS_RESCAN(dev);
5443		break;
5444	case DEV_DELETE: {
5445		device_t parent;
5446
5447		parent = device_get_parent(dev);
5448		if (parent == NULL) {
5449			error = EINVAL;
5450			break;
5451		}
5452		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5453			if (bus_child_present(dev) != 0) {
5454				error = EBUSY;
5455				break;
5456			}
5457		}
5458
5459		error = device_delete_child(parent, dev);
5460		break;
5461	}
5462	}
5463	mtx_unlock(&Giant);
5464	return (error);
5465}
5466
5467static struct cdevsw devctl2_cdevsw = {
5468	.d_version =	D_VERSION,
5469	.d_ioctl =	devctl2_ioctl,
5470	.d_name =	"devctl2",
5471};
5472
5473static void
5474devctl2_init(void)
5475{
5476
5477	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5478	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5479}
5480