subr_bus.c revision 275460
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 275460 2014-12-03 15:29:53Z jhb $");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/uio.h>
55#include <sys/bus.h>
56#include <sys/interrupt.h>
57#include <sys/cpuset.h>
58
59#include <net/vnet.h>
60
61#include <machine/cpu.h>
62#include <machine/stdarg.h>
63
64#include <vm/uma.h>
65
66SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
67SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
68
69/*
70 * Used to attach drivers to devclasses.
71 */
72typedef struct driverlink *driverlink_t;
73struct driverlink {
74	kobj_class_t	driver;
75	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
76	int		pass;
77	TAILQ_ENTRY(driverlink) passlink;
78};
79
80/*
81 * Forward declarations
82 */
83typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
84typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
85typedef TAILQ_HEAD(device_list, device) device_list_t;
86
87struct devclass {
88	TAILQ_ENTRY(devclass) link;
89	devclass_t	parent;		/* parent in devclass hierarchy */
90	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
91	char		*name;
92	device_t	*devices;	/* array of devices indexed by unit */
93	int		maxunit;	/* size of devices array */
94	int		flags;
95#define DC_HAS_CHILDREN		1
96
97	struct sysctl_ctx_list sysctl_ctx;
98	struct sysctl_oid *sysctl_tree;
99};
100
101/**
102 * @brief Implementation of device.
103 */
104struct device {
105	/*
106	 * A device is a kernel object. The first field must be the
107	 * current ops table for the object.
108	 */
109	KOBJ_FIELDS;
110
111	/*
112	 * Device hierarchy.
113	 */
114	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
115	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
116	device_t	parent;		/**< parent of this device  */
117	device_list_t	children;	/**< list of child devices */
118
119	/*
120	 * Details of this device.
121	 */
122	driver_t	*driver;	/**< current driver */
123	devclass_t	devclass;	/**< current device class */
124	int		unit;		/**< current unit number */
125	char*		nameunit;	/**< name+unit e.g. foodev0 */
126	char*		desc;		/**< driver specific description */
127	int		busy;		/**< count of calls to device_busy() */
128	device_state_t	state;		/**< current device state  */
129	uint32_t	devflags;	/**< api level flags for device_get_flags() */
130	u_int		flags;		/**< internal device flags  */
131#define	DF_ENABLED	0x01		/* device should be probed/attached */
132#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
133#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
134#define	DF_DESCMALLOCED	0x08		/* description was malloced */
135#define	DF_QUIET	0x10		/* don't print verbose attach message */
136#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
137#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
138#define	DF_REBID	0x80		/* Can rebid after attach */
139#define	DF_SUSPENDED	0x100		/* Device is suspended. */
140	u_int	order;			/**< order from device_add_child_ordered() */
141	void	*ivars;			/**< instance variables  */
142	void	*softc;			/**< current driver's variables  */
143
144	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
145	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
146};
147
148static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
149static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
150
151#ifdef BUS_DEBUG
152
153static int bus_debug = 1;
154SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
155    "Bus debug level");
156
157#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
158#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
159#define DRIVERNAME(d)	((d)? d->name : "no driver")
160#define DEVCLANAME(d)	((d)? d->name : "no devclass")
161
162/**
163 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
164 * prevent syslog from deleting initial spaces
165 */
166#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
167
168static void print_device_short(device_t dev, int indent);
169static void print_device(device_t dev, int indent);
170void print_device_tree_short(device_t dev, int indent);
171void print_device_tree(device_t dev, int indent);
172static void print_driver_short(driver_t *driver, int indent);
173static void print_driver(driver_t *driver, int indent);
174static void print_driver_list(driver_list_t drivers, int indent);
175static void print_devclass_short(devclass_t dc, int indent);
176static void print_devclass(devclass_t dc, int indent);
177void print_devclass_list_short(void);
178void print_devclass_list(void);
179
180#else
181/* Make the compiler ignore the function calls */
182#define PDEBUG(a)			/* nop */
183#define DEVICENAME(d)			/* nop */
184#define DRIVERNAME(d)			/* nop */
185#define DEVCLANAME(d)			/* nop */
186
187#define print_device_short(d,i)		/* nop */
188#define print_device(d,i)		/* nop */
189#define print_device_tree_short(d,i)	/* nop */
190#define print_device_tree(d,i)		/* nop */
191#define print_driver_short(d,i)		/* nop */
192#define print_driver(d,i)		/* nop */
193#define print_driver_list(d,i)		/* nop */
194#define print_devclass_short(d,i)	/* nop */
195#define print_devclass(d,i)		/* nop */
196#define print_devclass_list_short()	/* nop */
197#define print_devclass_list()		/* nop */
198#endif
199
200/*
201 * dev sysctl tree
202 */
203
204enum {
205	DEVCLASS_SYSCTL_PARENT,
206};
207
208static int
209devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
210{
211	devclass_t dc = (devclass_t)arg1;
212	const char *value;
213
214	switch (arg2) {
215	case DEVCLASS_SYSCTL_PARENT:
216		value = dc->parent ? dc->parent->name : "";
217		break;
218	default:
219		return (EINVAL);
220	}
221	return (SYSCTL_OUT(req, value, strlen(value)));
222}
223
224static void
225devclass_sysctl_init(devclass_t dc)
226{
227
228	if (dc->sysctl_tree != NULL)
229		return;
230	sysctl_ctx_init(&dc->sysctl_ctx);
231	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
232	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
233	    CTLFLAG_RD, NULL, "");
234	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
235	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
236	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
237	    "parent class");
238}
239
240enum {
241	DEVICE_SYSCTL_DESC,
242	DEVICE_SYSCTL_DRIVER,
243	DEVICE_SYSCTL_LOCATION,
244	DEVICE_SYSCTL_PNPINFO,
245	DEVICE_SYSCTL_PARENT,
246};
247
248static int
249device_sysctl_handler(SYSCTL_HANDLER_ARGS)
250{
251	device_t dev = (device_t)arg1;
252	const char *value;
253	char *buf;
254	int error;
255
256	buf = NULL;
257	switch (arg2) {
258	case DEVICE_SYSCTL_DESC:
259		value = dev->desc ? dev->desc : "";
260		break;
261	case DEVICE_SYSCTL_DRIVER:
262		value = dev->driver ? dev->driver->name : "";
263		break;
264	case DEVICE_SYSCTL_LOCATION:
265		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266		bus_child_location_str(dev, buf, 1024);
267		break;
268	case DEVICE_SYSCTL_PNPINFO:
269		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
270		bus_child_pnpinfo_str(dev, buf, 1024);
271		break;
272	case DEVICE_SYSCTL_PARENT:
273		value = dev->parent ? dev->parent->nameunit : "";
274		break;
275	default:
276		return (EINVAL);
277	}
278	error = SYSCTL_OUT(req, value, strlen(value));
279	if (buf != NULL)
280		free(buf, M_BUS);
281	return (error);
282}
283
284static void
285device_sysctl_init(device_t dev)
286{
287	devclass_t dc = dev->devclass;
288	int domain;
289
290	if (dev->sysctl_tree != NULL)
291		return;
292	devclass_sysctl_init(dc);
293	sysctl_ctx_init(&dev->sysctl_ctx);
294	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
295	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
296	    dev->nameunit + strlen(dc->name),
297	    CTLFLAG_RD, NULL, "");
298	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
300	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
301	    "device description");
302	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
304	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
305	    "device driver name");
306	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
307	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
308	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
309	    "device location relative to parent");
310	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
312	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
313	    "device identification");
314	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
315	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
316	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
317	    "parent device");
318	if (bus_get_domain(dev, &domain) == 0)
319		SYSCTL_ADD_INT(&dev->sysctl_ctx,
320		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
321		    CTLFLAG_RD, NULL, domain, "NUMA domain");
322}
323
324static void
325device_sysctl_update(device_t dev)
326{
327	devclass_t dc = dev->devclass;
328
329	if (dev->sysctl_tree == NULL)
330		return;
331	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
332}
333
334static void
335device_sysctl_fini(device_t dev)
336{
337	if (dev->sysctl_tree == NULL)
338		return;
339	sysctl_ctx_free(&dev->sysctl_ctx);
340	dev->sysctl_tree = NULL;
341}
342
343/*
344 * /dev/devctl implementation
345 */
346
347/*
348 * This design allows only one reader for /dev/devctl.  This is not desirable
349 * in the long run, but will get a lot of hair out of this implementation.
350 * Maybe we should make this device a clonable device.
351 *
352 * Also note: we specifically do not attach a device to the device_t tree
353 * to avoid potential chicken and egg problems.  One could argue that all
354 * of this belongs to the root node.  One could also further argue that the
355 * sysctl interface that we have not might more properly be an ioctl
356 * interface, but at this stage of the game, I'm not inclined to rock that
357 * boat.
358 *
359 * I'm also not sure that the SIGIO support is done correctly or not, as
360 * I copied it from a driver that had SIGIO support that likely hasn't been
361 * tested since 3.4 or 2.2.8!
362 */
363
364/* Deprecated way to adjust queue length */
365static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
366SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
367    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
368    "devctl disable -- deprecated");
369
370#define DEVCTL_DEFAULT_QUEUE_LEN 1000
371static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
372static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
373SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
374    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
375
376static d_open_t		devopen;
377static d_close_t	devclose;
378static d_read_t		devread;
379static d_ioctl_t	devioctl;
380static d_poll_t		devpoll;
381static d_kqfilter_t	devkqfilter;
382
383static struct cdevsw dev_cdevsw = {
384	.d_version =	D_VERSION,
385	.d_open =	devopen,
386	.d_close =	devclose,
387	.d_read =	devread,
388	.d_ioctl =	devioctl,
389	.d_poll =	devpoll,
390	.d_kqfilter =	devkqfilter,
391	.d_name =	"devctl",
392};
393
394struct dev_event_info
395{
396	char *dei_data;
397	TAILQ_ENTRY(dev_event_info) dei_link;
398};
399
400TAILQ_HEAD(devq, dev_event_info);
401
402static struct dev_softc
403{
404	int	inuse;
405	int	nonblock;
406	int	queued;
407	int	async;
408	struct mtx mtx;
409	struct cv cv;
410	struct selinfo sel;
411	struct devq devq;
412	struct sigio *sigio;
413} devsoftc;
414
415static void	filt_devctl_detach(struct knote *kn);
416static int	filt_devctl_read(struct knote *kn, long hint);
417
418struct filterops devctl_rfiltops = {
419	.f_isfd = 1,
420	.f_detach = filt_devctl_detach,
421	.f_event = filt_devctl_read,
422};
423
424static struct cdev *devctl_dev;
425
426static void
427devinit(void)
428{
429	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
430	    UID_ROOT, GID_WHEEL, 0600, "devctl");
431	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
432	cv_init(&devsoftc.cv, "dev cv");
433	TAILQ_INIT(&devsoftc.devq);
434	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
435}
436
437static int
438devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
439{
440
441	mtx_lock(&devsoftc.mtx);
442	if (devsoftc.inuse) {
443		mtx_unlock(&devsoftc.mtx);
444		return (EBUSY);
445	}
446	/* move to init */
447	devsoftc.inuse = 1;
448	mtx_unlock(&devsoftc.mtx);
449	return (0);
450}
451
452static int
453devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
454{
455
456	mtx_lock(&devsoftc.mtx);
457	devsoftc.inuse = 0;
458	devsoftc.nonblock = 0;
459	devsoftc.async = 0;
460	cv_broadcast(&devsoftc.cv);
461	funsetown(&devsoftc.sigio);
462	mtx_unlock(&devsoftc.mtx);
463	return (0);
464}
465
466/*
467 * The read channel for this device is used to report changes to
468 * userland in realtime.  We are required to free the data as well as
469 * the n1 object because we allocate them separately.  Also note that
470 * we return one record at a time.  If you try to read this device a
471 * character at a time, you will lose the rest of the data.  Listening
472 * programs are expected to cope.
473 */
474static int
475devread(struct cdev *dev, struct uio *uio, int ioflag)
476{
477	struct dev_event_info *n1;
478	int rv;
479
480	mtx_lock(&devsoftc.mtx);
481	while (TAILQ_EMPTY(&devsoftc.devq)) {
482		if (devsoftc.nonblock) {
483			mtx_unlock(&devsoftc.mtx);
484			return (EAGAIN);
485		}
486		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
487		if (rv) {
488			/*
489			 * Need to translate ERESTART to EINTR here? -- jake
490			 */
491			mtx_unlock(&devsoftc.mtx);
492			return (rv);
493		}
494	}
495	n1 = TAILQ_FIRST(&devsoftc.devq);
496	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
497	devsoftc.queued--;
498	mtx_unlock(&devsoftc.mtx);
499	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
500	free(n1->dei_data, M_BUS);
501	free(n1, M_BUS);
502	return (rv);
503}
504
505static	int
506devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
507{
508	switch (cmd) {
509
510	case FIONBIO:
511		if (*(int*)data)
512			devsoftc.nonblock = 1;
513		else
514			devsoftc.nonblock = 0;
515		return (0);
516	case FIOASYNC:
517		if (*(int*)data)
518			devsoftc.async = 1;
519		else
520			devsoftc.async = 0;
521		return (0);
522	case FIOSETOWN:
523		return fsetown(*(int *)data, &devsoftc.sigio);
524	case FIOGETOWN:
525		*(int *)data = fgetown(&devsoftc.sigio);
526		return (0);
527
528		/* (un)Support for other fcntl() calls. */
529	case FIOCLEX:
530	case FIONCLEX:
531	case FIONREAD:
532	default:
533		break;
534	}
535	return (ENOTTY);
536}
537
538static	int
539devpoll(struct cdev *dev, int events, struct thread *td)
540{
541	int	revents = 0;
542
543	mtx_lock(&devsoftc.mtx);
544	if (events & (POLLIN | POLLRDNORM)) {
545		if (!TAILQ_EMPTY(&devsoftc.devq))
546			revents = events & (POLLIN | POLLRDNORM);
547		else
548			selrecord(td, &devsoftc.sel);
549	}
550	mtx_unlock(&devsoftc.mtx);
551
552	return (revents);
553}
554
555static int
556devkqfilter(struct cdev *dev, struct knote *kn)
557{
558	int error;
559
560	if (kn->kn_filter == EVFILT_READ) {
561		kn->kn_fop = &devctl_rfiltops;
562		knlist_add(&devsoftc.sel.si_note, kn, 0);
563		error = 0;
564	} else
565		error = EINVAL;
566	return (error);
567}
568
569static void
570filt_devctl_detach(struct knote *kn)
571{
572
573	knlist_remove(&devsoftc.sel.si_note, kn, 0);
574}
575
576static int
577filt_devctl_read(struct knote *kn, long hint)
578{
579	kn->kn_data = devsoftc.queued;
580	return (kn->kn_data != 0);
581}
582
583/**
584 * @brief Return whether the userland process is running
585 */
586boolean_t
587devctl_process_running(void)
588{
589	return (devsoftc.inuse == 1);
590}
591
592/**
593 * @brief Queue data to be read from the devctl device
594 *
595 * Generic interface to queue data to the devctl device.  It is
596 * assumed that @p data is properly formatted.  It is further assumed
597 * that @p data is allocated using the M_BUS malloc type.
598 */
599void
600devctl_queue_data_f(char *data, int flags)
601{
602	struct dev_event_info *n1 = NULL, *n2 = NULL;
603
604	if (strlen(data) == 0)
605		goto out;
606	if (devctl_queue_length == 0)
607		goto out;
608	n1 = malloc(sizeof(*n1), M_BUS, flags);
609	if (n1 == NULL)
610		goto out;
611	n1->dei_data = data;
612	mtx_lock(&devsoftc.mtx);
613	if (devctl_queue_length == 0) {
614		mtx_unlock(&devsoftc.mtx);
615		free(n1->dei_data, M_BUS);
616		free(n1, M_BUS);
617		return;
618	}
619	/* Leave at least one spot in the queue... */
620	while (devsoftc.queued > devctl_queue_length - 1) {
621		n2 = TAILQ_FIRST(&devsoftc.devq);
622		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
623		free(n2->dei_data, M_BUS);
624		free(n2, M_BUS);
625		devsoftc.queued--;
626	}
627	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
628	devsoftc.queued++;
629	cv_broadcast(&devsoftc.cv);
630	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
631	mtx_unlock(&devsoftc.mtx);
632	selwakeup(&devsoftc.sel);
633	if (devsoftc.async && devsoftc.sigio != NULL)
634		pgsigio(&devsoftc.sigio, SIGIO, 0);
635	return;
636out:
637	/*
638	 * We have to free data on all error paths since the caller
639	 * assumes it will be free'd when this item is dequeued.
640	 */
641	free(data, M_BUS);
642	return;
643}
644
645void
646devctl_queue_data(char *data)
647{
648
649	devctl_queue_data_f(data, M_NOWAIT);
650}
651
652/**
653 * @brief Send a 'notification' to userland, using standard ways
654 */
655void
656devctl_notify_f(const char *system, const char *subsystem, const char *type,
657    const char *data, int flags)
658{
659	int len = 0;
660	char *msg;
661
662	if (system == NULL)
663		return;		/* BOGUS!  Must specify system. */
664	if (subsystem == NULL)
665		return;		/* BOGUS!  Must specify subsystem. */
666	if (type == NULL)
667		return;		/* BOGUS!  Must specify type. */
668	len += strlen(" system=") + strlen(system);
669	len += strlen(" subsystem=") + strlen(subsystem);
670	len += strlen(" type=") + strlen(type);
671	/* add in the data message plus newline. */
672	if (data != NULL)
673		len += strlen(data);
674	len += 3;	/* '!', '\n', and NUL */
675	msg = malloc(len, M_BUS, flags);
676	if (msg == NULL)
677		return;		/* Drop it on the floor */
678	if (data != NULL)
679		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
680		    system, subsystem, type, data);
681	else
682		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
683		    system, subsystem, type);
684	devctl_queue_data_f(msg, flags);
685}
686
687void
688devctl_notify(const char *system, const char *subsystem, const char *type,
689    const char *data)
690{
691
692	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
693}
694
695/*
696 * Common routine that tries to make sending messages as easy as possible.
697 * We allocate memory for the data, copy strings into that, but do not
698 * free it unless there's an error.  The dequeue part of the driver should
699 * free the data.  We don't send data when the device is disabled.  We do
700 * send data, even when we have no listeners, because we wish to avoid
701 * races relating to startup and restart of listening applications.
702 *
703 * devaddq is designed to string together the type of event, with the
704 * object of that event, plus the plug and play info and location info
705 * for that event.  This is likely most useful for devices, but less
706 * useful for other consumers of this interface.  Those should use
707 * the devctl_queue_data() interface instead.
708 */
709static void
710devaddq(const char *type, const char *what, device_t dev)
711{
712	char *data = NULL;
713	char *loc = NULL;
714	char *pnp = NULL;
715	const char *parstr;
716
717	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
718		return;
719	data = malloc(1024, M_BUS, M_NOWAIT);
720	if (data == NULL)
721		goto bad;
722
723	/* get the bus specific location of this device */
724	loc = malloc(1024, M_BUS, M_NOWAIT);
725	if (loc == NULL)
726		goto bad;
727	*loc = '\0';
728	bus_child_location_str(dev, loc, 1024);
729
730	/* Get the bus specific pnp info of this device */
731	pnp = malloc(1024, M_BUS, M_NOWAIT);
732	if (pnp == NULL)
733		goto bad;
734	*pnp = '\0';
735	bus_child_pnpinfo_str(dev, pnp, 1024);
736
737	/* Get the parent of this device, or / if high enough in the tree. */
738	if (device_get_parent(dev) == NULL)
739		parstr = ".";	/* Or '/' ? */
740	else
741		parstr = device_get_nameunit(device_get_parent(dev));
742	/* String it all together. */
743	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
744	  parstr);
745	free(loc, M_BUS);
746	free(pnp, M_BUS);
747	devctl_queue_data(data);
748	return;
749bad:
750	free(pnp, M_BUS);
751	free(loc, M_BUS);
752	free(data, M_BUS);
753	return;
754}
755
756/*
757 * A device was added to the tree.  We are called just after it successfully
758 * attaches (that is, probe and attach success for this device).  No call
759 * is made if a device is merely parented into the tree.  See devnomatch
760 * if probe fails.  If attach fails, no notification is sent (but maybe
761 * we should have a different message for this).
762 */
763static void
764devadded(device_t dev)
765{
766	devaddq("+", device_get_nameunit(dev), dev);
767}
768
769/*
770 * A device was removed from the tree.  We are called just before this
771 * happens.
772 */
773static void
774devremoved(device_t dev)
775{
776	devaddq("-", device_get_nameunit(dev), dev);
777}
778
779/*
780 * Called when there's no match for this device.  This is only called
781 * the first time that no match happens, so we don't keep getting this
782 * message.  Should that prove to be undesirable, we can change it.
783 * This is called when all drivers that can attach to a given bus
784 * decline to accept this device.  Other errors may not be detected.
785 */
786static void
787devnomatch(device_t dev)
788{
789	devaddq("?", "", dev);
790}
791
792static int
793sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
794{
795	struct dev_event_info *n1;
796	int dis, error;
797
798	dis = (devctl_queue_length == 0);
799	error = sysctl_handle_int(oidp, &dis, 0, req);
800	if (error || !req->newptr)
801		return (error);
802	if (mtx_initialized(&devsoftc.mtx))
803		mtx_lock(&devsoftc.mtx);
804	if (dis) {
805		while (!TAILQ_EMPTY(&devsoftc.devq)) {
806			n1 = TAILQ_FIRST(&devsoftc.devq);
807			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
808			free(n1->dei_data, M_BUS);
809			free(n1, M_BUS);
810		}
811		devsoftc.queued = 0;
812		devctl_queue_length = 0;
813	} else {
814		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
815	}
816	if (mtx_initialized(&devsoftc.mtx))
817		mtx_unlock(&devsoftc.mtx);
818	return (0);
819}
820
821static int
822sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
823{
824	struct dev_event_info *n1;
825	int q, error;
826
827	q = devctl_queue_length;
828	error = sysctl_handle_int(oidp, &q, 0, req);
829	if (error || !req->newptr)
830		return (error);
831	if (q < 0)
832		return (EINVAL);
833	if (mtx_initialized(&devsoftc.mtx))
834		mtx_lock(&devsoftc.mtx);
835	devctl_queue_length = q;
836	while (devsoftc.queued > devctl_queue_length) {
837		n1 = TAILQ_FIRST(&devsoftc.devq);
838		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
839		free(n1->dei_data, M_BUS);
840		free(n1, M_BUS);
841		devsoftc.queued--;
842	}
843	if (mtx_initialized(&devsoftc.mtx))
844		mtx_unlock(&devsoftc.mtx);
845	return (0);
846}
847
848/* End of /dev/devctl code */
849
850static TAILQ_HEAD(,device)	bus_data_devices;
851static int bus_data_generation = 1;
852
853static kobj_method_t null_methods[] = {
854	KOBJMETHOD_END
855};
856
857DEFINE_CLASS(null, null_methods, 0);
858
859/*
860 * Bus pass implementation
861 */
862
863static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
864int bus_current_pass = BUS_PASS_ROOT;
865
866/**
867 * @internal
868 * @brief Register the pass level of a new driver attachment
869 *
870 * Register a new driver attachment's pass level.  If no driver
871 * attachment with the same pass level has been added, then @p new
872 * will be added to the global passes list.
873 *
874 * @param new		the new driver attachment
875 */
876static void
877driver_register_pass(struct driverlink *new)
878{
879	struct driverlink *dl;
880
881	/* We only consider pass numbers during boot. */
882	if (bus_current_pass == BUS_PASS_DEFAULT)
883		return;
884
885	/*
886	 * Walk the passes list.  If we already know about this pass
887	 * then there is nothing to do.  If we don't, then insert this
888	 * driver link into the list.
889	 */
890	TAILQ_FOREACH(dl, &passes, passlink) {
891		if (dl->pass < new->pass)
892			continue;
893		if (dl->pass == new->pass)
894			return;
895		TAILQ_INSERT_BEFORE(dl, new, passlink);
896		return;
897	}
898	TAILQ_INSERT_TAIL(&passes, new, passlink);
899}
900
901/**
902 * @brief Raise the current bus pass
903 *
904 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
905 * method on the root bus to kick off a new device tree scan for each
906 * new pass level that has at least one driver.
907 */
908void
909bus_set_pass(int pass)
910{
911	struct driverlink *dl;
912
913	if (bus_current_pass > pass)
914		panic("Attempt to lower bus pass level");
915
916	TAILQ_FOREACH(dl, &passes, passlink) {
917		/* Skip pass values below the current pass level. */
918		if (dl->pass <= bus_current_pass)
919			continue;
920
921		/*
922		 * Bail once we hit a driver with a pass level that is
923		 * too high.
924		 */
925		if (dl->pass > pass)
926			break;
927
928		/*
929		 * Raise the pass level to the next level and rescan
930		 * the tree.
931		 */
932		bus_current_pass = dl->pass;
933		BUS_NEW_PASS(root_bus);
934	}
935
936	/*
937	 * If there isn't a driver registered for the requested pass,
938	 * then bus_current_pass might still be less than 'pass'.  Set
939	 * it to 'pass' in that case.
940	 */
941	if (bus_current_pass < pass)
942		bus_current_pass = pass;
943	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
944}
945
946/*
947 * Devclass implementation
948 */
949
950static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
951
952/**
953 * @internal
954 * @brief Find or create a device class
955 *
956 * If a device class with the name @p classname exists, return it,
957 * otherwise if @p create is non-zero create and return a new device
958 * class.
959 *
960 * If @p parentname is non-NULL, the parent of the devclass is set to
961 * the devclass of that name.
962 *
963 * @param classname	the devclass name to find or create
964 * @param parentname	the parent devclass name or @c NULL
965 * @param create	non-zero to create a devclass
966 */
967static devclass_t
968devclass_find_internal(const char *classname, const char *parentname,
969		       int create)
970{
971	devclass_t dc;
972
973	PDEBUG(("looking for %s", classname));
974	if (!classname)
975		return (NULL);
976
977	TAILQ_FOREACH(dc, &devclasses, link) {
978		if (!strcmp(dc->name, classname))
979			break;
980	}
981
982	if (create && !dc) {
983		PDEBUG(("creating %s", classname));
984		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
985		    M_BUS, M_NOWAIT | M_ZERO);
986		if (!dc)
987			return (NULL);
988		dc->parent = NULL;
989		dc->name = (char*) (dc + 1);
990		strcpy(dc->name, classname);
991		TAILQ_INIT(&dc->drivers);
992		TAILQ_INSERT_TAIL(&devclasses, dc, link);
993
994		bus_data_generation_update();
995	}
996
997	/*
998	 * If a parent class is specified, then set that as our parent so
999	 * that this devclass will support drivers for the parent class as
1000	 * well.  If the parent class has the same name don't do this though
1001	 * as it creates a cycle that can trigger an infinite loop in
1002	 * device_probe_child() if a device exists for which there is no
1003	 * suitable driver.
1004	 */
1005	if (parentname && dc && !dc->parent &&
1006	    strcmp(classname, parentname) != 0) {
1007		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1008		dc->parent->flags |= DC_HAS_CHILDREN;
1009	}
1010
1011	return (dc);
1012}
1013
1014/**
1015 * @brief Create a device class
1016 *
1017 * If a device class with the name @p classname exists, return it,
1018 * otherwise create and return a new device class.
1019 *
1020 * @param classname	the devclass name to find or create
1021 */
1022devclass_t
1023devclass_create(const char *classname)
1024{
1025	return (devclass_find_internal(classname, NULL, TRUE));
1026}
1027
1028/**
1029 * @brief Find a device class
1030 *
1031 * If a device class with the name @p classname exists, return it,
1032 * otherwise return @c NULL.
1033 *
1034 * @param classname	the devclass name to find
1035 */
1036devclass_t
1037devclass_find(const char *classname)
1038{
1039	return (devclass_find_internal(classname, NULL, FALSE));
1040}
1041
1042/**
1043 * @brief Register that a device driver has been added to a devclass
1044 *
1045 * Register that a device driver has been added to a devclass.  This
1046 * is called by devclass_add_driver to accomplish the recursive
1047 * notification of all the children classes of dc, as well as dc.
1048 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1049 * the devclass.
1050 *
1051 * We do a full search here of the devclass list at each iteration
1052 * level to save storing children-lists in the devclass structure.  If
1053 * we ever move beyond a few dozen devices doing this, we may need to
1054 * reevaluate...
1055 *
1056 * @param dc		the devclass to edit
1057 * @param driver	the driver that was just added
1058 */
1059static void
1060devclass_driver_added(devclass_t dc, driver_t *driver)
1061{
1062	devclass_t parent;
1063	int i;
1064
1065	/*
1066	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1067	 */
1068	for (i = 0; i < dc->maxunit; i++)
1069		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1070			BUS_DRIVER_ADDED(dc->devices[i], driver);
1071
1072	/*
1073	 * Walk through the children classes.  Since we only keep a
1074	 * single parent pointer around, we walk the entire list of
1075	 * devclasses looking for children.  We set the
1076	 * DC_HAS_CHILDREN flag when a child devclass is created on
1077	 * the parent, so we only walk the list for those devclasses
1078	 * that have children.
1079	 */
1080	if (!(dc->flags & DC_HAS_CHILDREN))
1081		return;
1082	parent = dc;
1083	TAILQ_FOREACH(dc, &devclasses, link) {
1084		if (dc->parent == parent)
1085			devclass_driver_added(dc, driver);
1086	}
1087}
1088
1089/**
1090 * @brief Add a device driver to a device class
1091 *
1092 * Add a device driver to a devclass. This is normally called
1093 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1094 * all devices in the devclass will be called to allow them to attempt
1095 * to re-probe any unmatched children.
1096 *
1097 * @param dc		the devclass to edit
1098 * @param driver	the driver to register
1099 */
1100int
1101devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1102{
1103	driverlink_t dl;
1104	const char *parentname;
1105
1106	PDEBUG(("%s", DRIVERNAME(driver)));
1107
1108	/* Don't allow invalid pass values. */
1109	if (pass <= BUS_PASS_ROOT)
1110		return (EINVAL);
1111
1112	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1113	if (!dl)
1114		return (ENOMEM);
1115
1116	/*
1117	 * Compile the driver's methods. Also increase the reference count
1118	 * so that the class doesn't get freed when the last instance
1119	 * goes. This means we can safely use static methods and avoids a
1120	 * double-free in devclass_delete_driver.
1121	 */
1122	kobj_class_compile((kobj_class_t) driver);
1123
1124	/*
1125	 * If the driver has any base classes, make the
1126	 * devclass inherit from the devclass of the driver's
1127	 * first base class. This will allow the system to
1128	 * search for drivers in both devclasses for children
1129	 * of a device using this driver.
1130	 */
1131	if (driver->baseclasses)
1132		parentname = driver->baseclasses[0]->name;
1133	else
1134		parentname = NULL;
1135	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1136
1137	dl->driver = driver;
1138	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1139	driver->refs++;		/* XXX: kobj_mtx */
1140	dl->pass = pass;
1141	driver_register_pass(dl);
1142
1143	devclass_driver_added(dc, driver);
1144	bus_data_generation_update();
1145	return (0);
1146}
1147
1148/**
1149 * @brief Register that a device driver has been deleted from a devclass
1150 *
1151 * Register that a device driver has been removed from a devclass.
1152 * This is called by devclass_delete_driver to accomplish the
1153 * recursive notification of all the children classes of busclass, as
1154 * well as busclass.  Each layer will attempt to detach the driver
1155 * from any devices that are children of the bus's devclass.  The function
1156 * will return an error if a device fails to detach.
1157 *
1158 * We do a full search here of the devclass list at each iteration
1159 * level to save storing children-lists in the devclass structure.  If
1160 * we ever move beyond a few dozen devices doing this, we may need to
1161 * reevaluate...
1162 *
1163 * @param busclass	the devclass of the parent bus
1164 * @param dc		the devclass of the driver being deleted
1165 * @param driver	the driver being deleted
1166 */
1167static int
1168devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1169{
1170	devclass_t parent;
1171	device_t dev;
1172	int error, i;
1173
1174	/*
1175	 * Disassociate from any devices.  We iterate through all the
1176	 * devices in the devclass of the driver and detach any which are
1177	 * using the driver and which have a parent in the devclass which
1178	 * we are deleting from.
1179	 *
1180	 * Note that since a driver can be in multiple devclasses, we
1181	 * should not detach devices which are not children of devices in
1182	 * the affected devclass.
1183	 */
1184	for (i = 0; i < dc->maxunit; i++) {
1185		if (dc->devices[i]) {
1186			dev = dc->devices[i];
1187			if (dev->driver == driver && dev->parent &&
1188			    dev->parent->devclass == busclass) {
1189				if ((error = device_detach(dev)) != 0)
1190					return (error);
1191				BUS_PROBE_NOMATCH(dev->parent, dev);
1192				devnomatch(dev);
1193				dev->flags |= DF_DONENOMATCH;
1194			}
1195		}
1196	}
1197
1198	/*
1199	 * Walk through the children classes.  Since we only keep a
1200	 * single parent pointer around, we walk the entire list of
1201	 * devclasses looking for children.  We set the
1202	 * DC_HAS_CHILDREN flag when a child devclass is created on
1203	 * the parent, so we only walk the list for those devclasses
1204	 * that have children.
1205	 */
1206	if (!(busclass->flags & DC_HAS_CHILDREN))
1207		return (0);
1208	parent = busclass;
1209	TAILQ_FOREACH(busclass, &devclasses, link) {
1210		if (busclass->parent == parent) {
1211			error = devclass_driver_deleted(busclass, dc, driver);
1212			if (error)
1213				return (error);
1214		}
1215	}
1216	return (0);
1217}
1218
1219/**
1220 * @brief Delete a device driver from a device class
1221 *
1222 * Delete a device driver from a devclass. This is normally called
1223 * automatically by DRIVER_MODULE().
1224 *
1225 * If the driver is currently attached to any devices,
1226 * devclass_delete_driver() will first attempt to detach from each
1227 * device. If one of the detach calls fails, the driver will not be
1228 * deleted.
1229 *
1230 * @param dc		the devclass to edit
1231 * @param driver	the driver to unregister
1232 */
1233int
1234devclass_delete_driver(devclass_t busclass, driver_t *driver)
1235{
1236	devclass_t dc = devclass_find(driver->name);
1237	driverlink_t dl;
1238	int error;
1239
1240	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1241
1242	if (!dc)
1243		return (0);
1244
1245	/*
1246	 * Find the link structure in the bus' list of drivers.
1247	 */
1248	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1249		if (dl->driver == driver)
1250			break;
1251	}
1252
1253	if (!dl) {
1254		PDEBUG(("%s not found in %s list", driver->name,
1255		    busclass->name));
1256		return (ENOENT);
1257	}
1258
1259	error = devclass_driver_deleted(busclass, dc, driver);
1260	if (error != 0)
1261		return (error);
1262
1263	TAILQ_REMOVE(&busclass->drivers, dl, link);
1264	free(dl, M_BUS);
1265
1266	/* XXX: kobj_mtx */
1267	driver->refs--;
1268	if (driver->refs == 0)
1269		kobj_class_free((kobj_class_t) driver);
1270
1271	bus_data_generation_update();
1272	return (0);
1273}
1274
1275/**
1276 * @brief Quiesces a set of device drivers from a device class
1277 *
1278 * Quiesce a device driver from a devclass. This is normally called
1279 * automatically by DRIVER_MODULE().
1280 *
1281 * If the driver is currently attached to any devices,
1282 * devclass_quiesece_driver() will first attempt to quiesce each
1283 * device.
1284 *
1285 * @param dc		the devclass to edit
1286 * @param driver	the driver to unregister
1287 */
1288static int
1289devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1290{
1291	devclass_t dc = devclass_find(driver->name);
1292	driverlink_t dl;
1293	device_t dev;
1294	int i;
1295	int error;
1296
1297	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1298
1299	if (!dc)
1300		return (0);
1301
1302	/*
1303	 * Find the link structure in the bus' list of drivers.
1304	 */
1305	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1306		if (dl->driver == driver)
1307			break;
1308	}
1309
1310	if (!dl) {
1311		PDEBUG(("%s not found in %s list", driver->name,
1312		    busclass->name));
1313		return (ENOENT);
1314	}
1315
1316	/*
1317	 * Quiesce all devices.  We iterate through all the devices in
1318	 * the devclass of the driver and quiesce any which are using
1319	 * the driver and which have a parent in the devclass which we
1320	 * are quiescing.
1321	 *
1322	 * Note that since a driver can be in multiple devclasses, we
1323	 * should not quiesce devices which are not children of
1324	 * devices in the affected devclass.
1325	 */
1326	for (i = 0; i < dc->maxunit; i++) {
1327		if (dc->devices[i]) {
1328			dev = dc->devices[i];
1329			if (dev->driver == driver && dev->parent &&
1330			    dev->parent->devclass == busclass) {
1331				if ((error = device_quiesce(dev)) != 0)
1332					return (error);
1333			}
1334		}
1335	}
1336
1337	return (0);
1338}
1339
1340/**
1341 * @internal
1342 */
1343static driverlink_t
1344devclass_find_driver_internal(devclass_t dc, const char *classname)
1345{
1346	driverlink_t dl;
1347
1348	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1349
1350	TAILQ_FOREACH(dl, &dc->drivers, link) {
1351		if (!strcmp(dl->driver->name, classname))
1352			return (dl);
1353	}
1354
1355	PDEBUG(("not found"));
1356	return (NULL);
1357}
1358
1359/**
1360 * @brief Return the name of the devclass
1361 */
1362const char *
1363devclass_get_name(devclass_t dc)
1364{
1365	return (dc->name);
1366}
1367
1368/**
1369 * @brief Find a device given a unit number
1370 *
1371 * @param dc		the devclass to search
1372 * @param unit		the unit number to search for
1373 *
1374 * @returns		the device with the given unit number or @c
1375 *			NULL if there is no such device
1376 */
1377device_t
1378devclass_get_device(devclass_t dc, int unit)
1379{
1380	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1381		return (NULL);
1382	return (dc->devices[unit]);
1383}
1384
1385/**
1386 * @brief Find the softc field of a device given a unit number
1387 *
1388 * @param dc		the devclass to search
1389 * @param unit		the unit number to search for
1390 *
1391 * @returns		the softc field of the device with the given
1392 *			unit number or @c NULL if there is no such
1393 *			device
1394 */
1395void *
1396devclass_get_softc(devclass_t dc, int unit)
1397{
1398	device_t dev;
1399
1400	dev = devclass_get_device(dc, unit);
1401	if (!dev)
1402		return (NULL);
1403
1404	return (device_get_softc(dev));
1405}
1406
1407/**
1408 * @brief Get a list of devices in the devclass
1409 *
1410 * An array containing a list of all the devices in the given devclass
1411 * is allocated and returned in @p *devlistp. The number of devices
1412 * in the array is returned in @p *devcountp. The caller should free
1413 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1414 *
1415 * @param dc		the devclass to examine
1416 * @param devlistp	points at location for array pointer return
1417 *			value
1418 * @param devcountp	points at location for array size return value
1419 *
1420 * @retval 0		success
1421 * @retval ENOMEM	the array allocation failed
1422 */
1423int
1424devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1425{
1426	int count, i;
1427	device_t *list;
1428
1429	count = devclass_get_count(dc);
1430	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1431	if (!list)
1432		return (ENOMEM);
1433
1434	count = 0;
1435	for (i = 0; i < dc->maxunit; i++) {
1436		if (dc->devices[i]) {
1437			list[count] = dc->devices[i];
1438			count++;
1439		}
1440	}
1441
1442	*devlistp = list;
1443	*devcountp = count;
1444
1445	return (0);
1446}
1447
1448/**
1449 * @brief Get a list of drivers in the devclass
1450 *
1451 * An array containing a list of pointers to all the drivers in the
1452 * given devclass is allocated and returned in @p *listp.  The number
1453 * of drivers in the array is returned in @p *countp. The caller should
1454 * free the array using @c free(p, M_TEMP).
1455 *
1456 * @param dc		the devclass to examine
1457 * @param listp		gives location for array pointer return value
1458 * @param countp	gives location for number of array elements
1459 *			return value
1460 *
1461 * @retval 0		success
1462 * @retval ENOMEM	the array allocation failed
1463 */
1464int
1465devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1466{
1467	driverlink_t dl;
1468	driver_t **list;
1469	int count;
1470
1471	count = 0;
1472	TAILQ_FOREACH(dl, &dc->drivers, link)
1473		count++;
1474	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1475	if (list == NULL)
1476		return (ENOMEM);
1477
1478	count = 0;
1479	TAILQ_FOREACH(dl, &dc->drivers, link) {
1480		list[count] = dl->driver;
1481		count++;
1482	}
1483	*listp = list;
1484	*countp = count;
1485
1486	return (0);
1487}
1488
1489/**
1490 * @brief Get the number of devices in a devclass
1491 *
1492 * @param dc		the devclass to examine
1493 */
1494int
1495devclass_get_count(devclass_t dc)
1496{
1497	int count, i;
1498
1499	count = 0;
1500	for (i = 0; i < dc->maxunit; i++)
1501		if (dc->devices[i])
1502			count++;
1503	return (count);
1504}
1505
1506/**
1507 * @brief Get the maximum unit number used in a devclass
1508 *
1509 * Note that this is one greater than the highest currently-allocated
1510 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1511 * that not even the devclass has been allocated yet.
1512 *
1513 * @param dc		the devclass to examine
1514 */
1515int
1516devclass_get_maxunit(devclass_t dc)
1517{
1518	if (dc == NULL)
1519		return (-1);
1520	return (dc->maxunit);
1521}
1522
1523/**
1524 * @brief Find a free unit number in a devclass
1525 *
1526 * This function searches for the first unused unit number greater
1527 * that or equal to @p unit.
1528 *
1529 * @param dc		the devclass to examine
1530 * @param unit		the first unit number to check
1531 */
1532int
1533devclass_find_free_unit(devclass_t dc, int unit)
1534{
1535	if (dc == NULL)
1536		return (unit);
1537	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1538		unit++;
1539	return (unit);
1540}
1541
1542/**
1543 * @brief Set the parent of a devclass
1544 *
1545 * The parent class is normally initialised automatically by
1546 * DRIVER_MODULE().
1547 *
1548 * @param dc		the devclass to edit
1549 * @param pdc		the new parent devclass
1550 */
1551void
1552devclass_set_parent(devclass_t dc, devclass_t pdc)
1553{
1554	dc->parent = pdc;
1555}
1556
1557/**
1558 * @brief Get the parent of a devclass
1559 *
1560 * @param dc		the devclass to examine
1561 */
1562devclass_t
1563devclass_get_parent(devclass_t dc)
1564{
1565	return (dc->parent);
1566}
1567
1568struct sysctl_ctx_list *
1569devclass_get_sysctl_ctx(devclass_t dc)
1570{
1571	return (&dc->sysctl_ctx);
1572}
1573
1574struct sysctl_oid *
1575devclass_get_sysctl_tree(devclass_t dc)
1576{
1577	return (dc->sysctl_tree);
1578}
1579
1580/**
1581 * @internal
1582 * @brief Allocate a unit number
1583 *
1584 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1585 * will do). The allocated unit number is returned in @p *unitp.
1586
1587 * @param dc		the devclass to allocate from
1588 * @param unitp		points at the location for the allocated unit
1589 *			number
1590 *
1591 * @retval 0		success
1592 * @retval EEXIST	the requested unit number is already allocated
1593 * @retval ENOMEM	memory allocation failure
1594 */
1595static int
1596devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1597{
1598	const char *s;
1599	int unit = *unitp;
1600
1601	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1602
1603	/* Ask the parent bus if it wants to wire this device. */
1604	if (unit == -1)
1605		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1606		    &unit);
1607
1608	/* If we were given a wired unit number, check for existing device */
1609	/* XXX imp XXX */
1610	if (unit != -1) {
1611		if (unit >= 0 && unit < dc->maxunit &&
1612		    dc->devices[unit] != NULL) {
1613			if (bootverbose)
1614				printf("%s: %s%d already exists; skipping it\n",
1615				    dc->name, dc->name, *unitp);
1616			return (EEXIST);
1617		}
1618	} else {
1619		/* Unwired device, find the next available slot for it */
1620		unit = 0;
1621		for (unit = 0;; unit++) {
1622			/* If there is an "at" hint for a unit then skip it. */
1623			if (resource_string_value(dc->name, unit, "at", &s) ==
1624			    0)
1625				continue;
1626
1627			/* If this device slot is already in use, skip it. */
1628			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1629				continue;
1630
1631			break;
1632		}
1633	}
1634
1635	/*
1636	 * We've selected a unit beyond the length of the table, so let's
1637	 * extend the table to make room for all units up to and including
1638	 * this one.
1639	 */
1640	if (unit >= dc->maxunit) {
1641		device_t *newlist, *oldlist;
1642		int newsize;
1643
1644		oldlist = dc->devices;
1645		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1646		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1647		if (!newlist)
1648			return (ENOMEM);
1649		if (oldlist != NULL)
1650			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1651		bzero(newlist + dc->maxunit,
1652		    sizeof(device_t) * (newsize - dc->maxunit));
1653		dc->devices = newlist;
1654		dc->maxunit = newsize;
1655		if (oldlist != NULL)
1656			free(oldlist, M_BUS);
1657	}
1658	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1659
1660	*unitp = unit;
1661	return (0);
1662}
1663
1664/**
1665 * @internal
1666 * @brief Add a device to a devclass
1667 *
1668 * A unit number is allocated for the device (using the device's
1669 * preferred unit number if any) and the device is registered in the
1670 * devclass. This allows the device to be looked up by its unit
1671 * number, e.g. by decoding a dev_t minor number.
1672 *
1673 * @param dc		the devclass to add to
1674 * @param dev		the device to add
1675 *
1676 * @retval 0		success
1677 * @retval EEXIST	the requested unit number is already allocated
1678 * @retval ENOMEM	memory allocation failure
1679 */
1680static int
1681devclass_add_device(devclass_t dc, device_t dev)
1682{
1683	int buflen, error;
1684
1685	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1686
1687	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1688	if (buflen < 0)
1689		return (ENOMEM);
1690	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1691	if (!dev->nameunit)
1692		return (ENOMEM);
1693
1694	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1695		free(dev->nameunit, M_BUS);
1696		dev->nameunit = NULL;
1697		return (error);
1698	}
1699	dc->devices[dev->unit] = dev;
1700	dev->devclass = dc;
1701	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1702
1703	return (0);
1704}
1705
1706/**
1707 * @internal
1708 * @brief Delete a device from a devclass
1709 *
1710 * The device is removed from the devclass's device list and its unit
1711 * number is freed.
1712
1713 * @param dc		the devclass to delete from
1714 * @param dev		the device to delete
1715 *
1716 * @retval 0		success
1717 */
1718static int
1719devclass_delete_device(devclass_t dc, device_t dev)
1720{
1721	if (!dc || !dev)
1722		return (0);
1723
1724	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1725
1726	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1727		panic("devclass_delete_device: inconsistent device class");
1728	dc->devices[dev->unit] = NULL;
1729	if (dev->flags & DF_WILDCARD)
1730		dev->unit = -1;
1731	dev->devclass = NULL;
1732	free(dev->nameunit, M_BUS);
1733	dev->nameunit = NULL;
1734
1735	return (0);
1736}
1737
1738/**
1739 * @internal
1740 * @brief Make a new device and add it as a child of @p parent
1741 *
1742 * @param parent	the parent of the new device
1743 * @param name		the devclass name of the new device or @c NULL
1744 *			to leave the devclass unspecified
1745 * @parem unit		the unit number of the new device of @c -1 to
1746 *			leave the unit number unspecified
1747 *
1748 * @returns the new device
1749 */
1750static device_t
1751make_device(device_t parent, const char *name, int unit)
1752{
1753	device_t dev;
1754	devclass_t dc;
1755
1756	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1757
1758	if (name) {
1759		dc = devclass_find_internal(name, NULL, TRUE);
1760		if (!dc) {
1761			printf("make_device: can't find device class %s\n",
1762			    name);
1763			return (NULL);
1764		}
1765	} else {
1766		dc = NULL;
1767	}
1768
1769	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1770	if (!dev)
1771		return (NULL);
1772
1773	dev->parent = parent;
1774	TAILQ_INIT(&dev->children);
1775	kobj_init((kobj_t) dev, &null_class);
1776	dev->driver = NULL;
1777	dev->devclass = NULL;
1778	dev->unit = unit;
1779	dev->nameunit = NULL;
1780	dev->desc = NULL;
1781	dev->busy = 0;
1782	dev->devflags = 0;
1783	dev->flags = DF_ENABLED;
1784	dev->order = 0;
1785	if (unit == -1)
1786		dev->flags |= DF_WILDCARD;
1787	if (name) {
1788		dev->flags |= DF_FIXEDCLASS;
1789		if (devclass_add_device(dc, dev)) {
1790			kobj_delete((kobj_t) dev, M_BUS);
1791			return (NULL);
1792		}
1793	}
1794	dev->ivars = NULL;
1795	dev->softc = NULL;
1796
1797	dev->state = DS_NOTPRESENT;
1798
1799	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1800	bus_data_generation_update();
1801
1802	return (dev);
1803}
1804
1805/**
1806 * @internal
1807 * @brief Print a description of a device.
1808 */
1809static int
1810device_print_child(device_t dev, device_t child)
1811{
1812	int retval = 0;
1813
1814	if (device_is_alive(child))
1815		retval += BUS_PRINT_CHILD(dev, child);
1816	else
1817		retval += device_printf(child, " not found\n");
1818
1819	return (retval);
1820}
1821
1822/**
1823 * @brief Create a new device
1824 *
1825 * This creates a new device and adds it as a child of an existing
1826 * parent device. The new device will be added after the last existing
1827 * child with order zero.
1828 *
1829 * @param dev		the device which will be the parent of the
1830 *			new child device
1831 * @param name		devclass name for new device or @c NULL if not
1832 *			specified
1833 * @param unit		unit number for new device or @c -1 if not
1834 *			specified
1835 *
1836 * @returns		the new device
1837 */
1838device_t
1839device_add_child(device_t dev, const char *name, int unit)
1840{
1841	return (device_add_child_ordered(dev, 0, name, unit));
1842}
1843
1844/**
1845 * @brief Create a new device
1846 *
1847 * This creates a new device and adds it as a child of an existing
1848 * parent device. The new device will be added after the last existing
1849 * child with the same order.
1850 *
1851 * @param dev		the device which will be the parent of the
1852 *			new child device
1853 * @param order		a value which is used to partially sort the
1854 *			children of @p dev - devices created using
1855 *			lower values of @p order appear first in @p
1856 *			dev's list of children
1857 * @param name		devclass name for new device or @c NULL if not
1858 *			specified
1859 * @param unit		unit number for new device or @c -1 if not
1860 *			specified
1861 *
1862 * @returns		the new device
1863 */
1864device_t
1865device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1866{
1867	device_t child;
1868	device_t place;
1869
1870	PDEBUG(("%s at %s with order %u as unit %d",
1871	    name, DEVICENAME(dev), order, unit));
1872	KASSERT(name != NULL || unit == -1,
1873	    ("child device with wildcard name and specific unit number"));
1874
1875	child = make_device(dev, name, unit);
1876	if (child == NULL)
1877		return (child);
1878	child->order = order;
1879
1880	TAILQ_FOREACH(place, &dev->children, link) {
1881		if (place->order > order)
1882			break;
1883	}
1884
1885	if (place) {
1886		/*
1887		 * The device 'place' is the first device whose order is
1888		 * greater than the new child.
1889		 */
1890		TAILQ_INSERT_BEFORE(place, child, link);
1891	} else {
1892		/*
1893		 * The new child's order is greater or equal to the order of
1894		 * any existing device. Add the child to the tail of the list.
1895		 */
1896		TAILQ_INSERT_TAIL(&dev->children, child, link);
1897	}
1898
1899	bus_data_generation_update();
1900	return (child);
1901}
1902
1903/**
1904 * @brief Delete a device
1905 *
1906 * This function deletes a device along with all of its children. If
1907 * the device currently has a driver attached to it, the device is
1908 * detached first using device_detach().
1909 *
1910 * @param dev		the parent device
1911 * @param child		the device to delete
1912 *
1913 * @retval 0		success
1914 * @retval non-zero	a unit error code describing the error
1915 */
1916int
1917device_delete_child(device_t dev, device_t child)
1918{
1919	int error;
1920	device_t grandchild;
1921
1922	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1923
1924	/* remove children first */
1925	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1926		error = device_delete_child(child, grandchild);
1927		if (error)
1928			return (error);
1929	}
1930
1931	if ((error = device_detach(child)) != 0)
1932		return (error);
1933	if (child->devclass)
1934		devclass_delete_device(child->devclass, child);
1935	if (child->parent)
1936		BUS_CHILD_DELETED(dev, child);
1937	TAILQ_REMOVE(&dev->children, child, link);
1938	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1939	kobj_delete((kobj_t) child, M_BUS);
1940
1941	bus_data_generation_update();
1942	return (0);
1943}
1944
1945/**
1946 * @brief Delete all children devices of the given device, if any.
1947 *
1948 * This function deletes all children devices of the given device, if
1949 * any, using the device_delete_child() function for each device it
1950 * finds. If a child device cannot be deleted, this function will
1951 * return an error code.
1952 *
1953 * @param dev		the parent device
1954 *
1955 * @retval 0		success
1956 * @retval non-zero	a device would not detach
1957 */
1958int
1959device_delete_children(device_t dev)
1960{
1961	device_t child;
1962	int error;
1963
1964	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1965
1966	error = 0;
1967
1968	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1969		error = device_delete_child(dev, child);
1970		if (error) {
1971			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1972			break;
1973		}
1974	}
1975	return (error);
1976}
1977
1978/**
1979 * @brief Find a device given a unit number
1980 *
1981 * This is similar to devclass_get_devices() but only searches for
1982 * devices which have @p dev as a parent.
1983 *
1984 * @param dev		the parent device to search
1985 * @param unit		the unit number to search for.  If the unit is -1,
1986 *			return the first child of @p dev which has name
1987 *			@p classname (that is, the one with the lowest unit.)
1988 *
1989 * @returns		the device with the given unit number or @c
1990 *			NULL if there is no such device
1991 */
1992device_t
1993device_find_child(device_t dev, const char *classname, int unit)
1994{
1995	devclass_t dc;
1996	device_t child;
1997
1998	dc = devclass_find(classname);
1999	if (!dc)
2000		return (NULL);
2001
2002	if (unit != -1) {
2003		child = devclass_get_device(dc, unit);
2004		if (child && child->parent == dev)
2005			return (child);
2006	} else {
2007		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2008			child = devclass_get_device(dc, unit);
2009			if (child && child->parent == dev)
2010				return (child);
2011		}
2012	}
2013	return (NULL);
2014}
2015
2016/**
2017 * @internal
2018 */
2019static driverlink_t
2020first_matching_driver(devclass_t dc, device_t dev)
2021{
2022	if (dev->devclass)
2023		return (devclass_find_driver_internal(dc, dev->devclass->name));
2024	return (TAILQ_FIRST(&dc->drivers));
2025}
2026
2027/**
2028 * @internal
2029 */
2030static driverlink_t
2031next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2032{
2033	if (dev->devclass) {
2034		driverlink_t dl;
2035		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2036			if (!strcmp(dev->devclass->name, dl->driver->name))
2037				return (dl);
2038		return (NULL);
2039	}
2040	return (TAILQ_NEXT(last, link));
2041}
2042
2043/**
2044 * @internal
2045 */
2046int
2047device_probe_child(device_t dev, device_t child)
2048{
2049	devclass_t dc;
2050	driverlink_t best = NULL;
2051	driverlink_t dl;
2052	int result, pri = 0;
2053	int hasclass = (child->devclass != NULL);
2054
2055	GIANT_REQUIRED;
2056
2057	dc = dev->devclass;
2058	if (!dc)
2059		panic("device_probe_child: parent device has no devclass");
2060
2061	/*
2062	 * If the state is already probed, then return.  However, don't
2063	 * return if we can rebid this object.
2064	 */
2065	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2066		return (0);
2067
2068	for (; dc; dc = dc->parent) {
2069		for (dl = first_matching_driver(dc, child);
2070		     dl;
2071		     dl = next_matching_driver(dc, child, dl)) {
2072			/* If this driver's pass is too high, then ignore it. */
2073			if (dl->pass > bus_current_pass)
2074				continue;
2075
2076			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2077			result = device_set_driver(child, dl->driver);
2078			if (result == ENOMEM)
2079				return (result);
2080			else if (result != 0)
2081				continue;
2082			if (!hasclass) {
2083				if (device_set_devclass(child,
2084				    dl->driver->name) != 0) {
2085					char const * devname =
2086					    device_get_name(child);
2087					if (devname == NULL)
2088						devname = "(unknown)";
2089					printf("driver bug: Unable to set "
2090					    "devclass (class: %s "
2091					    "devname: %s)\n",
2092					    dl->driver->name,
2093					    devname);
2094					(void)device_set_driver(child, NULL);
2095					continue;
2096				}
2097			}
2098
2099			/* Fetch any flags for the device before probing. */
2100			resource_int_value(dl->driver->name, child->unit,
2101			    "flags", &child->devflags);
2102
2103			result = DEVICE_PROBE(child);
2104
2105			/* Reset flags and devclass before the next probe. */
2106			child->devflags = 0;
2107			if (!hasclass)
2108				(void)device_set_devclass(child, NULL);
2109
2110			/*
2111			 * If the driver returns SUCCESS, there can be
2112			 * no higher match for this device.
2113			 */
2114			if (result == 0) {
2115				best = dl;
2116				pri = 0;
2117				break;
2118			}
2119
2120			/*
2121			 * The driver returned an error so it
2122			 * certainly doesn't match.
2123			 */
2124			if (result > 0) {
2125				(void)device_set_driver(child, NULL);
2126				continue;
2127			}
2128
2129			/*
2130			 * A priority lower than SUCCESS, remember the
2131			 * best matching driver. Initialise the value
2132			 * of pri for the first match.
2133			 */
2134			if (best == NULL || result > pri) {
2135				/*
2136				 * Probes that return BUS_PROBE_NOWILDCARD
2137				 * or lower only match on devices whose
2138				 * driver was explicitly specified.
2139				 */
2140				if (result <= BUS_PROBE_NOWILDCARD &&
2141				    !(child->flags & DF_FIXEDCLASS))
2142					continue;
2143				best = dl;
2144				pri = result;
2145				continue;
2146			}
2147		}
2148		/*
2149		 * If we have an unambiguous match in this devclass,
2150		 * don't look in the parent.
2151		 */
2152		if (best && pri == 0)
2153			break;
2154	}
2155
2156	/*
2157	 * If we found a driver, change state and initialise the devclass.
2158	 */
2159	/* XXX What happens if we rebid and got no best? */
2160	if (best) {
2161		/*
2162		 * If this device was attached, and we were asked to
2163		 * rescan, and it is a different driver, then we have
2164		 * to detach the old driver and reattach this new one.
2165		 * Note, we don't have to check for DF_REBID here
2166		 * because if the state is > DS_ALIVE, we know it must
2167		 * be.
2168		 *
2169		 * This assumes that all DF_REBID drivers can have
2170		 * their probe routine called at any time and that
2171		 * they are idempotent as well as completely benign in
2172		 * normal operations.
2173		 *
2174		 * We also have to make sure that the detach
2175		 * succeeded, otherwise we fail the operation (or
2176		 * maybe it should just fail silently?  I'm torn).
2177		 */
2178		if (child->state > DS_ALIVE && best->driver != child->driver)
2179			if ((result = device_detach(dev)) != 0)
2180				return (result);
2181
2182		/* Set the winning driver, devclass, and flags. */
2183		if (!child->devclass) {
2184			result = device_set_devclass(child, best->driver->name);
2185			if (result != 0)
2186				return (result);
2187		}
2188		result = device_set_driver(child, best->driver);
2189		if (result != 0)
2190			return (result);
2191		resource_int_value(best->driver->name, child->unit,
2192		    "flags", &child->devflags);
2193
2194		if (pri < 0) {
2195			/*
2196			 * A bit bogus. Call the probe method again to make
2197			 * sure that we have the right description.
2198			 */
2199			DEVICE_PROBE(child);
2200#if 0
2201			child->flags |= DF_REBID;
2202#endif
2203		} else
2204			child->flags &= ~DF_REBID;
2205		child->state = DS_ALIVE;
2206
2207		bus_data_generation_update();
2208		return (0);
2209	}
2210
2211	return (ENXIO);
2212}
2213
2214/**
2215 * @brief Return the parent of a device
2216 */
2217device_t
2218device_get_parent(device_t dev)
2219{
2220	return (dev->parent);
2221}
2222
2223/**
2224 * @brief Get a list of children of a device
2225 *
2226 * An array containing a list of all the children of the given device
2227 * is allocated and returned in @p *devlistp. The number of devices
2228 * in the array is returned in @p *devcountp. The caller should free
2229 * the array using @c free(p, M_TEMP).
2230 *
2231 * @param dev		the device to examine
2232 * @param devlistp	points at location for array pointer return
2233 *			value
2234 * @param devcountp	points at location for array size return value
2235 *
2236 * @retval 0		success
2237 * @retval ENOMEM	the array allocation failed
2238 */
2239int
2240device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2241{
2242	int count;
2243	device_t child;
2244	device_t *list;
2245
2246	count = 0;
2247	TAILQ_FOREACH(child, &dev->children, link) {
2248		count++;
2249	}
2250	if (count == 0) {
2251		*devlistp = NULL;
2252		*devcountp = 0;
2253		return (0);
2254	}
2255
2256	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2257	if (!list)
2258		return (ENOMEM);
2259
2260	count = 0;
2261	TAILQ_FOREACH(child, &dev->children, link) {
2262		list[count] = child;
2263		count++;
2264	}
2265
2266	*devlistp = list;
2267	*devcountp = count;
2268
2269	return (0);
2270}
2271
2272/**
2273 * @brief Return the current driver for the device or @c NULL if there
2274 * is no driver currently attached
2275 */
2276driver_t *
2277device_get_driver(device_t dev)
2278{
2279	return (dev->driver);
2280}
2281
2282/**
2283 * @brief Return the current devclass for the device or @c NULL if
2284 * there is none.
2285 */
2286devclass_t
2287device_get_devclass(device_t dev)
2288{
2289	return (dev->devclass);
2290}
2291
2292/**
2293 * @brief Return the name of the device's devclass or @c NULL if there
2294 * is none.
2295 */
2296const char *
2297device_get_name(device_t dev)
2298{
2299	if (dev != NULL && dev->devclass)
2300		return (devclass_get_name(dev->devclass));
2301	return (NULL);
2302}
2303
2304/**
2305 * @brief Return a string containing the device's devclass name
2306 * followed by an ascii representation of the device's unit number
2307 * (e.g. @c "foo2").
2308 */
2309const char *
2310device_get_nameunit(device_t dev)
2311{
2312	return (dev->nameunit);
2313}
2314
2315/**
2316 * @brief Return the device's unit number.
2317 */
2318int
2319device_get_unit(device_t dev)
2320{
2321	return (dev->unit);
2322}
2323
2324/**
2325 * @brief Return the device's description string
2326 */
2327const char *
2328device_get_desc(device_t dev)
2329{
2330	return (dev->desc);
2331}
2332
2333/**
2334 * @brief Return the device's flags
2335 */
2336uint32_t
2337device_get_flags(device_t dev)
2338{
2339	return (dev->devflags);
2340}
2341
2342struct sysctl_ctx_list *
2343device_get_sysctl_ctx(device_t dev)
2344{
2345	return (&dev->sysctl_ctx);
2346}
2347
2348struct sysctl_oid *
2349device_get_sysctl_tree(device_t dev)
2350{
2351	return (dev->sysctl_tree);
2352}
2353
2354/**
2355 * @brief Print the name of the device followed by a colon and a space
2356 *
2357 * @returns the number of characters printed
2358 */
2359int
2360device_print_prettyname(device_t dev)
2361{
2362	const char *name = device_get_name(dev);
2363
2364	if (name == NULL)
2365		return (printf("unknown: "));
2366	return (printf("%s%d: ", name, device_get_unit(dev)));
2367}
2368
2369/**
2370 * @brief Print the name of the device followed by a colon, a space
2371 * and the result of calling vprintf() with the value of @p fmt and
2372 * the following arguments.
2373 *
2374 * @returns the number of characters printed
2375 */
2376int
2377device_printf(device_t dev, const char * fmt, ...)
2378{
2379	va_list ap;
2380	int retval;
2381
2382	retval = device_print_prettyname(dev);
2383	va_start(ap, fmt);
2384	retval += vprintf(fmt, ap);
2385	va_end(ap);
2386	return (retval);
2387}
2388
2389/**
2390 * @internal
2391 */
2392static void
2393device_set_desc_internal(device_t dev, const char* desc, int copy)
2394{
2395	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2396		free(dev->desc, M_BUS);
2397		dev->flags &= ~DF_DESCMALLOCED;
2398		dev->desc = NULL;
2399	}
2400
2401	if (copy && desc) {
2402		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2403		if (dev->desc) {
2404			strcpy(dev->desc, desc);
2405			dev->flags |= DF_DESCMALLOCED;
2406		}
2407	} else {
2408		/* Avoid a -Wcast-qual warning */
2409		dev->desc = (char *)(uintptr_t) desc;
2410	}
2411
2412	bus_data_generation_update();
2413}
2414
2415/**
2416 * @brief Set the device's description
2417 *
2418 * The value of @c desc should be a string constant that will not
2419 * change (at least until the description is changed in a subsequent
2420 * call to device_set_desc() or device_set_desc_copy()).
2421 */
2422void
2423device_set_desc(device_t dev, const char* desc)
2424{
2425	device_set_desc_internal(dev, desc, FALSE);
2426}
2427
2428/**
2429 * @brief Set the device's description
2430 *
2431 * The string pointed to by @c desc is copied. Use this function if
2432 * the device description is generated, (e.g. with sprintf()).
2433 */
2434void
2435device_set_desc_copy(device_t dev, const char* desc)
2436{
2437	device_set_desc_internal(dev, desc, TRUE);
2438}
2439
2440/**
2441 * @brief Set the device's flags
2442 */
2443void
2444device_set_flags(device_t dev, uint32_t flags)
2445{
2446	dev->devflags = flags;
2447}
2448
2449/**
2450 * @brief Return the device's softc field
2451 *
2452 * The softc is allocated and zeroed when a driver is attached, based
2453 * on the size field of the driver.
2454 */
2455void *
2456device_get_softc(device_t dev)
2457{
2458	return (dev->softc);
2459}
2460
2461/**
2462 * @brief Set the device's softc field
2463 *
2464 * Most drivers do not need to use this since the softc is allocated
2465 * automatically when the driver is attached.
2466 */
2467void
2468device_set_softc(device_t dev, void *softc)
2469{
2470	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2471		free(dev->softc, M_BUS_SC);
2472	dev->softc = softc;
2473	if (dev->softc)
2474		dev->flags |= DF_EXTERNALSOFTC;
2475	else
2476		dev->flags &= ~DF_EXTERNALSOFTC;
2477}
2478
2479/**
2480 * @brief Free claimed softc
2481 *
2482 * Most drivers do not need to use this since the softc is freed
2483 * automatically when the driver is detached.
2484 */
2485void
2486device_free_softc(void *softc)
2487{
2488	free(softc, M_BUS_SC);
2489}
2490
2491/**
2492 * @brief Claim softc
2493 *
2494 * This function can be used to let the driver free the automatically
2495 * allocated softc using "device_free_softc()". This function is
2496 * useful when the driver is refcounting the softc and the softc
2497 * cannot be freed when the "device_detach" method is called.
2498 */
2499void
2500device_claim_softc(device_t dev)
2501{
2502	if (dev->softc)
2503		dev->flags |= DF_EXTERNALSOFTC;
2504	else
2505		dev->flags &= ~DF_EXTERNALSOFTC;
2506}
2507
2508/**
2509 * @brief Get the device's ivars field
2510 *
2511 * The ivars field is used by the parent device to store per-device
2512 * state (e.g. the physical location of the device or a list of
2513 * resources).
2514 */
2515void *
2516device_get_ivars(device_t dev)
2517{
2518
2519	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2520	return (dev->ivars);
2521}
2522
2523/**
2524 * @brief Set the device's ivars field
2525 */
2526void
2527device_set_ivars(device_t dev, void * ivars)
2528{
2529
2530	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2531	dev->ivars = ivars;
2532}
2533
2534/**
2535 * @brief Return the device's state
2536 */
2537device_state_t
2538device_get_state(device_t dev)
2539{
2540	return (dev->state);
2541}
2542
2543/**
2544 * @brief Set the DF_ENABLED flag for the device
2545 */
2546void
2547device_enable(device_t dev)
2548{
2549	dev->flags |= DF_ENABLED;
2550}
2551
2552/**
2553 * @brief Clear the DF_ENABLED flag for the device
2554 */
2555void
2556device_disable(device_t dev)
2557{
2558	dev->flags &= ~DF_ENABLED;
2559}
2560
2561/**
2562 * @brief Increment the busy counter for the device
2563 */
2564void
2565device_busy(device_t dev)
2566{
2567	if (dev->state < DS_ATTACHING)
2568		panic("device_busy: called for unattached device");
2569	if (dev->busy == 0 && dev->parent)
2570		device_busy(dev->parent);
2571	dev->busy++;
2572	if (dev->state == DS_ATTACHED)
2573		dev->state = DS_BUSY;
2574}
2575
2576/**
2577 * @brief Decrement the busy counter for the device
2578 */
2579void
2580device_unbusy(device_t dev)
2581{
2582	if (dev->busy != 0 && dev->state != DS_BUSY &&
2583	    dev->state != DS_ATTACHING)
2584		panic("device_unbusy: called for non-busy device %s",
2585		    device_get_nameunit(dev));
2586	dev->busy--;
2587	if (dev->busy == 0) {
2588		if (dev->parent)
2589			device_unbusy(dev->parent);
2590		if (dev->state == DS_BUSY)
2591			dev->state = DS_ATTACHED;
2592	}
2593}
2594
2595/**
2596 * @brief Set the DF_QUIET flag for the device
2597 */
2598void
2599device_quiet(device_t dev)
2600{
2601	dev->flags |= DF_QUIET;
2602}
2603
2604/**
2605 * @brief Clear the DF_QUIET flag for the device
2606 */
2607void
2608device_verbose(device_t dev)
2609{
2610	dev->flags &= ~DF_QUIET;
2611}
2612
2613/**
2614 * @brief Return non-zero if the DF_QUIET flag is set on the device
2615 */
2616int
2617device_is_quiet(device_t dev)
2618{
2619	return ((dev->flags & DF_QUIET) != 0);
2620}
2621
2622/**
2623 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2624 */
2625int
2626device_is_enabled(device_t dev)
2627{
2628	return ((dev->flags & DF_ENABLED) != 0);
2629}
2630
2631/**
2632 * @brief Return non-zero if the device was successfully probed
2633 */
2634int
2635device_is_alive(device_t dev)
2636{
2637	return (dev->state >= DS_ALIVE);
2638}
2639
2640/**
2641 * @brief Return non-zero if the device currently has a driver
2642 * attached to it
2643 */
2644int
2645device_is_attached(device_t dev)
2646{
2647	return (dev->state >= DS_ATTACHED);
2648}
2649
2650/**
2651 * @brief Set the devclass of a device
2652 * @see devclass_add_device().
2653 */
2654int
2655device_set_devclass(device_t dev, const char *classname)
2656{
2657	devclass_t dc;
2658	int error;
2659
2660	if (!classname) {
2661		if (dev->devclass)
2662			devclass_delete_device(dev->devclass, dev);
2663		return (0);
2664	}
2665
2666	if (dev->devclass) {
2667		printf("device_set_devclass: device class already set\n");
2668		return (EINVAL);
2669	}
2670
2671	dc = devclass_find_internal(classname, NULL, TRUE);
2672	if (!dc)
2673		return (ENOMEM);
2674
2675	error = devclass_add_device(dc, dev);
2676
2677	bus_data_generation_update();
2678	return (error);
2679}
2680
2681/**
2682 * @brief Set the driver of a device
2683 *
2684 * @retval 0		success
2685 * @retval EBUSY	the device already has a driver attached
2686 * @retval ENOMEM	a memory allocation failure occurred
2687 */
2688int
2689device_set_driver(device_t dev, driver_t *driver)
2690{
2691	if (dev->state >= DS_ATTACHED)
2692		return (EBUSY);
2693
2694	if (dev->driver == driver)
2695		return (0);
2696
2697	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2698		free(dev->softc, M_BUS_SC);
2699		dev->softc = NULL;
2700	}
2701	device_set_desc(dev, NULL);
2702	kobj_delete((kobj_t) dev, NULL);
2703	dev->driver = driver;
2704	if (driver) {
2705		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2706		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2707			dev->softc = malloc(driver->size, M_BUS_SC,
2708			    M_NOWAIT | M_ZERO);
2709			if (!dev->softc) {
2710				kobj_delete((kobj_t) dev, NULL);
2711				kobj_init((kobj_t) dev, &null_class);
2712				dev->driver = NULL;
2713				return (ENOMEM);
2714			}
2715		}
2716	} else {
2717		kobj_init((kobj_t) dev, &null_class);
2718	}
2719
2720	bus_data_generation_update();
2721	return (0);
2722}
2723
2724/**
2725 * @brief Probe a device, and return this status.
2726 *
2727 * This function is the core of the device autoconfiguration
2728 * system. Its purpose is to select a suitable driver for a device and
2729 * then call that driver to initialise the hardware appropriately. The
2730 * driver is selected by calling the DEVICE_PROBE() method of a set of
2731 * candidate drivers and then choosing the driver which returned the
2732 * best value. This driver is then attached to the device using
2733 * device_attach().
2734 *
2735 * The set of suitable drivers is taken from the list of drivers in
2736 * the parent device's devclass. If the device was originally created
2737 * with a specific class name (see device_add_child()), only drivers
2738 * with that name are probed, otherwise all drivers in the devclass
2739 * are probed. If no drivers return successful probe values in the
2740 * parent devclass, the search continues in the parent of that
2741 * devclass (see devclass_get_parent()) if any.
2742 *
2743 * @param dev		the device to initialise
2744 *
2745 * @retval 0		success
2746 * @retval ENXIO	no driver was found
2747 * @retval ENOMEM	memory allocation failure
2748 * @retval non-zero	some other unix error code
2749 * @retval -1		Device already attached
2750 */
2751int
2752device_probe(device_t dev)
2753{
2754	int error;
2755
2756	GIANT_REQUIRED;
2757
2758	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2759		return (-1);
2760
2761	if (!(dev->flags & DF_ENABLED)) {
2762		if (bootverbose && device_get_name(dev) != NULL) {
2763			device_print_prettyname(dev);
2764			printf("not probed (disabled)\n");
2765		}
2766		return (-1);
2767	}
2768	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2769		if (bus_current_pass == BUS_PASS_DEFAULT &&
2770		    !(dev->flags & DF_DONENOMATCH)) {
2771			BUS_PROBE_NOMATCH(dev->parent, dev);
2772			devnomatch(dev);
2773			dev->flags |= DF_DONENOMATCH;
2774		}
2775		return (error);
2776	}
2777	return (0);
2778}
2779
2780/**
2781 * @brief Probe a device and attach a driver if possible
2782 *
2783 * calls device_probe() and attaches if that was successful.
2784 */
2785int
2786device_probe_and_attach(device_t dev)
2787{
2788	int error;
2789
2790	GIANT_REQUIRED;
2791
2792	error = device_probe(dev);
2793	if (error == -1)
2794		return (0);
2795	else if (error != 0)
2796		return (error);
2797
2798	CURVNET_SET_QUIET(vnet0);
2799	error = device_attach(dev);
2800	CURVNET_RESTORE();
2801	return error;
2802}
2803
2804/**
2805 * @brief Attach a device driver to a device
2806 *
2807 * This function is a wrapper around the DEVICE_ATTACH() driver
2808 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2809 * device's sysctl tree, optionally prints a description of the device
2810 * and queues a notification event for user-based device management
2811 * services.
2812 *
2813 * Normally this function is only called internally from
2814 * device_probe_and_attach().
2815 *
2816 * @param dev		the device to initialise
2817 *
2818 * @retval 0		success
2819 * @retval ENXIO	no driver was found
2820 * @retval ENOMEM	memory allocation failure
2821 * @retval non-zero	some other unix error code
2822 */
2823int
2824device_attach(device_t dev)
2825{
2826	uint64_t attachtime;
2827	int error;
2828
2829	if (resource_disabled(dev->driver->name, dev->unit)) {
2830		device_disable(dev);
2831		if (bootverbose)
2832			 device_printf(dev, "disabled via hints entry\n");
2833		return (ENXIO);
2834	}
2835
2836	device_sysctl_init(dev);
2837	if (!device_is_quiet(dev))
2838		device_print_child(dev->parent, dev);
2839	attachtime = get_cyclecount();
2840	dev->state = DS_ATTACHING;
2841	if ((error = DEVICE_ATTACH(dev)) != 0) {
2842		printf("device_attach: %s%d attach returned %d\n",
2843		    dev->driver->name, dev->unit, error);
2844		if (!(dev->flags & DF_FIXEDCLASS))
2845			devclass_delete_device(dev->devclass, dev);
2846		(void)device_set_driver(dev, NULL);
2847		device_sysctl_fini(dev);
2848		KASSERT(dev->busy == 0, ("attach failed but busy"));
2849		dev->state = DS_NOTPRESENT;
2850		return (error);
2851	}
2852	attachtime = get_cyclecount() - attachtime;
2853	/*
2854	 * 4 bits per device is a reasonable value for desktop and server
2855	 * hardware with good get_cyclecount() implementations, but may
2856	 * need to be adjusted on other platforms.
2857	 */
2858#ifdef RANDOM_DEBUG
2859	printf("random: %s(): feeding %d bit(s) of entropy from %s%d\n",
2860	    __func__, 4, dev->driver->name, dev->unit);
2861#endif
2862	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2863	device_sysctl_update(dev);
2864	if (dev->busy)
2865		dev->state = DS_BUSY;
2866	else
2867		dev->state = DS_ATTACHED;
2868	dev->flags &= ~DF_DONENOMATCH;
2869	devadded(dev);
2870	return (0);
2871}
2872
2873/**
2874 * @brief Detach a driver from a device
2875 *
2876 * This function is a wrapper around the DEVICE_DETACH() driver
2877 * method. If the call to DEVICE_DETACH() succeeds, it calls
2878 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2879 * notification event for user-based device management services and
2880 * cleans up the device's sysctl tree.
2881 *
2882 * @param dev		the device to un-initialise
2883 *
2884 * @retval 0		success
2885 * @retval ENXIO	no driver was found
2886 * @retval ENOMEM	memory allocation failure
2887 * @retval non-zero	some other unix error code
2888 */
2889int
2890device_detach(device_t dev)
2891{
2892	int error;
2893
2894	GIANT_REQUIRED;
2895
2896	PDEBUG(("%s", DEVICENAME(dev)));
2897	if (dev->state == DS_BUSY)
2898		return (EBUSY);
2899	if (dev->state != DS_ATTACHED)
2900		return (0);
2901
2902	if ((error = DEVICE_DETACH(dev)) != 0)
2903		return (error);
2904	devremoved(dev);
2905	if (!device_is_quiet(dev))
2906		device_printf(dev, "detached\n");
2907	if (dev->parent)
2908		BUS_CHILD_DETACHED(dev->parent, dev);
2909
2910	if (!(dev->flags & DF_FIXEDCLASS))
2911		devclass_delete_device(dev->devclass, dev);
2912
2913	dev->state = DS_NOTPRESENT;
2914	(void)device_set_driver(dev, NULL);
2915	device_sysctl_fini(dev);
2916
2917	return (0);
2918}
2919
2920/**
2921 * @brief Tells a driver to quiesce itself.
2922 *
2923 * This function is a wrapper around the DEVICE_QUIESCE() driver
2924 * method. If the call to DEVICE_QUIESCE() succeeds.
2925 *
2926 * @param dev		the device to quiesce
2927 *
2928 * @retval 0		success
2929 * @retval ENXIO	no driver was found
2930 * @retval ENOMEM	memory allocation failure
2931 * @retval non-zero	some other unix error code
2932 */
2933int
2934device_quiesce(device_t dev)
2935{
2936
2937	PDEBUG(("%s", DEVICENAME(dev)));
2938	if (dev->state == DS_BUSY)
2939		return (EBUSY);
2940	if (dev->state != DS_ATTACHED)
2941		return (0);
2942
2943	return (DEVICE_QUIESCE(dev));
2944}
2945
2946/**
2947 * @brief Notify a device of system shutdown
2948 *
2949 * This function calls the DEVICE_SHUTDOWN() driver method if the
2950 * device currently has an attached driver.
2951 *
2952 * @returns the value returned by DEVICE_SHUTDOWN()
2953 */
2954int
2955device_shutdown(device_t dev)
2956{
2957	if (dev->state < DS_ATTACHED)
2958		return (0);
2959	return (DEVICE_SHUTDOWN(dev));
2960}
2961
2962/**
2963 * @brief Set the unit number of a device
2964 *
2965 * This function can be used to override the unit number used for a
2966 * device (e.g. to wire a device to a pre-configured unit number).
2967 */
2968int
2969device_set_unit(device_t dev, int unit)
2970{
2971	devclass_t dc;
2972	int err;
2973
2974	dc = device_get_devclass(dev);
2975	if (unit < dc->maxunit && dc->devices[unit])
2976		return (EBUSY);
2977	err = devclass_delete_device(dc, dev);
2978	if (err)
2979		return (err);
2980	dev->unit = unit;
2981	err = devclass_add_device(dc, dev);
2982	if (err)
2983		return (err);
2984
2985	bus_data_generation_update();
2986	return (0);
2987}
2988
2989/*======================================*/
2990/*
2991 * Some useful method implementations to make life easier for bus drivers.
2992 */
2993
2994/**
2995 * @brief Initialise a resource list.
2996 *
2997 * @param rl		the resource list to initialise
2998 */
2999void
3000resource_list_init(struct resource_list *rl)
3001{
3002	STAILQ_INIT(rl);
3003}
3004
3005/**
3006 * @brief Reclaim memory used by a resource list.
3007 *
3008 * This function frees the memory for all resource entries on the list
3009 * (if any).
3010 *
3011 * @param rl		the resource list to free
3012 */
3013void
3014resource_list_free(struct resource_list *rl)
3015{
3016	struct resource_list_entry *rle;
3017
3018	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3019		if (rle->res)
3020			panic("resource_list_free: resource entry is busy");
3021		STAILQ_REMOVE_HEAD(rl, link);
3022		free(rle, M_BUS);
3023	}
3024}
3025
3026/**
3027 * @brief Add a resource entry.
3028 *
3029 * This function adds a resource entry using the given @p type, @p
3030 * start, @p end and @p count values. A rid value is chosen by
3031 * searching sequentially for the first unused rid starting at zero.
3032 *
3033 * @param rl		the resource list to edit
3034 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3035 * @param start		the start address of the resource
3036 * @param end		the end address of the resource
3037 * @param count		XXX end-start+1
3038 */
3039int
3040resource_list_add_next(struct resource_list *rl, int type, u_long start,
3041    u_long end, u_long count)
3042{
3043	int rid;
3044
3045	rid = 0;
3046	while (resource_list_find(rl, type, rid) != NULL)
3047		rid++;
3048	resource_list_add(rl, type, rid, start, end, count);
3049	return (rid);
3050}
3051
3052/**
3053 * @brief Add or modify a resource entry.
3054 *
3055 * If an existing entry exists with the same type and rid, it will be
3056 * modified using the given values of @p start, @p end and @p
3057 * count. If no entry exists, a new one will be created using the
3058 * given values.  The resource list entry that matches is then returned.
3059 *
3060 * @param rl		the resource list to edit
3061 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3062 * @param rid		the resource identifier
3063 * @param start		the start address of the resource
3064 * @param end		the end address of the resource
3065 * @param count		XXX end-start+1
3066 */
3067struct resource_list_entry *
3068resource_list_add(struct resource_list *rl, int type, int rid,
3069    u_long start, u_long end, u_long count)
3070{
3071	struct resource_list_entry *rle;
3072
3073	rle = resource_list_find(rl, type, rid);
3074	if (!rle) {
3075		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3076		    M_NOWAIT);
3077		if (!rle)
3078			panic("resource_list_add: can't record entry");
3079		STAILQ_INSERT_TAIL(rl, rle, link);
3080		rle->type = type;
3081		rle->rid = rid;
3082		rle->res = NULL;
3083		rle->flags = 0;
3084	}
3085
3086	if (rle->res)
3087		panic("resource_list_add: resource entry is busy");
3088
3089	rle->start = start;
3090	rle->end = end;
3091	rle->count = count;
3092	return (rle);
3093}
3094
3095/**
3096 * @brief Determine if a resource entry is busy.
3097 *
3098 * Returns true if a resource entry is busy meaning that it has an
3099 * associated resource that is not an unallocated "reserved" resource.
3100 *
3101 * @param rl		the resource list to search
3102 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3103 * @param rid		the resource identifier
3104 *
3105 * @returns Non-zero if the entry is busy, zero otherwise.
3106 */
3107int
3108resource_list_busy(struct resource_list *rl, int type, int rid)
3109{
3110	struct resource_list_entry *rle;
3111
3112	rle = resource_list_find(rl, type, rid);
3113	if (rle == NULL || rle->res == NULL)
3114		return (0);
3115	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3116		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3117		    ("reserved resource is active"));
3118		return (0);
3119	}
3120	return (1);
3121}
3122
3123/**
3124 * @brief Determine if a resource entry is reserved.
3125 *
3126 * Returns true if a resource entry is reserved meaning that it has an
3127 * associated "reserved" resource.  The resource can either be
3128 * allocated or unallocated.
3129 *
3130 * @param rl		the resource list to search
3131 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3132 * @param rid		the resource identifier
3133 *
3134 * @returns Non-zero if the entry is reserved, zero otherwise.
3135 */
3136int
3137resource_list_reserved(struct resource_list *rl, int type, int rid)
3138{
3139	struct resource_list_entry *rle;
3140
3141	rle = resource_list_find(rl, type, rid);
3142	if (rle != NULL && rle->flags & RLE_RESERVED)
3143		return (1);
3144	return (0);
3145}
3146
3147/**
3148 * @brief Find a resource entry by type and rid.
3149 *
3150 * @param rl		the resource list to search
3151 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3152 * @param rid		the resource identifier
3153 *
3154 * @returns the resource entry pointer or NULL if there is no such
3155 * entry.
3156 */
3157struct resource_list_entry *
3158resource_list_find(struct resource_list *rl, int type, int rid)
3159{
3160	struct resource_list_entry *rle;
3161
3162	STAILQ_FOREACH(rle, rl, link) {
3163		if (rle->type == type && rle->rid == rid)
3164			return (rle);
3165	}
3166	return (NULL);
3167}
3168
3169/**
3170 * @brief Delete a resource entry.
3171 *
3172 * @param rl		the resource list to edit
3173 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3174 * @param rid		the resource identifier
3175 */
3176void
3177resource_list_delete(struct resource_list *rl, int type, int rid)
3178{
3179	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3180
3181	if (rle) {
3182		if (rle->res != NULL)
3183			panic("resource_list_delete: resource has not been released");
3184		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3185		free(rle, M_BUS);
3186	}
3187}
3188
3189/**
3190 * @brief Allocate a reserved resource
3191 *
3192 * This can be used by busses to force the allocation of resources
3193 * that are always active in the system even if they are not allocated
3194 * by a driver (e.g. PCI BARs).  This function is usually called when
3195 * adding a new child to the bus.  The resource is allocated from the
3196 * parent bus when it is reserved.  The resource list entry is marked
3197 * with RLE_RESERVED to note that it is a reserved resource.
3198 *
3199 * Subsequent attempts to allocate the resource with
3200 * resource_list_alloc() will succeed the first time and will set
3201 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3202 * resource that has been allocated is released with
3203 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3204 * the actual resource remains allocated.  The resource can be released to
3205 * the parent bus by calling resource_list_unreserve().
3206 *
3207 * @param rl		the resource list to allocate from
3208 * @param bus		the parent device of @p child
3209 * @param child		the device for which the resource is being reserved
3210 * @param type		the type of resource to allocate
3211 * @param rid		a pointer to the resource identifier
3212 * @param start		hint at the start of the resource range - pass
3213 *			@c 0UL for any start address
3214 * @param end		hint at the end of the resource range - pass
3215 *			@c ~0UL for any end address
3216 * @param count		hint at the size of range required - pass @c 1
3217 *			for any size
3218 * @param flags		any extra flags to control the resource
3219 *			allocation - see @c RF_XXX flags in
3220 *			<sys/rman.h> for details
3221 *
3222 * @returns		the resource which was allocated or @c NULL if no
3223 *			resource could be allocated
3224 */
3225struct resource *
3226resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3227    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3228{
3229	struct resource_list_entry *rle = NULL;
3230	int passthrough = (device_get_parent(child) != bus);
3231	struct resource *r;
3232
3233	if (passthrough)
3234		panic(
3235    "resource_list_reserve() should only be called for direct children");
3236	if (flags & RF_ACTIVE)
3237		panic(
3238    "resource_list_reserve() should only reserve inactive resources");
3239
3240	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3241	    flags);
3242	if (r != NULL) {
3243		rle = resource_list_find(rl, type, *rid);
3244		rle->flags |= RLE_RESERVED;
3245	}
3246	return (r);
3247}
3248
3249/**
3250 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3251 *
3252 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3253 * and passing the allocation up to the parent of @p bus. This assumes
3254 * that the first entry of @c device_get_ivars(child) is a struct
3255 * resource_list. This also handles 'passthrough' allocations where a
3256 * child is a remote descendant of bus by passing the allocation up to
3257 * the parent of bus.
3258 *
3259 * Typically, a bus driver would store a list of child resources
3260 * somewhere in the child device's ivars (see device_get_ivars()) and
3261 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3262 * then call resource_list_alloc() to perform the allocation.
3263 *
3264 * @param rl		the resource list to allocate from
3265 * @param bus		the parent device of @p child
3266 * @param child		the device which is requesting an allocation
3267 * @param type		the type of resource to allocate
3268 * @param rid		a pointer to the resource identifier
3269 * @param start		hint at the start of the resource range - pass
3270 *			@c 0UL for any start address
3271 * @param end		hint at the end of the resource range - pass
3272 *			@c ~0UL for any end address
3273 * @param count		hint at the size of range required - pass @c 1
3274 *			for any size
3275 * @param flags		any extra flags to control the resource
3276 *			allocation - see @c RF_XXX flags in
3277 *			<sys/rman.h> for details
3278 *
3279 * @returns		the resource which was allocated or @c NULL if no
3280 *			resource could be allocated
3281 */
3282struct resource *
3283resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3284    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3285{
3286	struct resource_list_entry *rle = NULL;
3287	int passthrough = (device_get_parent(child) != bus);
3288	int isdefault = (start == 0UL && end == ~0UL);
3289
3290	if (passthrough) {
3291		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3292		    type, rid, start, end, count, flags));
3293	}
3294
3295	rle = resource_list_find(rl, type, *rid);
3296
3297	if (!rle)
3298		return (NULL);		/* no resource of that type/rid */
3299
3300	if (rle->res) {
3301		if (rle->flags & RLE_RESERVED) {
3302			if (rle->flags & RLE_ALLOCATED)
3303				return (NULL);
3304			if ((flags & RF_ACTIVE) &&
3305			    bus_activate_resource(child, type, *rid,
3306			    rle->res) != 0)
3307				return (NULL);
3308			rle->flags |= RLE_ALLOCATED;
3309			return (rle->res);
3310		}
3311		device_printf(bus,
3312		    "resource entry %#x type %d for child %s is busy\n", *rid,
3313		    type, device_get_nameunit(child));
3314		return (NULL);
3315	}
3316
3317	if (isdefault) {
3318		start = rle->start;
3319		count = ulmax(count, rle->count);
3320		end = ulmax(rle->end, start + count - 1);
3321	}
3322
3323	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3324	    type, rid, start, end, count, flags);
3325
3326	/*
3327	 * Record the new range.
3328	 */
3329	if (rle->res) {
3330		rle->start = rman_get_start(rle->res);
3331		rle->end = rman_get_end(rle->res);
3332		rle->count = count;
3333	}
3334
3335	return (rle->res);
3336}
3337
3338/**
3339 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3340 *
3341 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3342 * used with resource_list_alloc().
3343 *
3344 * @param rl		the resource list which was allocated from
3345 * @param bus		the parent device of @p child
3346 * @param child		the device which is requesting a release
3347 * @param type		the type of resource to release
3348 * @param rid		the resource identifier
3349 * @param res		the resource to release
3350 *
3351 * @retval 0		success
3352 * @retval non-zero	a standard unix error code indicating what
3353 *			error condition prevented the operation
3354 */
3355int
3356resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3357    int type, int rid, struct resource *res)
3358{
3359	struct resource_list_entry *rle = NULL;
3360	int passthrough = (device_get_parent(child) != bus);
3361	int error;
3362
3363	if (passthrough) {
3364		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3365		    type, rid, res));
3366	}
3367
3368	rle = resource_list_find(rl, type, rid);
3369
3370	if (!rle)
3371		panic("resource_list_release: can't find resource");
3372	if (!rle->res)
3373		panic("resource_list_release: resource entry is not busy");
3374	if (rle->flags & RLE_RESERVED) {
3375		if (rle->flags & RLE_ALLOCATED) {
3376			if (rman_get_flags(res) & RF_ACTIVE) {
3377				error = bus_deactivate_resource(child, type,
3378				    rid, res);
3379				if (error)
3380					return (error);
3381			}
3382			rle->flags &= ~RLE_ALLOCATED;
3383			return (0);
3384		}
3385		return (EINVAL);
3386	}
3387
3388	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3389	    type, rid, res);
3390	if (error)
3391		return (error);
3392
3393	rle->res = NULL;
3394	return (0);
3395}
3396
3397/**
3398 * @brief Release all active resources of a given type
3399 *
3400 * Release all active resources of a specified type.  This is intended
3401 * to be used to cleanup resources leaked by a driver after detach or
3402 * a failed attach.
3403 *
3404 * @param rl		the resource list which was allocated from
3405 * @param bus		the parent device of @p child
3406 * @param child		the device whose active resources are being released
3407 * @param type		the type of resources to release
3408 *
3409 * @retval 0		success
3410 * @retval EBUSY	at least one resource was active
3411 */
3412int
3413resource_list_release_active(struct resource_list *rl, device_t bus,
3414    device_t child, int type)
3415{
3416	struct resource_list_entry *rle;
3417	int error, retval;
3418
3419	retval = 0;
3420	STAILQ_FOREACH(rle, rl, link) {
3421		if (rle->type != type)
3422			continue;
3423		if (rle->res == NULL)
3424			continue;
3425		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3426		    RLE_RESERVED)
3427			continue;
3428		retval = EBUSY;
3429		error = resource_list_release(rl, bus, child, type,
3430		    rman_get_rid(rle->res), rle->res);
3431		if (error != 0)
3432			device_printf(bus,
3433			    "Failed to release active resource: %d\n", error);
3434	}
3435	return (retval);
3436}
3437
3438
3439/**
3440 * @brief Fully release a reserved resource
3441 *
3442 * Fully releases a resource reserved via resource_list_reserve().
3443 *
3444 * @param rl		the resource list which was allocated from
3445 * @param bus		the parent device of @p child
3446 * @param child		the device whose reserved resource is being released
3447 * @param type		the type of resource to release
3448 * @param rid		the resource identifier
3449 * @param res		the resource to release
3450 *
3451 * @retval 0		success
3452 * @retval non-zero	a standard unix error code indicating what
3453 *			error condition prevented the operation
3454 */
3455int
3456resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3457    int type, int rid)
3458{
3459	struct resource_list_entry *rle = NULL;
3460	int passthrough = (device_get_parent(child) != bus);
3461
3462	if (passthrough)
3463		panic(
3464    "resource_list_unreserve() should only be called for direct children");
3465
3466	rle = resource_list_find(rl, type, rid);
3467
3468	if (!rle)
3469		panic("resource_list_unreserve: can't find resource");
3470	if (!(rle->flags & RLE_RESERVED))
3471		return (EINVAL);
3472	if (rle->flags & RLE_ALLOCATED)
3473		return (EBUSY);
3474	rle->flags &= ~RLE_RESERVED;
3475	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3476}
3477
3478/**
3479 * @brief Print a description of resources in a resource list
3480 *
3481 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3482 * The name is printed if at least one resource of the given type is available.
3483 * The format is used to print resource start and end.
3484 *
3485 * @param rl		the resource list to print
3486 * @param name		the name of @p type, e.g. @c "memory"
3487 * @param type		type type of resource entry to print
3488 * @param format	printf(9) format string to print resource
3489 *			start and end values
3490 *
3491 * @returns		the number of characters printed
3492 */
3493int
3494resource_list_print_type(struct resource_list *rl, const char *name, int type,
3495    const char *format)
3496{
3497	struct resource_list_entry *rle;
3498	int printed, retval;
3499
3500	printed = 0;
3501	retval = 0;
3502	/* Yes, this is kinda cheating */
3503	STAILQ_FOREACH(rle, rl, link) {
3504		if (rle->type == type) {
3505			if (printed == 0)
3506				retval += printf(" %s ", name);
3507			else
3508				retval += printf(",");
3509			printed++;
3510			retval += printf(format, rle->start);
3511			if (rle->count > 1) {
3512				retval += printf("-");
3513				retval += printf(format, rle->start +
3514						 rle->count - 1);
3515			}
3516		}
3517	}
3518	return (retval);
3519}
3520
3521/**
3522 * @brief Releases all the resources in a list.
3523 *
3524 * @param rl		The resource list to purge.
3525 *
3526 * @returns		nothing
3527 */
3528void
3529resource_list_purge(struct resource_list *rl)
3530{
3531	struct resource_list_entry *rle;
3532
3533	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3534		if (rle->res)
3535			bus_release_resource(rman_get_device(rle->res),
3536			    rle->type, rle->rid, rle->res);
3537		STAILQ_REMOVE_HEAD(rl, link);
3538		free(rle, M_BUS);
3539	}
3540}
3541
3542device_t
3543bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3544{
3545
3546	return (device_add_child_ordered(dev, order, name, unit));
3547}
3548
3549/**
3550 * @brief Helper function for implementing DEVICE_PROBE()
3551 *
3552 * This function can be used to help implement the DEVICE_PROBE() for
3553 * a bus (i.e. a device which has other devices attached to it). It
3554 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3555 * devclass.
3556 */
3557int
3558bus_generic_probe(device_t dev)
3559{
3560	devclass_t dc = dev->devclass;
3561	driverlink_t dl;
3562
3563	TAILQ_FOREACH(dl, &dc->drivers, link) {
3564		/*
3565		 * If this driver's pass is too high, then ignore it.
3566		 * For most drivers in the default pass, this will
3567		 * never be true.  For early-pass drivers they will
3568		 * only call the identify routines of eligible drivers
3569		 * when this routine is called.  Drivers for later
3570		 * passes should have their identify routines called
3571		 * on early-pass busses during BUS_NEW_PASS().
3572		 */
3573		if (dl->pass > bus_current_pass)
3574			continue;
3575		DEVICE_IDENTIFY(dl->driver, dev);
3576	}
3577
3578	return (0);
3579}
3580
3581/**
3582 * @brief Helper function for implementing DEVICE_ATTACH()
3583 *
3584 * This function can be used to help implement the DEVICE_ATTACH() for
3585 * a bus. It calls device_probe_and_attach() for each of the device's
3586 * children.
3587 */
3588int
3589bus_generic_attach(device_t dev)
3590{
3591	device_t child;
3592
3593	TAILQ_FOREACH(child, &dev->children, link) {
3594		device_probe_and_attach(child);
3595	}
3596
3597	return (0);
3598}
3599
3600/**
3601 * @brief Helper function for implementing DEVICE_DETACH()
3602 *
3603 * This function can be used to help implement the DEVICE_DETACH() for
3604 * a bus. It calls device_detach() for each of the device's
3605 * children.
3606 */
3607int
3608bus_generic_detach(device_t dev)
3609{
3610	device_t child;
3611	int error;
3612
3613	if (dev->state != DS_ATTACHED)
3614		return (EBUSY);
3615
3616	TAILQ_FOREACH(child, &dev->children, link) {
3617		if ((error = device_detach(child)) != 0)
3618			return (error);
3619	}
3620
3621	return (0);
3622}
3623
3624/**
3625 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3626 *
3627 * This function can be used to help implement the DEVICE_SHUTDOWN()
3628 * for a bus. It calls device_shutdown() for each of the device's
3629 * children.
3630 */
3631int
3632bus_generic_shutdown(device_t dev)
3633{
3634	device_t child;
3635
3636	TAILQ_FOREACH(child, &dev->children, link) {
3637		device_shutdown(child);
3638	}
3639
3640	return (0);
3641}
3642
3643/**
3644 * @brief Default function for suspending a child device.
3645 *
3646 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3647 */
3648int
3649bus_generic_suspend_child(device_t dev, device_t child)
3650{
3651	int	error;
3652
3653	error = DEVICE_SUSPEND(child);
3654
3655	if (error == 0)
3656		dev->flags |= DF_SUSPENDED;
3657
3658	return (error);
3659}
3660
3661/**
3662 * @brief Default function for resuming a child device.
3663 *
3664 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3665 */
3666int
3667bus_generic_resume_child(device_t dev, device_t child)
3668{
3669
3670	DEVICE_RESUME(child);
3671	dev->flags &= ~DF_SUSPENDED;
3672
3673	return (0);
3674}
3675
3676/**
3677 * @brief Helper function for implementing DEVICE_SUSPEND()
3678 *
3679 * This function can be used to help implement the DEVICE_SUSPEND()
3680 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3681 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3682 * operation is aborted and any devices which were suspended are
3683 * resumed immediately by calling their DEVICE_RESUME() methods.
3684 */
3685int
3686bus_generic_suspend(device_t dev)
3687{
3688	int		error;
3689	device_t	child, child2;
3690
3691	TAILQ_FOREACH(child, &dev->children, link) {
3692		error = BUS_SUSPEND_CHILD(dev, child);
3693		if (error) {
3694			for (child2 = TAILQ_FIRST(&dev->children);
3695			     child2 && child2 != child;
3696			     child2 = TAILQ_NEXT(child2, link))
3697				BUS_RESUME_CHILD(dev, child2);
3698			return (error);
3699		}
3700	}
3701	return (0);
3702}
3703
3704/**
3705 * @brief Helper function for implementing DEVICE_RESUME()
3706 *
3707 * This function can be used to help implement the DEVICE_RESUME() for
3708 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3709 */
3710int
3711bus_generic_resume(device_t dev)
3712{
3713	device_t	child;
3714
3715	TAILQ_FOREACH(child, &dev->children, link) {
3716		BUS_RESUME_CHILD(dev, child);
3717		/* if resume fails, there's nothing we can usefully do... */
3718	}
3719	return (0);
3720}
3721
3722/**
3723 * @brief Helper function for implementing BUS_PRINT_CHILD().
3724 *
3725 * This function prints the first part of the ascii representation of
3726 * @p child, including its name, unit and description (if any - see
3727 * device_set_desc()).
3728 *
3729 * @returns the number of characters printed
3730 */
3731int
3732bus_print_child_header(device_t dev, device_t child)
3733{
3734	int	retval = 0;
3735
3736	if (device_get_desc(child)) {
3737		retval += device_printf(child, "<%s>", device_get_desc(child));
3738	} else {
3739		retval += printf("%s", device_get_nameunit(child));
3740	}
3741
3742	return (retval);
3743}
3744
3745/**
3746 * @brief Helper function for implementing BUS_PRINT_CHILD().
3747 *
3748 * This function prints the last part of the ascii representation of
3749 * @p child, which consists of the string @c " on " followed by the
3750 * name and unit of the @p dev.
3751 *
3752 * @returns the number of characters printed
3753 */
3754int
3755bus_print_child_footer(device_t dev, device_t child)
3756{
3757	return (printf(" on %s\n", device_get_nameunit(dev)));
3758}
3759
3760/**
3761 * @brief Helper function for implementing BUS_PRINT_CHILD().
3762 *
3763 * This function prints out the VM domain for the given device.
3764 *
3765 * @returns the number of characters printed
3766 */
3767int
3768bus_print_child_domain(device_t dev, device_t child)
3769{
3770	int domain;
3771
3772	/* No domain? Don't print anything */
3773	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3774		return (0);
3775
3776	return (printf(" numa-domain %d", domain));
3777}
3778
3779/**
3780 * @brief Helper function for implementing BUS_PRINT_CHILD().
3781 *
3782 * This function simply calls bus_print_child_header() followed by
3783 * bus_print_child_footer().
3784 *
3785 * @returns the number of characters printed
3786 */
3787int
3788bus_generic_print_child(device_t dev, device_t child)
3789{
3790	int	retval = 0;
3791
3792	retval += bus_print_child_header(dev, child);
3793	retval += bus_print_child_domain(dev, child);
3794	retval += bus_print_child_footer(dev, child);
3795
3796	return (retval);
3797}
3798
3799/**
3800 * @brief Stub function for implementing BUS_READ_IVAR().
3801 *
3802 * @returns ENOENT
3803 */
3804int
3805bus_generic_read_ivar(device_t dev, device_t child, int index,
3806    uintptr_t * result)
3807{
3808	return (ENOENT);
3809}
3810
3811/**
3812 * @brief Stub function for implementing BUS_WRITE_IVAR().
3813 *
3814 * @returns ENOENT
3815 */
3816int
3817bus_generic_write_ivar(device_t dev, device_t child, int index,
3818    uintptr_t value)
3819{
3820	return (ENOENT);
3821}
3822
3823/**
3824 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3825 *
3826 * @returns NULL
3827 */
3828struct resource_list *
3829bus_generic_get_resource_list(device_t dev, device_t child)
3830{
3831	return (NULL);
3832}
3833
3834/**
3835 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3836 *
3837 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3838 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3839 * and then calls device_probe_and_attach() for each unattached child.
3840 */
3841void
3842bus_generic_driver_added(device_t dev, driver_t *driver)
3843{
3844	device_t child;
3845
3846	DEVICE_IDENTIFY(driver, dev);
3847	TAILQ_FOREACH(child, &dev->children, link) {
3848		if (child->state == DS_NOTPRESENT ||
3849		    (child->flags & DF_REBID))
3850			device_probe_and_attach(child);
3851	}
3852}
3853
3854/**
3855 * @brief Helper function for implementing BUS_NEW_PASS().
3856 *
3857 * This implementing of BUS_NEW_PASS() first calls the identify
3858 * routines for any drivers that probe at the current pass.  Then it
3859 * walks the list of devices for this bus.  If a device is already
3860 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3861 * device is not already attached, it attempts to attach a driver to
3862 * it.
3863 */
3864void
3865bus_generic_new_pass(device_t dev)
3866{
3867	driverlink_t dl;
3868	devclass_t dc;
3869	device_t child;
3870
3871	dc = dev->devclass;
3872	TAILQ_FOREACH(dl, &dc->drivers, link) {
3873		if (dl->pass == bus_current_pass)
3874			DEVICE_IDENTIFY(dl->driver, dev);
3875	}
3876	TAILQ_FOREACH(child, &dev->children, link) {
3877		if (child->state >= DS_ATTACHED)
3878			BUS_NEW_PASS(child);
3879		else if (child->state == DS_NOTPRESENT)
3880			device_probe_and_attach(child);
3881	}
3882}
3883
3884/**
3885 * @brief Helper function for implementing BUS_SETUP_INTR().
3886 *
3887 * This simple implementation of BUS_SETUP_INTR() simply calls the
3888 * BUS_SETUP_INTR() method of the parent of @p dev.
3889 */
3890int
3891bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3892    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3893    void **cookiep)
3894{
3895	/* Propagate up the bus hierarchy until someone handles it. */
3896	if (dev->parent)
3897		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3898		    filter, intr, arg, cookiep));
3899	return (EINVAL);
3900}
3901
3902/**
3903 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3904 *
3905 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3906 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3907 */
3908int
3909bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3910    void *cookie)
3911{
3912	/* Propagate up the bus hierarchy until someone handles it. */
3913	if (dev->parent)
3914		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3915	return (EINVAL);
3916}
3917
3918/**
3919 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3920 *
3921 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3922 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3923 */
3924int
3925bus_generic_adjust_resource(device_t dev, device_t child, int type,
3926    struct resource *r, u_long start, u_long end)
3927{
3928	/* Propagate up the bus hierarchy until someone handles it. */
3929	if (dev->parent)
3930		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3931		    end));
3932	return (EINVAL);
3933}
3934
3935/**
3936 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3937 *
3938 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3939 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3940 */
3941struct resource *
3942bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3943    u_long start, u_long end, u_long count, u_int flags)
3944{
3945	/* Propagate up the bus hierarchy until someone handles it. */
3946	if (dev->parent)
3947		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3948		    start, end, count, flags));
3949	return (NULL);
3950}
3951
3952/**
3953 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3954 *
3955 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3956 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3957 */
3958int
3959bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3960    struct resource *r)
3961{
3962	/* Propagate up the bus hierarchy until someone handles it. */
3963	if (dev->parent)
3964		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3965		    r));
3966	return (EINVAL);
3967}
3968
3969/**
3970 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3971 *
3972 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3973 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3974 */
3975int
3976bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3977    struct resource *r)
3978{
3979	/* Propagate up the bus hierarchy until someone handles it. */
3980	if (dev->parent)
3981		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3982		    r));
3983	return (EINVAL);
3984}
3985
3986/**
3987 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3988 *
3989 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3990 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3991 */
3992int
3993bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3994    int rid, struct resource *r)
3995{
3996	/* Propagate up the bus hierarchy until someone handles it. */
3997	if (dev->parent)
3998		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3999		    r));
4000	return (EINVAL);
4001}
4002
4003/**
4004 * @brief Helper function for implementing BUS_BIND_INTR().
4005 *
4006 * This simple implementation of BUS_BIND_INTR() simply calls the
4007 * BUS_BIND_INTR() method of the parent of @p dev.
4008 */
4009int
4010bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4011    int cpu)
4012{
4013
4014	/* Propagate up the bus hierarchy until someone handles it. */
4015	if (dev->parent)
4016		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4017	return (EINVAL);
4018}
4019
4020/**
4021 * @brief Helper function for implementing BUS_CONFIG_INTR().
4022 *
4023 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4024 * BUS_CONFIG_INTR() method of the parent of @p dev.
4025 */
4026int
4027bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4028    enum intr_polarity pol)
4029{
4030
4031	/* Propagate up the bus hierarchy until someone handles it. */
4032	if (dev->parent)
4033		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4034	return (EINVAL);
4035}
4036
4037/**
4038 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4039 *
4040 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4041 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4042 */
4043int
4044bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4045    void *cookie, const char *descr)
4046{
4047
4048	/* Propagate up the bus hierarchy until someone handles it. */
4049	if (dev->parent)
4050		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4051		    descr));
4052	return (EINVAL);
4053}
4054
4055/**
4056 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4057 *
4058 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4059 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4060 */
4061bus_dma_tag_t
4062bus_generic_get_dma_tag(device_t dev, device_t child)
4063{
4064
4065	/* Propagate up the bus hierarchy until someone handles it. */
4066	if (dev->parent != NULL)
4067		return (BUS_GET_DMA_TAG(dev->parent, child));
4068	return (NULL);
4069}
4070
4071/**
4072 * @brief Helper function for implementing BUS_GET_RESOURCE().
4073 *
4074 * This implementation of BUS_GET_RESOURCE() uses the
4075 * resource_list_find() function to do most of the work. It calls
4076 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4077 * search.
4078 */
4079int
4080bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4081    u_long *startp, u_long *countp)
4082{
4083	struct resource_list *		rl = NULL;
4084	struct resource_list_entry *	rle = NULL;
4085
4086	rl = BUS_GET_RESOURCE_LIST(dev, child);
4087	if (!rl)
4088		return (EINVAL);
4089
4090	rle = resource_list_find(rl, type, rid);
4091	if (!rle)
4092		return (ENOENT);
4093
4094	if (startp)
4095		*startp = rle->start;
4096	if (countp)
4097		*countp = rle->count;
4098
4099	return (0);
4100}
4101
4102/**
4103 * @brief Helper function for implementing BUS_SET_RESOURCE().
4104 *
4105 * This implementation of BUS_SET_RESOURCE() uses the
4106 * resource_list_add() function to do most of the work. It calls
4107 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4108 * edit.
4109 */
4110int
4111bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4112    u_long start, u_long count)
4113{
4114	struct resource_list *		rl = NULL;
4115
4116	rl = BUS_GET_RESOURCE_LIST(dev, child);
4117	if (!rl)
4118		return (EINVAL);
4119
4120	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4121
4122	return (0);
4123}
4124
4125/**
4126 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4127 *
4128 * This implementation of BUS_DELETE_RESOURCE() uses the
4129 * resource_list_delete() function to do most of the work. It calls
4130 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4131 * edit.
4132 */
4133void
4134bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4135{
4136	struct resource_list *		rl = NULL;
4137
4138	rl = BUS_GET_RESOURCE_LIST(dev, child);
4139	if (!rl)
4140		return;
4141
4142	resource_list_delete(rl, type, rid);
4143
4144	return;
4145}
4146
4147/**
4148 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4149 *
4150 * This implementation of BUS_RELEASE_RESOURCE() uses the
4151 * resource_list_release() function to do most of the work. It calls
4152 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4153 */
4154int
4155bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4156    int rid, struct resource *r)
4157{
4158	struct resource_list *		rl = NULL;
4159
4160	if (device_get_parent(child) != dev)
4161		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4162		    type, rid, r));
4163
4164	rl = BUS_GET_RESOURCE_LIST(dev, child);
4165	if (!rl)
4166		return (EINVAL);
4167
4168	return (resource_list_release(rl, dev, child, type, rid, r));
4169}
4170
4171/**
4172 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4173 *
4174 * This implementation of BUS_ALLOC_RESOURCE() uses the
4175 * resource_list_alloc() function to do most of the work. It calls
4176 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4177 */
4178struct resource *
4179bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4180    int *rid, u_long start, u_long end, u_long count, u_int flags)
4181{
4182	struct resource_list *		rl = NULL;
4183
4184	if (device_get_parent(child) != dev)
4185		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4186		    type, rid, start, end, count, flags));
4187
4188	rl = BUS_GET_RESOURCE_LIST(dev, child);
4189	if (!rl)
4190		return (NULL);
4191
4192	return (resource_list_alloc(rl, dev, child, type, rid,
4193	    start, end, count, flags));
4194}
4195
4196/**
4197 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4198 *
4199 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4200 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4201 */
4202int
4203bus_generic_child_present(device_t dev, device_t child)
4204{
4205	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4206}
4207
4208int
4209bus_generic_get_domain(device_t dev, device_t child, int *domain)
4210{
4211
4212	if (dev->parent)
4213		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4214
4215	return (ENOENT);
4216}
4217
4218/*
4219 * Some convenience functions to make it easier for drivers to use the
4220 * resource-management functions.  All these really do is hide the
4221 * indirection through the parent's method table, making for slightly
4222 * less-wordy code.  In the future, it might make sense for this code
4223 * to maintain some sort of a list of resources allocated by each device.
4224 */
4225
4226int
4227bus_alloc_resources(device_t dev, struct resource_spec *rs,
4228    struct resource **res)
4229{
4230	int i;
4231
4232	for (i = 0; rs[i].type != -1; i++)
4233		res[i] = NULL;
4234	for (i = 0; rs[i].type != -1; i++) {
4235		res[i] = bus_alloc_resource_any(dev,
4236		    rs[i].type, &rs[i].rid, rs[i].flags);
4237		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4238			bus_release_resources(dev, rs, res);
4239			return (ENXIO);
4240		}
4241	}
4242	return (0);
4243}
4244
4245void
4246bus_release_resources(device_t dev, const struct resource_spec *rs,
4247    struct resource **res)
4248{
4249	int i;
4250
4251	for (i = 0; rs[i].type != -1; i++)
4252		if (res[i] != NULL) {
4253			bus_release_resource(
4254			    dev, rs[i].type, rs[i].rid, res[i]);
4255			res[i] = NULL;
4256		}
4257}
4258
4259/**
4260 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4261 *
4262 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4263 * parent of @p dev.
4264 */
4265struct resource *
4266bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4267    u_long count, u_int flags)
4268{
4269	if (dev->parent == NULL)
4270		return (NULL);
4271	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4272	    count, flags));
4273}
4274
4275/**
4276 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4277 *
4278 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4279 * parent of @p dev.
4280 */
4281int
4282bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4283    u_long end)
4284{
4285	if (dev->parent == NULL)
4286		return (EINVAL);
4287	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4288}
4289
4290/**
4291 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4292 *
4293 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4294 * parent of @p dev.
4295 */
4296int
4297bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4298{
4299	if (dev->parent == NULL)
4300		return (EINVAL);
4301	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4302}
4303
4304/**
4305 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4306 *
4307 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4308 * parent of @p dev.
4309 */
4310int
4311bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4312{
4313	if (dev->parent == NULL)
4314		return (EINVAL);
4315	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4316}
4317
4318/**
4319 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4320 *
4321 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4322 * parent of @p dev.
4323 */
4324int
4325bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4326{
4327	if (dev->parent == NULL)
4328		return (EINVAL);
4329	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4330}
4331
4332/**
4333 * @brief Wrapper function for BUS_SETUP_INTR().
4334 *
4335 * This function simply calls the BUS_SETUP_INTR() method of the
4336 * parent of @p dev.
4337 */
4338int
4339bus_setup_intr(device_t dev, struct resource *r, int flags,
4340    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4341{
4342	int error;
4343
4344	if (dev->parent == NULL)
4345		return (EINVAL);
4346	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4347	    arg, cookiep);
4348	if (error != 0)
4349		return (error);
4350	if (handler != NULL && !(flags & INTR_MPSAFE))
4351		device_printf(dev, "[GIANT-LOCKED]\n");
4352	return (0);
4353}
4354
4355/**
4356 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4357 *
4358 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4359 * parent of @p dev.
4360 */
4361int
4362bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4363{
4364	if (dev->parent == NULL)
4365		return (EINVAL);
4366	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4367}
4368
4369/**
4370 * @brief Wrapper function for BUS_BIND_INTR().
4371 *
4372 * This function simply calls the BUS_BIND_INTR() method of the
4373 * parent of @p dev.
4374 */
4375int
4376bus_bind_intr(device_t dev, struct resource *r, int cpu)
4377{
4378	if (dev->parent == NULL)
4379		return (EINVAL);
4380	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4381}
4382
4383/**
4384 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4385 *
4386 * This function first formats the requested description into a
4387 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4388 * the parent of @p dev.
4389 */
4390int
4391bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4392    const char *fmt, ...)
4393{
4394	va_list ap;
4395	char descr[MAXCOMLEN + 1];
4396
4397	if (dev->parent == NULL)
4398		return (EINVAL);
4399	va_start(ap, fmt);
4400	vsnprintf(descr, sizeof(descr), fmt, ap);
4401	va_end(ap);
4402	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4403}
4404
4405/**
4406 * @brief Wrapper function for BUS_SET_RESOURCE().
4407 *
4408 * This function simply calls the BUS_SET_RESOURCE() method of the
4409 * parent of @p dev.
4410 */
4411int
4412bus_set_resource(device_t dev, int type, int rid,
4413    u_long start, u_long count)
4414{
4415	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4416	    start, count));
4417}
4418
4419/**
4420 * @brief Wrapper function for BUS_GET_RESOURCE().
4421 *
4422 * This function simply calls the BUS_GET_RESOURCE() method of the
4423 * parent of @p dev.
4424 */
4425int
4426bus_get_resource(device_t dev, int type, int rid,
4427    u_long *startp, u_long *countp)
4428{
4429	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4430	    startp, countp));
4431}
4432
4433/**
4434 * @brief Wrapper function for BUS_GET_RESOURCE().
4435 *
4436 * This function simply calls the BUS_GET_RESOURCE() method of the
4437 * parent of @p dev and returns the start value.
4438 */
4439u_long
4440bus_get_resource_start(device_t dev, int type, int rid)
4441{
4442	u_long start, count;
4443	int error;
4444
4445	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4446	    &start, &count);
4447	if (error)
4448		return (0);
4449	return (start);
4450}
4451
4452/**
4453 * @brief Wrapper function for BUS_GET_RESOURCE().
4454 *
4455 * This function simply calls the BUS_GET_RESOURCE() method of the
4456 * parent of @p dev and returns the count value.
4457 */
4458u_long
4459bus_get_resource_count(device_t dev, int type, int rid)
4460{
4461	u_long start, count;
4462	int error;
4463
4464	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4465	    &start, &count);
4466	if (error)
4467		return (0);
4468	return (count);
4469}
4470
4471/**
4472 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4473 *
4474 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4475 * parent of @p dev.
4476 */
4477void
4478bus_delete_resource(device_t dev, int type, int rid)
4479{
4480	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4481}
4482
4483/**
4484 * @brief Wrapper function for BUS_CHILD_PRESENT().
4485 *
4486 * This function simply calls the BUS_CHILD_PRESENT() method of the
4487 * parent of @p dev.
4488 */
4489int
4490bus_child_present(device_t child)
4491{
4492	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4493}
4494
4495/**
4496 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4497 *
4498 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4499 * parent of @p dev.
4500 */
4501int
4502bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4503{
4504	device_t parent;
4505
4506	parent = device_get_parent(child);
4507	if (parent == NULL) {
4508		*buf = '\0';
4509		return (0);
4510	}
4511	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4512}
4513
4514/**
4515 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4516 *
4517 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4518 * parent of @p dev.
4519 */
4520int
4521bus_child_location_str(device_t child, char *buf, size_t buflen)
4522{
4523	device_t parent;
4524
4525	parent = device_get_parent(child);
4526	if (parent == NULL) {
4527		*buf = '\0';
4528		return (0);
4529	}
4530	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4531}
4532
4533/**
4534 * @brief Wrapper function for BUS_GET_DMA_TAG().
4535 *
4536 * This function simply calls the BUS_GET_DMA_TAG() method of the
4537 * parent of @p dev.
4538 */
4539bus_dma_tag_t
4540bus_get_dma_tag(device_t dev)
4541{
4542	device_t parent;
4543
4544	parent = device_get_parent(dev);
4545	if (parent == NULL)
4546		return (NULL);
4547	return (BUS_GET_DMA_TAG(parent, dev));
4548}
4549
4550/**
4551 * @brief Wrapper function for BUS_GET_DOMAIN().
4552 *
4553 * This function simply calls the BUS_GET_DOMAIN() method of the
4554 * parent of @p dev.
4555 */
4556int
4557bus_get_domain(device_t dev, int *domain)
4558{
4559	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4560}
4561
4562/* Resume all devices and then notify userland that we're up again. */
4563static int
4564root_resume(device_t dev)
4565{
4566	int error;
4567
4568	error = bus_generic_resume(dev);
4569	if (error == 0)
4570		devctl_notify("kern", "power", "resume", NULL);
4571	return (error);
4572}
4573
4574static int
4575root_print_child(device_t dev, device_t child)
4576{
4577	int	retval = 0;
4578
4579	retval += bus_print_child_header(dev, child);
4580	retval += printf("\n");
4581
4582	return (retval);
4583}
4584
4585static int
4586root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4587    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4588{
4589	/*
4590	 * If an interrupt mapping gets to here something bad has happened.
4591	 */
4592	panic("root_setup_intr");
4593}
4594
4595/*
4596 * If we get here, assume that the device is permanant and really is
4597 * present in the system.  Removable bus drivers are expected to intercept
4598 * this call long before it gets here.  We return -1 so that drivers that
4599 * really care can check vs -1 or some ERRNO returned higher in the food
4600 * chain.
4601 */
4602static int
4603root_child_present(device_t dev, device_t child)
4604{
4605	return (-1);
4606}
4607
4608static kobj_method_t root_methods[] = {
4609	/* Device interface */
4610	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4611	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4612	KOBJMETHOD(device_resume,	root_resume),
4613
4614	/* Bus interface */
4615	KOBJMETHOD(bus_print_child,	root_print_child),
4616	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4617	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4618	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4619	KOBJMETHOD(bus_child_present,	root_child_present),
4620
4621	KOBJMETHOD_END
4622};
4623
4624static driver_t root_driver = {
4625	"root",
4626	root_methods,
4627	1,			/* no softc */
4628};
4629
4630device_t	root_bus;
4631devclass_t	root_devclass;
4632
4633static int
4634root_bus_module_handler(module_t mod, int what, void* arg)
4635{
4636	switch (what) {
4637	case MOD_LOAD:
4638		TAILQ_INIT(&bus_data_devices);
4639		kobj_class_compile((kobj_class_t) &root_driver);
4640		root_bus = make_device(NULL, "root", 0);
4641		root_bus->desc = "System root bus";
4642		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4643		root_bus->driver = &root_driver;
4644		root_bus->state = DS_ATTACHED;
4645		root_devclass = devclass_find_internal("root", NULL, FALSE);
4646		devinit();
4647		return (0);
4648
4649	case MOD_SHUTDOWN:
4650		device_shutdown(root_bus);
4651		return (0);
4652	default:
4653		return (EOPNOTSUPP);
4654	}
4655
4656	return (0);
4657}
4658
4659static moduledata_t root_bus_mod = {
4660	"rootbus",
4661	root_bus_module_handler,
4662	NULL
4663};
4664DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4665
4666/**
4667 * @brief Automatically configure devices
4668 *
4669 * This function begins the autoconfiguration process by calling
4670 * device_probe_and_attach() for each child of the @c root0 device.
4671 */
4672void
4673root_bus_configure(void)
4674{
4675
4676	PDEBUG(("."));
4677
4678	/* Eventually this will be split up, but this is sufficient for now. */
4679	bus_set_pass(BUS_PASS_DEFAULT);
4680}
4681
4682/**
4683 * @brief Module handler for registering device drivers
4684 *
4685 * This module handler is used to automatically register device
4686 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4687 * devclass_add_driver() for the driver described by the
4688 * driver_module_data structure pointed to by @p arg
4689 */
4690int
4691driver_module_handler(module_t mod, int what, void *arg)
4692{
4693	struct driver_module_data *dmd;
4694	devclass_t bus_devclass;
4695	kobj_class_t driver;
4696	int error, pass;
4697
4698	dmd = (struct driver_module_data *)arg;
4699	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4700	error = 0;
4701
4702	switch (what) {
4703	case MOD_LOAD:
4704		if (dmd->dmd_chainevh)
4705			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4706
4707		pass = dmd->dmd_pass;
4708		driver = dmd->dmd_driver;
4709		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4710		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4711		error = devclass_add_driver(bus_devclass, driver, pass,
4712		    dmd->dmd_devclass);
4713		break;
4714
4715	case MOD_UNLOAD:
4716		PDEBUG(("Unloading module: driver %s from bus %s",
4717		    DRIVERNAME(dmd->dmd_driver),
4718		    dmd->dmd_busname));
4719		error = devclass_delete_driver(bus_devclass,
4720		    dmd->dmd_driver);
4721
4722		if (!error && dmd->dmd_chainevh)
4723			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4724		break;
4725	case MOD_QUIESCE:
4726		PDEBUG(("Quiesce module: driver %s from bus %s",
4727		    DRIVERNAME(dmd->dmd_driver),
4728		    dmd->dmd_busname));
4729		error = devclass_quiesce_driver(bus_devclass,
4730		    dmd->dmd_driver);
4731
4732		if (!error && dmd->dmd_chainevh)
4733			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4734		break;
4735	default:
4736		error = EOPNOTSUPP;
4737		break;
4738	}
4739
4740	return (error);
4741}
4742
4743/**
4744 * @brief Enumerate all hinted devices for this bus.
4745 *
4746 * Walks through the hints for this bus and calls the bus_hinted_child
4747 * routine for each one it fines.  It searches first for the specific
4748 * bus that's being probed for hinted children (eg isa0), and then for
4749 * generic children (eg isa).
4750 *
4751 * @param	dev	bus device to enumerate
4752 */
4753void
4754bus_enumerate_hinted_children(device_t bus)
4755{
4756	int i;
4757	const char *dname, *busname;
4758	int dunit;
4759
4760	/*
4761	 * enumerate all devices on the specific bus
4762	 */
4763	busname = device_get_nameunit(bus);
4764	i = 0;
4765	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4766		BUS_HINTED_CHILD(bus, dname, dunit);
4767
4768	/*
4769	 * and all the generic ones.
4770	 */
4771	busname = device_get_name(bus);
4772	i = 0;
4773	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4774		BUS_HINTED_CHILD(bus, dname, dunit);
4775}
4776
4777#ifdef BUS_DEBUG
4778
4779/* the _short versions avoid iteration by not calling anything that prints
4780 * more than oneliners. I love oneliners.
4781 */
4782
4783static void
4784print_device_short(device_t dev, int indent)
4785{
4786	if (!dev)
4787		return;
4788
4789	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4790	    dev->unit, dev->desc,
4791	    (dev->parent? "":"no "),
4792	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4793	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4794	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4795	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4796	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4797	    (dev->flags&DF_REBID? "rebiddable,":""),
4798	    (dev->ivars? "":"no "),
4799	    (dev->softc? "":"no "),
4800	    dev->busy));
4801}
4802
4803static void
4804print_device(device_t dev, int indent)
4805{
4806	if (!dev)
4807		return;
4808
4809	print_device_short(dev, indent);
4810
4811	indentprintf(("Parent:\n"));
4812	print_device_short(dev->parent, indent+1);
4813	indentprintf(("Driver:\n"));
4814	print_driver_short(dev->driver, indent+1);
4815	indentprintf(("Devclass:\n"));
4816	print_devclass_short(dev->devclass, indent+1);
4817}
4818
4819void
4820print_device_tree_short(device_t dev, int indent)
4821/* print the device and all its children (indented) */
4822{
4823	device_t child;
4824
4825	if (!dev)
4826		return;
4827
4828	print_device_short(dev, indent);
4829
4830	TAILQ_FOREACH(child, &dev->children, link) {
4831		print_device_tree_short(child, indent+1);
4832	}
4833}
4834
4835void
4836print_device_tree(device_t dev, int indent)
4837/* print the device and all its children (indented) */
4838{
4839	device_t child;
4840
4841	if (!dev)
4842		return;
4843
4844	print_device(dev, indent);
4845
4846	TAILQ_FOREACH(child, &dev->children, link) {
4847		print_device_tree(child, indent+1);
4848	}
4849}
4850
4851static void
4852print_driver_short(driver_t *driver, int indent)
4853{
4854	if (!driver)
4855		return;
4856
4857	indentprintf(("driver %s: softc size = %zd\n",
4858	    driver->name, driver->size));
4859}
4860
4861static void
4862print_driver(driver_t *driver, int indent)
4863{
4864	if (!driver)
4865		return;
4866
4867	print_driver_short(driver, indent);
4868}
4869
4870static void
4871print_driver_list(driver_list_t drivers, int indent)
4872{
4873	driverlink_t driver;
4874
4875	TAILQ_FOREACH(driver, &drivers, link) {
4876		print_driver(driver->driver, indent);
4877	}
4878}
4879
4880static void
4881print_devclass_short(devclass_t dc, int indent)
4882{
4883	if ( !dc )
4884		return;
4885
4886	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4887}
4888
4889static void
4890print_devclass(devclass_t dc, int indent)
4891{
4892	int i;
4893
4894	if ( !dc )
4895		return;
4896
4897	print_devclass_short(dc, indent);
4898	indentprintf(("Drivers:\n"));
4899	print_driver_list(dc->drivers, indent+1);
4900
4901	indentprintf(("Devices:\n"));
4902	for (i = 0; i < dc->maxunit; i++)
4903		if (dc->devices[i])
4904			print_device(dc->devices[i], indent+1);
4905}
4906
4907void
4908print_devclass_list_short(void)
4909{
4910	devclass_t dc;
4911
4912	printf("Short listing of devclasses, drivers & devices:\n");
4913	TAILQ_FOREACH(dc, &devclasses, link) {
4914		print_devclass_short(dc, 0);
4915	}
4916}
4917
4918void
4919print_devclass_list(void)
4920{
4921	devclass_t dc;
4922
4923	printf("Full listing of devclasses, drivers & devices:\n");
4924	TAILQ_FOREACH(dc, &devclasses, link) {
4925		print_devclass(dc, 0);
4926	}
4927}
4928
4929#endif
4930
4931/*
4932 * User-space access to the device tree.
4933 *
4934 * We implement a small set of nodes:
4935 *
4936 * hw.bus			Single integer read method to obtain the
4937 *				current generation count.
4938 * hw.bus.devices		Reads the entire device tree in flat space.
4939 * hw.bus.rman			Resource manager interface
4940 *
4941 * We might like to add the ability to scan devclasses and/or drivers to
4942 * determine what else is currently loaded/available.
4943 */
4944
4945static int
4946sysctl_bus(SYSCTL_HANDLER_ARGS)
4947{
4948	struct u_businfo	ubus;
4949
4950	ubus.ub_version = BUS_USER_VERSION;
4951	ubus.ub_generation = bus_data_generation;
4952
4953	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4954}
4955SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4956    "bus-related data");
4957
4958static int
4959sysctl_devices(SYSCTL_HANDLER_ARGS)
4960{
4961	int			*name = (int *)arg1;
4962	u_int			namelen = arg2;
4963	int			index;
4964	struct device		*dev;
4965	struct u_device		udev;	/* XXX this is a bit big */
4966	int			error;
4967
4968	if (namelen != 2)
4969		return (EINVAL);
4970
4971	if (bus_data_generation_check(name[0]))
4972		return (EINVAL);
4973
4974	index = name[1];
4975
4976	/*
4977	 * Scan the list of devices, looking for the requested index.
4978	 */
4979	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4980		if (index-- == 0)
4981			break;
4982	}
4983	if (dev == NULL)
4984		return (ENOENT);
4985
4986	/*
4987	 * Populate the return array.
4988	 */
4989	bzero(&udev, sizeof(udev));
4990	udev.dv_handle = (uintptr_t)dev;
4991	udev.dv_parent = (uintptr_t)dev->parent;
4992	if (dev->nameunit != NULL)
4993		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4994	if (dev->desc != NULL)
4995		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4996	if (dev->driver != NULL && dev->driver->name != NULL)
4997		strlcpy(udev.dv_drivername, dev->driver->name,
4998		    sizeof(udev.dv_drivername));
4999	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
5000	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
5001	udev.dv_devflags = dev->devflags;
5002	udev.dv_flags = dev->flags;
5003	udev.dv_state = dev->state;
5004	error = SYSCTL_OUT(req, &udev, sizeof(udev));
5005	return (error);
5006}
5007
5008SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
5009    "system device tree");
5010
5011int
5012bus_data_generation_check(int generation)
5013{
5014	if (generation != bus_data_generation)
5015		return (1);
5016
5017	/* XXX generate optimised lists here? */
5018	return (0);
5019}
5020
5021void
5022bus_data_generation_update(void)
5023{
5024	bus_data_generation++;
5025}
5026
5027int
5028bus_free_resource(device_t dev, int type, struct resource *r)
5029{
5030	if (r == NULL)
5031		return (0);
5032	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5033}
5034