subr_bus.c revision 296336
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 296336 2016-03-03 05:07:35Z jhibbits $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/priv.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/uio.h>
55#include <sys/bus.h>
56#include <sys/interrupt.h>
57#include <sys/cpuset.h>
58
59#include <net/vnet.h>
60
61#include <machine/cpu.h>
62#include <machine/stdarg.h>
63
64#include <vm/uma.h>
65
66SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
67SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
68
69/*
70 * Used to attach drivers to devclasses.
71 */
72typedef struct driverlink *driverlink_t;
73struct driverlink {
74	kobj_class_t	driver;
75	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
76	int		pass;
77	TAILQ_ENTRY(driverlink) passlink;
78};
79
80/*
81 * Forward declarations
82 */
83typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
84typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
85typedef TAILQ_HEAD(device_list, device) device_list_t;
86
87struct devclass {
88	TAILQ_ENTRY(devclass) link;
89	devclass_t	parent;		/* parent in devclass hierarchy */
90	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
91	char		*name;
92	device_t	*devices;	/* array of devices indexed by unit */
93	int		maxunit;	/* size of devices array */
94	int		flags;
95#define DC_HAS_CHILDREN		1
96
97	struct sysctl_ctx_list sysctl_ctx;
98	struct sysctl_oid *sysctl_tree;
99};
100
101/**
102 * @brief Implementation of device.
103 */
104struct device {
105	/*
106	 * A device is a kernel object. The first field must be the
107	 * current ops table for the object.
108	 */
109	KOBJ_FIELDS;
110
111	/*
112	 * Device hierarchy.
113	 */
114	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
115	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
116	device_t	parent;		/**< parent of this device  */
117	device_list_t	children;	/**< list of child devices */
118
119	/*
120	 * Details of this device.
121	 */
122	driver_t	*driver;	/**< current driver */
123	devclass_t	devclass;	/**< current device class */
124	int		unit;		/**< current unit number */
125	char*		nameunit;	/**< name+unit e.g. foodev0 */
126	char*		desc;		/**< driver specific description */
127	int		busy;		/**< count of calls to device_busy() */
128	device_state_t	state;		/**< current device state  */
129	uint32_t	devflags;	/**< api level flags for device_get_flags() */
130	u_int		flags;		/**< internal device flags  */
131	u_int	order;			/**< order from device_add_child_ordered() */
132	void	*ivars;			/**< instance variables  */
133	void	*softc;			/**< current driver's variables  */
134
135	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
136	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
137};
138
139static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
140static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
141
142static void devctl2_init(void);
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
148    "Bus debug level");
149
150#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
151#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
152#define DRIVERNAME(d)	((d)? d->name : "no driver")
153#define DEVCLANAME(d)	((d)? d->name : "no devclass")
154
155/**
156 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
157 * prevent syslog from deleting initial spaces
158 */
159#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
160
161static void print_device_short(device_t dev, int indent);
162static void print_device(device_t dev, int indent);
163void print_device_tree_short(device_t dev, int indent);
164void print_device_tree(device_t dev, int indent);
165static void print_driver_short(driver_t *driver, int indent);
166static void print_driver(driver_t *driver, int indent);
167static void print_driver_list(driver_list_t drivers, int indent);
168static void print_devclass_short(devclass_t dc, int indent);
169static void print_devclass(devclass_t dc, int indent);
170void print_devclass_list_short(void);
171void print_devclass_list(void);
172
173#else
174/* Make the compiler ignore the function calls */
175#define PDEBUG(a)			/* nop */
176#define DEVICENAME(d)			/* nop */
177#define DRIVERNAME(d)			/* nop */
178#define DEVCLANAME(d)			/* nop */
179
180#define print_device_short(d,i)		/* nop */
181#define print_device(d,i)		/* nop */
182#define print_device_tree_short(d,i)	/* nop */
183#define print_device_tree(d,i)		/* nop */
184#define print_driver_short(d,i)		/* nop */
185#define print_driver(d,i)		/* nop */
186#define print_driver_list(d,i)		/* nop */
187#define print_devclass_short(d,i)	/* nop */
188#define print_devclass(d,i)		/* nop */
189#define print_devclass_list_short()	/* nop */
190#define print_devclass_list()		/* nop */
191#endif
192
193/*
194 * dev sysctl tree
195 */
196
197enum {
198	DEVCLASS_SYSCTL_PARENT,
199};
200
201static int
202devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
203{
204	devclass_t dc = (devclass_t)arg1;
205	const char *value;
206
207	switch (arg2) {
208	case DEVCLASS_SYSCTL_PARENT:
209		value = dc->parent ? dc->parent->name : "";
210		break;
211	default:
212		return (EINVAL);
213	}
214	return (SYSCTL_OUT_STR(req, value));
215}
216
217static void
218devclass_sysctl_init(devclass_t dc)
219{
220
221	if (dc->sysctl_tree != NULL)
222		return;
223	sysctl_ctx_init(&dc->sysctl_ctx);
224	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
225	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
226	    CTLFLAG_RD, NULL, "");
227	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
228	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
229	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
230	    "parent class");
231}
232
233enum {
234	DEVICE_SYSCTL_DESC,
235	DEVICE_SYSCTL_DRIVER,
236	DEVICE_SYSCTL_LOCATION,
237	DEVICE_SYSCTL_PNPINFO,
238	DEVICE_SYSCTL_PARENT,
239};
240
241static int
242device_sysctl_handler(SYSCTL_HANDLER_ARGS)
243{
244	device_t dev = (device_t)arg1;
245	const char *value;
246	char *buf;
247	int error;
248
249	buf = NULL;
250	switch (arg2) {
251	case DEVICE_SYSCTL_DESC:
252		value = dev->desc ? dev->desc : "";
253		break;
254	case DEVICE_SYSCTL_DRIVER:
255		value = dev->driver ? dev->driver->name : "";
256		break;
257	case DEVICE_SYSCTL_LOCATION:
258		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
259		bus_child_location_str(dev, buf, 1024);
260		break;
261	case DEVICE_SYSCTL_PNPINFO:
262		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
263		bus_child_pnpinfo_str(dev, buf, 1024);
264		break;
265	case DEVICE_SYSCTL_PARENT:
266		value = dev->parent ? dev->parent->nameunit : "";
267		break;
268	default:
269		return (EINVAL);
270	}
271	error = SYSCTL_OUT_STR(req, value);
272	if (buf != NULL)
273		free(buf, M_BUS);
274	return (error);
275}
276
277static void
278device_sysctl_init(device_t dev)
279{
280	devclass_t dc = dev->devclass;
281	int domain;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311	if (bus_get_domain(dev, &domain) == 0)
312		SYSCTL_ADD_INT(&dev->sysctl_ctx,
313		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
314		    CTLFLAG_RD, NULL, domain, "NUMA domain");
315}
316
317static void
318device_sysctl_update(device_t dev)
319{
320	devclass_t dc = dev->devclass;
321
322	if (dev->sysctl_tree == NULL)
323		return;
324	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
325}
326
327static void
328device_sysctl_fini(device_t dev)
329{
330	if (dev->sysctl_tree == NULL)
331		return;
332	sysctl_ctx_free(&dev->sysctl_ctx);
333	dev->sysctl_tree = NULL;
334}
335
336/*
337 * /dev/devctl implementation
338 */
339
340/*
341 * This design allows only one reader for /dev/devctl.  This is not desirable
342 * in the long run, but will get a lot of hair out of this implementation.
343 * Maybe we should make this device a clonable device.
344 *
345 * Also note: we specifically do not attach a device to the device_t tree
346 * to avoid potential chicken and egg problems.  One could argue that all
347 * of this belongs to the root node.  One could also further argue that the
348 * sysctl interface that we have not might more properly be an ioctl
349 * interface, but at this stage of the game, I'm not inclined to rock that
350 * boat.
351 *
352 * I'm also not sure that the SIGIO support is done correctly or not, as
353 * I copied it from a driver that had SIGIO support that likely hasn't been
354 * tested since 3.4 or 2.2.8!
355 */
356
357/* Deprecated way to adjust queue length */
358static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
359SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
360    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
361    "devctl disable -- deprecated");
362
363#define DEVCTL_DEFAULT_QUEUE_LEN 1000
364static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
365static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
366SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
367    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
368
369static d_open_t		devopen;
370static d_close_t	devclose;
371static d_read_t		devread;
372static d_ioctl_t	devioctl;
373static d_poll_t		devpoll;
374static d_kqfilter_t	devkqfilter;
375
376static struct cdevsw dev_cdevsw = {
377	.d_version =	D_VERSION,
378	.d_open =	devopen,
379	.d_close =	devclose,
380	.d_read =	devread,
381	.d_ioctl =	devioctl,
382	.d_poll =	devpoll,
383	.d_kqfilter =	devkqfilter,
384	.d_name =	"devctl",
385};
386
387struct dev_event_info
388{
389	char *dei_data;
390	TAILQ_ENTRY(dev_event_info) dei_link;
391};
392
393TAILQ_HEAD(devq, dev_event_info);
394
395static struct dev_softc
396{
397	int	inuse;
398	int	nonblock;
399	int	queued;
400	int	async;
401	struct mtx mtx;
402	struct cv cv;
403	struct selinfo sel;
404	struct devq devq;
405	struct sigio *sigio;
406} devsoftc;
407
408static void	filt_devctl_detach(struct knote *kn);
409static int	filt_devctl_read(struct knote *kn, long hint);
410
411struct filterops devctl_rfiltops = {
412	.f_isfd = 1,
413	.f_detach = filt_devctl_detach,
414	.f_event = filt_devctl_read,
415};
416
417static struct cdev *devctl_dev;
418
419static void
420devinit(void)
421{
422	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
423	    UID_ROOT, GID_WHEEL, 0600, "devctl");
424	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
425	cv_init(&devsoftc.cv, "dev cv");
426	TAILQ_INIT(&devsoftc.devq);
427	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
428	devctl2_init();
429}
430
431static int
432devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
433{
434
435	mtx_lock(&devsoftc.mtx);
436	if (devsoftc.inuse) {
437		mtx_unlock(&devsoftc.mtx);
438		return (EBUSY);
439	}
440	/* move to init */
441	devsoftc.inuse = 1;
442	mtx_unlock(&devsoftc.mtx);
443	return (0);
444}
445
446static int
447devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
448{
449
450	mtx_lock(&devsoftc.mtx);
451	devsoftc.inuse = 0;
452	devsoftc.nonblock = 0;
453	devsoftc.async = 0;
454	cv_broadcast(&devsoftc.cv);
455	funsetown(&devsoftc.sigio);
456	mtx_unlock(&devsoftc.mtx);
457	return (0);
458}
459
460/*
461 * The read channel for this device is used to report changes to
462 * userland in realtime.  We are required to free the data as well as
463 * the n1 object because we allocate them separately.  Also note that
464 * we return one record at a time.  If you try to read this device a
465 * character at a time, you will lose the rest of the data.  Listening
466 * programs are expected to cope.
467 */
468static int
469devread(struct cdev *dev, struct uio *uio, int ioflag)
470{
471	struct dev_event_info *n1;
472	int rv;
473
474	mtx_lock(&devsoftc.mtx);
475	while (TAILQ_EMPTY(&devsoftc.devq)) {
476		if (devsoftc.nonblock) {
477			mtx_unlock(&devsoftc.mtx);
478			return (EAGAIN);
479		}
480		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
481		if (rv) {
482			/*
483			 * Need to translate ERESTART to EINTR here? -- jake
484			 */
485			mtx_unlock(&devsoftc.mtx);
486			return (rv);
487		}
488	}
489	n1 = TAILQ_FIRST(&devsoftc.devq);
490	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
491	devsoftc.queued--;
492	mtx_unlock(&devsoftc.mtx);
493	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
494	free(n1->dei_data, M_BUS);
495	free(n1, M_BUS);
496	return (rv);
497}
498
499static	int
500devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
501{
502	switch (cmd) {
503
504	case FIONBIO:
505		if (*(int*)data)
506			devsoftc.nonblock = 1;
507		else
508			devsoftc.nonblock = 0;
509		return (0);
510	case FIOASYNC:
511		if (*(int*)data)
512			devsoftc.async = 1;
513		else
514			devsoftc.async = 0;
515		return (0);
516	case FIOSETOWN:
517		return fsetown(*(int *)data, &devsoftc.sigio);
518	case FIOGETOWN:
519		*(int *)data = fgetown(&devsoftc.sigio);
520		return (0);
521
522		/* (un)Support for other fcntl() calls. */
523	case FIOCLEX:
524	case FIONCLEX:
525	case FIONREAD:
526	default:
527		break;
528	}
529	return (ENOTTY);
530}
531
532static	int
533devpoll(struct cdev *dev, int events, struct thread *td)
534{
535	int	revents = 0;
536
537	mtx_lock(&devsoftc.mtx);
538	if (events & (POLLIN | POLLRDNORM)) {
539		if (!TAILQ_EMPTY(&devsoftc.devq))
540			revents = events & (POLLIN | POLLRDNORM);
541		else
542			selrecord(td, &devsoftc.sel);
543	}
544	mtx_unlock(&devsoftc.mtx);
545
546	return (revents);
547}
548
549static int
550devkqfilter(struct cdev *dev, struct knote *kn)
551{
552	int error;
553
554	if (kn->kn_filter == EVFILT_READ) {
555		kn->kn_fop = &devctl_rfiltops;
556		knlist_add(&devsoftc.sel.si_note, kn, 0);
557		error = 0;
558	} else
559		error = EINVAL;
560	return (error);
561}
562
563static void
564filt_devctl_detach(struct knote *kn)
565{
566
567	knlist_remove(&devsoftc.sel.si_note, kn, 0);
568}
569
570static int
571filt_devctl_read(struct knote *kn, long hint)
572{
573	kn->kn_data = devsoftc.queued;
574	return (kn->kn_data != 0);
575}
576
577/**
578 * @brief Return whether the userland process is running
579 */
580boolean_t
581devctl_process_running(void)
582{
583	return (devsoftc.inuse == 1);
584}
585
586/**
587 * @brief Queue data to be read from the devctl device
588 *
589 * Generic interface to queue data to the devctl device.  It is
590 * assumed that @p data is properly formatted.  It is further assumed
591 * that @p data is allocated using the M_BUS malloc type.
592 */
593void
594devctl_queue_data_f(char *data, int flags)
595{
596	struct dev_event_info *n1 = NULL, *n2 = NULL;
597
598	if (strlen(data) == 0)
599		goto out;
600	if (devctl_queue_length == 0)
601		goto out;
602	n1 = malloc(sizeof(*n1), M_BUS, flags);
603	if (n1 == NULL)
604		goto out;
605	n1->dei_data = data;
606	mtx_lock(&devsoftc.mtx);
607	if (devctl_queue_length == 0) {
608		mtx_unlock(&devsoftc.mtx);
609		free(n1->dei_data, M_BUS);
610		free(n1, M_BUS);
611		return;
612	}
613	/* Leave at least one spot in the queue... */
614	while (devsoftc.queued > devctl_queue_length - 1) {
615		n2 = TAILQ_FIRST(&devsoftc.devq);
616		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
617		free(n2->dei_data, M_BUS);
618		free(n2, M_BUS);
619		devsoftc.queued--;
620	}
621	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
622	devsoftc.queued++;
623	cv_broadcast(&devsoftc.cv);
624	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
625	mtx_unlock(&devsoftc.mtx);
626	selwakeup(&devsoftc.sel);
627	if (devsoftc.async && devsoftc.sigio != NULL)
628		pgsigio(&devsoftc.sigio, SIGIO, 0);
629	return;
630out:
631	/*
632	 * We have to free data on all error paths since the caller
633	 * assumes it will be free'd when this item is dequeued.
634	 */
635	free(data, M_BUS);
636	return;
637}
638
639void
640devctl_queue_data(char *data)
641{
642
643	devctl_queue_data_f(data, M_NOWAIT);
644}
645
646/**
647 * @brief Send a 'notification' to userland, using standard ways
648 */
649void
650devctl_notify_f(const char *system, const char *subsystem, const char *type,
651    const char *data, int flags)
652{
653	int len = 0;
654	char *msg;
655
656	if (system == NULL)
657		return;		/* BOGUS!  Must specify system. */
658	if (subsystem == NULL)
659		return;		/* BOGUS!  Must specify subsystem. */
660	if (type == NULL)
661		return;		/* BOGUS!  Must specify type. */
662	len += strlen(" system=") + strlen(system);
663	len += strlen(" subsystem=") + strlen(subsystem);
664	len += strlen(" type=") + strlen(type);
665	/* add in the data message plus newline. */
666	if (data != NULL)
667		len += strlen(data);
668	len += 3;	/* '!', '\n', and NUL */
669	msg = malloc(len, M_BUS, flags);
670	if (msg == NULL)
671		return;		/* Drop it on the floor */
672	if (data != NULL)
673		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
674		    system, subsystem, type, data);
675	else
676		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
677		    system, subsystem, type);
678	devctl_queue_data_f(msg, flags);
679}
680
681void
682devctl_notify(const char *system, const char *subsystem, const char *type,
683    const char *data)
684{
685
686	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
687}
688
689/*
690 * Common routine that tries to make sending messages as easy as possible.
691 * We allocate memory for the data, copy strings into that, but do not
692 * free it unless there's an error.  The dequeue part of the driver should
693 * free the data.  We don't send data when the device is disabled.  We do
694 * send data, even when we have no listeners, because we wish to avoid
695 * races relating to startup and restart of listening applications.
696 *
697 * devaddq is designed to string together the type of event, with the
698 * object of that event, plus the plug and play info and location info
699 * for that event.  This is likely most useful for devices, but less
700 * useful for other consumers of this interface.  Those should use
701 * the devctl_queue_data() interface instead.
702 */
703static void
704devaddq(const char *type, const char *what, device_t dev)
705{
706	char *data = NULL;
707	char *loc = NULL;
708	char *pnp = NULL;
709	const char *parstr;
710
711	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
712		return;
713	data = malloc(1024, M_BUS, M_NOWAIT);
714	if (data == NULL)
715		goto bad;
716
717	/* get the bus specific location of this device */
718	loc = malloc(1024, M_BUS, M_NOWAIT);
719	if (loc == NULL)
720		goto bad;
721	*loc = '\0';
722	bus_child_location_str(dev, loc, 1024);
723
724	/* Get the bus specific pnp info of this device */
725	pnp = malloc(1024, M_BUS, M_NOWAIT);
726	if (pnp == NULL)
727		goto bad;
728	*pnp = '\0';
729	bus_child_pnpinfo_str(dev, pnp, 1024);
730
731	/* Get the parent of this device, or / if high enough in the tree. */
732	if (device_get_parent(dev) == NULL)
733		parstr = ".";	/* Or '/' ? */
734	else
735		parstr = device_get_nameunit(device_get_parent(dev));
736	/* String it all together. */
737	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
738	  parstr);
739	free(loc, M_BUS);
740	free(pnp, M_BUS);
741	devctl_queue_data(data);
742	return;
743bad:
744	free(pnp, M_BUS);
745	free(loc, M_BUS);
746	free(data, M_BUS);
747	return;
748}
749
750/*
751 * A device was added to the tree.  We are called just after it successfully
752 * attaches (that is, probe and attach success for this device).  No call
753 * is made if a device is merely parented into the tree.  See devnomatch
754 * if probe fails.  If attach fails, no notification is sent (but maybe
755 * we should have a different message for this).
756 */
757static void
758devadded(device_t dev)
759{
760	devaddq("+", device_get_nameunit(dev), dev);
761}
762
763/*
764 * A device was removed from the tree.  We are called just before this
765 * happens.
766 */
767static void
768devremoved(device_t dev)
769{
770	devaddq("-", device_get_nameunit(dev), dev);
771}
772
773/*
774 * Called when there's no match for this device.  This is only called
775 * the first time that no match happens, so we don't keep getting this
776 * message.  Should that prove to be undesirable, we can change it.
777 * This is called when all drivers that can attach to a given bus
778 * decline to accept this device.  Other errors may not be detected.
779 */
780static void
781devnomatch(device_t dev)
782{
783	devaddq("?", "", dev);
784}
785
786static int
787sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
788{
789	struct dev_event_info *n1;
790	int dis, error;
791
792	dis = (devctl_queue_length == 0);
793	error = sysctl_handle_int(oidp, &dis, 0, req);
794	if (error || !req->newptr)
795		return (error);
796	if (mtx_initialized(&devsoftc.mtx))
797		mtx_lock(&devsoftc.mtx);
798	if (dis) {
799		while (!TAILQ_EMPTY(&devsoftc.devq)) {
800			n1 = TAILQ_FIRST(&devsoftc.devq);
801			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
802			free(n1->dei_data, M_BUS);
803			free(n1, M_BUS);
804		}
805		devsoftc.queued = 0;
806		devctl_queue_length = 0;
807	} else {
808		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
809	}
810	if (mtx_initialized(&devsoftc.mtx))
811		mtx_unlock(&devsoftc.mtx);
812	return (0);
813}
814
815static int
816sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
817{
818	struct dev_event_info *n1;
819	int q, error;
820
821	q = devctl_queue_length;
822	error = sysctl_handle_int(oidp, &q, 0, req);
823	if (error || !req->newptr)
824		return (error);
825	if (q < 0)
826		return (EINVAL);
827	if (mtx_initialized(&devsoftc.mtx))
828		mtx_lock(&devsoftc.mtx);
829	devctl_queue_length = q;
830	while (devsoftc.queued > devctl_queue_length) {
831		n1 = TAILQ_FIRST(&devsoftc.devq);
832		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
833		free(n1->dei_data, M_BUS);
834		free(n1, M_BUS);
835		devsoftc.queued--;
836	}
837	if (mtx_initialized(&devsoftc.mtx))
838		mtx_unlock(&devsoftc.mtx);
839	return (0);
840}
841
842/* End of /dev/devctl code */
843
844static TAILQ_HEAD(,device)	bus_data_devices;
845static int bus_data_generation = 1;
846
847static kobj_method_t null_methods[] = {
848	KOBJMETHOD_END
849};
850
851DEFINE_CLASS(null, null_methods, 0);
852
853/*
854 * Bus pass implementation
855 */
856
857static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
858int bus_current_pass = BUS_PASS_ROOT;
859
860/**
861 * @internal
862 * @brief Register the pass level of a new driver attachment
863 *
864 * Register a new driver attachment's pass level.  If no driver
865 * attachment with the same pass level has been added, then @p new
866 * will be added to the global passes list.
867 *
868 * @param new		the new driver attachment
869 */
870static void
871driver_register_pass(struct driverlink *new)
872{
873	struct driverlink *dl;
874
875	/* We only consider pass numbers during boot. */
876	if (bus_current_pass == BUS_PASS_DEFAULT)
877		return;
878
879	/*
880	 * Walk the passes list.  If we already know about this pass
881	 * then there is nothing to do.  If we don't, then insert this
882	 * driver link into the list.
883	 */
884	TAILQ_FOREACH(dl, &passes, passlink) {
885		if (dl->pass < new->pass)
886			continue;
887		if (dl->pass == new->pass)
888			return;
889		TAILQ_INSERT_BEFORE(dl, new, passlink);
890		return;
891	}
892	TAILQ_INSERT_TAIL(&passes, new, passlink);
893}
894
895/**
896 * @brief Raise the current bus pass
897 *
898 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
899 * method on the root bus to kick off a new device tree scan for each
900 * new pass level that has at least one driver.
901 */
902void
903bus_set_pass(int pass)
904{
905	struct driverlink *dl;
906
907	if (bus_current_pass > pass)
908		panic("Attempt to lower bus pass level");
909
910	TAILQ_FOREACH(dl, &passes, passlink) {
911		/* Skip pass values below the current pass level. */
912		if (dl->pass <= bus_current_pass)
913			continue;
914
915		/*
916		 * Bail once we hit a driver with a pass level that is
917		 * too high.
918		 */
919		if (dl->pass > pass)
920			break;
921
922		/*
923		 * Raise the pass level to the next level and rescan
924		 * the tree.
925		 */
926		bus_current_pass = dl->pass;
927		BUS_NEW_PASS(root_bus);
928	}
929
930	/*
931	 * If there isn't a driver registered for the requested pass,
932	 * then bus_current_pass might still be less than 'pass'.  Set
933	 * it to 'pass' in that case.
934	 */
935	if (bus_current_pass < pass)
936		bus_current_pass = pass;
937	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
938}
939
940/*
941 * Devclass implementation
942 */
943
944static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
945
946/**
947 * @internal
948 * @brief Find or create a device class
949 *
950 * If a device class with the name @p classname exists, return it,
951 * otherwise if @p create is non-zero create and return a new device
952 * class.
953 *
954 * If @p parentname is non-NULL, the parent of the devclass is set to
955 * the devclass of that name.
956 *
957 * @param classname	the devclass name to find or create
958 * @param parentname	the parent devclass name or @c NULL
959 * @param create	non-zero to create a devclass
960 */
961static devclass_t
962devclass_find_internal(const char *classname, const char *parentname,
963		       int create)
964{
965	devclass_t dc;
966
967	PDEBUG(("looking for %s", classname));
968	if (!classname)
969		return (NULL);
970
971	TAILQ_FOREACH(dc, &devclasses, link) {
972		if (!strcmp(dc->name, classname))
973			break;
974	}
975
976	if (create && !dc) {
977		PDEBUG(("creating %s", classname));
978		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
979		    M_BUS, M_NOWAIT | M_ZERO);
980		if (!dc)
981			return (NULL);
982		dc->parent = NULL;
983		dc->name = (char*) (dc + 1);
984		strcpy(dc->name, classname);
985		TAILQ_INIT(&dc->drivers);
986		TAILQ_INSERT_TAIL(&devclasses, dc, link);
987
988		bus_data_generation_update();
989	}
990
991	/*
992	 * If a parent class is specified, then set that as our parent so
993	 * that this devclass will support drivers for the parent class as
994	 * well.  If the parent class has the same name don't do this though
995	 * as it creates a cycle that can trigger an infinite loop in
996	 * device_probe_child() if a device exists for which there is no
997	 * suitable driver.
998	 */
999	if (parentname && dc && !dc->parent &&
1000	    strcmp(classname, parentname) != 0) {
1001		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1002		dc->parent->flags |= DC_HAS_CHILDREN;
1003	}
1004
1005	return (dc);
1006}
1007
1008/**
1009 * @brief Create a device class
1010 *
1011 * If a device class with the name @p classname exists, return it,
1012 * otherwise create and return a new device class.
1013 *
1014 * @param classname	the devclass name to find or create
1015 */
1016devclass_t
1017devclass_create(const char *classname)
1018{
1019	return (devclass_find_internal(classname, NULL, TRUE));
1020}
1021
1022/**
1023 * @brief Find a device class
1024 *
1025 * If a device class with the name @p classname exists, return it,
1026 * otherwise return @c NULL.
1027 *
1028 * @param classname	the devclass name to find
1029 */
1030devclass_t
1031devclass_find(const char *classname)
1032{
1033	return (devclass_find_internal(classname, NULL, FALSE));
1034}
1035
1036/**
1037 * @brief Register that a device driver has been added to a devclass
1038 *
1039 * Register that a device driver has been added to a devclass.  This
1040 * is called by devclass_add_driver to accomplish the recursive
1041 * notification of all the children classes of dc, as well as dc.
1042 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1043 * the devclass.
1044 *
1045 * We do a full search here of the devclass list at each iteration
1046 * level to save storing children-lists in the devclass structure.  If
1047 * we ever move beyond a few dozen devices doing this, we may need to
1048 * reevaluate...
1049 *
1050 * @param dc		the devclass to edit
1051 * @param driver	the driver that was just added
1052 */
1053static void
1054devclass_driver_added(devclass_t dc, driver_t *driver)
1055{
1056	devclass_t parent;
1057	int i;
1058
1059	/*
1060	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1061	 */
1062	for (i = 0; i < dc->maxunit; i++)
1063		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1064			BUS_DRIVER_ADDED(dc->devices[i], driver);
1065
1066	/*
1067	 * Walk through the children classes.  Since we only keep a
1068	 * single parent pointer around, we walk the entire list of
1069	 * devclasses looking for children.  We set the
1070	 * DC_HAS_CHILDREN flag when a child devclass is created on
1071	 * the parent, so we only walk the list for those devclasses
1072	 * that have children.
1073	 */
1074	if (!(dc->flags & DC_HAS_CHILDREN))
1075		return;
1076	parent = dc;
1077	TAILQ_FOREACH(dc, &devclasses, link) {
1078		if (dc->parent == parent)
1079			devclass_driver_added(dc, driver);
1080	}
1081}
1082
1083/**
1084 * @brief Add a device driver to a device class
1085 *
1086 * Add a device driver to a devclass. This is normally called
1087 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1088 * all devices in the devclass will be called to allow them to attempt
1089 * to re-probe any unmatched children.
1090 *
1091 * @param dc		the devclass to edit
1092 * @param driver	the driver to register
1093 */
1094int
1095devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1096{
1097	driverlink_t dl;
1098	const char *parentname;
1099
1100	PDEBUG(("%s", DRIVERNAME(driver)));
1101
1102	/* Don't allow invalid pass values. */
1103	if (pass <= BUS_PASS_ROOT)
1104		return (EINVAL);
1105
1106	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1107	if (!dl)
1108		return (ENOMEM);
1109
1110	/*
1111	 * Compile the driver's methods. Also increase the reference count
1112	 * so that the class doesn't get freed when the last instance
1113	 * goes. This means we can safely use static methods and avoids a
1114	 * double-free in devclass_delete_driver.
1115	 */
1116	kobj_class_compile((kobj_class_t) driver);
1117
1118	/*
1119	 * If the driver has any base classes, make the
1120	 * devclass inherit from the devclass of the driver's
1121	 * first base class. This will allow the system to
1122	 * search for drivers in both devclasses for children
1123	 * of a device using this driver.
1124	 */
1125	if (driver->baseclasses)
1126		parentname = driver->baseclasses[0]->name;
1127	else
1128		parentname = NULL;
1129	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1130
1131	dl->driver = driver;
1132	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1133	driver->refs++;		/* XXX: kobj_mtx */
1134	dl->pass = pass;
1135	driver_register_pass(dl);
1136
1137	devclass_driver_added(dc, driver);
1138	bus_data_generation_update();
1139	return (0);
1140}
1141
1142/**
1143 * @brief Register that a device driver has been deleted from a devclass
1144 *
1145 * Register that a device driver has been removed from a devclass.
1146 * This is called by devclass_delete_driver to accomplish the
1147 * recursive notification of all the children classes of busclass, as
1148 * well as busclass.  Each layer will attempt to detach the driver
1149 * from any devices that are children of the bus's devclass.  The function
1150 * will return an error if a device fails to detach.
1151 *
1152 * We do a full search here of the devclass list at each iteration
1153 * level to save storing children-lists in the devclass structure.  If
1154 * we ever move beyond a few dozen devices doing this, we may need to
1155 * reevaluate...
1156 *
1157 * @param busclass	the devclass of the parent bus
1158 * @param dc		the devclass of the driver being deleted
1159 * @param driver	the driver being deleted
1160 */
1161static int
1162devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1163{
1164	devclass_t parent;
1165	device_t dev;
1166	int error, i;
1167
1168	/*
1169	 * Disassociate from any devices.  We iterate through all the
1170	 * devices in the devclass of the driver and detach any which are
1171	 * using the driver and which have a parent in the devclass which
1172	 * we are deleting from.
1173	 *
1174	 * Note that since a driver can be in multiple devclasses, we
1175	 * should not detach devices which are not children of devices in
1176	 * the affected devclass.
1177	 */
1178	for (i = 0; i < dc->maxunit; i++) {
1179		if (dc->devices[i]) {
1180			dev = dc->devices[i];
1181			if (dev->driver == driver && dev->parent &&
1182			    dev->parent->devclass == busclass) {
1183				if ((error = device_detach(dev)) != 0)
1184					return (error);
1185				BUS_PROBE_NOMATCH(dev->parent, dev);
1186				devnomatch(dev);
1187				dev->flags |= DF_DONENOMATCH;
1188			}
1189		}
1190	}
1191
1192	/*
1193	 * Walk through the children classes.  Since we only keep a
1194	 * single parent pointer around, we walk the entire list of
1195	 * devclasses looking for children.  We set the
1196	 * DC_HAS_CHILDREN flag when a child devclass is created on
1197	 * the parent, so we only walk the list for those devclasses
1198	 * that have children.
1199	 */
1200	if (!(busclass->flags & DC_HAS_CHILDREN))
1201		return (0);
1202	parent = busclass;
1203	TAILQ_FOREACH(busclass, &devclasses, link) {
1204		if (busclass->parent == parent) {
1205			error = devclass_driver_deleted(busclass, dc, driver);
1206			if (error)
1207				return (error);
1208		}
1209	}
1210	return (0);
1211}
1212
1213/**
1214 * @brief Delete a device driver from a device class
1215 *
1216 * Delete a device driver from a devclass. This is normally called
1217 * automatically by DRIVER_MODULE().
1218 *
1219 * If the driver is currently attached to any devices,
1220 * devclass_delete_driver() will first attempt to detach from each
1221 * device. If one of the detach calls fails, the driver will not be
1222 * deleted.
1223 *
1224 * @param dc		the devclass to edit
1225 * @param driver	the driver to unregister
1226 */
1227int
1228devclass_delete_driver(devclass_t busclass, driver_t *driver)
1229{
1230	devclass_t dc = devclass_find(driver->name);
1231	driverlink_t dl;
1232	int error;
1233
1234	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1235
1236	if (!dc)
1237		return (0);
1238
1239	/*
1240	 * Find the link structure in the bus' list of drivers.
1241	 */
1242	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1243		if (dl->driver == driver)
1244			break;
1245	}
1246
1247	if (!dl) {
1248		PDEBUG(("%s not found in %s list", driver->name,
1249		    busclass->name));
1250		return (ENOENT);
1251	}
1252
1253	error = devclass_driver_deleted(busclass, dc, driver);
1254	if (error != 0)
1255		return (error);
1256
1257	TAILQ_REMOVE(&busclass->drivers, dl, link);
1258	free(dl, M_BUS);
1259
1260	/* XXX: kobj_mtx */
1261	driver->refs--;
1262	if (driver->refs == 0)
1263		kobj_class_free((kobj_class_t) driver);
1264
1265	bus_data_generation_update();
1266	return (0);
1267}
1268
1269/**
1270 * @brief Quiesces a set of device drivers from a device class
1271 *
1272 * Quiesce a device driver from a devclass. This is normally called
1273 * automatically by DRIVER_MODULE().
1274 *
1275 * If the driver is currently attached to any devices,
1276 * devclass_quiesece_driver() will first attempt to quiesce each
1277 * device.
1278 *
1279 * @param dc		the devclass to edit
1280 * @param driver	the driver to unregister
1281 */
1282static int
1283devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1284{
1285	devclass_t dc = devclass_find(driver->name);
1286	driverlink_t dl;
1287	device_t dev;
1288	int i;
1289	int error;
1290
1291	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1292
1293	if (!dc)
1294		return (0);
1295
1296	/*
1297	 * Find the link structure in the bus' list of drivers.
1298	 */
1299	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1300		if (dl->driver == driver)
1301			break;
1302	}
1303
1304	if (!dl) {
1305		PDEBUG(("%s not found in %s list", driver->name,
1306		    busclass->name));
1307		return (ENOENT);
1308	}
1309
1310	/*
1311	 * Quiesce all devices.  We iterate through all the devices in
1312	 * the devclass of the driver and quiesce any which are using
1313	 * the driver and which have a parent in the devclass which we
1314	 * are quiescing.
1315	 *
1316	 * Note that since a driver can be in multiple devclasses, we
1317	 * should not quiesce devices which are not children of
1318	 * devices in the affected devclass.
1319	 */
1320	for (i = 0; i < dc->maxunit; i++) {
1321		if (dc->devices[i]) {
1322			dev = dc->devices[i];
1323			if (dev->driver == driver && dev->parent &&
1324			    dev->parent->devclass == busclass) {
1325				if ((error = device_quiesce(dev)) != 0)
1326					return (error);
1327			}
1328		}
1329	}
1330
1331	return (0);
1332}
1333
1334/**
1335 * @internal
1336 */
1337static driverlink_t
1338devclass_find_driver_internal(devclass_t dc, const char *classname)
1339{
1340	driverlink_t dl;
1341
1342	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1343
1344	TAILQ_FOREACH(dl, &dc->drivers, link) {
1345		if (!strcmp(dl->driver->name, classname))
1346			return (dl);
1347	}
1348
1349	PDEBUG(("not found"));
1350	return (NULL);
1351}
1352
1353/**
1354 * @brief Return the name of the devclass
1355 */
1356const char *
1357devclass_get_name(devclass_t dc)
1358{
1359	return (dc->name);
1360}
1361
1362/**
1363 * @brief Find a device given a unit number
1364 *
1365 * @param dc		the devclass to search
1366 * @param unit		the unit number to search for
1367 *
1368 * @returns		the device with the given unit number or @c
1369 *			NULL if there is no such device
1370 */
1371device_t
1372devclass_get_device(devclass_t dc, int unit)
1373{
1374	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1375		return (NULL);
1376	return (dc->devices[unit]);
1377}
1378
1379/**
1380 * @brief Find the softc field of a device given a unit number
1381 *
1382 * @param dc		the devclass to search
1383 * @param unit		the unit number to search for
1384 *
1385 * @returns		the softc field of the device with the given
1386 *			unit number or @c NULL if there is no such
1387 *			device
1388 */
1389void *
1390devclass_get_softc(devclass_t dc, int unit)
1391{
1392	device_t dev;
1393
1394	dev = devclass_get_device(dc, unit);
1395	if (!dev)
1396		return (NULL);
1397
1398	return (device_get_softc(dev));
1399}
1400
1401/**
1402 * @brief Get a list of devices in the devclass
1403 *
1404 * An array containing a list of all the devices in the given devclass
1405 * is allocated and returned in @p *devlistp. The number of devices
1406 * in the array is returned in @p *devcountp. The caller should free
1407 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1408 *
1409 * @param dc		the devclass to examine
1410 * @param devlistp	points at location for array pointer return
1411 *			value
1412 * @param devcountp	points at location for array size return value
1413 *
1414 * @retval 0		success
1415 * @retval ENOMEM	the array allocation failed
1416 */
1417int
1418devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1419{
1420	int count, i;
1421	device_t *list;
1422
1423	count = devclass_get_count(dc);
1424	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1425	if (!list)
1426		return (ENOMEM);
1427
1428	count = 0;
1429	for (i = 0; i < dc->maxunit; i++) {
1430		if (dc->devices[i]) {
1431			list[count] = dc->devices[i];
1432			count++;
1433		}
1434	}
1435
1436	*devlistp = list;
1437	*devcountp = count;
1438
1439	return (0);
1440}
1441
1442/**
1443 * @brief Get a list of drivers in the devclass
1444 *
1445 * An array containing a list of pointers to all the drivers in the
1446 * given devclass is allocated and returned in @p *listp.  The number
1447 * of drivers in the array is returned in @p *countp. The caller should
1448 * free the array using @c free(p, M_TEMP).
1449 *
1450 * @param dc		the devclass to examine
1451 * @param listp		gives location for array pointer return value
1452 * @param countp	gives location for number of array elements
1453 *			return value
1454 *
1455 * @retval 0		success
1456 * @retval ENOMEM	the array allocation failed
1457 */
1458int
1459devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1460{
1461	driverlink_t dl;
1462	driver_t **list;
1463	int count;
1464
1465	count = 0;
1466	TAILQ_FOREACH(dl, &dc->drivers, link)
1467		count++;
1468	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1469	if (list == NULL)
1470		return (ENOMEM);
1471
1472	count = 0;
1473	TAILQ_FOREACH(dl, &dc->drivers, link) {
1474		list[count] = dl->driver;
1475		count++;
1476	}
1477	*listp = list;
1478	*countp = count;
1479
1480	return (0);
1481}
1482
1483/**
1484 * @brief Get the number of devices in a devclass
1485 *
1486 * @param dc		the devclass to examine
1487 */
1488int
1489devclass_get_count(devclass_t dc)
1490{
1491	int count, i;
1492
1493	count = 0;
1494	for (i = 0; i < dc->maxunit; i++)
1495		if (dc->devices[i])
1496			count++;
1497	return (count);
1498}
1499
1500/**
1501 * @brief Get the maximum unit number used in a devclass
1502 *
1503 * Note that this is one greater than the highest currently-allocated
1504 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1505 * that not even the devclass has been allocated yet.
1506 *
1507 * @param dc		the devclass to examine
1508 */
1509int
1510devclass_get_maxunit(devclass_t dc)
1511{
1512	if (dc == NULL)
1513		return (-1);
1514	return (dc->maxunit);
1515}
1516
1517/**
1518 * @brief Find a free unit number in a devclass
1519 *
1520 * This function searches for the first unused unit number greater
1521 * that or equal to @p unit.
1522 *
1523 * @param dc		the devclass to examine
1524 * @param unit		the first unit number to check
1525 */
1526int
1527devclass_find_free_unit(devclass_t dc, int unit)
1528{
1529	if (dc == NULL)
1530		return (unit);
1531	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1532		unit++;
1533	return (unit);
1534}
1535
1536/**
1537 * @brief Set the parent of a devclass
1538 *
1539 * The parent class is normally initialised automatically by
1540 * DRIVER_MODULE().
1541 *
1542 * @param dc		the devclass to edit
1543 * @param pdc		the new parent devclass
1544 */
1545void
1546devclass_set_parent(devclass_t dc, devclass_t pdc)
1547{
1548	dc->parent = pdc;
1549}
1550
1551/**
1552 * @brief Get the parent of a devclass
1553 *
1554 * @param dc		the devclass to examine
1555 */
1556devclass_t
1557devclass_get_parent(devclass_t dc)
1558{
1559	return (dc->parent);
1560}
1561
1562struct sysctl_ctx_list *
1563devclass_get_sysctl_ctx(devclass_t dc)
1564{
1565	return (&dc->sysctl_ctx);
1566}
1567
1568struct sysctl_oid *
1569devclass_get_sysctl_tree(devclass_t dc)
1570{
1571	return (dc->sysctl_tree);
1572}
1573
1574/**
1575 * @internal
1576 * @brief Allocate a unit number
1577 *
1578 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1579 * will do). The allocated unit number is returned in @p *unitp.
1580
1581 * @param dc		the devclass to allocate from
1582 * @param unitp		points at the location for the allocated unit
1583 *			number
1584 *
1585 * @retval 0		success
1586 * @retval EEXIST	the requested unit number is already allocated
1587 * @retval ENOMEM	memory allocation failure
1588 */
1589static int
1590devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1591{
1592	const char *s;
1593	int unit = *unitp;
1594
1595	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1596
1597	/* Ask the parent bus if it wants to wire this device. */
1598	if (unit == -1)
1599		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1600		    &unit);
1601
1602	/* If we were given a wired unit number, check for existing device */
1603	/* XXX imp XXX */
1604	if (unit != -1) {
1605		if (unit >= 0 && unit < dc->maxunit &&
1606		    dc->devices[unit] != NULL) {
1607			if (bootverbose)
1608				printf("%s: %s%d already exists; skipping it\n",
1609				    dc->name, dc->name, *unitp);
1610			return (EEXIST);
1611		}
1612	} else {
1613		/* Unwired device, find the next available slot for it */
1614		unit = 0;
1615		for (unit = 0;; unit++) {
1616			/* If there is an "at" hint for a unit then skip it. */
1617			if (resource_string_value(dc->name, unit, "at", &s) ==
1618			    0)
1619				continue;
1620
1621			/* If this device slot is already in use, skip it. */
1622			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1623				continue;
1624
1625			break;
1626		}
1627	}
1628
1629	/*
1630	 * We've selected a unit beyond the length of the table, so let's
1631	 * extend the table to make room for all units up to and including
1632	 * this one.
1633	 */
1634	if (unit >= dc->maxunit) {
1635		device_t *newlist, *oldlist;
1636		int newsize;
1637
1638		oldlist = dc->devices;
1639		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1640		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1641		if (!newlist)
1642			return (ENOMEM);
1643		if (oldlist != NULL)
1644			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1645		bzero(newlist + dc->maxunit,
1646		    sizeof(device_t) * (newsize - dc->maxunit));
1647		dc->devices = newlist;
1648		dc->maxunit = newsize;
1649		if (oldlist != NULL)
1650			free(oldlist, M_BUS);
1651	}
1652	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1653
1654	*unitp = unit;
1655	return (0);
1656}
1657
1658/**
1659 * @internal
1660 * @brief Add a device to a devclass
1661 *
1662 * A unit number is allocated for the device (using the device's
1663 * preferred unit number if any) and the device is registered in the
1664 * devclass. This allows the device to be looked up by its unit
1665 * number, e.g. by decoding a dev_t minor number.
1666 *
1667 * @param dc		the devclass to add to
1668 * @param dev		the device to add
1669 *
1670 * @retval 0		success
1671 * @retval EEXIST	the requested unit number is already allocated
1672 * @retval ENOMEM	memory allocation failure
1673 */
1674static int
1675devclass_add_device(devclass_t dc, device_t dev)
1676{
1677	int buflen, error;
1678
1679	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1680
1681	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1682	if (buflen < 0)
1683		return (ENOMEM);
1684	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1685	if (!dev->nameunit)
1686		return (ENOMEM);
1687
1688	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1689		free(dev->nameunit, M_BUS);
1690		dev->nameunit = NULL;
1691		return (error);
1692	}
1693	dc->devices[dev->unit] = dev;
1694	dev->devclass = dc;
1695	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1696
1697	return (0);
1698}
1699
1700/**
1701 * @internal
1702 * @brief Delete a device from a devclass
1703 *
1704 * The device is removed from the devclass's device list and its unit
1705 * number is freed.
1706
1707 * @param dc		the devclass to delete from
1708 * @param dev		the device to delete
1709 *
1710 * @retval 0		success
1711 */
1712static int
1713devclass_delete_device(devclass_t dc, device_t dev)
1714{
1715	if (!dc || !dev)
1716		return (0);
1717
1718	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1719
1720	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1721		panic("devclass_delete_device: inconsistent device class");
1722	dc->devices[dev->unit] = NULL;
1723	if (dev->flags & DF_WILDCARD)
1724		dev->unit = -1;
1725	dev->devclass = NULL;
1726	free(dev->nameunit, M_BUS);
1727	dev->nameunit = NULL;
1728
1729	return (0);
1730}
1731
1732/**
1733 * @internal
1734 * @brief Make a new device and add it as a child of @p parent
1735 *
1736 * @param parent	the parent of the new device
1737 * @param name		the devclass name of the new device or @c NULL
1738 *			to leave the devclass unspecified
1739 * @parem unit		the unit number of the new device of @c -1 to
1740 *			leave the unit number unspecified
1741 *
1742 * @returns the new device
1743 */
1744static device_t
1745make_device(device_t parent, const char *name, int unit)
1746{
1747	device_t dev;
1748	devclass_t dc;
1749
1750	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1751
1752	if (name) {
1753		dc = devclass_find_internal(name, NULL, TRUE);
1754		if (!dc) {
1755			printf("make_device: can't find device class %s\n",
1756			    name);
1757			return (NULL);
1758		}
1759	} else {
1760		dc = NULL;
1761	}
1762
1763	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1764	if (!dev)
1765		return (NULL);
1766
1767	dev->parent = parent;
1768	TAILQ_INIT(&dev->children);
1769	kobj_init((kobj_t) dev, &null_class);
1770	dev->driver = NULL;
1771	dev->devclass = NULL;
1772	dev->unit = unit;
1773	dev->nameunit = NULL;
1774	dev->desc = NULL;
1775	dev->busy = 0;
1776	dev->devflags = 0;
1777	dev->flags = DF_ENABLED;
1778	dev->order = 0;
1779	if (unit == -1)
1780		dev->flags |= DF_WILDCARD;
1781	if (name) {
1782		dev->flags |= DF_FIXEDCLASS;
1783		if (devclass_add_device(dc, dev)) {
1784			kobj_delete((kobj_t) dev, M_BUS);
1785			return (NULL);
1786		}
1787	}
1788	dev->ivars = NULL;
1789	dev->softc = NULL;
1790
1791	dev->state = DS_NOTPRESENT;
1792
1793	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1794	bus_data_generation_update();
1795
1796	return (dev);
1797}
1798
1799/**
1800 * @internal
1801 * @brief Print a description of a device.
1802 */
1803static int
1804device_print_child(device_t dev, device_t child)
1805{
1806	int retval = 0;
1807
1808	if (device_is_alive(child))
1809		retval += BUS_PRINT_CHILD(dev, child);
1810	else
1811		retval += device_printf(child, " not found\n");
1812
1813	return (retval);
1814}
1815
1816/**
1817 * @brief Create a new device
1818 *
1819 * This creates a new device and adds it as a child of an existing
1820 * parent device. The new device will be added after the last existing
1821 * child with order zero.
1822 *
1823 * @param dev		the device which will be the parent of the
1824 *			new child device
1825 * @param name		devclass name for new device or @c NULL if not
1826 *			specified
1827 * @param unit		unit number for new device or @c -1 if not
1828 *			specified
1829 *
1830 * @returns		the new device
1831 */
1832device_t
1833device_add_child(device_t dev, const char *name, int unit)
1834{
1835	return (device_add_child_ordered(dev, 0, name, unit));
1836}
1837
1838/**
1839 * @brief Create a new device
1840 *
1841 * This creates a new device and adds it as a child of an existing
1842 * parent device. The new device will be added after the last existing
1843 * child with the same order.
1844 *
1845 * @param dev		the device which will be the parent of the
1846 *			new child device
1847 * @param order		a value which is used to partially sort the
1848 *			children of @p dev - devices created using
1849 *			lower values of @p order appear first in @p
1850 *			dev's list of children
1851 * @param name		devclass name for new device or @c NULL if not
1852 *			specified
1853 * @param unit		unit number for new device or @c -1 if not
1854 *			specified
1855 *
1856 * @returns		the new device
1857 */
1858device_t
1859device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1860{
1861	device_t child;
1862	device_t place;
1863
1864	PDEBUG(("%s at %s with order %u as unit %d",
1865	    name, DEVICENAME(dev), order, unit));
1866	KASSERT(name != NULL || unit == -1,
1867	    ("child device with wildcard name and specific unit number"));
1868
1869	child = make_device(dev, name, unit);
1870	if (child == NULL)
1871		return (child);
1872	child->order = order;
1873
1874	TAILQ_FOREACH(place, &dev->children, link) {
1875		if (place->order > order)
1876			break;
1877	}
1878
1879	if (place) {
1880		/*
1881		 * The device 'place' is the first device whose order is
1882		 * greater than the new child.
1883		 */
1884		TAILQ_INSERT_BEFORE(place, child, link);
1885	} else {
1886		/*
1887		 * The new child's order is greater or equal to the order of
1888		 * any existing device. Add the child to the tail of the list.
1889		 */
1890		TAILQ_INSERT_TAIL(&dev->children, child, link);
1891	}
1892
1893	bus_data_generation_update();
1894	return (child);
1895}
1896
1897/**
1898 * @brief Delete a device
1899 *
1900 * This function deletes a device along with all of its children. If
1901 * the device currently has a driver attached to it, the device is
1902 * detached first using device_detach().
1903 *
1904 * @param dev		the parent device
1905 * @param child		the device to delete
1906 *
1907 * @retval 0		success
1908 * @retval non-zero	a unit error code describing the error
1909 */
1910int
1911device_delete_child(device_t dev, device_t child)
1912{
1913	int error;
1914	device_t grandchild;
1915
1916	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1917
1918	/* remove children first */
1919	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1920		error = device_delete_child(child, grandchild);
1921		if (error)
1922			return (error);
1923	}
1924
1925	if ((error = device_detach(child)) != 0)
1926		return (error);
1927	if (child->devclass)
1928		devclass_delete_device(child->devclass, child);
1929	if (child->parent)
1930		BUS_CHILD_DELETED(dev, child);
1931	TAILQ_REMOVE(&dev->children, child, link);
1932	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1933	kobj_delete((kobj_t) child, M_BUS);
1934
1935	bus_data_generation_update();
1936	return (0);
1937}
1938
1939/**
1940 * @brief Delete all children devices of the given device, if any.
1941 *
1942 * This function deletes all children devices of the given device, if
1943 * any, using the device_delete_child() function for each device it
1944 * finds. If a child device cannot be deleted, this function will
1945 * return an error code.
1946 *
1947 * @param dev		the parent device
1948 *
1949 * @retval 0		success
1950 * @retval non-zero	a device would not detach
1951 */
1952int
1953device_delete_children(device_t dev)
1954{
1955	device_t child;
1956	int error;
1957
1958	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1959
1960	error = 0;
1961
1962	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1963		error = device_delete_child(dev, child);
1964		if (error) {
1965			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1966			break;
1967		}
1968	}
1969	return (error);
1970}
1971
1972/**
1973 * @brief Find a device given a unit number
1974 *
1975 * This is similar to devclass_get_devices() but only searches for
1976 * devices which have @p dev as a parent.
1977 *
1978 * @param dev		the parent device to search
1979 * @param unit		the unit number to search for.  If the unit is -1,
1980 *			return the first child of @p dev which has name
1981 *			@p classname (that is, the one with the lowest unit.)
1982 *
1983 * @returns		the device with the given unit number or @c
1984 *			NULL if there is no such device
1985 */
1986device_t
1987device_find_child(device_t dev, const char *classname, int unit)
1988{
1989	devclass_t dc;
1990	device_t child;
1991
1992	dc = devclass_find(classname);
1993	if (!dc)
1994		return (NULL);
1995
1996	if (unit != -1) {
1997		child = devclass_get_device(dc, unit);
1998		if (child && child->parent == dev)
1999			return (child);
2000	} else {
2001		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2002			child = devclass_get_device(dc, unit);
2003			if (child && child->parent == dev)
2004				return (child);
2005		}
2006	}
2007	return (NULL);
2008}
2009
2010/**
2011 * @internal
2012 */
2013static driverlink_t
2014first_matching_driver(devclass_t dc, device_t dev)
2015{
2016	if (dev->devclass)
2017		return (devclass_find_driver_internal(dc, dev->devclass->name));
2018	return (TAILQ_FIRST(&dc->drivers));
2019}
2020
2021/**
2022 * @internal
2023 */
2024static driverlink_t
2025next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2026{
2027	if (dev->devclass) {
2028		driverlink_t dl;
2029		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2030			if (!strcmp(dev->devclass->name, dl->driver->name))
2031				return (dl);
2032		return (NULL);
2033	}
2034	return (TAILQ_NEXT(last, link));
2035}
2036
2037/**
2038 * @internal
2039 */
2040int
2041device_probe_child(device_t dev, device_t child)
2042{
2043	devclass_t dc;
2044	driverlink_t best = NULL;
2045	driverlink_t dl;
2046	int result, pri = 0;
2047	int hasclass = (child->devclass != NULL);
2048
2049	GIANT_REQUIRED;
2050
2051	dc = dev->devclass;
2052	if (!dc)
2053		panic("device_probe_child: parent device has no devclass");
2054
2055	/*
2056	 * If the state is already probed, then return.  However, don't
2057	 * return if we can rebid this object.
2058	 */
2059	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2060		return (0);
2061
2062	for (; dc; dc = dc->parent) {
2063		for (dl = first_matching_driver(dc, child);
2064		     dl;
2065		     dl = next_matching_driver(dc, child, dl)) {
2066			/* If this driver's pass is too high, then ignore it. */
2067			if (dl->pass > bus_current_pass)
2068				continue;
2069
2070			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2071			result = device_set_driver(child, dl->driver);
2072			if (result == ENOMEM)
2073				return (result);
2074			else if (result != 0)
2075				continue;
2076			if (!hasclass) {
2077				if (device_set_devclass(child,
2078				    dl->driver->name) != 0) {
2079					char const * devname =
2080					    device_get_name(child);
2081					if (devname == NULL)
2082						devname = "(unknown)";
2083					printf("driver bug: Unable to set "
2084					    "devclass (class: %s "
2085					    "devname: %s)\n",
2086					    dl->driver->name,
2087					    devname);
2088					(void)device_set_driver(child, NULL);
2089					continue;
2090				}
2091			}
2092
2093			/* Fetch any flags for the device before probing. */
2094			resource_int_value(dl->driver->name, child->unit,
2095			    "flags", &child->devflags);
2096
2097			result = DEVICE_PROBE(child);
2098
2099			/* Reset flags and devclass before the next probe. */
2100			child->devflags = 0;
2101			if (!hasclass)
2102				(void)device_set_devclass(child, NULL);
2103
2104			/*
2105			 * If the driver returns SUCCESS, there can be
2106			 * no higher match for this device.
2107			 */
2108			if (result == 0) {
2109				best = dl;
2110				pri = 0;
2111				break;
2112			}
2113
2114			/*
2115			 * Probes that return BUS_PROBE_NOWILDCARD or lower
2116			 * only match on devices whose driver was explicitly
2117			 * specified.
2118			 */
2119			if (result <= BUS_PROBE_NOWILDCARD &&
2120			    !(child->flags & DF_FIXEDCLASS)) {
2121				result = ENXIO;
2122			}
2123
2124			/*
2125			 * The driver returned an error so it
2126			 * certainly doesn't match.
2127			 */
2128			if (result > 0) {
2129				(void)device_set_driver(child, NULL);
2130				continue;
2131			}
2132
2133			/*
2134			 * A priority lower than SUCCESS, remember the
2135			 * best matching driver. Initialise the value
2136			 * of pri for the first match.
2137			 */
2138			if (best == NULL || result > pri) {
2139				best = dl;
2140				pri = result;
2141				continue;
2142			}
2143		}
2144		/*
2145		 * If we have an unambiguous match in this devclass,
2146		 * don't look in the parent.
2147		 */
2148		if (best && pri == 0)
2149			break;
2150	}
2151
2152	/*
2153	 * If we found a driver, change state and initialise the devclass.
2154	 */
2155	/* XXX What happens if we rebid and got no best? */
2156	if (best) {
2157		/*
2158		 * If this device was attached, and we were asked to
2159		 * rescan, and it is a different driver, then we have
2160		 * to detach the old driver and reattach this new one.
2161		 * Note, we don't have to check for DF_REBID here
2162		 * because if the state is > DS_ALIVE, we know it must
2163		 * be.
2164		 *
2165		 * This assumes that all DF_REBID drivers can have
2166		 * their probe routine called at any time and that
2167		 * they are idempotent as well as completely benign in
2168		 * normal operations.
2169		 *
2170		 * We also have to make sure that the detach
2171		 * succeeded, otherwise we fail the operation (or
2172		 * maybe it should just fail silently?  I'm torn).
2173		 */
2174		if (child->state > DS_ALIVE && best->driver != child->driver)
2175			if ((result = device_detach(dev)) != 0)
2176				return (result);
2177
2178		/* Set the winning driver, devclass, and flags. */
2179		if (!child->devclass) {
2180			result = device_set_devclass(child, best->driver->name);
2181			if (result != 0)
2182				return (result);
2183		}
2184		result = device_set_driver(child, best->driver);
2185		if (result != 0)
2186			return (result);
2187		resource_int_value(best->driver->name, child->unit,
2188		    "flags", &child->devflags);
2189
2190		if (pri < 0) {
2191			/*
2192			 * A bit bogus. Call the probe method again to make
2193			 * sure that we have the right description.
2194			 */
2195			DEVICE_PROBE(child);
2196#if 0
2197			child->flags |= DF_REBID;
2198#endif
2199		} else
2200			child->flags &= ~DF_REBID;
2201		child->state = DS_ALIVE;
2202
2203		bus_data_generation_update();
2204		return (0);
2205	}
2206
2207	return (ENXIO);
2208}
2209
2210/**
2211 * @brief Return the parent of a device
2212 */
2213device_t
2214device_get_parent(device_t dev)
2215{
2216	return (dev->parent);
2217}
2218
2219/**
2220 * @brief Get a list of children of a device
2221 *
2222 * An array containing a list of all the children of the given device
2223 * is allocated and returned in @p *devlistp. The number of devices
2224 * in the array is returned in @p *devcountp. The caller should free
2225 * the array using @c free(p, M_TEMP).
2226 *
2227 * @param dev		the device to examine
2228 * @param devlistp	points at location for array pointer return
2229 *			value
2230 * @param devcountp	points at location for array size return value
2231 *
2232 * @retval 0		success
2233 * @retval ENOMEM	the array allocation failed
2234 */
2235int
2236device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2237{
2238	int count;
2239	device_t child;
2240	device_t *list;
2241
2242	count = 0;
2243	TAILQ_FOREACH(child, &dev->children, link) {
2244		count++;
2245	}
2246	if (count == 0) {
2247		*devlistp = NULL;
2248		*devcountp = 0;
2249		return (0);
2250	}
2251
2252	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2253	if (!list)
2254		return (ENOMEM);
2255
2256	count = 0;
2257	TAILQ_FOREACH(child, &dev->children, link) {
2258		list[count] = child;
2259		count++;
2260	}
2261
2262	*devlistp = list;
2263	*devcountp = count;
2264
2265	return (0);
2266}
2267
2268/**
2269 * @brief Return the current driver for the device or @c NULL if there
2270 * is no driver currently attached
2271 */
2272driver_t *
2273device_get_driver(device_t dev)
2274{
2275	return (dev->driver);
2276}
2277
2278/**
2279 * @brief Return the current devclass for the device or @c NULL if
2280 * there is none.
2281 */
2282devclass_t
2283device_get_devclass(device_t dev)
2284{
2285	return (dev->devclass);
2286}
2287
2288/**
2289 * @brief Return the name of the device's devclass or @c NULL if there
2290 * is none.
2291 */
2292const char *
2293device_get_name(device_t dev)
2294{
2295	if (dev != NULL && dev->devclass)
2296		return (devclass_get_name(dev->devclass));
2297	return (NULL);
2298}
2299
2300/**
2301 * @brief Return a string containing the device's devclass name
2302 * followed by an ascii representation of the device's unit number
2303 * (e.g. @c "foo2").
2304 */
2305const char *
2306device_get_nameunit(device_t dev)
2307{
2308	return (dev->nameunit);
2309}
2310
2311/**
2312 * @brief Return the device's unit number.
2313 */
2314int
2315device_get_unit(device_t dev)
2316{
2317	return (dev->unit);
2318}
2319
2320/**
2321 * @brief Return the device's description string
2322 */
2323const char *
2324device_get_desc(device_t dev)
2325{
2326	return (dev->desc);
2327}
2328
2329/**
2330 * @brief Return the device's flags
2331 */
2332uint32_t
2333device_get_flags(device_t dev)
2334{
2335	return (dev->devflags);
2336}
2337
2338struct sysctl_ctx_list *
2339device_get_sysctl_ctx(device_t dev)
2340{
2341	return (&dev->sysctl_ctx);
2342}
2343
2344struct sysctl_oid *
2345device_get_sysctl_tree(device_t dev)
2346{
2347	return (dev->sysctl_tree);
2348}
2349
2350/**
2351 * @brief Print the name of the device followed by a colon and a space
2352 *
2353 * @returns the number of characters printed
2354 */
2355int
2356device_print_prettyname(device_t dev)
2357{
2358	const char *name = device_get_name(dev);
2359
2360	if (name == NULL)
2361		return (printf("unknown: "));
2362	return (printf("%s%d: ", name, device_get_unit(dev)));
2363}
2364
2365/**
2366 * @brief Print the name of the device followed by a colon, a space
2367 * and the result of calling vprintf() with the value of @p fmt and
2368 * the following arguments.
2369 *
2370 * @returns the number of characters printed
2371 */
2372int
2373device_printf(device_t dev, const char * fmt, ...)
2374{
2375	va_list ap;
2376	int retval;
2377
2378	retval = device_print_prettyname(dev);
2379	va_start(ap, fmt);
2380	retval += vprintf(fmt, ap);
2381	va_end(ap);
2382	return (retval);
2383}
2384
2385/**
2386 * @internal
2387 */
2388static void
2389device_set_desc_internal(device_t dev, const char* desc, int copy)
2390{
2391	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2392		free(dev->desc, M_BUS);
2393		dev->flags &= ~DF_DESCMALLOCED;
2394		dev->desc = NULL;
2395	}
2396
2397	if (copy && desc) {
2398		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2399		if (dev->desc) {
2400			strcpy(dev->desc, desc);
2401			dev->flags |= DF_DESCMALLOCED;
2402		}
2403	} else {
2404		/* Avoid a -Wcast-qual warning */
2405		dev->desc = (char *)(uintptr_t) desc;
2406	}
2407
2408	bus_data_generation_update();
2409}
2410
2411/**
2412 * @brief Set the device's description
2413 *
2414 * The value of @c desc should be a string constant that will not
2415 * change (at least until the description is changed in a subsequent
2416 * call to device_set_desc() or device_set_desc_copy()).
2417 */
2418void
2419device_set_desc(device_t dev, const char* desc)
2420{
2421	device_set_desc_internal(dev, desc, FALSE);
2422}
2423
2424/**
2425 * @brief Set the device's description
2426 *
2427 * The string pointed to by @c desc is copied. Use this function if
2428 * the device description is generated, (e.g. with sprintf()).
2429 */
2430void
2431device_set_desc_copy(device_t dev, const char* desc)
2432{
2433	device_set_desc_internal(dev, desc, TRUE);
2434}
2435
2436/**
2437 * @brief Set the device's flags
2438 */
2439void
2440device_set_flags(device_t dev, uint32_t flags)
2441{
2442	dev->devflags = flags;
2443}
2444
2445/**
2446 * @brief Return the device's softc field
2447 *
2448 * The softc is allocated and zeroed when a driver is attached, based
2449 * on the size field of the driver.
2450 */
2451void *
2452device_get_softc(device_t dev)
2453{
2454	return (dev->softc);
2455}
2456
2457/**
2458 * @brief Set the device's softc field
2459 *
2460 * Most drivers do not need to use this since the softc is allocated
2461 * automatically when the driver is attached.
2462 */
2463void
2464device_set_softc(device_t dev, void *softc)
2465{
2466	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2467		free(dev->softc, M_BUS_SC);
2468	dev->softc = softc;
2469	if (dev->softc)
2470		dev->flags |= DF_EXTERNALSOFTC;
2471	else
2472		dev->flags &= ~DF_EXTERNALSOFTC;
2473}
2474
2475/**
2476 * @brief Free claimed softc
2477 *
2478 * Most drivers do not need to use this since the softc is freed
2479 * automatically when the driver is detached.
2480 */
2481void
2482device_free_softc(void *softc)
2483{
2484	free(softc, M_BUS_SC);
2485}
2486
2487/**
2488 * @brief Claim softc
2489 *
2490 * This function can be used to let the driver free the automatically
2491 * allocated softc using "device_free_softc()". This function is
2492 * useful when the driver is refcounting the softc and the softc
2493 * cannot be freed when the "device_detach" method is called.
2494 */
2495void
2496device_claim_softc(device_t dev)
2497{
2498	if (dev->softc)
2499		dev->flags |= DF_EXTERNALSOFTC;
2500	else
2501		dev->flags &= ~DF_EXTERNALSOFTC;
2502}
2503
2504/**
2505 * @brief Get the device's ivars field
2506 *
2507 * The ivars field is used by the parent device to store per-device
2508 * state (e.g. the physical location of the device or a list of
2509 * resources).
2510 */
2511void *
2512device_get_ivars(device_t dev)
2513{
2514
2515	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2516	return (dev->ivars);
2517}
2518
2519/**
2520 * @brief Set the device's ivars field
2521 */
2522void
2523device_set_ivars(device_t dev, void * ivars)
2524{
2525
2526	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2527	dev->ivars = ivars;
2528}
2529
2530/**
2531 * @brief Return the device's state
2532 */
2533device_state_t
2534device_get_state(device_t dev)
2535{
2536	return (dev->state);
2537}
2538
2539/**
2540 * @brief Set the DF_ENABLED flag for the device
2541 */
2542void
2543device_enable(device_t dev)
2544{
2545	dev->flags |= DF_ENABLED;
2546}
2547
2548/**
2549 * @brief Clear the DF_ENABLED flag for the device
2550 */
2551void
2552device_disable(device_t dev)
2553{
2554	dev->flags &= ~DF_ENABLED;
2555}
2556
2557/**
2558 * @brief Increment the busy counter for the device
2559 */
2560void
2561device_busy(device_t dev)
2562{
2563	if (dev->state < DS_ATTACHING)
2564		panic("device_busy: called for unattached device");
2565	if (dev->busy == 0 && dev->parent)
2566		device_busy(dev->parent);
2567	dev->busy++;
2568	if (dev->state == DS_ATTACHED)
2569		dev->state = DS_BUSY;
2570}
2571
2572/**
2573 * @brief Decrement the busy counter for the device
2574 */
2575void
2576device_unbusy(device_t dev)
2577{
2578	if (dev->busy != 0 && dev->state != DS_BUSY &&
2579	    dev->state != DS_ATTACHING)
2580		panic("device_unbusy: called for non-busy device %s",
2581		    device_get_nameunit(dev));
2582	dev->busy--;
2583	if (dev->busy == 0) {
2584		if (dev->parent)
2585			device_unbusy(dev->parent);
2586		if (dev->state == DS_BUSY)
2587			dev->state = DS_ATTACHED;
2588	}
2589}
2590
2591/**
2592 * @brief Set the DF_QUIET flag for the device
2593 */
2594void
2595device_quiet(device_t dev)
2596{
2597	dev->flags |= DF_QUIET;
2598}
2599
2600/**
2601 * @brief Clear the DF_QUIET flag for the device
2602 */
2603void
2604device_verbose(device_t dev)
2605{
2606	dev->flags &= ~DF_QUIET;
2607}
2608
2609/**
2610 * @brief Return non-zero if the DF_QUIET flag is set on the device
2611 */
2612int
2613device_is_quiet(device_t dev)
2614{
2615	return ((dev->flags & DF_QUIET) != 0);
2616}
2617
2618/**
2619 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2620 */
2621int
2622device_is_enabled(device_t dev)
2623{
2624	return ((dev->flags & DF_ENABLED) != 0);
2625}
2626
2627/**
2628 * @brief Return non-zero if the device was successfully probed
2629 */
2630int
2631device_is_alive(device_t dev)
2632{
2633	return (dev->state >= DS_ALIVE);
2634}
2635
2636/**
2637 * @brief Return non-zero if the device currently has a driver
2638 * attached to it
2639 */
2640int
2641device_is_attached(device_t dev)
2642{
2643	return (dev->state >= DS_ATTACHED);
2644}
2645
2646/**
2647 * @brief Return non-zero if the device is currently suspended.
2648 */
2649int
2650device_is_suspended(device_t dev)
2651{
2652	return ((dev->flags & DF_SUSPENDED) != 0);
2653}
2654
2655/**
2656 * @brief Set the devclass of a device
2657 * @see devclass_add_device().
2658 */
2659int
2660device_set_devclass(device_t dev, const char *classname)
2661{
2662	devclass_t dc;
2663	int error;
2664
2665	if (!classname) {
2666		if (dev->devclass)
2667			devclass_delete_device(dev->devclass, dev);
2668		return (0);
2669	}
2670
2671	if (dev->devclass) {
2672		printf("device_set_devclass: device class already set\n");
2673		return (EINVAL);
2674	}
2675
2676	dc = devclass_find_internal(classname, NULL, TRUE);
2677	if (!dc)
2678		return (ENOMEM);
2679
2680	error = devclass_add_device(dc, dev);
2681
2682	bus_data_generation_update();
2683	return (error);
2684}
2685
2686/**
2687 * @brief Set the devclass of a device and mark the devclass fixed.
2688 * @see device_set_devclass()
2689 */
2690int
2691device_set_devclass_fixed(device_t dev, const char *classname)
2692{
2693	int error;
2694
2695	if (classname == NULL)
2696		return (EINVAL);
2697
2698	error = device_set_devclass(dev, classname);
2699	if (error)
2700		return (error);
2701	dev->flags |= DF_FIXEDCLASS;
2702	return (0);
2703}
2704
2705/**
2706 * @brief Set the driver of a device
2707 *
2708 * @retval 0		success
2709 * @retval EBUSY	the device already has a driver attached
2710 * @retval ENOMEM	a memory allocation failure occurred
2711 */
2712int
2713device_set_driver(device_t dev, driver_t *driver)
2714{
2715	if (dev->state >= DS_ATTACHED)
2716		return (EBUSY);
2717
2718	if (dev->driver == driver)
2719		return (0);
2720
2721	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2722		free(dev->softc, M_BUS_SC);
2723		dev->softc = NULL;
2724	}
2725	device_set_desc(dev, NULL);
2726	kobj_delete((kobj_t) dev, NULL);
2727	dev->driver = driver;
2728	if (driver) {
2729		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2730		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2731			dev->softc = malloc(driver->size, M_BUS_SC,
2732			    M_NOWAIT | M_ZERO);
2733			if (!dev->softc) {
2734				kobj_delete((kobj_t) dev, NULL);
2735				kobj_init((kobj_t) dev, &null_class);
2736				dev->driver = NULL;
2737				return (ENOMEM);
2738			}
2739		}
2740	} else {
2741		kobj_init((kobj_t) dev, &null_class);
2742	}
2743
2744	bus_data_generation_update();
2745	return (0);
2746}
2747
2748/**
2749 * @brief Probe a device, and return this status.
2750 *
2751 * This function is the core of the device autoconfiguration
2752 * system. Its purpose is to select a suitable driver for a device and
2753 * then call that driver to initialise the hardware appropriately. The
2754 * driver is selected by calling the DEVICE_PROBE() method of a set of
2755 * candidate drivers and then choosing the driver which returned the
2756 * best value. This driver is then attached to the device using
2757 * device_attach().
2758 *
2759 * The set of suitable drivers is taken from the list of drivers in
2760 * the parent device's devclass. If the device was originally created
2761 * with a specific class name (see device_add_child()), only drivers
2762 * with that name are probed, otherwise all drivers in the devclass
2763 * are probed. If no drivers return successful probe values in the
2764 * parent devclass, the search continues in the parent of that
2765 * devclass (see devclass_get_parent()) if any.
2766 *
2767 * @param dev		the device to initialise
2768 *
2769 * @retval 0		success
2770 * @retval ENXIO	no driver was found
2771 * @retval ENOMEM	memory allocation failure
2772 * @retval non-zero	some other unix error code
2773 * @retval -1		Device already attached
2774 */
2775int
2776device_probe(device_t dev)
2777{
2778	int error;
2779
2780	GIANT_REQUIRED;
2781
2782	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2783		return (-1);
2784
2785	if (!(dev->flags & DF_ENABLED)) {
2786		if (bootverbose && device_get_name(dev) != NULL) {
2787			device_print_prettyname(dev);
2788			printf("not probed (disabled)\n");
2789		}
2790		return (-1);
2791	}
2792	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2793		if (bus_current_pass == BUS_PASS_DEFAULT &&
2794		    !(dev->flags & DF_DONENOMATCH)) {
2795			BUS_PROBE_NOMATCH(dev->parent, dev);
2796			devnomatch(dev);
2797			dev->flags |= DF_DONENOMATCH;
2798		}
2799		return (error);
2800	}
2801	return (0);
2802}
2803
2804/**
2805 * @brief Probe a device and attach a driver if possible
2806 *
2807 * calls device_probe() and attaches if that was successful.
2808 */
2809int
2810device_probe_and_attach(device_t dev)
2811{
2812	int error;
2813
2814	GIANT_REQUIRED;
2815
2816	error = device_probe(dev);
2817	if (error == -1)
2818		return (0);
2819	else if (error != 0)
2820		return (error);
2821
2822	CURVNET_SET_QUIET(vnet0);
2823	error = device_attach(dev);
2824	CURVNET_RESTORE();
2825	return error;
2826}
2827
2828/**
2829 * @brief Attach a device driver to a device
2830 *
2831 * This function is a wrapper around the DEVICE_ATTACH() driver
2832 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2833 * device's sysctl tree, optionally prints a description of the device
2834 * and queues a notification event for user-based device management
2835 * services.
2836 *
2837 * Normally this function is only called internally from
2838 * device_probe_and_attach().
2839 *
2840 * @param dev		the device to initialise
2841 *
2842 * @retval 0		success
2843 * @retval ENXIO	no driver was found
2844 * @retval ENOMEM	memory allocation failure
2845 * @retval non-zero	some other unix error code
2846 */
2847int
2848device_attach(device_t dev)
2849{
2850	uint64_t attachtime;
2851	int error;
2852
2853	if (resource_disabled(dev->driver->name, dev->unit)) {
2854		device_disable(dev);
2855		if (bootverbose)
2856			 device_printf(dev, "disabled via hints entry\n");
2857		return (ENXIO);
2858	}
2859
2860	device_sysctl_init(dev);
2861	if (!device_is_quiet(dev))
2862		device_print_child(dev->parent, dev);
2863	attachtime = get_cyclecount();
2864	dev->state = DS_ATTACHING;
2865	if ((error = DEVICE_ATTACH(dev)) != 0) {
2866		printf("device_attach: %s%d attach returned %d\n",
2867		    dev->driver->name, dev->unit, error);
2868		if (!(dev->flags & DF_FIXEDCLASS))
2869			devclass_delete_device(dev->devclass, dev);
2870		(void)device_set_driver(dev, NULL);
2871		device_sysctl_fini(dev);
2872		KASSERT(dev->busy == 0, ("attach failed but busy"));
2873		dev->state = DS_NOTPRESENT;
2874		return (error);
2875	}
2876	attachtime = get_cyclecount() - attachtime;
2877	/*
2878	 * 4 bits per device is a reasonable value for desktop and server
2879	 * hardware with good get_cyclecount() implementations, but WILL
2880	 * need to be adjusted on other platforms.
2881	 */
2882#define	RANDOM_PROBE_BIT_GUESS	4
2883	if (bootverbose)
2884		printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
2885		    sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
2886		    dev->driver->name, dev->unit);
2887	random_harvest_direct(&attachtime, sizeof(attachtime),
2888	    RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
2889	device_sysctl_update(dev);
2890	if (dev->busy)
2891		dev->state = DS_BUSY;
2892	else
2893		dev->state = DS_ATTACHED;
2894	dev->flags &= ~DF_DONENOMATCH;
2895	devadded(dev);
2896	return (0);
2897}
2898
2899/**
2900 * @brief Detach a driver from a device
2901 *
2902 * This function is a wrapper around the DEVICE_DETACH() driver
2903 * method. If the call to DEVICE_DETACH() succeeds, it calls
2904 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2905 * notification event for user-based device management services and
2906 * cleans up the device's sysctl tree.
2907 *
2908 * @param dev		the device to un-initialise
2909 *
2910 * @retval 0		success
2911 * @retval ENXIO	no driver was found
2912 * @retval ENOMEM	memory allocation failure
2913 * @retval non-zero	some other unix error code
2914 */
2915int
2916device_detach(device_t dev)
2917{
2918	int error;
2919
2920	GIANT_REQUIRED;
2921
2922	PDEBUG(("%s", DEVICENAME(dev)));
2923	if (dev->state == DS_BUSY)
2924		return (EBUSY);
2925	if (dev->state != DS_ATTACHED)
2926		return (0);
2927
2928	if ((error = DEVICE_DETACH(dev)) != 0)
2929		return (error);
2930	devremoved(dev);
2931	if (!device_is_quiet(dev))
2932		device_printf(dev, "detached\n");
2933	if (dev->parent)
2934		BUS_CHILD_DETACHED(dev->parent, dev);
2935
2936	if (!(dev->flags & DF_FIXEDCLASS))
2937		devclass_delete_device(dev->devclass, dev);
2938
2939	dev->state = DS_NOTPRESENT;
2940	(void)device_set_driver(dev, NULL);
2941	device_sysctl_fini(dev);
2942
2943	return (0);
2944}
2945
2946/**
2947 * @brief Tells a driver to quiesce itself.
2948 *
2949 * This function is a wrapper around the DEVICE_QUIESCE() driver
2950 * method. If the call to DEVICE_QUIESCE() succeeds.
2951 *
2952 * @param dev		the device to quiesce
2953 *
2954 * @retval 0		success
2955 * @retval ENXIO	no driver was found
2956 * @retval ENOMEM	memory allocation failure
2957 * @retval non-zero	some other unix error code
2958 */
2959int
2960device_quiesce(device_t dev)
2961{
2962
2963	PDEBUG(("%s", DEVICENAME(dev)));
2964	if (dev->state == DS_BUSY)
2965		return (EBUSY);
2966	if (dev->state != DS_ATTACHED)
2967		return (0);
2968
2969	return (DEVICE_QUIESCE(dev));
2970}
2971
2972/**
2973 * @brief Notify a device of system shutdown
2974 *
2975 * This function calls the DEVICE_SHUTDOWN() driver method if the
2976 * device currently has an attached driver.
2977 *
2978 * @returns the value returned by DEVICE_SHUTDOWN()
2979 */
2980int
2981device_shutdown(device_t dev)
2982{
2983	if (dev->state < DS_ATTACHED)
2984		return (0);
2985	return (DEVICE_SHUTDOWN(dev));
2986}
2987
2988/**
2989 * @brief Set the unit number of a device
2990 *
2991 * This function can be used to override the unit number used for a
2992 * device (e.g. to wire a device to a pre-configured unit number).
2993 */
2994int
2995device_set_unit(device_t dev, int unit)
2996{
2997	devclass_t dc;
2998	int err;
2999
3000	dc = device_get_devclass(dev);
3001	if (unit < dc->maxunit && dc->devices[unit])
3002		return (EBUSY);
3003	err = devclass_delete_device(dc, dev);
3004	if (err)
3005		return (err);
3006	dev->unit = unit;
3007	err = devclass_add_device(dc, dev);
3008	if (err)
3009		return (err);
3010
3011	bus_data_generation_update();
3012	return (0);
3013}
3014
3015/*======================================*/
3016/*
3017 * Some useful method implementations to make life easier for bus drivers.
3018 */
3019
3020/**
3021 * @brief Initialise a resource list.
3022 *
3023 * @param rl		the resource list to initialise
3024 */
3025void
3026resource_list_init(struct resource_list *rl)
3027{
3028	STAILQ_INIT(rl);
3029}
3030
3031/**
3032 * @brief Reclaim memory used by a resource list.
3033 *
3034 * This function frees the memory for all resource entries on the list
3035 * (if any).
3036 *
3037 * @param rl		the resource list to free
3038 */
3039void
3040resource_list_free(struct resource_list *rl)
3041{
3042	struct resource_list_entry *rle;
3043
3044	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3045		if (rle->res)
3046			panic("resource_list_free: resource entry is busy");
3047		STAILQ_REMOVE_HEAD(rl, link);
3048		free(rle, M_BUS);
3049	}
3050}
3051
3052/**
3053 * @brief Add a resource entry.
3054 *
3055 * This function adds a resource entry using the given @p type, @p
3056 * start, @p end and @p count values. A rid value is chosen by
3057 * searching sequentially for the first unused rid starting at zero.
3058 *
3059 * @param rl		the resource list to edit
3060 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3061 * @param start		the start address of the resource
3062 * @param end		the end address of the resource
3063 * @param count		XXX end-start+1
3064 */
3065int
3066resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
3067    rman_res_t end, rman_res_t count)
3068{
3069	int rid;
3070
3071	rid = 0;
3072	while (resource_list_find(rl, type, rid) != NULL)
3073		rid++;
3074	resource_list_add(rl, type, rid, start, end, count);
3075	return (rid);
3076}
3077
3078/**
3079 * @brief Add or modify a resource entry.
3080 *
3081 * If an existing entry exists with the same type and rid, it will be
3082 * modified using the given values of @p start, @p end and @p
3083 * count. If no entry exists, a new one will be created using the
3084 * given values.  The resource list entry that matches is then returned.
3085 *
3086 * @param rl		the resource list to edit
3087 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3088 * @param rid		the resource identifier
3089 * @param start		the start address of the resource
3090 * @param end		the end address of the resource
3091 * @param count		XXX end-start+1
3092 */
3093struct resource_list_entry *
3094resource_list_add(struct resource_list *rl, int type, int rid,
3095    rman_res_t start, rman_res_t end, rman_res_t count)
3096{
3097	struct resource_list_entry *rle;
3098
3099	rle = resource_list_find(rl, type, rid);
3100	if (!rle) {
3101		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3102		    M_NOWAIT);
3103		if (!rle)
3104			panic("resource_list_add: can't record entry");
3105		STAILQ_INSERT_TAIL(rl, rle, link);
3106		rle->type = type;
3107		rle->rid = rid;
3108		rle->res = NULL;
3109		rle->flags = 0;
3110	}
3111
3112	if (rle->res)
3113		panic("resource_list_add: resource entry is busy");
3114
3115	rle->start = start;
3116	rle->end = end;
3117	rle->count = count;
3118	return (rle);
3119}
3120
3121/**
3122 * @brief Determine if a resource entry is busy.
3123 *
3124 * Returns true if a resource entry is busy meaning that it has an
3125 * associated resource that is not an unallocated "reserved" resource.
3126 *
3127 * @param rl		the resource list to search
3128 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3129 * @param rid		the resource identifier
3130 *
3131 * @returns Non-zero if the entry is busy, zero otherwise.
3132 */
3133int
3134resource_list_busy(struct resource_list *rl, int type, int rid)
3135{
3136	struct resource_list_entry *rle;
3137
3138	rle = resource_list_find(rl, type, rid);
3139	if (rle == NULL || rle->res == NULL)
3140		return (0);
3141	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3142		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3143		    ("reserved resource is active"));
3144		return (0);
3145	}
3146	return (1);
3147}
3148
3149/**
3150 * @brief Determine if a resource entry is reserved.
3151 *
3152 * Returns true if a resource entry is reserved meaning that it has an
3153 * associated "reserved" resource.  The resource can either be
3154 * allocated or unallocated.
3155 *
3156 * @param rl		the resource list to search
3157 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3158 * @param rid		the resource identifier
3159 *
3160 * @returns Non-zero if the entry is reserved, zero otherwise.
3161 */
3162int
3163resource_list_reserved(struct resource_list *rl, int type, int rid)
3164{
3165	struct resource_list_entry *rle;
3166
3167	rle = resource_list_find(rl, type, rid);
3168	if (rle != NULL && rle->flags & RLE_RESERVED)
3169		return (1);
3170	return (0);
3171}
3172
3173/**
3174 * @brief Find a resource entry by type and rid.
3175 *
3176 * @param rl		the resource list to search
3177 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3178 * @param rid		the resource identifier
3179 *
3180 * @returns the resource entry pointer or NULL if there is no such
3181 * entry.
3182 */
3183struct resource_list_entry *
3184resource_list_find(struct resource_list *rl, int type, int rid)
3185{
3186	struct resource_list_entry *rle;
3187
3188	STAILQ_FOREACH(rle, rl, link) {
3189		if (rle->type == type && rle->rid == rid)
3190			return (rle);
3191	}
3192	return (NULL);
3193}
3194
3195/**
3196 * @brief Delete a resource entry.
3197 *
3198 * @param rl		the resource list to edit
3199 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3200 * @param rid		the resource identifier
3201 */
3202void
3203resource_list_delete(struct resource_list *rl, int type, int rid)
3204{
3205	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3206
3207	if (rle) {
3208		if (rle->res != NULL)
3209			panic("resource_list_delete: resource has not been released");
3210		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3211		free(rle, M_BUS);
3212	}
3213}
3214
3215/**
3216 * @brief Allocate a reserved resource
3217 *
3218 * This can be used by busses to force the allocation of resources
3219 * that are always active in the system even if they are not allocated
3220 * by a driver (e.g. PCI BARs).  This function is usually called when
3221 * adding a new child to the bus.  The resource is allocated from the
3222 * parent bus when it is reserved.  The resource list entry is marked
3223 * with RLE_RESERVED to note that it is a reserved resource.
3224 *
3225 * Subsequent attempts to allocate the resource with
3226 * resource_list_alloc() will succeed the first time and will set
3227 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3228 * resource that has been allocated is released with
3229 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3230 * the actual resource remains allocated.  The resource can be released to
3231 * the parent bus by calling resource_list_unreserve().
3232 *
3233 * @param rl		the resource list to allocate from
3234 * @param bus		the parent device of @p child
3235 * @param child		the device for which the resource is being reserved
3236 * @param type		the type of resource to allocate
3237 * @param rid		a pointer to the resource identifier
3238 * @param start		hint at the start of the resource range - pass
3239 *			@c 0 for any start address
3240 * @param end		hint at the end of the resource range - pass
3241 *			@c ~0 for any end address
3242 * @param count		hint at the size of range required - pass @c 1
3243 *			for any size
3244 * @param flags		any extra flags to control the resource
3245 *			allocation - see @c RF_XXX flags in
3246 *			<sys/rman.h> for details
3247 *
3248 * @returns		the resource which was allocated or @c NULL if no
3249 *			resource could be allocated
3250 */
3251struct resource *
3252resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3253    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3254{
3255	struct resource_list_entry *rle = NULL;
3256	int passthrough = (device_get_parent(child) != bus);
3257	struct resource *r;
3258
3259	if (passthrough)
3260		panic(
3261    "resource_list_reserve() should only be called for direct children");
3262	if (flags & RF_ACTIVE)
3263		panic(
3264    "resource_list_reserve() should only reserve inactive resources");
3265
3266	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3267	    flags);
3268	if (r != NULL) {
3269		rle = resource_list_find(rl, type, *rid);
3270		rle->flags |= RLE_RESERVED;
3271	}
3272	return (r);
3273}
3274
3275/**
3276 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3277 *
3278 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3279 * and passing the allocation up to the parent of @p bus. This assumes
3280 * that the first entry of @c device_get_ivars(child) is a struct
3281 * resource_list. This also handles 'passthrough' allocations where a
3282 * child is a remote descendant of bus by passing the allocation up to
3283 * the parent of bus.
3284 *
3285 * Typically, a bus driver would store a list of child resources
3286 * somewhere in the child device's ivars (see device_get_ivars()) and
3287 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3288 * then call resource_list_alloc() to perform the allocation.
3289 *
3290 * @param rl		the resource list to allocate from
3291 * @param bus		the parent device of @p child
3292 * @param child		the device which is requesting an allocation
3293 * @param type		the type of resource to allocate
3294 * @param rid		a pointer to the resource identifier
3295 * @param start		hint at the start of the resource range - pass
3296 *			@c 0 for any start address
3297 * @param end		hint at the end of the resource range - pass
3298 *			@c ~0 for any end address
3299 * @param count		hint at the size of range required - pass @c 1
3300 *			for any size
3301 * @param flags		any extra flags to control the resource
3302 *			allocation - see @c RF_XXX flags in
3303 *			<sys/rman.h> for details
3304 *
3305 * @returns		the resource which was allocated or @c NULL if no
3306 *			resource could be allocated
3307 */
3308struct resource *
3309resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3310    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3311{
3312	struct resource_list_entry *rle = NULL;
3313	int passthrough = (device_get_parent(child) != bus);
3314	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3315
3316	if (passthrough) {
3317		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3318		    type, rid, start, end, count, flags));
3319	}
3320
3321	rle = resource_list_find(rl, type, *rid);
3322
3323	if (!rle)
3324		return (NULL);		/* no resource of that type/rid */
3325
3326	if (rle->res) {
3327		if (rle->flags & RLE_RESERVED) {
3328			if (rle->flags & RLE_ALLOCATED)
3329				return (NULL);
3330			if ((flags & RF_ACTIVE) &&
3331			    bus_activate_resource(child, type, *rid,
3332			    rle->res) != 0)
3333				return (NULL);
3334			rle->flags |= RLE_ALLOCATED;
3335			return (rle->res);
3336		}
3337		device_printf(bus,
3338		    "resource entry %#x type %d for child %s is busy\n", *rid,
3339		    type, device_get_nameunit(child));
3340		return (NULL);
3341	}
3342
3343	if (isdefault) {
3344		start = rle->start;
3345		count = ulmax(count, rle->count);
3346		end = ulmax(rle->end, start + count - 1);
3347	}
3348
3349	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3350	    type, rid, start, end, count, flags);
3351
3352	/*
3353	 * Record the new range.
3354	 */
3355	if (rle->res) {
3356		rle->start = rman_get_start(rle->res);
3357		rle->end = rman_get_end(rle->res);
3358		rle->count = count;
3359	}
3360
3361	return (rle->res);
3362}
3363
3364/**
3365 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3366 *
3367 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3368 * used with resource_list_alloc().
3369 *
3370 * @param rl		the resource list which was allocated from
3371 * @param bus		the parent device of @p child
3372 * @param child		the device which is requesting a release
3373 * @param type		the type of resource to release
3374 * @param rid		the resource identifier
3375 * @param res		the resource to release
3376 *
3377 * @retval 0		success
3378 * @retval non-zero	a standard unix error code indicating what
3379 *			error condition prevented the operation
3380 */
3381int
3382resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3383    int type, int rid, struct resource *res)
3384{
3385	struct resource_list_entry *rle = NULL;
3386	int passthrough = (device_get_parent(child) != bus);
3387	int error;
3388
3389	if (passthrough) {
3390		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3391		    type, rid, res));
3392	}
3393
3394	rle = resource_list_find(rl, type, rid);
3395
3396	if (!rle)
3397		panic("resource_list_release: can't find resource");
3398	if (!rle->res)
3399		panic("resource_list_release: resource entry is not busy");
3400	if (rle->flags & RLE_RESERVED) {
3401		if (rle->flags & RLE_ALLOCATED) {
3402			if (rman_get_flags(res) & RF_ACTIVE) {
3403				error = bus_deactivate_resource(child, type,
3404				    rid, res);
3405				if (error)
3406					return (error);
3407			}
3408			rle->flags &= ~RLE_ALLOCATED;
3409			return (0);
3410		}
3411		return (EINVAL);
3412	}
3413
3414	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3415	    type, rid, res);
3416	if (error)
3417		return (error);
3418
3419	rle->res = NULL;
3420	return (0);
3421}
3422
3423/**
3424 * @brief Release all active resources of a given type
3425 *
3426 * Release all active resources of a specified type.  This is intended
3427 * to be used to cleanup resources leaked by a driver after detach or
3428 * a failed attach.
3429 *
3430 * @param rl		the resource list which was allocated from
3431 * @param bus		the parent device of @p child
3432 * @param child		the device whose active resources are being released
3433 * @param type		the type of resources to release
3434 *
3435 * @retval 0		success
3436 * @retval EBUSY	at least one resource was active
3437 */
3438int
3439resource_list_release_active(struct resource_list *rl, device_t bus,
3440    device_t child, int type)
3441{
3442	struct resource_list_entry *rle;
3443	int error, retval;
3444
3445	retval = 0;
3446	STAILQ_FOREACH(rle, rl, link) {
3447		if (rle->type != type)
3448			continue;
3449		if (rle->res == NULL)
3450			continue;
3451		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3452		    RLE_RESERVED)
3453			continue;
3454		retval = EBUSY;
3455		error = resource_list_release(rl, bus, child, type,
3456		    rman_get_rid(rle->res), rle->res);
3457		if (error != 0)
3458			device_printf(bus,
3459			    "Failed to release active resource: %d\n", error);
3460	}
3461	return (retval);
3462}
3463
3464
3465/**
3466 * @brief Fully release a reserved resource
3467 *
3468 * Fully releases a resource reserved via resource_list_reserve().
3469 *
3470 * @param rl		the resource list which was allocated from
3471 * @param bus		the parent device of @p child
3472 * @param child		the device whose reserved resource is being released
3473 * @param type		the type of resource to release
3474 * @param rid		the resource identifier
3475 * @param res		the resource to release
3476 *
3477 * @retval 0		success
3478 * @retval non-zero	a standard unix error code indicating what
3479 *			error condition prevented the operation
3480 */
3481int
3482resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3483    int type, int rid)
3484{
3485	struct resource_list_entry *rle = NULL;
3486	int passthrough = (device_get_parent(child) != bus);
3487
3488	if (passthrough)
3489		panic(
3490    "resource_list_unreserve() should only be called for direct children");
3491
3492	rle = resource_list_find(rl, type, rid);
3493
3494	if (!rle)
3495		panic("resource_list_unreserve: can't find resource");
3496	if (!(rle->flags & RLE_RESERVED))
3497		return (EINVAL);
3498	if (rle->flags & RLE_ALLOCATED)
3499		return (EBUSY);
3500	rle->flags &= ~RLE_RESERVED;
3501	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3502}
3503
3504/**
3505 * @brief Print a description of resources in a resource list
3506 *
3507 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3508 * The name is printed if at least one resource of the given type is available.
3509 * The format is used to print resource start and end.
3510 *
3511 * @param rl		the resource list to print
3512 * @param name		the name of @p type, e.g. @c "memory"
3513 * @param type		type type of resource entry to print
3514 * @param format	printf(9) format string to print resource
3515 *			start and end values
3516 *
3517 * @returns		the number of characters printed
3518 */
3519int
3520resource_list_print_type(struct resource_list *rl, const char *name, int type,
3521    const char *format)
3522{
3523	struct resource_list_entry *rle;
3524	int printed, retval;
3525
3526	printed = 0;
3527	retval = 0;
3528	/* Yes, this is kinda cheating */
3529	STAILQ_FOREACH(rle, rl, link) {
3530		if (rle->type == type) {
3531			if (printed == 0)
3532				retval += printf(" %s ", name);
3533			else
3534				retval += printf(",");
3535			printed++;
3536			retval += printf(format, rle->start);
3537			if (rle->count > 1) {
3538				retval += printf("-");
3539				retval += printf(format, rle->start +
3540						 rle->count - 1);
3541			}
3542		}
3543	}
3544	return (retval);
3545}
3546
3547/**
3548 * @brief Releases all the resources in a list.
3549 *
3550 * @param rl		The resource list to purge.
3551 *
3552 * @returns		nothing
3553 */
3554void
3555resource_list_purge(struct resource_list *rl)
3556{
3557	struct resource_list_entry *rle;
3558
3559	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3560		if (rle->res)
3561			bus_release_resource(rman_get_device(rle->res),
3562			    rle->type, rle->rid, rle->res);
3563		STAILQ_REMOVE_HEAD(rl, link);
3564		free(rle, M_BUS);
3565	}
3566}
3567
3568device_t
3569bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3570{
3571
3572	return (device_add_child_ordered(dev, order, name, unit));
3573}
3574
3575/**
3576 * @brief Helper function for implementing DEVICE_PROBE()
3577 *
3578 * This function can be used to help implement the DEVICE_PROBE() for
3579 * a bus (i.e. a device which has other devices attached to it). It
3580 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3581 * devclass.
3582 */
3583int
3584bus_generic_probe(device_t dev)
3585{
3586	devclass_t dc = dev->devclass;
3587	driverlink_t dl;
3588
3589	TAILQ_FOREACH(dl, &dc->drivers, link) {
3590		/*
3591		 * If this driver's pass is too high, then ignore it.
3592		 * For most drivers in the default pass, this will
3593		 * never be true.  For early-pass drivers they will
3594		 * only call the identify routines of eligible drivers
3595		 * when this routine is called.  Drivers for later
3596		 * passes should have their identify routines called
3597		 * on early-pass busses during BUS_NEW_PASS().
3598		 */
3599		if (dl->pass > bus_current_pass)
3600			continue;
3601		DEVICE_IDENTIFY(dl->driver, dev);
3602	}
3603
3604	return (0);
3605}
3606
3607/**
3608 * @brief Helper function for implementing DEVICE_ATTACH()
3609 *
3610 * This function can be used to help implement the DEVICE_ATTACH() for
3611 * a bus. It calls device_probe_and_attach() for each of the device's
3612 * children.
3613 */
3614int
3615bus_generic_attach(device_t dev)
3616{
3617	device_t child;
3618
3619	TAILQ_FOREACH(child, &dev->children, link) {
3620		device_probe_and_attach(child);
3621	}
3622
3623	return (0);
3624}
3625
3626/**
3627 * @brief Helper function for implementing DEVICE_DETACH()
3628 *
3629 * This function can be used to help implement the DEVICE_DETACH() for
3630 * a bus. It calls device_detach() for each of the device's
3631 * children.
3632 */
3633int
3634bus_generic_detach(device_t dev)
3635{
3636	device_t child;
3637	int error;
3638
3639	if (dev->state != DS_ATTACHED)
3640		return (EBUSY);
3641
3642	TAILQ_FOREACH(child, &dev->children, link) {
3643		if ((error = device_detach(child)) != 0)
3644			return (error);
3645	}
3646
3647	return (0);
3648}
3649
3650/**
3651 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3652 *
3653 * This function can be used to help implement the DEVICE_SHUTDOWN()
3654 * for a bus. It calls device_shutdown() for each of the device's
3655 * children.
3656 */
3657int
3658bus_generic_shutdown(device_t dev)
3659{
3660	device_t child;
3661
3662	TAILQ_FOREACH(child, &dev->children, link) {
3663		device_shutdown(child);
3664	}
3665
3666	return (0);
3667}
3668
3669/**
3670 * @brief Default function for suspending a child device.
3671 *
3672 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3673 */
3674int
3675bus_generic_suspend_child(device_t dev, device_t child)
3676{
3677	int	error;
3678
3679	error = DEVICE_SUSPEND(child);
3680
3681	if (error == 0)
3682		child->flags |= DF_SUSPENDED;
3683
3684	return (error);
3685}
3686
3687/**
3688 * @brief Default function for resuming a child device.
3689 *
3690 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3691 */
3692int
3693bus_generic_resume_child(device_t dev, device_t child)
3694{
3695
3696	DEVICE_RESUME(child);
3697	child->flags &= ~DF_SUSPENDED;
3698
3699	return (0);
3700}
3701
3702/**
3703 * @brief Helper function for implementing DEVICE_SUSPEND()
3704 *
3705 * This function can be used to help implement the DEVICE_SUSPEND()
3706 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3707 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3708 * operation is aborted and any devices which were suspended are
3709 * resumed immediately by calling their DEVICE_RESUME() methods.
3710 */
3711int
3712bus_generic_suspend(device_t dev)
3713{
3714	int		error;
3715	device_t	child, child2;
3716
3717	TAILQ_FOREACH(child, &dev->children, link) {
3718		error = BUS_SUSPEND_CHILD(dev, child);
3719		if (error) {
3720			for (child2 = TAILQ_FIRST(&dev->children);
3721			     child2 && child2 != child;
3722			     child2 = TAILQ_NEXT(child2, link))
3723				BUS_RESUME_CHILD(dev, child2);
3724			return (error);
3725		}
3726	}
3727	return (0);
3728}
3729
3730/**
3731 * @brief Helper function for implementing DEVICE_RESUME()
3732 *
3733 * This function can be used to help implement the DEVICE_RESUME() for
3734 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3735 */
3736int
3737bus_generic_resume(device_t dev)
3738{
3739	device_t	child;
3740
3741	TAILQ_FOREACH(child, &dev->children, link) {
3742		BUS_RESUME_CHILD(dev, child);
3743		/* if resume fails, there's nothing we can usefully do... */
3744	}
3745	return (0);
3746}
3747
3748/**
3749 * @brief Helper function for implementing BUS_PRINT_CHILD().
3750 *
3751 * This function prints the first part of the ascii representation of
3752 * @p child, including its name, unit and description (if any - see
3753 * device_set_desc()).
3754 *
3755 * @returns the number of characters printed
3756 */
3757int
3758bus_print_child_header(device_t dev, device_t child)
3759{
3760	int	retval = 0;
3761
3762	if (device_get_desc(child)) {
3763		retval += device_printf(child, "<%s>", device_get_desc(child));
3764	} else {
3765		retval += printf("%s", device_get_nameunit(child));
3766	}
3767
3768	return (retval);
3769}
3770
3771/**
3772 * @brief Helper function for implementing BUS_PRINT_CHILD().
3773 *
3774 * This function prints the last part of the ascii representation of
3775 * @p child, which consists of the string @c " on " followed by the
3776 * name and unit of the @p dev.
3777 *
3778 * @returns the number of characters printed
3779 */
3780int
3781bus_print_child_footer(device_t dev, device_t child)
3782{
3783	return (printf(" on %s\n", device_get_nameunit(dev)));
3784}
3785
3786/**
3787 * @brief Helper function for implementing BUS_PRINT_CHILD().
3788 *
3789 * This function prints out the VM domain for the given device.
3790 *
3791 * @returns the number of characters printed
3792 */
3793int
3794bus_print_child_domain(device_t dev, device_t child)
3795{
3796	int domain;
3797
3798	/* No domain? Don't print anything */
3799	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3800		return (0);
3801
3802	return (printf(" numa-domain %d", domain));
3803}
3804
3805/**
3806 * @brief Helper function for implementing BUS_PRINT_CHILD().
3807 *
3808 * This function simply calls bus_print_child_header() followed by
3809 * bus_print_child_footer().
3810 *
3811 * @returns the number of characters printed
3812 */
3813int
3814bus_generic_print_child(device_t dev, device_t child)
3815{
3816	int	retval = 0;
3817
3818	retval += bus_print_child_header(dev, child);
3819	retval += bus_print_child_domain(dev, child);
3820	retval += bus_print_child_footer(dev, child);
3821
3822	return (retval);
3823}
3824
3825/**
3826 * @brief Stub function for implementing BUS_READ_IVAR().
3827 *
3828 * @returns ENOENT
3829 */
3830int
3831bus_generic_read_ivar(device_t dev, device_t child, int index,
3832    uintptr_t * result)
3833{
3834	return (ENOENT);
3835}
3836
3837/**
3838 * @brief Stub function for implementing BUS_WRITE_IVAR().
3839 *
3840 * @returns ENOENT
3841 */
3842int
3843bus_generic_write_ivar(device_t dev, device_t child, int index,
3844    uintptr_t value)
3845{
3846	return (ENOENT);
3847}
3848
3849/**
3850 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3851 *
3852 * @returns NULL
3853 */
3854struct resource_list *
3855bus_generic_get_resource_list(device_t dev, device_t child)
3856{
3857	return (NULL);
3858}
3859
3860/**
3861 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3862 *
3863 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3864 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3865 * and then calls device_probe_and_attach() for each unattached child.
3866 */
3867void
3868bus_generic_driver_added(device_t dev, driver_t *driver)
3869{
3870	device_t child;
3871
3872	DEVICE_IDENTIFY(driver, dev);
3873	TAILQ_FOREACH(child, &dev->children, link) {
3874		if (child->state == DS_NOTPRESENT ||
3875		    (child->flags & DF_REBID))
3876			device_probe_and_attach(child);
3877	}
3878}
3879
3880/**
3881 * @brief Helper function for implementing BUS_NEW_PASS().
3882 *
3883 * This implementing of BUS_NEW_PASS() first calls the identify
3884 * routines for any drivers that probe at the current pass.  Then it
3885 * walks the list of devices for this bus.  If a device is already
3886 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3887 * device is not already attached, it attempts to attach a driver to
3888 * it.
3889 */
3890void
3891bus_generic_new_pass(device_t dev)
3892{
3893	driverlink_t dl;
3894	devclass_t dc;
3895	device_t child;
3896
3897	dc = dev->devclass;
3898	TAILQ_FOREACH(dl, &dc->drivers, link) {
3899		if (dl->pass == bus_current_pass)
3900			DEVICE_IDENTIFY(dl->driver, dev);
3901	}
3902	TAILQ_FOREACH(child, &dev->children, link) {
3903		if (child->state >= DS_ATTACHED)
3904			BUS_NEW_PASS(child);
3905		else if (child->state == DS_NOTPRESENT)
3906			device_probe_and_attach(child);
3907	}
3908}
3909
3910/**
3911 * @brief Helper function for implementing BUS_SETUP_INTR().
3912 *
3913 * This simple implementation of BUS_SETUP_INTR() simply calls the
3914 * BUS_SETUP_INTR() method of the parent of @p dev.
3915 */
3916int
3917bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3918    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3919    void **cookiep)
3920{
3921	/* Propagate up the bus hierarchy until someone handles it. */
3922	if (dev->parent)
3923		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3924		    filter, intr, arg, cookiep));
3925	return (EINVAL);
3926}
3927
3928/**
3929 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3930 *
3931 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3932 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3933 */
3934int
3935bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3936    void *cookie)
3937{
3938	/* Propagate up the bus hierarchy until someone handles it. */
3939	if (dev->parent)
3940		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3941	return (EINVAL);
3942}
3943
3944/**
3945 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3946 *
3947 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3948 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3949 */
3950int
3951bus_generic_adjust_resource(device_t dev, device_t child, int type,
3952    struct resource *r, rman_res_t start, rman_res_t end)
3953{
3954	/* Propagate up the bus hierarchy until someone handles it. */
3955	if (dev->parent)
3956		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3957		    end));
3958	return (EINVAL);
3959}
3960
3961/**
3962 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3963 *
3964 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3965 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3966 */
3967struct resource *
3968bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3969    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3970{
3971	/* Propagate up the bus hierarchy until someone handles it. */
3972	if (dev->parent)
3973		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3974		    start, end, count, flags));
3975	return (NULL);
3976}
3977
3978/**
3979 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3980 *
3981 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3982 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3983 */
3984int
3985bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3986    struct resource *r)
3987{
3988	/* Propagate up the bus hierarchy until someone handles it. */
3989	if (dev->parent)
3990		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3991		    r));
3992	return (EINVAL);
3993}
3994
3995/**
3996 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3997 *
3998 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3999 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4000 */
4001int
4002bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
4003    struct resource *r)
4004{
4005	/* Propagate up the bus hierarchy until someone handles it. */
4006	if (dev->parent)
4007		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
4008		    r));
4009	return (EINVAL);
4010}
4011
4012/**
4013 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4014 *
4015 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4016 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4017 */
4018int
4019bus_generic_deactivate_resource(device_t dev, device_t child, int type,
4020    int rid, struct resource *r)
4021{
4022	/* Propagate up the bus hierarchy until someone handles it. */
4023	if (dev->parent)
4024		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
4025		    r));
4026	return (EINVAL);
4027}
4028
4029/**
4030 * @brief Helper function for implementing BUS_BIND_INTR().
4031 *
4032 * This simple implementation of BUS_BIND_INTR() simply calls the
4033 * BUS_BIND_INTR() method of the parent of @p dev.
4034 */
4035int
4036bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4037    int cpu)
4038{
4039
4040	/* Propagate up the bus hierarchy until someone handles it. */
4041	if (dev->parent)
4042		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4043	return (EINVAL);
4044}
4045
4046/**
4047 * @brief Helper function for implementing BUS_CONFIG_INTR().
4048 *
4049 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4050 * BUS_CONFIG_INTR() method of the parent of @p dev.
4051 */
4052int
4053bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4054    enum intr_polarity pol)
4055{
4056
4057	/* Propagate up the bus hierarchy until someone handles it. */
4058	if (dev->parent)
4059		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4060	return (EINVAL);
4061}
4062
4063/**
4064 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4065 *
4066 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4067 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4068 */
4069int
4070bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4071    void *cookie, const char *descr)
4072{
4073
4074	/* Propagate up the bus hierarchy until someone handles it. */
4075	if (dev->parent)
4076		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4077		    descr));
4078	return (EINVAL);
4079}
4080
4081/**
4082 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4083 *
4084 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4085 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4086 */
4087bus_dma_tag_t
4088bus_generic_get_dma_tag(device_t dev, device_t child)
4089{
4090
4091	/* Propagate up the bus hierarchy until someone handles it. */
4092	if (dev->parent != NULL)
4093		return (BUS_GET_DMA_TAG(dev->parent, child));
4094	return (NULL);
4095}
4096
4097/**
4098 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4099 *
4100 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4101 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4102 */
4103bus_space_tag_t
4104bus_generic_get_bus_tag(device_t dev, device_t child)
4105{
4106
4107	/* Propagate up the bus hierarchy until someone handles it. */
4108	if (dev->parent != NULL)
4109		return (BUS_GET_BUS_TAG(dev->parent, child));
4110	return ((bus_space_tag_t)0);
4111}
4112
4113/**
4114 * @brief Helper function for implementing BUS_GET_RESOURCE().
4115 *
4116 * This implementation of BUS_GET_RESOURCE() uses the
4117 * resource_list_find() function to do most of the work. It calls
4118 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4119 * search.
4120 */
4121int
4122bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4123    rman_res_t *startp, rman_res_t *countp)
4124{
4125	struct resource_list *		rl = NULL;
4126	struct resource_list_entry *	rle = NULL;
4127
4128	rl = BUS_GET_RESOURCE_LIST(dev, child);
4129	if (!rl)
4130		return (EINVAL);
4131
4132	rle = resource_list_find(rl, type, rid);
4133	if (!rle)
4134		return (ENOENT);
4135
4136	if (startp)
4137		*startp = rle->start;
4138	if (countp)
4139		*countp = rle->count;
4140
4141	return (0);
4142}
4143
4144/**
4145 * @brief Helper function for implementing BUS_SET_RESOURCE().
4146 *
4147 * This implementation of BUS_SET_RESOURCE() uses the
4148 * resource_list_add() function to do most of the work. It calls
4149 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4150 * edit.
4151 */
4152int
4153bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4154    rman_res_t start, rman_res_t count)
4155{
4156	struct resource_list *		rl = NULL;
4157
4158	rl = BUS_GET_RESOURCE_LIST(dev, child);
4159	if (!rl)
4160		return (EINVAL);
4161
4162	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4163
4164	return (0);
4165}
4166
4167/**
4168 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4169 *
4170 * This implementation of BUS_DELETE_RESOURCE() uses the
4171 * resource_list_delete() function to do most of the work. It calls
4172 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4173 * edit.
4174 */
4175void
4176bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4177{
4178	struct resource_list *		rl = NULL;
4179
4180	rl = BUS_GET_RESOURCE_LIST(dev, child);
4181	if (!rl)
4182		return;
4183
4184	resource_list_delete(rl, type, rid);
4185
4186	return;
4187}
4188
4189/**
4190 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4191 *
4192 * This implementation of BUS_RELEASE_RESOURCE() uses the
4193 * resource_list_release() function to do most of the work. It calls
4194 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4195 */
4196int
4197bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4198    int rid, struct resource *r)
4199{
4200	struct resource_list *		rl = NULL;
4201
4202	if (device_get_parent(child) != dev)
4203		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4204		    type, rid, r));
4205
4206	rl = BUS_GET_RESOURCE_LIST(dev, child);
4207	if (!rl)
4208		return (EINVAL);
4209
4210	return (resource_list_release(rl, dev, child, type, rid, r));
4211}
4212
4213/**
4214 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4215 *
4216 * This implementation of BUS_ALLOC_RESOURCE() uses the
4217 * resource_list_alloc() function to do most of the work. It calls
4218 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4219 */
4220struct resource *
4221bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4222    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4223{
4224	struct resource_list *		rl = NULL;
4225
4226	if (device_get_parent(child) != dev)
4227		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4228		    type, rid, start, end, count, flags));
4229
4230	rl = BUS_GET_RESOURCE_LIST(dev, child);
4231	if (!rl)
4232		return (NULL);
4233
4234	return (resource_list_alloc(rl, dev, child, type, rid,
4235	    start, end, count, flags));
4236}
4237
4238/**
4239 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4240 *
4241 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4242 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4243 */
4244int
4245bus_generic_child_present(device_t dev, device_t child)
4246{
4247	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4248}
4249
4250int
4251bus_generic_get_domain(device_t dev, device_t child, int *domain)
4252{
4253
4254	if (dev->parent)
4255		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4256
4257	return (ENOENT);
4258}
4259
4260/*
4261 * Some convenience functions to make it easier for drivers to use the
4262 * resource-management functions.  All these really do is hide the
4263 * indirection through the parent's method table, making for slightly
4264 * less-wordy code.  In the future, it might make sense for this code
4265 * to maintain some sort of a list of resources allocated by each device.
4266 */
4267
4268int
4269bus_alloc_resources(device_t dev, struct resource_spec *rs,
4270    struct resource **res)
4271{
4272	int i;
4273
4274	for (i = 0; rs[i].type != -1; i++)
4275		res[i] = NULL;
4276	for (i = 0; rs[i].type != -1; i++) {
4277		res[i] = bus_alloc_resource_any(dev,
4278		    rs[i].type, &rs[i].rid, rs[i].flags);
4279		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4280			bus_release_resources(dev, rs, res);
4281			return (ENXIO);
4282		}
4283	}
4284	return (0);
4285}
4286
4287void
4288bus_release_resources(device_t dev, const struct resource_spec *rs,
4289    struct resource **res)
4290{
4291	int i;
4292
4293	for (i = 0; rs[i].type != -1; i++)
4294		if (res[i] != NULL) {
4295			bus_release_resource(
4296			    dev, rs[i].type, rs[i].rid, res[i]);
4297			res[i] = NULL;
4298		}
4299}
4300
4301/**
4302 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4303 *
4304 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4305 * parent of @p dev.
4306 */
4307struct resource *
4308bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end,
4309    rman_res_t count, u_int flags)
4310{
4311	if (dev->parent == NULL)
4312		return (NULL);
4313	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4314	    count, flags));
4315}
4316
4317/**
4318 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4319 *
4320 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4321 * parent of @p dev.
4322 */
4323int
4324bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
4325    rman_res_t end)
4326{
4327	if (dev->parent == NULL)
4328		return (EINVAL);
4329	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4330}
4331
4332/**
4333 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4334 *
4335 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4336 * parent of @p dev.
4337 */
4338int
4339bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4340{
4341	if (dev->parent == NULL)
4342		return (EINVAL);
4343	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4344}
4345
4346/**
4347 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4348 *
4349 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4350 * parent of @p dev.
4351 */
4352int
4353bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4354{
4355	if (dev->parent == NULL)
4356		return (EINVAL);
4357	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4358}
4359
4360/**
4361 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4362 *
4363 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4364 * parent of @p dev.
4365 */
4366int
4367bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4368{
4369	if (dev->parent == NULL)
4370		return (EINVAL);
4371	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4372}
4373
4374/**
4375 * @brief Wrapper function for BUS_SETUP_INTR().
4376 *
4377 * This function simply calls the BUS_SETUP_INTR() method of the
4378 * parent of @p dev.
4379 */
4380int
4381bus_setup_intr(device_t dev, struct resource *r, int flags,
4382    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4383{
4384	int error;
4385
4386	if (dev->parent == NULL)
4387		return (EINVAL);
4388	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4389	    arg, cookiep);
4390	if (error != 0)
4391		return (error);
4392	if (handler != NULL && !(flags & INTR_MPSAFE))
4393		device_printf(dev, "[GIANT-LOCKED]\n");
4394	return (0);
4395}
4396
4397/**
4398 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4399 *
4400 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4401 * parent of @p dev.
4402 */
4403int
4404bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4405{
4406	if (dev->parent == NULL)
4407		return (EINVAL);
4408	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4409}
4410
4411/**
4412 * @brief Wrapper function for BUS_BIND_INTR().
4413 *
4414 * This function simply calls the BUS_BIND_INTR() method of the
4415 * parent of @p dev.
4416 */
4417int
4418bus_bind_intr(device_t dev, struct resource *r, int cpu)
4419{
4420	if (dev->parent == NULL)
4421		return (EINVAL);
4422	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4423}
4424
4425/**
4426 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4427 *
4428 * This function first formats the requested description into a
4429 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4430 * the parent of @p dev.
4431 */
4432int
4433bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4434    const char *fmt, ...)
4435{
4436	va_list ap;
4437	char descr[MAXCOMLEN + 1];
4438
4439	if (dev->parent == NULL)
4440		return (EINVAL);
4441	va_start(ap, fmt);
4442	vsnprintf(descr, sizeof(descr), fmt, ap);
4443	va_end(ap);
4444	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4445}
4446
4447/**
4448 * @brief Wrapper function for BUS_SET_RESOURCE().
4449 *
4450 * This function simply calls the BUS_SET_RESOURCE() method of the
4451 * parent of @p dev.
4452 */
4453int
4454bus_set_resource(device_t dev, int type, int rid,
4455    rman_res_t start, rman_res_t count)
4456{
4457	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4458	    start, count));
4459}
4460
4461/**
4462 * @brief Wrapper function for BUS_GET_RESOURCE().
4463 *
4464 * This function simply calls the BUS_GET_RESOURCE() method of the
4465 * parent of @p dev.
4466 */
4467int
4468bus_get_resource(device_t dev, int type, int rid,
4469    rman_res_t *startp, rman_res_t *countp)
4470{
4471	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4472	    startp, countp));
4473}
4474
4475/**
4476 * @brief Wrapper function for BUS_GET_RESOURCE().
4477 *
4478 * This function simply calls the BUS_GET_RESOURCE() method of the
4479 * parent of @p dev and returns the start value.
4480 */
4481rman_res_t
4482bus_get_resource_start(device_t dev, int type, int rid)
4483{
4484	rman_res_t start;
4485	rman_res_t count;
4486	int error;
4487
4488	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4489	    &start, &count);
4490	if (error)
4491		return (0);
4492	return (start);
4493}
4494
4495/**
4496 * @brief Wrapper function for BUS_GET_RESOURCE().
4497 *
4498 * This function simply calls the BUS_GET_RESOURCE() method of the
4499 * parent of @p dev and returns the count value.
4500 */
4501rman_res_t
4502bus_get_resource_count(device_t dev, int type, int rid)
4503{
4504	rman_res_t start;
4505	rman_res_t count;
4506	int error;
4507
4508	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4509	    &start, &count);
4510	if (error)
4511		return (0);
4512	return (count);
4513}
4514
4515/**
4516 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4517 *
4518 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4519 * parent of @p dev.
4520 */
4521void
4522bus_delete_resource(device_t dev, int type, int rid)
4523{
4524	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4525}
4526
4527/**
4528 * @brief Wrapper function for BUS_CHILD_PRESENT().
4529 *
4530 * This function simply calls the BUS_CHILD_PRESENT() method of the
4531 * parent of @p dev.
4532 */
4533int
4534bus_child_present(device_t child)
4535{
4536	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4537}
4538
4539/**
4540 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4541 *
4542 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4543 * parent of @p dev.
4544 */
4545int
4546bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4547{
4548	device_t parent;
4549
4550	parent = device_get_parent(child);
4551	if (parent == NULL) {
4552		*buf = '\0';
4553		return (0);
4554	}
4555	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4556}
4557
4558/**
4559 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4560 *
4561 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4562 * parent of @p dev.
4563 */
4564int
4565bus_child_location_str(device_t child, char *buf, size_t buflen)
4566{
4567	device_t parent;
4568
4569	parent = device_get_parent(child);
4570	if (parent == NULL) {
4571		*buf = '\0';
4572		return (0);
4573	}
4574	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4575}
4576
4577/**
4578 * @brief Wrapper function for BUS_GET_DMA_TAG().
4579 *
4580 * This function simply calls the BUS_GET_DMA_TAG() method of the
4581 * parent of @p dev.
4582 */
4583bus_dma_tag_t
4584bus_get_dma_tag(device_t dev)
4585{
4586	device_t parent;
4587
4588	parent = device_get_parent(dev);
4589	if (parent == NULL)
4590		return (NULL);
4591	return (BUS_GET_DMA_TAG(parent, dev));
4592}
4593
4594/**
4595 * @brief Wrapper function for BUS_GET_BUS_TAG().
4596 *
4597 * This function simply calls the BUS_GET_BUS_TAG() method of the
4598 * parent of @p dev.
4599 */
4600bus_space_tag_t
4601bus_get_bus_tag(device_t dev)
4602{
4603	device_t parent;
4604
4605	parent = device_get_parent(dev);
4606	if (parent == NULL)
4607		return ((bus_space_tag_t)0);
4608	return (BUS_GET_BUS_TAG(parent, dev));
4609}
4610
4611/**
4612 * @brief Wrapper function for BUS_GET_DOMAIN().
4613 *
4614 * This function simply calls the BUS_GET_DOMAIN() method of the
4615 * parent of @p dev.
4616 */
4617int
4618bus_get_domain(device_t dev, int *domain)
4619{
4620	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4621}
4622
4623/* Resume all devices and then notify userland that we're up again. */
4624static int
4625root_resume(device_t dev)
4626{
4627	int error;
4628
4629	error = bus_generic_resume(dev);
4630	if (error == 0)
4631		devctl_notify("kern", "power", "resume", NULL);
4632	return (error);
4633}
4634
4635static int
4636root_print_child(device_t dev, device_t child)
4637{
4638	int	retval = 0;
4639
4640	retval += bus_print_child_header(dev, child);
4641	retval += printf("\n");
4642
4643	return (retval);
4644}
4645
4646static int
4647root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4648    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4649{
4650	/*
4651	 * If an interrupt mapping gets to here something bad has happened.
4652	 */
4653	panic("root_setup_intr");
4654}
4655
4656/*
4657 * If we get here, assume that the device is permanant and really is
4658 * present in the system.  Removable bus drivers are expected to intercept
4659 * this call long before it gets here.  We return -1 so that drivers that
4660 * really care can check vs -1 or some ERRNO returned higher in the food
4661 * chain.
4662 */
4663static int
4664root_child_present(device_t dev, device_t child)
4665{
4666	return (-1);
4667}
4668
4669static kobj_method_t root_methods[] = {
4670	/* Device interface */
4671	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4672	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4673	KOBJMETHOD(device_resume,	root_resume),
4674
4675	/* Bus interface */
4676	KOBJMETHOD(bus_print_child,	root_print_child),
4677	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4678	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4679	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4680	KOBJMETHOD(bus_child_present,	root_child_present),
4681
4682	KOBJMETHOD_END
4683};
4684
4685static driver_t root_driver = {
4686	"root",
4687	root_methods,
4688	1,			/* no softc */
4689};
4690
4691device_t	root_bus;
4692devclass_t	root_devclass;
4693
4694static int
4695root_bus_module_handler(module_t mod, int what, void* arg)
4696{
4697	switch (what) {
4698	case MOD_LOAD:
4699		TAILQ_INIT(&bus_data_devices);
4700		kobj_class_compile((kobj_class_t) &root_driver);
4701		root_bus = make_device(NULL, "root", 0);
4702		root_bus->desc = "System root bus";
4703		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4704		root_bus->driver = &root_driver;
4705		root_bus->state = DS_ATTACHED;
4706		root_devclass = devclass_find_internal("root", NULL, FALSE);
4707		devinit();
4708		return (0);
4709
4710	case MOD_SHUTDOWN:
4711		device_shutdown(root_bus);
4712		return (0);
4713	default:
4714		return (EOPNOTSUPP);
4715	}
4716
4717	return (0);
4718}
4719
4720static moduledata_t root_bus_mod = {
4721	"rootbus",
4722	root_bus_module_handler,
4723	NULL
4724};
4725DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4726
4727/**
4728 * @brief Automatically configure devices
4729 *
4730 * This function begins the autoconfiguration process by calling
4731 * device_probe_and_attach() for each child of the @c root0 device.
4732 */
4733void
4734root_bus_configure(void)
4735{
4736
4737	PDEBUG(("."));
4738
4739	/* Eventually this will be split up, but this is sufficient for now. */
4740	bus_set_pass(BUS_PASS_DEFAULT);
4741}
4742
4743/**
4744 * @brief Module handler for registering device drivers
4745 *
4746 * This module handler is used to automatically register device
4747 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4748 * devclass_add_driver() for the driver described by the
4749 * driver_module_data structure pointed to by @p arg
4750 */
4751int
4752driver_module_handler(module_t mod, int what, void *arg)
4753{
4754	struct driver_module_data *dmd;
4755	devclass_t bus_devclass;
4756	kobj_class_t driver;
4757	int error, pass;
4758
4759	dmd = (struct driver_module_data *)arg;
4760	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4761	error = 0;
4762
4763	switch (what) {
4764	case MOD_LOAD:
4765		if (dmd->dmd_chainevh)
4766			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4767
4768		pass = dmd->dmd_pass;
4769		driver = dmd->dmd_driver;
4770		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4771		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4772		error = devclass_add_driver(bus_devclass, driver, pass,
4773		    dmd->dmd_devclass);
4774		break;
4775
4776	case MOD_UNLOAD:
4777		PDEBUG(("Unloading module: driver %s from bus %s",
4778		    DRIVERNAME(dmd->dmd_driver),
4779		    dmd->dmd_busname));
4780		error = devclass_delete_driver(bus_devclass,
4781		    dmd->dmd_driver);
4782
4783		if (!error && dmd->dmd_chainevh)
4784			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4785		break;
4786	case MOD_QUIESCE:
4787		PDEBUG(("Quiesce module: driver %s from bus %s",
4788		    DRIVERNAME(dmd->dmd_driver),
4789		    dmd->dmd_busname));
4790		error = devclass_quiesce_driver(bus_devclass,
4791		    dmd->dmd_driver);
4792
4793		if (!error && dmd->dmd_chainevh)
4794			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4795		break;
4796	default:
4797		error = EOPNOTSUPP;
4798		break;
4799	}
4800
4801	return (error);
4802}
4803
4804/**
4805 * @brief Enumerate all hinted devices for this bus.
4806 *
4807 * Walks through the hints for this bus and calls the bus_hinted_child
4808 * routine for each one it fines.  It searches first for the specific
4809 * bus that's being probed for hinted children (eg isa0), and then for
4810 * generic children (eg isa).
4811 *
4812 * @param	dev	bus device to enumerate
4813 */
4814void
4815bus_enumerate_hinted_children(device_t bus)
4816{
4817	int i;
4818	const char *dname, *busname;
4819	int dunit;
4820
4821	/*
4822	 * enumerate all devices on the specific bus
4823	 */
4824	busname = device_get_nameunit(bus);
4825	i = 0;
4826	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4827		BUS_HINTED_CHILD(bus, dname, dunit);
4828
4829	/*
4830	 * and all the generic ones.
4831	 */
4832	busname = device_get_name(bus);
4833	i = 0;
4834	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4835		BUS_HINTED_CHILD(bus, dname, dunit);
4836}
4837
4838#ifdef BUS_DEBUG
4839
4840/* the _short versions avoid iteration by not calling anything that prints
4841 * more than oneliners. I love oneliners.
4842 */
4843
4844static void
4845print_device_short(device_t dev, int indent)
4846{
4847	if (!dev)
4848		return;
4849
4850	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4851	    dev->unit, dev->desc,
4852	    (dev->parent? "":"no "),
4853	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4854	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4855	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4856	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4857	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4858	    (dev->flags&DF_REBID? "rebiddable,":""),
4859	    (dev->ivars? "":"no "),
4860	    (dev->softc? "":"no "),
4861	    dev->busy));
4862}
4863
4864static void
4865print_device(device_t dev, int indent)
4866{
4867	if (!dev)
4868		return;
4869
4870	print_device_short(dev, indent);
4871
4872	indentprintf(("Parent:\n"));
4873	print_device_short(dev->parent, indent+1);
4874	indentprintf(("Driver:\n"));
4875	print_driver_short(dev->driver, indent+1);
4876	indentprintf(("Devclass:\n"));
4877	print_devclass_short(dev->devclass, indent+1);
4878}
4879
4880void
4881print_device_tree_short(device_t dev, int indent)
4882/* print the device and all its children (indented) */
4883{
4884	device_t child;
4885
4886	if (!dev)
4887		return;
4888
4889	print_device_short(dev, indent);
4890
4891	TAILQ_FOREACH(child, &dev->children, link) {
4892		print_device_tree_short(child, indent+1);
4893	}
4894}
4895
4896void
4897print_device_tree(device_t dev, int indent)
4898/* print the device and all its children (indented) */
4899{
4900	device_t child;
4901
4902	if (!dev)
4903		return;
4904
4905	print_device(dev, indent);
4906
4907	TAILQ_FOREACH(child, &dev->children, link) {
4908		print_device_tree(child, indent+1);
4909	}
4910}
4911
4912static void
4913print_driver_short(driver_t *driver, int indent)
4914{
4915	if (!driver)
4916		return;
4917
4918	indentprintf(("driver %s: softc size = %zd\n",
4919	    driver->name, driver->size));
4920}
4921
4922static void
4923print_driver(driver_t *driver, int indent)
4924{
4925	if (!driver)
4926		return;
4927
4928	print_driver_short(driver, indent);
4929}
4930
4931static void
4932print_driver_list(driver_list_t drivers, int indent)
4933{
4934	driverlink_t driver;
4935
4936	TAILQ_FOREACH(driver, &drivers, link) {
4937		print_driver(driver->driver, indent);
4938	}
4939}
4940
4941static void
4942print_devclass_short(devclass_t dc, int indent)
4943{
4944	if ( !dc )
4945		return;
4946
4947	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4948}
4949
4950static void
4951print_devclass(devclass_t dc, int indent)
4952{
4953	int i;
4954
4955	if ( !dc )
4956		return;
4957
4958	print_devclass_short(dc, indent);
4959	indentprintf(("Drivers:\n"));
4960	print_driver_list(dc->drivers, indent+1);
4961
4962	indentprintf(("Devices:\n"));
4963	for (i = 0; i < dc->maxunit; i++)
4964		if (dc->devices[i])
4965			print_device(dc->devices[i], indent+1);
4966}
4967
4968void
4969print_devclass_list_short(void)
4970{
4971	devclass_t dc;
4972
4973	printf("Short listing of devclasses, drivers & devices:\n");
4974	TAILQ_FOREACH(dc, &devclasses, link) {
4975		print_devclass_short(dc, 0);
4976	}
4977}
4978
4979void
4980print_devclass_list(void)
4981{
4982	devclass_t dc;
4983
4984	printf("Full listing of devclasses, drivers & devices:\n");
4985	TAILQ_FOREACH(dc, &devclasses, link) {
4986		print_devclass(dc, 0);
4987	}
4988}
4989
4990#endif
4991
4992/*
4993 * User-space access to the device tree.
4994 *
4995 * We implement a small set of nodes:
4996 *
4997 * hw.bus			Single integer read method to obtain the
4998 *				current generation count.
4999 * hw.bus.devices		Reads the entire device tree in flat space.
5000 * hw.bus.rman			Resource manager interface
5001 *
5002 * We might like to add the ability to scan devclasses and/or drivers to
5003 * determine what else is currently loaded/available.
5004 */
5005
5006static int
5007sysctl_bus(SYSCTL_HANDLER_ARGS)
5008{
5009	struct u_businfo	ubus;
5010
5011	ubus.ub_version = BUS_USER_VERSION;
5012	ubus.ub_generation = bus_data_generation;
5013
5014	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5015}
5016SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
5017    "bus-related data");
5018
5019static int
5020sysctl_devices(SYSCTL_HANDLER_ARGS)
5021{
5022	int			*name = (int *)arg1;
5023	u_int			namelen = arg2;
5024	int			index;
5025	struct device		*dev;
5026	struct u_device		udev;	/* XXX this is a bit big */
5027	int			error;
5028
5029	if (namelen != 2)
5030		return (EINVAL);
5031
5032	if (bus_data_generation_check(name[0]))
5033		return (EINVAL);
5034
5035	index = name[1];
5036
5037	/*
5038	 * Scan the list of devices, looking for the requested index.
5039	 */
5040	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5041		if (index-- == 0)
5042			break;
5043	}
5044	if (dev == NULL)
5045		return (ENOENT);
5046
5047	/*
5048	 * Populate the return array.
5049	 */
5050	bzero(&udev, sizeof(udev));
5051	udev.dv_handle = (uintptr_t)dev;
5052	udev.dv_parent = (uintptr_t)dev->parent;
5053	if (dev->nameunit != NULL)
5054		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
5055	if (dev->desc != NULL)
5056		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
5057	if (dev->driver != NULL && dev->driver->name != NULL)
5058		strlcpy(udev.dv_drivername, dev->driver->name,
5059		    sizeof(udev.dv_drivername));
5060	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5061	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5062	udev.dv_devflags = dev->devflags;
5063	udev.dv_flags = dev->flags;
5064	udev.dv_state = dev->state;
5065	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5066	return (error);
5067}
5068
5069SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5070    "system device tree");
5071
5072int
5073bus_data_generation_check(int generation)
5074{
5075	if (generation != bus_data_generation)
5076		return (1);
5077
5078	/* XXX generate optimised lists here? */
5079	return (0);
5080}
5081
5082void
5083bus_data_generation_update(void)
5084{
5085	bus_data_generation++;
5086}
5087
5088int
5089bus_free_resource(device_t dev, int type, struct resource *r)
5090{
5091	if (r == NULL)
5092		return (0);
5093	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5094}
5095
5096/*
5097 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5098 * implicit semantics on open, so it could not be reused for this.
5099 * Another option would be to call this /dev/bus?
5100 */
5101static int
5102find_device(struct devreq *req, device_t *devp)
5103{
5104	device_t dev;
5105
5106	/*
5107	 * First, ensure that the name is nul terminated.
5108	 */
5109	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5110		return (EINVAL);
5111
5112	/*
5113	 * Second, try to find an attached device whose name matches
5114	 * 'name'.
5115	 */
5116	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5117		if (dev->nameunit != NULL &&
5118		    strcmp(dev->nameunit, req->dr_name) == 0) {
5119			*devp = dev;
5120			return (0);
5121		}
5122	}
5123
5124	/* Finally, give device enumerators a chance. */
5125	dev = NULL;
5126	EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
5127	if (dev == NULL)
5128		return (ENOENT);
5129	*devp = dev;
5130	return (0);
5131}
5132
5133static bool
5134driver_exists(struct device *bus, const char *driver)
5135{
5136	devclass_t dc;
5137
5138	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5139		if (devclass_find_driver_internal(dc, driver) != NULL)
5140			return (true);
5141	}
5142	return (false);
5143}
5144
5145static int
5146devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5147    struct thread *td)
5148{
5149	struct devreq *req;
5150	device_t dev;
5151	int error, old;
5152
5153	/* Locate the device to control. */
5154	mtx_lock(&Giant);
5155	req = (struct devreq *)data;
5156	switch (cmd) {
5157	case DEV_ATTACH:
5158	case DEV_DETACH:
5159	case DEV_ENABLE:
5160	case DEV_DISABLE:
5161	case DEV_SUSPEND:
5162	case DEV_RESUME:
5163	case DEV_SET_DRIVER:
5164		error = priv_check(td, PRIV_DRIVER);
5165		if (error == 0)
5166			error = find_device(req, &dev);
5167		break;
5168	default:
5169		error = ENOTTY;
5170		break;
5171	}
5172	if (error) {
5173		mtx_unlock(&Giant);
5174		return (error);
5175	}
5176
5177	/* Perform the requested operation. */
5178	switch (cmd) {
5179	case DEV_ATTACH:
5180		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
5181			error = EBUSY;
5182		else if (!device_is_enabled(dev))
5183			error = ENXIO;
5184		else
5185			error = device_probe_and_attach(dev);
5186		break;
5187	case DEV_DETACH:
5188		if (!device_is_attached(dev)) {
5189			error = ENXIO;
5190			break;
5191		}
5192		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5193			error = device_quiesce(dev);
5194			if (error)
5195				break;
5196		}
5197		error = device_detach(dev);
5198		break;
5199	case DEV_ENABLE:
5200		if (device_is_enabled(dev)) {
5201			error = EBUSY;
5202			break;
5203		}
5204
5205		/*
5206		 * If the device has been probed but not attached (e.g.
5207		 * when it has been disabled by a loader hint), just
5208		 * attach the device rather than doing a full probe.
5209		 */
5210		device_enable(dev);
5211		if (device_is_alive(dev)) {
5212			/*
5213			 * If the device was disabled via a hint, clear
5214			 * the hint.
5215			 */
5216			if (resource_disabled(dev->driver->name, dev->unit))
5217				resource_unset_value(dev->driver->name,
5218				    dev->unit, "disabled");
5219			error = device_attach(dev);
5220		} else
5221			error = device_probe_and_attach(dev);
5222		break;
5223	case DEV_DISABLE:
5224		if (!device_is_enabled(dev)) {
5225			error = ENXIO;
5226			break;
5227		}
5228
5229		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5230			error = device_quiesce(dev);
5231			if (error)
5232				break;
5233		}
5234
5235		/*
5236		 * Force DF_FIXEDCLASS on around detach to preserve
5237		 * the existing name.
5238		 */
5239		old = dev->flags;
5240		dev->flags |= DF_FIXEDCLASS;
5241		error = device_detach(dev);
5242		if (!(old & DF_FIXEDCLASS))
5243			dev->flags &= ~DF_FIXEDCLASS;
5244		if (error == 0)
5245			device_disable(dev);
5246		break;
5247	case DEV_SUSPEND:
5248		if (device_is_suspended(dev)) {
5249			error = EBUSY;
5250			break;
5251		}
5252		if (device_get_parent(dev) == NULL) {
5253			error = EINVAL;
5254			break;
5255		}
5256		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5257		break;
5258	case DEV_RESUME:
5259		if (!device_is_suspended(dev)) {
5260			error = EINVAL;
5261			break;
5262		}
5263		if (device_get_parent(dev) == NULL) {
5264			error = EINVAL;
5265			break;
5266		}
5267		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5268		break;
5269	case DEV_SET_DRIVER: {
5270		devclass_t dc;
5271		char driver[128];
5272
5273		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5274		if (error)
5275			break;
5276		if (driver[0] == '\0') {
5277			error = EINVAL;
5278			break;
5279		}
5280		if (dev->devclass != NULL &&
5281		    strcmp(driver, dev->devclass->name) == 0)
5282			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5283			break;
5284
5285		/*
5286		 * Scan drivers for this device's bus looking for at
5287		 * least one matching driver.
5288		 */
5289		if (dev->parent == NULL) {
5290			error = EINVAL;
5291			break;
5292		}
5293		if (!driver_exists(dev->parent, driver)) {
5294			error = ENOENT;
5295			break;
5296		}
5297		dc = devclass_create(driver);
5298		if (dc == NULL) {
5299			error = ENOMEM;
5300			break;
5301		}
5302
5303		/* Detach device if necessary. */
5304		if (device_is_attached(dev)) {
5305			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5306				error = device_detach(dev);
5307			else
5308				error = EBUSY;
5309			if (error)
5310				break;
5311		}
5312
5313		/* Clear any previously-fixed device class and unit. */
5314		if (dev->flags & DF_FIXEDCLASS)
5315			devclass_delete_device(dev->devclass, dev);
5316		dev->flags |= DF_WILDCARD;
5317		dev->unit = -1;
5318
5319		/* Force the new device class. */
5320		error = devclass_add_device(dc, dev);
5321		if (error)
5322			break;
5323		dev->flags |= DF_FIXEDCLASS;
5324		error = device_probe_and_attach(dev);
5325		break;
5326	}
5327	}
5328	mtx_unlock(&Giant);
5329	return (error);
5330}
5331
5332static struct cdevsw devctl2_cdevsw = {
5333	.d_version =	D_VERSION,
5334	.d_ioctl =	devctl2_ioctl,
5335	.d_name =	"devctl2",
5336};
5337
5338static void
5339devctl2_init(void)
5340{
5341
5342	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5343	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
5344}
5345