subr_bus.c revision 264114
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 264114 2014-04-04 12:31:13Z davidxu $");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/uio.h>
55#include <sys/bus.h>
56#include <sys/interrupt.h>
57
58#include <net/vnet.h>
59
60#include <machine/cpu.h>
61#include <machine/stdarg.h>
62
63#include <vm/uma.h>
64
65SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
66SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
67
68/*
69 * Used to attach drivers to devclasses.
70 */
71typedef struct driverlink *driverlink_t;
72struct driverlink {
73	kobj_class_t	driver;
74	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
75	int		pass;
76	TAILQ_ENTRY(driverlink) passlink;
77};
78
79/*
80 * Forward declarations
81 */
82typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
83typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
84typedef TAILQ_HEAD(device_list, device) device_list_t;
85
86struct devclass {
87	TAILQ_ENTRY(devclass) link;
88	devclass_t	parent;		/* parent in devclass hierarchy */
89	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
90	char		*name;
91	device_t	*devices;	/* array of devices indexed by unit */
92	int		maxunit;	/* size of devices array */
93	int		flags;
94#define DC_HAS_CHILDREN		1
95
96	struct sysctl_ctx_list sysctl_ctx;
97	struct sysctl_oid *sysctl_tree;
98};
99
100/**
101 * @brief Implementation of device.
102 */
103struct device {
104	/*
105	 * A device is a kernel object. The first field must be the
106	 * current ops table for the object.
107	 */
108	KOBJ_FIELDS;
109
110	/*
111	 * Device hierarchy.
112	 */
113	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
114	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
115	device_t	parent;		/**< parent of this device  */
116	device_list_t	children;	/**< list of child devices */
117
118	/*
119	 * Details of this device.
120	 */
121	driver_t	*driver;	/**< current driver */
122	devclass_t	devclass;	/**< current device class */
123	int		unit;		/**< current unit number */
124	char*		nameunit;	/**< name+unit e.g. foodev0 */
125	char*		desc;		/**< driver specific description */
126	int		busy;		/**< count of calls to device_busy() */
127	device_state_t	state;		/**< current device state  */
128	uint32_t	devflags;	/**< api level flags for device_get_flags() */
129	u_int		flags;		/**< internal device flags  */
130#define	DF_ENABLED	0x01		/* device should be probed/attached */
131#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
132#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
133#define	DF_DESCMALLOCED	0x08		/* description was malloced */
134#define	DF_QUIET	0x10		/* don't print verbose attach message */
135#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
136#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
137#define	DF_REBID	0x80		/* Can rebid after attach */
138	u_int	order;			/**< order from device_add_child_ordered() */
139	void	*ivars;			/**< instance variables  */
140	void	*softc;			/**< current driver's variables  */
141
142	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
143	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
144};
145
146static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
147static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
148
149#ifdef BUS_DEBUG
150
151static int bus_debug = 1;
152TUNABLE_INT("bus.debug", &bus_debug);
153SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
154    "Debug bus code");
155
156#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
157#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
158#define DRIVERNAME(d)	((d)? d->name : "no driver")
159#define DEVCLANAME(d)	((d)? d->name : "no devclass")
160
161/**
162 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
163 * prevent syslog from deleting initial spaces
164 */
165#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
166
167static void print_device_short(device_t dev, int indent);
168static void print_device(device_t dev, int indent);
169void print_device_tree_short(device_t dev, int indent);
170void print_device_tree(device_t dev, int indent);
171static void print_driver_short(driver_t *driver, int indent);
172static void print_driver(driver_t *driver, int indent);
173static void print_driver_list(driver_list_t drivers, int indent);
174static void print_devclass_short(devclass_t dc, int indent);
175static void print_devclass(devclass_t dc, int indent);
176void print_devclass_list_short(void);
177void print_devclass_list(void);
178
179#else
180/* Make the compiler ignore the function calls */
181#define PDEBUG(a)			/* nop */
182#define DEVICENAME(d)			/* nop */
183#define DRIVERNAME(d)			/* nop */
184#define DEVCLANAME(d)			/* nop */
185
186#define print_device_short(d,i)		/* nop */
187#define print_device(d,i)		/* nop */
188#define print_device_tree_short(d,i)	/* nop */
189#define print_device_tree(d,i)		/* nop */
190#define print_driver_short(d,i)		/* nop */
191#define print_driver(d,i)		/* nop */
192#define print_driver_list(d,i)		/* nop */
193#define print_devclass_short(d,i)	/* nop */
194#define print_devclass(d,i)		/* nop */
195#define print_devclass_list_short()	/* nop */
196#define print_devclass_list()		/* nop */
197#endif
198
199/*
200 * dev sysctl tree
201 */
202
203enum {
204	DEVCLASS_SYSCTL_PARENT,
205};
206
207static int
208devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
209{
210	devclass_t dc = (devclass_t)arg1;
211	const char *value;
212
213	switch (arg2) {
214	case DEVCLASS_SYSCTL_PARENT:
215		value = dc->parent ? dc->parent->name : "";
216		break;
217	default:
218		return (EINVAL);
219	}
220	return (SYSCTL_OUT(req, value, strlen(value)));
221}
222
223static void
224devclass_sysctl_init(devclass_t dc)
225{
226
227	if (dc->sysctl_tree != NULL)
228		return;
229	sysctl_ctx_init(&dc->sysctl_ctx);
230	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
231	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
232	    CTLFLAG_RD, NULL, "");
233	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
234	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
235	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
236	    "parent class");
237}
238
239enum {
240	DEVICE_SYSCTL_DESC,
241	DEVICE_SYSCTL_DRIVER,
242	DEVICE_SYSCTL_LOCATION,
243	DEVICE_SYSCTL_PNPINFO,
244	DEVICE_SYSCTL_PARENT,
245};
246
247static int
248device_sysctl_handler(SYSCTL_HANDLER_ARGS)
249{
250	device_t dev = (device_t)arg1;
251	const char *value;
252	char *buf;
253	int error;
254
255	buf = NULL;
256	switch (arg2) {
257	case DEVICE_SYSCTL_DESC:
258		value = dev->desc ? dev->desc : "";
259		break;
260	case DEVICE_SYSCTL_DRIVER:
261		value = dev->driver ? dev->driver->name : "";
262		break;
263	case DEVICE_SYSCTL_LOCATION:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_location_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PNPINFO:
268		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269		bus_child_pnpinfo_str(dev, buf, 1024);
270		break;
271	case DEVICE_SYSCTL_PARENT:
272		value = dev->parent ? dev->parent->nameunit : "";
273		break;
274	default:
275		return (EINVAL);
276	}
277	error = SYSCTL_OUT(req, value, strlen(value));
278	if (buf != NULL)
279		free(buf, M_BUS);
280	return (error);
281}
282
283static void
284device_sysctl_init(device_t dev)
285{
286	devclass_t dc = dev->devclass;
287
288	if (dev->sysctl_tree != NULL)
289		return;
290	devclass_sysctl_init(dc);
291	sysctl_ctx_init(&dev->sysctl_ctx);
292	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
293	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
294	    dev->nameunit + strlen(dc->name),
295	    CTLFLAG_RD, NULL, "");
296	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
298	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
299	    "device description");
300	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
302	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
303	    "device driver name");
304	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
306	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
307	    "device location relative to parent");
308	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
310	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
311	    "device identification");
312	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
314	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
315	    "parent device");
316}
317
318static void
319device_sysctl_update(device_t dev)
320{
321	devclass_t dc = dev->devclass;
322
323	if (dev->sysctl_tree == NULL)
324		return;
325	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
326}
327
328static void
329device_sysctl_fini(device_t dev)
330{
331	if (dev->sysctl_tree == NULL)
332		return;
333	sysctl_ctx_free(&dev->sysctl_ctx);
334	dev->sysctl_tree = NULL;
335}
336
337/*
338 * /dev/devctl implementation
339 */
340
341/*
342 * This design allows only one reader for /dev/devctl.  This is not desirable
343 * in the long run, but will get a lot of hair out of this implementation.
344 * Maybe we should make this device a clonable device.
345 *
346 * Also note: we specifically do not attach a device to the device_t tree
347 * to avoid potential chicken and egg problems.  One could argue that all
348 * of this belongs to the root node.  One could also further argue that the
349 * sysctl interface that we have not might more properly be an ioctl
350 * interface, but at this stage of the game, I'm not inclined to rock that
351 * boat.
352 *
353 * I'm also not sure that the SIGIO support is done correctly or not, as
354 * I copied it from a driver that had SIGIO support that likely hasn't been
355 * tested since 3.4 or 2.2.8!
356 */
357
358#define DEVCTL_DEFAULT_QUEUE_LEN 1000
359static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
360static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
361TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
362SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
363    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
364
365static d_open_t		devopen;
366static d_close_t	devclose;
367static d_read_t		devread;
368static d_ioctl_t	devioctl;
369static d_poll_t		devpoll;
370
371static struct cdevsw dev_cdevsw = {
372	.d_version =	D_VERSION,
373	.d_open =	devopen,
374	.d_close =	devclose,
375	.d_read =	devread,
376	.d_ioctl =	devioctl,
377	.d_poll =	devpoll,
378	.d_name =	"devctl",
379};
380
381struct dev_event_info
382{
383	char *dei_data;
384	TAILQ_ENTRY(dev_event_info) dei_link;
385};
386
387TAILQ_HEAD(devq, dev_event_info);
388
389static struct dev_softc
390{
391	int	inuse;
392	int	nonblock;
393	int	queued;
394	int	async;
395	struct mtx mtx;
396	struct cv cv;
397	struct selinfo sel;
398	struct devq devq;
399	struct sigio *sigio;
400} devsoftc;
401
402static struct cdev *devctl_dev;
403
404static void
405devinit(void)
406{
407	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
408	    UID_ROOT, GID_WHEEL, 0600, "devctl");
409	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
410	cv_init(&devsoftc.cv, "dev cv");
411	TAILQ_INIT(&devsoftc.devq);
412}
413
414static int
415devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
416{
417
418	mtx_lock(&devsoftc.mtx);
419	if (devsoftc.inuse) {
420		mtx_unlock(&devsoftc.mtx);
421		return (EBUSY);
422	}
423	/* move to init */
424	devsoftc.inuse = 1;
425	devsoftc.nonblock = 0;
426	devsoftc.async = 0;
427	mtx_unlock(&devsoftc.mtx);
428	return (0);
429}
430
431static int
432devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
433{
434
435	mtx_lock(&devsoftc.mtx);
436	devsoftc.inuse = 0;
437	cv_broadcast(&devsoftc.cv);
438	funsetown(&devsoftc.sigio);
439	mtx_unlock(&devsoftc.mtx);
440	return (0);
441}
442
443/*
444 * The read channel for this device is used to report changes to
445 * userland in realtime.  We are required to free the data as well as
446 * the n1 object because we allocate them separately.  Also note that
447 * we return one record at a time.  If you try to read this device a
448 * character at a time, you will lose the rest of the data.  Listening
449 * programs are expected to cope.
450 */
451static int
452devread(struct cdev *dev, struct uio *uio, int ioflag)
453{
454	struct dev_event_info *n1;
455	int rv;
456
457	mtx_lock(&devsoftc.mtx);
458	while (TAILQ_EMPTY(&devsoftc.devq)) {
459		if (devsoftc.nonblock) {
460			mtx_unlock(&devsoftc.mtx);
461			return (EAGAIN);
462		}
463		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
464		if (rv) {
465			/*
466			 * Need to translate ERESTART to EINTR here? -- jake
467			 */
468			mtx_unlock(&devsoftc.mtx);
469			return (rv);
470		}
471	}
472	n1 = TAILQ_FIRST(&devsoftc.devq);
473	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
474	devsoftc.queued--;
475	mtx_unlock(&devsoftc.mtx);
476	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
477	free(n1->dei_data, M_BUS);
478	free(n1, M_BUS);
479	return (rv);
480}
481
482static	int
483devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
484{
485	switch (cmd) {
486
487	case FIONBIO:
488		if (*(int*)data)
489			devsoftc.nonblock = 1;
490		else
491			devsoftc.nonblock = 0;
492		return (0);
493	case FIOASYNC:
494		if (*(int*)data)
495			devsoftc.async = 1;
496		else
497			devsoftc.async = 0;
498		return (0);
499	case FIOSETOWN:
500		return fsetown(*(int *)data, &devsoftc.sigio);
501	case FIOGETOWN:
502		*(int *)data = fgetown(&devsoftc.sigio);
503		return (0);
504
505		/* (un)Support for other fcntl() calls. */
506	case FIOCLEX:
507	case FIONCLEX:
508	case FIONREAD:
509	default:
510		break;
511	}
512	return (ENOTTY);
513}
514
515static	int
516devpoll(struct cdev *dev, int events, struct thread *td)
517{
518	int	revents = 0;
519
520	mtx_lock(&devsoftc.mtx);
521	if (events & (POLLIN | POLLRDNORM)) {
522		if (!TAILQ_EMPTY(&devsoftc.devq))
523			revents = events & (POLLIN | POLLRDNORM);
524		else
525			selrecord(td, &devsoftc.sel);
526	}
527	mtx_unlock(&devsoftc.mtx);
528
529	return (revents);
530}
531
532/**
533 * @brief Return whether the userland process is running
534 */
535boolean_t
536devctl_process_running(void)
537{
538	return (devsoftc.inuse == 1);
539}
540
541/**
542 * @brief Queue data to be read from the devctl device
543 *
544 * Generic interface to queue data to the devctl device.  It is
545 * assumed that @p data is properly formatted.  It is further assumed
546 * that @p data is allocated using the M_BUS malloc type.
547 */
548void
549devctl_queue_data_f(char *data, int flags)
550{
551	struct dev_event_info *n1 = NULL, *n2 = NULL;
552
553	if (strlen(data) == 0)
554		goto out;
555	if (devctl_queue_length == 0)
556		goto out;
557	n1 = malloc(sizeof(*n1), M_BUS, flags);
558	if (n1 == NULL)
559		goto out;
560	n1->dei_data = data;
561	mtx_lock(&devsoftc.mtx);
562	if (devctl_queue_length == 0) {
563		mtx_unlock(&devsoftc.mtx);
564		free(n1->dei_data, M_BUS);
565		free(n1, M_BUS);
566		return;
567	}
568	/* Leave at least one spot in the queue... */
569	while (devsoftc.queued > devctl_queue_length - 1) {
570		n2 = TAILQ_FIRST(&devsoftc.devq);
571		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
572		free(n2->dei_data, M_BUS);
573		free(n2, M_BUS);
574		devsoftc.queued--;
575	}
576	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
577	devsoftc.queued++;
578	cv_broadcast(&devsoftc.cv);
579	mtx_unlock(&devsoftc.mtx);
580	selwakeup(&devsoftc.sel);
581	if (devsoftc.async && devsoftc.sigio != NULL)
582		pgsigio(&devsoftc.sigio, SIGIO, 0);
583	return;
584out:
585	/*
586	 * We have to free data on all error paths since the caller
587	 * assumes it will be free'd when this item is dequeued.
588	 */
589	free(data, M_BUS);
590	return;
591}
592
593void
594devctl_queue_data(char *data)
595{
596
597	devctl_queue_data_f(data, M_NOWAIT);
598}
599
600/**
601 * @brief Send a 'notification' to userland, using standard ways
602 */
603void
604devctl_notify_f(const char *system, const char *subsystem, const char *type,
605    const char *data, int flags)
606{
607	int len = 0;
608	char *msg;
609
610	if (system == NULL)
611		return;		/* BOGUS!  Must specify system. */
612	if (subsystem == NULL)
613		return;		/* BOGUS!  Must specify subsystem. */
614	if (type == NULL)
615		return;		/* BOGUS!  Must specify type. */
616	len += strlen(" system=") + strlen(system);
617	len += strlen(" subsystem=") + strlen(subsystem);
618	len += strlen(" type=") + strlen(type);
619	/* add in the data message plus newline. */
620	if (data != NULL)
621		len += strlen(data);
622	len += 3;	/* '!', '\n', and NUL */
623	msg = malloc(len, M_BUS, flags);
624	if (msg == NULL)
625		return;		/* Drop it on the floor */
626	if (data != NULL)
627		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
628		    system, subsystem, type, data);
629	else
630		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
631		    system, subsystem, type);
632	devctl_queue_data_f(msg, flags);
633}
634
635void
636devctl_notify(const char *system, const char *subsystem, const char *type,
637    const char *data)
638{
639
640	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
641}
642
643/*
644 * Common routine that tries to make sending messages as easy as possible.
645 * We allocate memory for the data, copy strings into that, but do not
646 * free it unless there's an error.  The dequeue part of the driver should
647 * free the data.  We don't send data when queue length is 0.  We do send
648 * data, even when we have no listeners, because we wish to avoid races
649 * relating to startup and restart of listening applications.
650 *
651 * devaddq is designed to string together the type of event, with the
652 * object of that event, plus the plug and play info and location info
653 * for that event.  This is likely most useful for devices, but less
654 * useful for other consumers of this interface.  Those should use
655 * the devctl_queue_data() interface instead.
656 */
657static void
658devaddq(const char *type, const char *what, device_t dev)
659{
660	char *data = NULL;
661	char *loc = NULL;
662	char *pnp = NULL;
663	const char *parstr;
664
665	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
666		return;
667	data = malloc(1024, M_BUS, M_NOWAIT);
668	if (data == NULL)
669		goto bad;
670
671	/* get the bus specific location of this device */
672	loc = malloc(1024, M_BUS, M_NOWAIT);
673	if (loc == NULL)
674		goto bad;
675	*loc = '\0';
676	bus_child_location_str(dev, loc, 1024);
677
678	/* Get the bus specific pnp info of this device */
679	pnp = malloc(1024, M_BUS, M_NOWAIT);
680	if (pnp == NULL)
681		goto bad;
682	*pnp = '\0';
683	bus_child_pnpinfo_str(dev, pnp, 1024);
684
685	/* Get the parent of this device, or / if high enough in the tree. */
686	if (device_get_parent(dev) == NULL)
687		parstr = ".";	/* Or '/' ? */
688	else
689		parstr = device_get_nameunit(device_get_parent(dev));
690	/* String it all together. */
691	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
692	  parstr);
693	free(loc, M_BUS);
694	free(pnp, M_BUS);
695	devctl_queue_data(data);
696	return;
697bad:
698	free(pnp, M_BUS);
699	free(loc, M_BUS);
700	free(data, M_BUS);
701	return;
702}
703
704/*
705 * A device was added to the tree.  We are called just after it successfully
706 * attaches (that is, probe and attach success for this device).  No call
707 * is made if a device is merely parented into the tree.  See devnomatch
708 * if probe fails.  If attach fails, no notification is sent (but maybe
709 * we should have a different message for this).
710 */
711static void
712devadded(device_t dev)
713{
714	devaddq("+", device_get_nameunit(dev), dev);
715}
716
717/*
718 * A device was removed from the tree.  We are called just before this
719 * happens.
720 */
721static void
722devremoved(device_t dev)
723{
724	devaddq("-", device_get_nameunit(dev), dev);
725}
726
727/*
728 * Called when there's no match for this device.  This is only called
729 * the first time that no match happens, so we don't keep getting this
730 * message.  Should that prove to be undesirable, we can change it.
731 * This is called when all drivers that can attach to a given bus
732 * decline to accept this device.  Other errors may not be detected.
733 */
734static void
735devnomatch(device_t dev)
736{
737	devaddq("?", "", dev);
738}
739
740static int
741sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
742{
743	struct dev_event_info *n1;
744	int q, error;
745
746	q = devctl_queue_length;
747	error = sysctl_handle_int(oidp, &q, 0, req);
748	if (error || !req->newptr)
749		return (error);
750	if (q < 0)
751		return (EINVAL);
752	mtx_lock(&devsoftc.mtx);
753	devctl_queue_length = q;
754	while (devsoftc.queued > devctl_queue_length) {
755		n1 = TAILQ_FIRST(&devsoftc.devq);
756		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
757		free(n1->dei_data, M_BUS);
758		free(n1, M_BUS);
759		devsoftc.queued--;
760	}
761	mtx_unlock(&devsoftc.mtx);
762	return (0);
763}
764
765/* End of /dev/devctl code */
766
767static TAILQ_HEAD(,device)	bus_data_devices;
768static int bus_data_generation = 1;
769
770static kobj_method_t null_methods[] = {
771	KOBJMETHOD_END
772};
773
774DEFINE_CLASS(null, null_methods, 0);
775
776/*
777 * Bus pass implementation
778 */
779
780static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
781int bus_current_pass = BUS_PASS_ROOT;
782
783/**
784 * @internal
785 * @brief Register the pass level of a new driver attachment
786 *
787 * Register a new driver attachment's pass level.  If no driver
788 * attachment with the same pass level has been added, then @p new
789 * will be added to the global passes list.
790 *
791 * @param new		the new driver attachment
792 */
793static void
794driver_register_pass(struct driverlink *new)
795{
796	struct driverlink *dl;
797
798	/* We only consider pass numbers during boot. */
799	if (bus_current_pass == BUS_PASS_DEFAULT)
800		return;
801
802	/*
803	 * Walk the passes list.  If we already know about this pass
804	 * then there is nothing to do.  If we don't, then insert this
805	 * driver link into the list.
806	 */
807	TAILQ_FOREACH(dl, &passes, passlink) {
808		if (dl->pass < new->pass)
809			continue;
810		if (dl->pass == new->pass)
811			return;
812		TAILQ_INSERT_BEFORE(dl, new, passlink);
813		return;
814	}
815	TAILQ_INSERT_TAIL(&passes, new, passlink);
816}
817
818/**
819 * @brief Raise the current bus pass
820 *
821 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
822 * method on the root bus to kick off a new device tree scan for each
823 * new pass level that has at least one driver.
824 */
825void
826bus_set_pass(int pass)
827{
828	struct driverlink *dl;
829
830	if (bus_current_pass > pass)
831		panic("Attempt to lower bus pass level");
832
833	TAILQ_FOREACH(dl, &passes, passlink) {
834		/* Skip pass values below the current pass level. */
835		if (dl->pass <= bus_current_pass)
836			continue;
837
838		/*
839		 * Bail once we hit a driver with a pass level that is
840		 * too high.
841		 */
842		if (dl->pass > pass)
843			break;
844
845		/*
846		 * Raise the pass level to the next level and rescan
847		 * the tree.
848		 */
849		bus_current_pass = dl->pass;
850		BUS_NEW_PASS(root_bus);
851	}
852
853	/*
854	 * If there isn't a driver registered for the requested pass,
855	 * then bus_current_pass might still be less than 'pass'.  Set
856	 * it to 'pass' in that case.
857	 */
858	if (bus_current_pass < pass)
859		bus_current_pass = pass;
860	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
861}
862
863/*
864 * Devclass implementation
865 */
866
867static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
868
869/**
870 * @internal
871 * @brief Find or create a device class
872 *
873 * If a device class with the name @p classname exists, return it,
874 * otherwise if @p create is non-zero create and return a new device
875 * class.
876 *
877 * If @p parentname is non-NULL, the parent of the devclass is set to
878 * the devclass of that name.
879 *
880 * @param classname	the devclass name to find or create
881 * @param parentname	the parent devclass name or @c NULL
882 * @param create	non-zero to create a devclass
883 */
884static devclass_t
885devclass_find_internal(const char *classname, const char *parentname,
886		       int create)
887{
888	devclass_t dc;
889
890	PDEBUG(("looking for %s", classname));
891	if (!classname)
892		return (NULL);
893
894	TAILQ_FOREACH(dc, &devclasses, link) {
895		if (!strcmp(dc->name, classname))
896			break;
897	}
898
899	if (create && !dc) {
900		PDEBUG(("creating %s", classname));
901		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
902		    M_BUS, M_NOWAIT | M_ZERO);
903		if (!dc)
904			return (NULL);
905		dc->parent = NULL;
906		dc->name = (char*) (dc + 1);
907		strcpy(dc->name, classname);
908		TAILQ_INIT(&dc->drivers);
909		TAILQ_INSERT_TAIL(&devclasses, dc, link);
910
911		bus_data_generation_update();
912	}
913
914	/*
915	 * If a parent class is specified, then set that as our parent so
916	 * that this devclass will support drivers for the parent class as
917	 * well.  If the parent class has the same name don't do this though
918	 * as it creates a cycle that can trigger an infinite loop in
919	 * device_probe_child() if a device exists for which there is no
920	 * suitable driver.
921	 */
922	if (parentname && dc && !dc->parent &&
923	    strcmp(classname, parentname) != 0) {
924		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
925		dc->parent->flags |= DC_HAS_CHILDREN;
926	}
927
928	return (dc);
929}
930
931/**
932 * @brief Create a device class
933 *
934 * If a device class with the name @p classname exists, return it,
935 * otherwise create and return a new device class.
936 *
937 * @param classname	the devclass name to find or create
938 */
939devclass_t
940devclass_create(const char *classname)
941{
942	return (devclass_find_internal(classname, NULL, TRUE));
943}
944
945/**
946 * @brief Find a device class
947 *
948 * If a device class with the name @p classname exists, return it,
949 * otherwise return @c NULL.
950 *
951 * @param classname	the devclass name to find
952 */
953devclass_t
954devclass_find(const char *classname)
955{
956	return (devclass_find_internal(classname, NULL, FALSE));
957}
958
959/**
960 * @brief Register that a device driver has been added to a devclass
961 *
962 * Register that a device driver has been added to a devclass.  This
963 * is called by devclass_add_driver to accomplish the recursive
964 * notification of all the children classes of dc, as well as dc.
965 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
966 * the devclass.
967 *
968 * We do a full search here of the devclass list at each iteration
969 * level to save storing children-lists in the devclass structure.  If
970 * we ever move beyond a few dozen devices doing this, we may need to
971 * reevaluate...
972 *
973 * @param dc		the devclass to edit
974 * @param driver	the driver that was just added
975 */
976static void
977devclass_driver_added(devclass_t dc, driver_t *driver)
978{
979	devclass_t parent;
980	int i;
981
982	/*
983	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
984	 */
985	for (i = 0; i < dc->maxunit; i++)
986		if (dc->devices[i] && device_is_attached(dc->devices[i]))
987			BUS_DRIVER_ADDED(dc->devices[i], driver);
988
989	/*
990	 * Walk through the children classes.  Since we only keep a
991	 * single parent pointer around, we walk the entire list of
992	 * devclasses looking for children.  We set the
993	 * DC_HAS_CHILDREN flag when a child devclass is created on
994	 * the parent, so we only walk the list for those devclasses
995	 * that have children.
996	 */
997	if (!(dc->flags & DC_HAS_CHILDREN))
998		return;
999	parent = dc;
1000	TAILQ_FOREACH(dc, &devclasses, link) {
1001		if (dc->parent == parent)
1002			devclass_driver_added(dc, driver);
1003	}
1004}
1005
1006/**
1007 * @brief Add a device driver to a device class
1008 *
1009 * Add a device driver to a devclass. This is normally called
1010 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1011 * all devices in the devclass will be called to allow them to attempt
1012 * to re-probe any unmatched children.
1013 *
1014 * @param dc		the devclass to edit
1015 * @param driver	the driver to register
1016 */
1017int
1018devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1019{
1020	driverlink_t dl;
1021	const char *parentname;
1022
1023	PDEBUG(("%s", DRIVERNAME(driver)));
1024
1025	/* Don't allow invalid pass values. */
1026	if (pass <= BUS_PASS_ROOT)
1027		return (EINVAL);
1028
1029	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1030	if (!dl)
1031		return (ENOMEM);
1032
1033	/*
1034	 * Compile the driver's methods. Also increase the reference count
1035	 * so that the class doesn't get freed when the last instance
1036	 * goes. This means we can safely use static methods and avoids a
1037	 * double-free in devclass_delete_driver.
1038	 */
1039	kobj_class_compile((kobj_class_t) driver);
1040
1041	/*
1042	 * If the driver has any base classes, make the
1043	 * devclass inherit from the devclass of the driver's
1044	 * first base class. This will allow the system to
1045	 * search for drivers in both devclasses for children
1046	 * of a device using this driver.
1047	 */
1048	if (driver->baseclasses)
1049		parentname = driver->baseclasses[0]->name;
1050	else
1051		parentname = NULL;
1052	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1053
1054	dl->driver = driver;
1055	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1056	driver->refs++;		/* XXX: kobj_mtx */
1057	dl->pass = pass;
1058	driver_register_pass(dl);
1059
1060	devclass_driver_added(dc, driver);
1061	bus_data_generation_update();
1062	return (0);
1063}
1064
1065/**
1066 * @brief Register that a device driver has been deleted from a devclass
1067 *
1068 * Register that a device driver has been removed from a devclass.
1069 * This is called by devclass_delete_driver to accomplish the
1070 * recursive notification of all the children classes of busclass, as
1071 * well as busclass.  Each layer will attempt to detach the driver
1072 * from any devices that are children of the bus's devclass.  The function
1073 * will return an error if a device fails to detach.
1074 *
1075 * We do a full search here of the devclass list at each iteration
1076 * level to save storing children-lists in the devclass structure.  If
1077 * we ever move beyond a few dozen devices doing this, we may need to
1078 * reevaluate...
1079 *
1080 * @param busclass	the devclass of the parent bus
1081 * @param dc		the devclass of the driver being deleted
1082 * @param driver	the driver being deleted
1083 */
1084static int
1085devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1086{
1087	devclass_t parent;
1088	device_t dev;
1089	int error, i;
1090
1091	/*
1092	 * Disassociate from any devices.  We iterate through all the
1093	 * devices in the devclass of the driver and detach any which are
1094	 * using the driver and which have a parent in the devclass which
1095	 * we are deleting from.
1096	 *
1097	 * Note that since a driver can be in multiple devclasses, we
1098	 * should not detach devices which are not children of devices in
1099	 * the affected devclass.
1100	 */
1101	for (i = 0; i < dc->maxunit; i++) {
1102		if (dc->devices[i]) {
1103			dev = dc->devices[i];
1104			if (dev->driver == driver && dev->parent &&
1105			    dev->parent->devclass == busclass) {
1106				if ((error = device_detach(dev)) != 0)
1107					return (error);
1108				BUS_PROBE_NOMATCH(dev->parent, dev);
1109				devnomatch(dev);
1110				dev->flags |= DF_DONENOMATCH;
1111			}
1112		}
1113	}
1114
1115	/*
1116	 * Walk through the children classes.  Since we only keep a
1117	 * single parent pointer around, we walk the entire list of
1118	 * devclasses looking for children.  We set the
1119	 * DC_HAS_CHILDREN flag when a child devclass is created on
1120	 * the parent, so we only walk the list for those devclasses
1121	 * that have children.
1122	 */
1123	if (!(busclass->flags & DC_HAS_CHILDREN))
1124		return (0);
1125	parent = busclass;
1126	TAILQ_FOREACH(busclass, &devclasses, link) {
1127		if (busclass->parent == parent) {
1128			error = devclass_driver_deleted(busclass, dc, driver);
1129			if (error)
1130				return (error);
1131		}
1132	}
1133	return (0);
1134}
1135
1136/**
1137 * @brief Delete a device driver from a device class
1138 *
1139 * Delete a device driver from a devclass. This is normally called
1140 * automatically by DRIVER_MODULE().
1141 *
1142 * If the driver is currently attached to any devices,
1143 * devclass_delete_driver() will first attempt to detach from each
1144 * device. If one of the detach calls fails, the driver will not be
1145 * deleted.
1146 *
1147 * @param dc		the devclass to edit
1148 * @param driver	the driver to unregister
1149 */
1150int
1151devclass_delete_driver(devclass_t busclass, driver_t *driver)
1152{
1153	devclass_t dc = devclass_find(driver->name);
1154	driverlink_t dl;
1155	int error;
1156
1157	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1158
1159	if (!dc)
1160		return (0);
1161
1162	/*
1163	 * Find the link structure in the bus' list of drivers.
1164	 */
1165	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1166		if (dl->driver == driver)
1167			break;
1168	}
1169
1170	if (!dl) {
1171		PDEBUG(("%s not found in %s list", driver->name,
1172		    busclass->name));
1173		return (ENOENT);
1174	}
1175
1176	error = devclass_driver_deleted(busclass, dc, driver);
1177	if (error != 0)
1178		return (error);
1179
1180	TAILQ_REMOVE(&busclass->drivers, dl, link);
1181	free(dl, M_BUS);
1182
1183	/* XXX: kobj_mtx */
1184	driver->refs--;
1185	if (driver->refs == 0)
1186		kobj_class_free((kobj_class_t) driver);
1187
1188	bus_data_generation_update();
1189	return (0);
1190}
1191
1192/**
1193 * @brief Quiesces a set of device drivers from a device class
1194 *
1195 * Quiesce a device driver from a devclass. This is normally called
1196 * automatically by DRIVER_MODULE().
1197 *
1198 * If the driver is currently attached to any devices,
1199 * devclass_quiesece_driver() will first attempt to quiesce each
1200 * device.
1201 *
1202 * @param dc		the devclass to edit
1203 * @param driver	the driver to unregister
1204 */
1205static int
1206devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1207{
1208	devclass_t dc = devclass_find(driver->name);
1209	driverlink_t dl;
1210	device_t dev;
1211	int i;
1212	int error;
1213
1214	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1215
1216	if (!dc)
1217		return (0);
1218
1219	/*
1220	 * Find the link structure in the bus' list of drivers.
1221	 */
1222	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1223		if (dl->driver == driver)
1224			break;
1225	}
1226
1227	if (!dl) {
1228		PDEBUG(("%s not found in %s list", driver->name,
1229		    busclass->name));
1230		return (ENOENT);
1231	}
1232
1233	/*
1234	 * Quiesce all devices.  We iterate through all the devices in
1235	 * the devclass of the driver and quiesce any which are using
1236	 * the driver and which have a parent in the devclass which we
1237	 * are quiescing.
1238	 *
1239	 * Note that since a driver can be in multiple devclasses, we
1240	 * should not quiesce devices which are not children of
1241	 * devices in the affected devclass.
1242	 */
1243	for (i = 0; i < dc->maxunit; i++) {
1244		if (dc->devices[i]) {
1245			dev = dc->devices[i];
1246			if (dev->driver == driver && dev->parent &&
1247			    dev->parent->devclass == busclass) {
1248				if ((error = device_quiesce(dev)) != 0)
1249					return (error);
1250			}
1251		}
1252	}
1253
1254	return (0);
1255}
1256
1257/**
1258 * @internal
1259 */
1260static driverlink_t
1261devclass_find_driver_internal(devclass_t dc, const char *classname)
1262{
1263	driverlink_t dl;
1264
1265	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1266
1267	TAILQ_FOREACH(dl, &dc->drivers, link) {
1268		if (!strcmp(dl->driver->name, classname))
1269			return (dl);
1270	}
1271
1272	PDEBUG(("not found"));
1273	return (NULL);
1274}
1275
1276/**
1277 * @brief Return the name of the devclass
1278 */
1279const char *
1280devclass_get_name(devclass_t dc)
1281{
1282	return (dc->name);
1283}
1284
1285/**
1286 * @brief Find a device given a unit number
1287 *
1288 * @param dc		the devclass to search
1289 * @param unit		the unit number to search for
1290 *
1291 * @returns		the device with the given unit number or @c
1292 *			NULL if there is no such device
1293 */
1294device_t
1295devclass_get_device(devclass_t dc, int unit)
1296{
1297	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1298		return (NULL);
1299	return (dc->devices[unit]);
1300}
1301
1302/**
1303 * @brief Find the softc field of a device given a unit number
1304 *
1305 * @param dc		the devclass to search
1306 * @param unit		the unit number to search for
1307 *
1308 * @returns		the softc field of the device with the given
1309 *			unit number or @c NULL if there is no such
1310 *			device
1311 */
1312void *
1313devclass_get_softc(devclass_t dc, int unit)
1314{
1315	device_t dev;
1316
1317	dev = devclass_get_device(dc, unit);
1318	if (!dev)
1319		return (NULL);
1320
1321	return (device_get_softc(dev));
1322}
1323
1324/**
1325 * @brief Get a list of devices in the devclass
1326 *
1327 * An array containing a list of all the devices in the given devclass
1328 * is allocated and returned in @p *devlistp. The number of devices
1329 * in the array is returned in @p *devcountp. The caller should free
1330 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1331 *
1332 * @param dc		the devclass to examine
1333 * @param devlistp	points at location for array pointer return
1334 *			value
1335 * @param devcountp	points at location for array size return value
1336 *
1337 * @retval 0		success
1338 * @retval ENOMEM	the array allocation failed
1339 */
1340int
1341devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1342{
1343	int count, i;
1344	device_t *list;
1345
1346	count = devclass_get_count(dc);
1347	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1348	if (!list)
1349		return (ENOMEM);
1350
1351	count = 0;
1352	for (i = 0; i < dc->maxunit; i++) {
1353		if (dc->devices[i]) {
1354			list[count] = dc->devices[i];
1355			count++;
1356		}
1357	}
1358
1359	*devlistp = list;
1360	*devcountp = count;
1361
1362	return (0);
1363}
1364
1365/**
1366 * @brief Get a list of drivers in the devclass
1367 *
1368 * An array containing a list of pointers to all the drivers in the
1369 * given devclass is allocated and returned in @p *listp.  The number
1370 * of drivers in the array is returned in @p *countp. The caller should
1371 * free the array using @c free(p, M_TEMP).
1372 *
1373 * @param dc		the devclass to examine
1374 * @param listp		gives location for array pointer return value
1375 * @param countp	gives location for number of array elements
1376 *			return value
1377 *
1378 * @retval 0		success
1379 * @retval ENOMEM	the array allocation failed
1380 */
1381int
1382devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1383{
1384	driverlink_t dl;
1385	driver_t **list;
1386	int count;
1387
1388	count = 0;
1389	TAILQ_FOREACH(dl, &dc->drivers, link)
1390		count++;
1391	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1392	if (list == NULL)
1393		return (ENOMEM);
1394
1395	count = 0;
1396	TAILQ_FOREACH(dl, &dc->drivers, link) {
1397		list[count] = dl->driver;
1398		count++;
1399	}
1400	*listp = list;
1401	*countp = count;
1402
1403	return (0);
1404}
1405
1406/**
1407 * @brief Get the number of devices in a devclass
1408 *
1409 * @param dc		the devclass to examine
1410 */
1411int
1412devclass_get_count(devclass_t dc)
1413{
1414	int count, i;
1415
1416	count = 0;
1417	for (i = 0; i < dc->maxunit; i++)
1418		if (dc->devices[i])
1419			count++;
1420	return (count);
1421}
1422
1423/**
1424 * @brief Get the maximum unit number used in a devclass
1425 *
1426 * Note that this is one greater than the highest currently-allocated
1427 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1428 * that not even the devclass has been allocated yet.
1429 *
1430 * @param dc		the devclass to examine
1431 */
1432int
1433devclass_get_maxunit(devclass_t dc)
1434{
1435	if (dc == NULL)
1436		return (-1);
1437	return (dc->maxunit);
1438}
1439
1440/**
1441 * @brief Find a free unit number in a devclass
1442 *
1443 * This function searches for the first unused unit number greater
1444 * that or equal to @p unit.
1445 *
1446 * @param dc		the devclass to examine
1447 * @param unit		the first unit number to check
1448 */
1449int
1450devclass_find_free_unit(devclass_t dc, int unit)
1451{
1452	if (dc == NULL)
1453		return (unit);
1454	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1455		unit++;
1456	return (unit);
1457}
1458
1459/**
1460 * @brief Set the parent of a devclass
1461 *
1462 * The parent class is normally initialised automatically by
1463 * DRIVER_MODULE().
1464 *
1465 * @param dc		the devclass to edit
1466 * @param pdc		the new parent devclass
1467 */
1468void
1469devclass_set_parent(devclass_t dc, devclass_t pdc)
1470{
1471	dc->parent = pdc;
1472}
1473
1474/**
1475 * @brief Get the parent of a devclass
1476 *
1477 * @param dc		the devclass to examine
1478 */
1479devclass_t
1480devclass_get_parent(devclass_t dc)
1481{
1482	return (dc->parent);
1483}
1484
1485struct sysctl_ctx_list *
1486devclass_get_sysctl_ctx(devclass_t dc)
1487{
1488	return (&dc->sysctl_ctx);
1489}
1490
1491struct sysctl_oid *
1492devclass_get_sysctl_tree(devclass_t dc)
1493{
1494	return (dc->sysctl_tree);
1495}
1496
1497/**
1498 * @internal
1499 * @brief Allocate a unit number
1500 *
1501 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1502 * will do). The allocated unit number is returned in @p *unitp.
1503
1504 * @param dc		the devclass to allocate from
1505 * @param unitp		points at the location for the allocated unit
1506 *			number
1507 *
1508 * @retval 0		success
1509 * @retval EEXIST	the requested unit number is already allocated
1510 * @retval ENOMEM	memory allocation failure
1511 */
1512static int
1513devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1514{
1515	const char *s;
1516	int unit = *unitp;
1517
1518	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1519
1520	/* Ask the parent bus if it wants to wire this device. */
1521	if (unit == -1)
1522		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1523		    &unit);
1524
1525	/* If we were given a wired unit number, check for existing device */
1526	/* XXX imp XXX */
1527	if (unit != -1) {
1528		if (unit >= 0 && unit < dc->maxunit &&
1529		    dc->devices[unit] != NULL) {
1530			if (bootverbose)
1531				printf("%s: %s%d already exists; skipping it\n",
1532				    dc->name, dc->name, *unitp);
1533			return (EEXIST);
1534		}
1535	} else {
1536		/* Unwired device, find the next available slot for it */
1537		unit = 0;
1538		for (unit = 0;; unit++) {
1539			/* If there is an "at" hint for a unit then skip it. */
1540			if (resource_string_value(dc->name, unit, "at", &s) ==
1541			    0)
1542				continue;
1543
1544			/* If this device slot is already in use, skip it. */
1545			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1546				continue;
1547
1548			break;
1549		}
1550	}
1551
1552	/*
1553	 * We've selected a unit beyond the length of the table, so let's
1554	 * extend the table to make room for all units up to and including
1555	 * this one.
1556	 */
1557	if (unit >= dc->maxunit) {
1558		device_t *newlist, *oldlist;
1559		int newsize;
1560
1561		oldlist = dc->devices;
1562		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1563		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1564		if (!newlist)
1565			return (ENOMEM);
1566		if (oldlist != NULL)
1567			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1568		bzero(newlist + dc->maxunit,
1569		    sizeof(device_t) * (newsize - dc->maxunit));
1570		dc->devices = newlist;
1571		dc->maxunit = newsize;
1572		if (oldlist != NULL)
1573			free(oldlist, M_BUS);
1574	}
1575	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1576
1577	*unitp = unit;
1578	return (0);
1579}
1580
1581/**
1582 * @internal
1583 * @brief Add a device to a devclass
1584 *
1585 * A unit number is allocated for the device (using the device's
1586 * preferred unit number if any) and the device is registered in the
1587 * devclass. This allows the device to be looked up by its unit
1588 * number, e.g. by decoding a dev_t minor number.
1589 *
1590 * @param dc		the devclass to add to
1591 * @param dev		the device to add
1592 *
1593 * @retval 0		success
1594 * @retval EEXIST	the requested unit number is already allocated
1595 * @retval ENOMEM	memory allocation failure
1596 */
1597static int
1598devclass_add_device(devclass_t dc, device_t dev)
1599{
1600	int buflen, error;
1601
1602	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1603
1604	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1605	if (buflen < 0)
1606		return (ENOMEM);
1607	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1608	if (!dev->nameunit)
1609		return (ENOMEM);
1610
1611	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1612		free(dev->nameunit, M_BUS);
1613		dev->nameunit = NULL;
1614		return (error);
1615	}
1616	dc->devices[dev->unit] = dev;
1617	dev->devclass = dc;
1618	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1619
1620	return (0);
1621}
1622
1623/**
1624 * @internal
1625 * @brief Delete a device from a devclass
1626 *
1627 * The device is removed from the devclass's device list and its unit
1628 * number is freed.
1629
1630 * @param dc		the devclass to delete from
1631 * @param dev		the device to delete
1632 *
1633 * @retval 0		success
1634 */
1635static int
1636devclass_delete_device(devclass_t dc, device_t dev)
1637{
1638	if (!dc || !dev)
1639		return (0);
1640
1641	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1642
1643	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1644		panic("devclass_delete_device: inconsistent device class");
1645	dc->devices[dev->unit] = NULL;
1646	if (dev->flags & DF_WILDCARD)
1647		dev->unit = -1;
1648	dev->devclass = NULL;
1649	free(dev->nameunit, M_BUS);
1650	dev->nameunit = NULL;
1651
1652	return (0);
1653}
1654
1655/**
1656 * @internal
1657 * @brief Make a new device and add it as a child of @p parent
1658 *
1659 * @param parent	the parent of the new device
1660 * @param name		the devclass name of the new device or @c NULL
1661 *			to leave the devclass unspecified
1662 * @parem unit		the unit number of the new device of @c -1 to
1663 *			leave the unit number unspecified
1664 *
1665 * @returns the new device
1666 */
1667static device_t
1668make_device(device_t parent, const char *name, int unit)
1669{
1670	device_t dev;
1671	devclass_t dc;
1672
1673	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1674
1675	if (name) {
1676		dc = devclass_find_internal(name, NULL, TRUE);
1677		if (!dc) {
1678			printf("make_device: can't find device class %s\n",
1679			    name);
1680			return (NULL);
1681		}
1682	} else {
1683		dc = NULL;
1684	}
1685
1686	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1687	if (!dev)
1688		return (NULL);
1689
1690	dev->parent = parent;
1691	TAILQ_INIT(&dev->children);
1692	kobj_init((kobj_t) dev, &null_class);
1693	dev->driver = NULL;
1694	dev->devclass = NULL;
1695	dev->unit = unit;
1696	dev->nameunit = NULL;
1697	dev->desc = NULL;
1698	dev->busy = 0;
1699	dev->devflags = 0;
1700	dev->flags = DF_ENABLED;
1701	dev->order = 0;
1702	if (unit == -1)
1703		dev->flags |= DF_WILDCARD;
1704	if (name) {
1705		dev->flags |= DF_FIXEDCLASS;
1706		if (devclass_add_device(dc, dev)) {
1707			kobj_delete((kobj_t) dev, M_BUS);
1708			return (NULL);
1709		}
1710	}
1711	dev->ivars = NULL;
1712	dev->softc = NULL;
1713
1714	dev->state = DS_NOTPRESENT;
1715
1716	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1717	bus_data_generation_update();
1718
1719	return (dev);
1720}
1721
1722/**
1723 * @internal
1724 * @brief Print a description of a device.
1725 */
1726static int
1727device_print_child(device_t dev, device_t child)
1728{
1729	int retval = 0;
1730
1731	if (device_is_alive(child))
1732		retval += BUS_PRINT_CHILD(dev, child);
1733	else
1734		retval += device_printf(child, " not found\n");
1735
1736	return (retval);
1737}
1738
1739/**
1740 * @brief Create a new device
1741 *
1742 * This creates a new device and adds it as a child of an existing
1743 * parent device. The new device will be added after the last existing
1744 * child with order zero.
1745 *
1746 * @param dev		the device which will be the parent of the
1747 *			new child device
1748 * @param name		devclass name for new device or @c NULL if not
1749 *			specified
1750 * @param unit		unit number for new device or @c -1 if not
1751 *			specified
1752 *
1753 * @returns		the new device
1754 */
1755device_t
1756device_add_child(device_t dev, const char *name, int unit)
1757{
1758	return (device_add_child_ordered(dev, 0, name, unit));
1759}
1760
1761/**
1762 * @brief Create a new device
1763 *
1764 * This creates a new device and adds it as a child of an existing
1765 * parent device. The new device will be added after the last existing
1766 * child with the same order.
1767 *
1768 * @param dev		the device which will be the parent of the
1769 *			new child device
1770 * @param order		a value which is used to partially sort the
1771 *			children of @p dev - devices created using
1772 *			lower values of @p order appear first in @p
1773 *			dev's list of children
1774 * @param name		devclass name for new device or @c NULL if not
1775 *			specified
1776 * @param unit		unit number for new device or @c -1 if not
1777 *			specified
1778 *
1779 * @returns		the new device
1780 */
1781device_t
1782device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1783{
1784	device_t child;
1785	device_t place;
1786
1787	PDEBUG(("%s at %s with order %u as unit %d",
1788	    name, DEVICENAME(dev), order, unit));
1789	KASSERT(name != NULL || unit == -1,
1790	    ("child device with wildcard name and specific unit number"));
1791
1792	child = make_device(dev, name, unit);
1793	if (child == NULL)
1794		return (child);
1795	child->order = order;
1796
1797	TAILQ_FOREACH(place, &dev->children, link) {
1798		if (place->order > order)
1799			break;
1800	}
1801
1802	if (place) {
1803		/*
1804		 * The device 'place' is the first device whose order is
1805		 * greater than the new child.
1806		 */
1807		TAILQ_INSERT_BEFORE(place, child, link);
1808	} else {
1809		/*
1810		 * The new child's order is greater or equal to the order of
1811		 * any existing device. Add the child to the tail of the list.
1812		 */
1813		TAILQ_INSERT_TAIL(&dev->children, child, link);
1814	}
1815
1816	bus_data_generation_update();
1817	return (child);
1818}
1819
1820/**
1821 * @brief Delete a device
1822 *
1823 * This function deletes a device along with all of its children. If
1824 * the device currently has a driver attached to it, the device is
1825 * detached first using device_detach().
1826 *
1827 * @param dev		the parent device
1828 * @param child		the device to delete
1829 *
1830 * @retval 0		success
1831 * @retval non-zero	a unit error code describing the error
1832 */
1833int
1834device_delete_child(device_t dev, device_t child)
1835{
1836	int error;
1837	device_t grandchild;
1838
1839	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1840
1841	/* remove children first */
1842	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1843		error = device_delete_child(child, grandchild);
1844		if (error)
1845			return (error);
1846	}
1847
1848	if ((error = device_detach(child)) != 0)
1849		return (error);
1850	if (child->devclass)
1851		devclass_delete_device(child->devclass, child);
1852	if (child->parent)
1853		BUS_CHILD_DELETED(dev, child);
1854	TAILQ_REMOVE(&dev->children, child, link);
1855	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1856	kobj_delete((kobj_t) child, M_BUS);
1857
1858	bus_data_generation_update();
1859	return (0);
1860}
1861
1862/**
1863 * @brief Delete all children devices of the given device, if any.
1864 *
1865 * This function deletes all children devices of the given device, if
1866 * any, using the device_delete_child() function for each device it
1867 * finds. If a child device cannot be deleted, this function will
1868 * return an error code.
1869 *
1870 * @param dev		the parent device
1871 *
1872 * @retval 0		success
1873 * @retval non-zero	a device would not detach
1874 */
1875int
1876device_delete_children(device_t dev)
1877{
1878	device_t child;
1879	int error;
1880
1881	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1882
1883	error = 0;
1884
1885	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1886		error = device_delete_child(dev, child);
1887		if (error) {
1888			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1889			break;
1890		}
1891	}
1892	return (error);
1893}
1894
1895/**
1896 * @brief Find a device given a unit number
1897 *
1898 * This is similar to devclass_get_devices() but only searches for
1899 * devices which have @p dev as a parent.
1900 *
1901 * @param dev		the parent device to search
1902 * @param unit		the unit number to search for.  If the unit is -1,
1903 *			return the first child of @p dev which has name
1904 *			@p classname (that is, the one with the lowest unit.)
1905 *
1906 * @returns		the device with the given unit number or @c
1907 *			NULL if there is no such device
1908 */
1909device_t
1910device_find_child(device_t dev, const char *classname, int unit)
1911{
1912	devclass_t dc;
1913	device_t child;
1914
1915	dc = devclass_find(classname);
1916	if (!dc)
1917		return (NULL);
1918
1919	if (unit != -1) {
1920		child = devclass_get_device(dc, unit);
1921		if (child && child->parent == dev)
1922			return (child);
1923	} else {
1924		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1925			child = devclass_get_device(dc, unit);
1926			if (child && child->parent == dev)
1927				return (child);
1928		}
1929	}
1930	return (NULL);
1931}
1932
1933/**
1934 * @internal
1935 */
1936static driverlink_t
1937first_matching_driver(devclass_t dc, device_t dev)
1938{
1939	if (dev->devclass)
1940		return (devclass_find_driver_internal(dc, dev->devclass->name));
1941	return (TAILQ_FIRST(&dc->drivers));
1942}
1943
1944/**
1945 * @internal
1946 */
1947static driverlink_t
1948next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1949{
1950	if (dev->devclass) {
1951		driverlink_t dl;
1952		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1953			if (!strcmp(dev->devclass->name, dl->driver->name))
1954				return (dl);
1955		return (NULL);
1956	}
1957	return (TAILQ_NEXT(last, link));
1958}
1959
1960/**
1961 * @internal
1962 */
1963int
1964device_probe_child(device_t dev, device_t child)
1965{
1966	devclass_t dc;
1967	driverlink_t best = NULL;
1968	driverlink_t dl;
1969	int result, pri = 0;
1970	int hasclass = (child->devclass != NULL);
1971
1972	GIANT_REQUIRED;
1973
1974	dc = dev->devclass;
1975	if (!dc)
1976		panic("device_probe_child: parent device has no devclass");
1977
1978	/*
1979	 * If the state is already probed, then return.  However, don't
1980	 * return if we can rebid this object.
1981	 */
1982	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1983		return (0);
1984
1985	for (; dc; dc = dc->parent) {
1986		for (dl = first_matching_driver(dc, child);
1987		     dl;
1988		     dl = next_matching_driver(dc, child, dl)) {
1989			/* If this driver's pass is too high, then ignore it. */
1990			if (dl->pass > bus_current_pass)
1991				continue;
1992
1993			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1994			result = device_set_driver(child, dl->driver);
1995			if (result == ENOMEM)
1996				return (result);
1997			else if (result != 0)
1998				continue;
1999			if (!hasclass) {
2000				if (device_set_devclass(child,
2001				    dl->driver->name) != 0) {
2002					char const * devname =
2003					    device_get_name(child);
2004					if (devname == NULL)
2005						devname = "(unknown)";
2006					printf("driver bug: Unable to set "
2007					    "devclass (class: %s "
2008					    "devname: %s)\n",
2009					    dl->driver->name,
2010					    devname);
2011					(void)device_set_driver(child, NULL);
2012					continue;
2013				}
2014			}
2015
2016			/* Fetch any flags for the device before probing. */
2017			resource_int_value(dl->driver->name, child->unit,
2018			    "flags", &child->devflags);
2019
2020			result = DEVICE_PROBE(child);
2021
2022			/* Reset flags and devclass before the next probe. */
2023			child->devflags = 0;
2024			if (!hasclass)
2025				(void)device_set_devclass(child, NULL);
2026
2027			/*
2028			 * If the driver returns SUCCESS, there can be
2029			 * no higher match for this device.
2030			 */
2031			if (result == 0) {
2032				best = dl;
2033				pri = 0;
2034				break;
2035			}
2036
2037			/*
2038			 * The driver returned an error so it
2039			 * certainly doesn't match.
2040			 */
2041			if (result > 0) {
2042				(void)device_set_driver(child, NULL);
2043				continue;
2044			}
2045
2046			/*
2047			 * A priority lower than SUCCESS, remember the
2048			 * best matching driver. Initialise the value
2049			 * of pri for the first match.
2050			 */
2051			if (best == NULL || result > pri) {
2052				/*
2053				 * Probes that return BUS_PROBE_NOWILDCARD
2054				 * or lower only match on devices whose
2055				 * driver was explicitly specified.
2056				 */
2057				if (result <= BUS_PROBE_NOWILDCARD &&
2058				    !(child->flags & DF_FIXEDCLASS))
2059					continue;
2060				best = dl;
2061				pri = result;
2062				continue;
2063			}
2064		}
2065		/*
2066		 * If we have an unambiguous match in this devclass,
2067		 * don't look in the parent.
2068		 */
2069		if (best && pri == 0)
2070			break;
2071	}
2072
2073	/*
2074	 * If we found a driver, change state and initialise the devclass.
2075	 */
2076	/* XXX What happens if we rebid and got no best? */
2077	if (best) {
2078		/*
2079		 * If this device was attached, and we were asked to
2080		 * rescan, and it is a different driver, then we have
2081		 * to detach the old driver and reattach this new one.
2082		 * Note, we don't have to check for DF_REBID here
2083		 * because if the state is > DS_ALIVE, we know it must
2084		 * be.
2085		 *
2086		 * This assumes that all DF_REBID drivers can have
2087		 * their probe routine called at any time and that
2088		 * they are idempotent as well as completely benign in
2089		 * normal operations.
2090		 *
2091		 * We also have to make sure that the detach
2092		 * succeeded, otherwise we fail the operation (or
2093		 * maybe it should just fail silently?  I'm torn).
2094		 */
2095		if (child->state > DS_ALIVE && best->driver != child->driver)
2096			if ((result = device_detach(dev)) != 0)
2097				return (result);
2098
2099		/* Set the winning driver, devclass, and flags. */
2100		if (!child->devclass) {
2101			result = device_set_devclass(child, best->driver->name);
2102			if (result != 0)
2103				return (result);
2104		}
2105		result = device_set_driver(child, best->driver);
2106		if (result != 0)
2107			return (result);
2108		resource_int_value(best->driver->name, child->unit,
2109		    "flags", &child->devflags);
2110
2111		if (pri < 0) {
2112			/*
2113			 * A bit bogus. Call the probe method again to make
2114			 * sure that we have the right description.
2115			 */
2116			DEVICE_PROBE(child);
2117#if 0
2118			child->flags |= DF_REBID;
2119#endif
2120		} else
2121			child->flags &= ~DF_REBID;
2122		child->state = DS_ALIVE;
2123
2124		bus_data_generation_update();
2125		return (0);
2126	}
2127
2128	return (ENXIO);
2129}
2130
2131/**
2132 * @brief Return the parent of a device
2133 */
2134device_t
2135device_get_parent(device_t dev)
2136{
2137	return (dev->parent);
2138}
2139
2140/**
2141 * @brief Get a list of children of a device
2142 *
2143 * An array containing a list of all the children of the given device
2144 * is allocated and returned in @p *devlistp. The number of devices
2145 * in the array is returned in @p *devcountp. The caller should free
2146 * the array using @c free(p, M_TEMP).
2147 *
2148 * @param dev		the device to examine
2149 * @param devlistp	points at location for array pointer return
2150 *			value
2151 * @param devcountp	points at location for array size return value
2152 *
2153 * @retval 0		success
2154 * @retval ENOMEM	the array allocation failed
2155 */
2156int
2157device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2158{
2159	int count;
2160	device_t child;
2161	device_t *list;
2162
2163	count = 0;
2164	TAILQ_FOREACH(child, &dev->children, link) {
2165		count++;
2166	}
2167	if (count == 0) {
2168		*devlistp = NULL;
2169		*devcountp = 0;
2170		return (0);
2171	}
2172
2173	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2174	if (!list)
2175		return (ENOMEM);
2176
2177	count = 0;
2178	TAILQ_FOREACH(child, &dev->children, link) {
2179		list[count] = child;
2180		count++;
2181	}
2182
2183	*devlistp = list;
2184	*devcountp = count;
2185
2186	return (0);
2187}
2188
2189/**
2190 * @brief Return the current driver for the device or @c NULL if there
2191 * is no driver currently attached
2192 */
2193driver_t *
2194device_get_driver(device_t dev)
2195{
2196	return (dev->driver);
2197}
2198
2199/**
2200 * @brief Return the current devclass for the device or @c NULL if
2201 * there is none.
2202 */
2203devclass_t
2204device_get_devclass(device_t dev)
2205{
2206	return (dev->devclass);
2207}
2208
2209/**
2210 * @brief Return the name of the device's devclass or @c NULL if there
2211 * is none.
2212 */
2213const char *
2214device_get_name(device_t dev)
2215{
2216	if (dev != NULL && dev->devclass)
2217		return (devclass_get_name(dev->devclass));
2218	return (NULL);
2219}
2220
2221/**
2222 * @brief Return a string containing the device's devclass name
2223 * followed by an ascii representation of the device's unit number
2224 * (e.g. @c "foo2").
2225 */
2226const char *
2227device_get_nameunit(device_t dev)
2228{
2229	return (dev->nameunit);
2230}
2231
2232/**
2233 * @brief Return the device's unit number.
2234 */
2235int
2236device_get_unit(device_t dev)
2237{
2238	return (dev->unit);
2239}
2240
2241/**
2242 * @brief Return the device's description string
2243 */
2244const char *
2245device_get_desc(device_t dev)
2246{
2247	return (dev->desc);
2248}
2249
2250/**
2251 * @brief Return the device's flags
2252 */
2253uint32_t
2254device_get_flags(device_t dev)
2255{
2256	return (dev->devflags);
2257}
2258
2259struct sysctl_ctx_list *
2260device_get_sysctl_ctx(device_t dev)
2261{
2262	return (&dev->sysctl_ctx);
2263}
2264
2265struct sysctl_oid *
2266device_get_sysctl_tree(device_t dev)
2267{
2268	return (dev->sysctl_tree);
2269}
2270
2271/**
2272 * @brief Print the name of the device followed by a colon and a space
2273 *
2274 * @returns the number of characters printed
2275 */
2276int
2277device_print_prettyname(device_t dev)
2278{
2279	const char *name = device_get_name(dev);
2280
2281	if (name == NULL)
2282		return (printf("unknown: "));
2283	return (printf("%s%d: ", name, device_get_unit(dev)));
2284}
2285
2286/**
2287 * @brief Print the name of the device followed by a colon, a space
2288 * and the result of calling vprintf() with the value of @p fmt and
2289 * the following arguments.
2290 *
2291 * @returns the number of characters printed
2292 */
2293int
2294device_printf(device_t dev, const char * fmt, ...)
2295{
2296	va_list ap;
2297	int retval;
2298
2299	retval = device_print_prettyname(dev);
2300	va_start(ap, fmt);
2301	retval += vprintf(fmt, ap);
2302	va_end(ap);
2303	return (retval);
2304}
2305
2306/**
2307 * @internal
2308 */
2309static void
2310device_set_desc_internal(device_t dev, const char* desc, int copy)
2311{
2312	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2313		free(dev->desc, M_BUS);
2314		dev->flags &= ~DF_DESCMALLOCED;
2315		dev->desc = NULL;
2316	}
2317
2318	if (copy && desc) {
2319		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2320		if (dev->desc) {
2321			strcpy(dev->desc, desc);
2322			dev->flags |= DF_DESCMALLOCED;
2323		}
2324	} else {
2325		/* Avoid a -Wcast-qual warning */
2326		dev->desc = (char *)(uintptr_t) desc;
2327	}
2328
2329	bus_data_generation_update();
2330}
2331
2332/**
2333 * @brief Set the device's description
2334 *
2335 * The value of @c desc should be a string constant that will not
2336 * change (at least until the description is changed in a subsequent
2337 * call to device_set_desc() or device_set_desc_copy()).
2338 */
2339void
2340device_set_desc(device_t dev, const char* desc)
2341{
2342	device_set_desc_internal(dev, desc, FALSE);
2343}
2344
2345/**
2346 * @brief Set the device's description
2347 *
2348 * The string pointed to by @c desc is copied. Use this function if
2349 * the device description is generated, (e.g. with sprintf()).
2350 */
2351void
2352device_set_desc_copy(device_t dev, const char* desc)
2353{
2354	device_set_desc_internal(dev, desc, TRUE);
2355}
2356
2357/**
2358 * @brief Set the device's flags
2359 */
2360void
2361device_set_flags(device_t dev, uint32_t flags)
2362{
2363	dev->devflags = flags;
2364}
2365
2366/**
2367 * @brief Return the device's softc field
2368 *
2369 * The softc is allocated and zeroed when a driver is attached, based
2370 * on the size field of the driver.
2371 */
2372void *
2373device_get_softc(device_t dev)
2374{
2375	return (dev->softc);
2376}
2377
2378/**
2379 * @brief Set the device's softc field
2380 *
2381 * Most drivers do not need to use this since the softc is allocated
2382 * automatically when the driver is attached.
2383 */
2384void
2385device_set_softc(device_t dev, void *softc)
2386{
2387	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2388		free(dev->softc, M_BUS_SC);
2389	dev->softc = softc;
2390	if (dev->softc)
2391		dev->flags |= DF_EXTERNALSOFTC;
2392	else
2393		dev->flags &= ~DF_EXTERNALSOFTC;
2394}
2395
2396/**
2397 * @brief Free claimed softc
2398 *
2399 * Most drivers do not need to use this since the softc is freed
2400 * automatically when the driver is detached.
2401 */
2402void
2403device_free_softc(void *softc)
2404{
2405	free(softc, M_BUS_SC);
2406}
2407
2408/**
2409 * @brief Claim softc
2410 *
2411 * This function can be used to let the driver free the automatically
2412 * allocated softc using "device_free_softc()". This function is
2413 * useful when the driver is refcounting the softc and the softc
2414 * cannot be freed when the "device_detach" method is called.
2415 */
2416void
2417device_claim_softc(device_t dev)
2418{
2419	if (dev->softc)
2420		dev->flags |= DF_EXTERNALSOFTC;
2421	else
2422		dev->flags &= ~DF_EXTERNALSOFTC;
2423}
2424
2425/**
2426 * @brief Get the device's ivars field
2427 *
2428 * The ivars field is used by the parent device to store per-device
2429 * state (e.g. the physical location of the device or a list of
2430 * resources).
2431 */
2432void *
2433device_get_ivars(device_t dev)
2434{
2435
2436	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2437	return (dev->ivars);
2438}
2439
2440/**
2441 * @brief Set the device's ivars field
2442 */
2443void
2444device_set_ivars(device_t dev, void * ivars)
2445{
2446
2447	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2448	dev->ivars = ivars;
2449}
2450
2451/**
2452 * @brief Return the device's state
2453 */
2454device_state_t
2455device_get_state(device_t dev)
2456{
2457	return (dev->state);
2458}
2459
2460/**
2461 * @brief Set the DF_ENABLED flag for the device
2462 */
2463void
2464device_enable(device_t dev)
2465{
2466	dev->flags |= DF_ENABLED;
2467}
2468
2469/**
2470 * @brief Clear the DF_ENABLED flag for the device
2471 */
2472void
2473device_disable(device_t dev)
2474{
2475	dev->flags &= ~DF_ENABLED;
2476}
2477
2478/**
2479 * @brief Increment the busy counter for the device
2480 */
2481void
2482device_busy(device_t dev)
2483{
2484	if (dev->state < DS_ATTACHING)
2485		panic("device_busy: called for unattached device");
2486	if (dev->busy == 0 && dev->parent)
2487		device_busy(dev->parent);
2488	dev->busy++;
2489	if (dev->state == DS_ATTACHED)
2490		dev->state = DS_BUSY;
2491}
2492
2493/**
2494 * @brief Decrement the busy counter for the device
2495 */
2496void
2497device_unbusy(device_t dev)
2498{
2499	if (dev->busy != 0 && dev->state != DS_BUSY &&
2500	    dev->state != DS_ATTACHING)
2501		panic("device_unbusy: called for non-busy device %s",
2502		    device_get_nameunit(dev));
2503	dev->busy--;
2504	if (dev->busy == 0) {
2505		if (dev->parent)
2506			device_unbusy(dev->parent);
2507		if (dev->state == DS_BUSY)
2508			dev->state = DS_ATTACHED;
2509	}
2510}
2511
2512/**
2513 * @brief Set the DF_QUIET flag for the device
2514 */
2515void
2516device_quiet(device_t dev)
2517{
2518	dev->flags |= DF_QUIET;
2519}
2520
2521/**
2522 * @brief Clear the DF_QUIET flag for the device
2523 */
2524void
2525device_verbose(device_t dev)
2526{
2527	dev->flags &= ~DF_QUIET;
2528}
2529
2530/**
2531 * @brief Return non-zero if the DF_QUIET flag is set on the device
2532 */
2533int
2534device_is_quiet(device_t dev)
2535{
2536	return ((dev->flags & DF_QUIET) != 0);
2537}
2538
2539/**
2540 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2541 */
2542int
2543device_is_enabled(device_t dev)
2544{
2545	return ((dev->flags & DF_ENABLED) != 0);
2546}
2547
2548/**
2549 * @brief Return non-zero if the device was successfully probed
2550 */
2551int
2552device_is_alive(device_t dev)
2553{
2554	return (dev->state >= DS_ALIVE);
2555}
2556
2557/**
2558 * @brief Return non-zero if the device currently has a driver
2559 * attached to it
2560 */
2561int
2562device_is_attached(device_t dev)
2563{
2564	return (dev->state >= DS_ATTACHED);
2565}
2566
2567/**
2568 * @brief Set the devclass of a device
2569 * @see devclass_add_device().
2570 */
2571int
2572device_set_devclass(device_t dev, const char *classname)
2573{
2574	devclass_t dc;
2575	int error;
2576
2577	if (!classname) {
2578		if (dev->devclass)
2579			devclass_delete_device(dev->devclass, dev);
2580		return (0);
2581	}
2582
2583	if (dev->devclass) {
2584		printf("device_set_devclass: device class already set\n");
2585		return (EINVAL);
2586	}
2587
2588	dc = devclass_find_internal(classname, NULL, TRUE);
2589	if (!dc)
2590		return (ENOMEM);
2591
2592	error = devclass_add_device(dc, dev);
2593
2594	bus_data_generation_update();
2595	return (error);
2596}
2597
2598/**
2599 * @brief Set the driver of a device
2600 *
2601 * @retval 0		success
2602 * @retval EBUSY	the device already has a driver attached
2603 * @retval ENOMEM	a memory allocation failure occurred
2604 */
2605int
2606device_set_driver(device_t dev, driver_t *driver)
2607{
2608	if (dev->state >= DS_ATTACHED)
2609		return (EBUSY);
2610
2611	if (dev->driver == driver)
2612		return (0);
2613
2614	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2615		free(dev->softc, M_BUS_SC);
2616		dev->softc = NULL;
2617	}
2618	device_set_desc(dev, NULL);
2619	kobj_delete((kobj_t) dev, NULL);
2620	dev->driver = driver;
2621	if (driver) {
2622		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2623		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2624			dev->softc = malloc(driver->size, M_BUS_SC,
2625			    M_NOWAIT | M_ZERO);
2626			if (!dev->softc) {
2627				kobj_delete((kobj_t) dev, NULL);
2628				kobj_init((kobj_t) dev, &null_class);
2629				dev->driver = NULL;
2630				return (ENOMEM);
2631			}
2632		}
2633	} else {
2634		kobj_init((kobj_t) dev, &null_class);
2635	}
2636
2637	bus_data_generation_update();
2638	return (0);
2639}
2640
2641/**
2642 * @brief Probe a device, and return this status.
2643 *
2644 * This function is the core of the device autoconfiguration
2645 * system. Its purpose is to select a suitable driver for a device and
2646 * then call that driver to initialise the hardware appropriately. The
2647 * driver is selected by calling the DEVICE_PROBE() method of a set of
2648 * candidate drivers and then choosing the driver which returned the
2649 * best value. This driver is then attached to the device using
2650 * device_attach().
2651 *
2652 * The set of suitable drivers is taken from the list of drivers in
2653 * the parent device's devclass. If the device was originally created
2654 * with a specific class name (see device_add_child()), only drivers
2655 * with that name are probed, otherwise all drivers in the devclass
2656 * are probed. If no drivers return successful probe values in the
2657 * parent devclass, the search continues in the parent of that
2658 * devclass (see devclass_get_parent()) if any.
2659 *
2660 * @param dev		the device to initialise
2661 *
2662 * @retval 0		success
2663 * @retval ENXIO	no driver was found
2664 * @retval ENOMEM	memory allocation failure
2665 * @retval non-zero	some other unix error code
2666 * @retval -1		Device already attached
2667 */
2668int
2669device_probe(device_t dev)
2670{
2671	int error;
2672
2673	GIANT_REQUIRED;
2674
2675	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2676		return (-1);
2677
2678	if (!(dev->flags & DF_ENABLED)) {
2679		if (bootverbose && device_get_name(dev) != NULL) {
2680			device_print_prettyname(dev);
2681			printf("not probed (disabled)\n");
2682		}
2683		return (-1);
2684	}
2685	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2686		if (bus_current_pass == BUS_PASS_DEFAULT &&
2687		    !(dev->flags & DF_DONENOMATCH)) {
2688			BUS_PROBE_NOMATCH(dev->parent, dev);
2689			devnomatch(dev);
2690			dev->flags |= DF_DONENOMATCH;
2691		}
2692		return (error);
2693	}
2694	return (0);
2695}
2696
2697/**
2698 * @brief Probe a device and attach a driver if possible
2699 *
2700 * calls device_probe() and attaches if that was successful.
2701 */
2702int
2703device_probe_and_attach(device_t dev)
2704{
2705	int error;
2706
2707	GIANT_REQUIRED;
2708
2709	error = device_probe(dev);
2710	if (error == -1)
2711		return (0);
2712	else if (error != 0)
2713		return (error);
2714
2715	CURVNET_SET_QUIET(vnet0);
2716	error = device_attach(dev);
2717	CURVNET_RESTORE();
2718	return error;
2719}
2720
2721/**
2722 * @brief Attach a device driver to a device
2723 *
2724 * This function is a wrapper around the DEVICE_ATTACH() driver
2725 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2726 * device's sysctl tree, optionally prints a description of the device
2727 * and queues a notification event for user-based device management
2728 * services.
2729 *
2730 * Normally this function is only called internally from
2731 * device_probe_and_attach().
2732 *
2733 * @param dev		the device to initialise
2734 *
2735 * @retval 0		success
2736 * @retval ENXIO	no driver was found
2737 * @retval ENOMEM	memory allocation failure
2738 * @retval non-zero	some other unix error code
2739 */
2740int
2741device_attach(device_t dev)
2742{
2743	uint64_t attachtime;
2744	int error;
2745
2746	if (resource_disabled(dev->driver->name, dev->unit)) {
2747		device_disable(dev);
2748		if (bootverbose)
2749			 device_printf(dev, "disabled via hints entry\n");
2750		return (ENXIO);
2751	}
2752
2753	device_sysctl_init(dev);
2754	if (!device_is_quiet(dev))
2755		device_print_child(dev->parent, dev);
2756	attachtime = get_cyclecount();
2757	dev->state = DS_ATTACHING;
2758	if ((error = DEVICE_ATTACH(dev)) != 0) {
2759		printf("device_attach: %s%d attach returned %d\n",
2760		    dev->driver->name, dev->unit, error);
2761		if (!(dev->flags & DF_FIXEDCLASS))
2762			devclass_delete_device(dev->devclass, dev);
2763		(void)device_set_driver(dev, NULL);
2764		device_sysctl_fini(dev);
2765		KASSERT(dev->busy == 0, ("attach failed but busy"));
2766		dev->state = DS_NOTPRESENT;
2767		return (error);
2768	}
2769	attachtime = get_cyclecount() - attachtime;
2770	/*
2771	 * 4 bits per device is a reasonable value for desktop and server
2772	 * hardware with good get_cyclecount() implementations, but may
2773	 * need to be adjusted on other platforms.
2774	 */
2775#ifdef RANDOM_DEBUG
2776	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2777	    __func__, 4, dev->driver->name, dev->unit);
2778#endif
2779	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2780	device_sysctl_update(dev);
2781	if (dev->busy)
2782		dev->state = DS_BUSY;
2783	else
2784		dev->state = DS_ATTACHED;
2785	dev->flags &= ~DF_DONENOMATCH;
2786	devadded(dev);
2787	return (0);
2788}
2789
2790/**
2791 * @brief Detach a driver from a device
2792 *
2793 * This function is a wrapper around the DEVICE_DETACH() driver
2794 * method. If the call to DEVICE_DETACH() succeeds, it calls
2795 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2796 * notification event for user-based device management services and
2797 * cleans up the device's sysctl tree.
2798 *
2799 * @param dev		the device to un-initialise
2800 *
2801 * @retval 0		success
2802 * @retval ENXIO	no driver was found
2803 * @retval ENOMEM	memory allocation failure
2804 * @retval non-zero	some other unix error code
2805 */
2806int
2807device_detach(device_t dev)
2808{
2809	int error;
2810
2811	GIANT_REQUIRED;
2812
2813	PDEBUG(("%s", DEVICENAME(dev)));
2814	if (dev->state == DS_BUSY)
2815		return (EBUSY);
2816	if (dev->state != DS_ATTACHED)
2817		return (0);
2818
2819	if ((error = DEVICE_DETACH(dev)) != 0)
2820		return (error);
2821	devremoved(dev);
2822	if (!device_is_quiet(dev))
2823		device_printf(dev, "detached\n");
2824	if (dev->parent)
2825		BUS_CHILD_DETACHED(dev->parent, dev);
2826
2827	if (!(dev->flags & DF_FIXEDCLASS))
2828		devclass_delete_device(dev->devclass, dev);
2829
2830	dev->state = DS_NOTPRESENT;
2831	(void)device_set_driver(dev, NULL);
2832	device_sysctl_fini(dev);
2833
2834	return (0);
2835}
2836
2837/**
2838 * @brief Tells a driver to quiesce itself.
2839 *
2840 * This function is a wrapper around the DEVICE_QUIESCE() driver
2841 * method. If the call to DEVICE_QUIESCE() succeeds.
2842 *
2843 * @param dev		the device to quiesce
2844 *
2845 * @retval 0		success
2846 * @retval ENXIO	no driver was found
2847 * @retval ENOMEM	memory allocation failure
2848 * @retval non-zero	some other unix error code
2849 */
2850int
2851device_quiesce(device_t dev)
2852{
2853
2854	PDEBUG(("%s", DEVICENAME(dev)));
2855	if (dev->state == DS_BUSY)
2856		return (EBUSY);
2857	if (dev->state != DS_ATTACHED)
2858		return (0);
2859
2860	return (DEVICE_QUIESCE(dev));
2861}
2862
2863/**
2864 * @brief Notify a device of system shutdown
2865 *
2866 * This function calls the DEVICE_SHUTDOWN() driver method if the
2867 * device currently has an attached driver.
2868 *
2869 * @returns the value returned by DEVICE_SHUTDOWN()
2870 */
2871int
2872device_shutdown(device_t dev)
2873{
2874	if (dev->state < DS_ATTACHED)
2875		return (0);
2876	return (DEVICE_SHUTDOWN(dev));
2877}
2878
2879/**
2880 * @brief Set the unit number of a device
2881 *
2882 * This function can be used to override the unit number used for a
2883 * device (e.g. to wire a device to a pre-configured unit number).
2884 */
2885int
2886device_set_unit(device_t dev, int unit)
2887{
2888	devclass_t dc;
2889	int err;
2890
2891	dc = device_get_devclass(dev);
2892	if (unit < dc->maxunit && dc->devices[unit])
2893		return (EBUSY);
2894	err = devclass_delete_device(dc, dev);
2895	if (err)
2896		return (err);
2897	dev->unit = unit;
2898	err = devclass_add_device(dc, dev);
2899	if (err)
2900		return (err);
2901
2902	bus_data_generation_update();
2903	return (0);
2904}
2905
2906/*======================================*/
2907/*
2908 * Some useful method implementations to make life easier for bus drivers.
2909 */
2910
2911/**
2912 * @brief Initialise a resource list.
2913 *
2914 * @param rl		the resource list to initialise
2915 */
2916void
2917resource_list_init(struct resource_list *rl)
2918{
2919	STAILQ_INIT(rl);
2920}
2921
2922/**
2923 * @brief Reclaim memory used by a resource list.
2924 *
2925 * This function frees the memory for all resource entries on the list
2926 * (if any).
2927 *
2928 * @param rl		the resource list to free
2929 */
2930void
2931resource_list_free(struct resource_list *rl)
2932{
2933	struct resource_list_entry *rle;
2934
2935	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2936		if (rle->res)
2937			panic("resource_list_free: resource entry is busy");
2938		STAILQ_REMOVE_HEAD(rl, link);
2939		free(rle, M_BUS);
2940	}
2941}
2942
2943/**
2944 * @brief Add a resource entry.
2945 *
2946 * This function adds a resource entry using the given @p type, @p
2947 * start, @p end and @p count values. A rid value is chosen by
2948 * searching sequentially for the first unused rid starting at zero.
2949 *
2950 * @param rl		the resource list to edit
2951 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2952 * @param start		the start address of the resource
2953 * @param end		the end address of the resource
2954 * @param count		XXX end-start+1
2955 */
2956int
2957resource_list_add_next(struct resource_list *rl, int type, u_long start,
2958    u_long end, u_long count)
2959{
2960	int rid;
2961
2962	rid = 0;
2963	while (resource_list_find(rl, type, rid) != NULL)
2964		rid++;
2965	resource_list_add(rl, type, rid, start, end, count);
2966	return (rid);
2967}
2968
2969/**
2970 * @brief Add or modify a resource entry.
2971 *
2972 * If an existing entry exists with the same type and rid, it will be
2973 * modified using the given values of @p start, @p end and @p
2974 * count. If no entry exists, a new one will be created using the
2975 * given values.  The resource list entry that matches is then returned.
2976 *
2977 * @param rl		the resource list to edit
2978 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2979 * @param rid		the resource identifier
2980 * @param start		the start address of the resource
2981 * @param end		the end address of the resource
2982 * @param count		XXX end-start+1
2983 */
2984struct resource_list_entry *
2985resource_list_add(struct resource_list *rl, int type, int rid,
2986    u_long start, u_long end, u_long count)
2987{
2988	struct resource_list_entry *rle;
2989
2990	rle = resource_list_find(rl, type, rid);
2991	if (!rle) {
2992		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2993		    M_NOWAIT);
2994		if (!rle)
2995			panic("resource_list_add: can't record entry");
2996		STAILQ_INSERT_TAIL(rl, rle, link);
2997		rle->type = type;
2998		rle->rid = rid;
2999		rle->res = NULL;
3000		rle->flags = 0;
3001	}
3002
3003	if (rle->res)
3004		panic("resource_list_add: resource entry is busy");
3005
3006	rle->start = start;
3007	rle->end = end;
3008	rle->count = count;
3009	return (rle);
3010}
3011
3012/**
3013 * @brief Determine if a resource entry is busy.
3014 *
3015 * Returns true if a resource entry is busy meaning that it has an
3016 * associated resource that is not an unallocated "reserved" resource.
3017 *
3018 * @param rl		the resource list to search
3019 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3020 * @param rid		the resource identifier
3021 *
3022 * @returns Non-zero if the entry is busy, zero otherwise.
3023 */
3024int
3025resource_list_busy(struct resource_list *rl, int type, int rid)
3026{
3027	struct resource_list_entry *rle;
3028
3029	rle = resource_list_find(rl, type, rid);
3030	if (rle == NULL || rle->res == NULL)
3031		return (0);
3032	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3033		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3034		    ("reserved resource is active"));
3035		return (0);
3036	}
3037	return (1);
3038}
3039
3040/**
3041 * @brief Determine if a resource entry is reserved.
3042 *
3043 * Returns true if a resource entry is reserved meaning that it has an
3044 * associated "reserved" resource.  The resource can either be
3045 * allocated or unallocated.
3046 *
3047 * @param rl		the resource list to search
3048 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3049 * @param rid		the resource identifier
3050 *
3051 * @returns Non-zero if the entry is reserved, zero otherwise.
3052 */
3053int
3054resource_list_reserved(struct resource_list *rl, int type, int rid)
3055{
3056	struct resource_list_entry *rle;
3057
3058	rle = resource_list_find(rl, type, rid);
3059	if (rle != NULL && rle->flags & RLE_RESERVED)
3060		return (1);
3061	return (0);
3062}
3063
3064/**
3065 * @brief Find a resource entry by type and rid.
3066 *
3067 * @param rl		the resource list to search
3068 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3069 * @param rid		the resource identifier
3070 *
3071 * @returns the resource entry pointer or NULL if there is no such
3072 * entry.
3073 */
3074struct resource_list_entry *
3075resource_list_find(struct resource_list *rl, int type, int rid)
3076{
3077	struct resource_list_entry *rle;
3078
3079	STAILQ_FOREACH(rle, rl, link) {
3080		if (rle->type == type && rle->rid == rid)
3081			return (rle);
3082	}
3083	return (NULL);
3084}
3085
3086/**
3087 * @brief Delete a resource entry.
3088 *
3089 * @param rl		the resource list to edit
3090 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3091 * @param rid		the resource identifier
3092 */
3093void
3094resource_list_delete(struct resource_list *rl, int type, int rid)
3095{
3096	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3097
3098	if (rle) {
3099		if (rle->res != NULL)
3100			panic("resource_list_delete: resource has not been released");
3101		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3102		free(rle, M_BUS);
3103	}
3104}
3105
3106/**
3107 * @brief Allocate a reserved resource
3108 *
3109 * This can be used by busses to force the allocation of resources
3110 * that are always active in the system even if they are not allocated
3111 * by a driver (e.g. PCI BARs).  This function is usually called when
3112 * adding a new child to the bus.  The resource is allocated from the
3113 * parent bus when it is reserved.  The resource list entry is marked
3114 * with RLE_RESERVED to note that it is a reserved resource.
3115 *
3116 * Subsequent attempts to allocate the resource with
3117 * resource_list_alloc() will succeed the first time and will set
3118 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3119 * resource that has been allocated is released with
3120 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3121 * the actual resource remains allocated.  The resource can be released to
3122 * the parent bus by calling resource_list_unreserve().
3123 *
3124 * @param rl		the resource list to allocate from
3125 * @param bus		the parent device of @p child
3126 * @param child		the device for which the resource is being reserved
3127 * @param type		the type of resource to allocate
3128 * @param rid		a pointer to the resource identifier
3129 * @param start		hint at the start of the resource range - pass
3130 *			@c 0UL for any start address
3131 * @param end		hint at the end of the resource range - pass
3132 *			@c ~0UL for any end address
3133 * @param count		hint at the size of range required - pass @c 1
3134 *			for any size
3135 * @param flags		any extra flags to control the resource
3136 *			allocation - see @c RF_XXX flags in
3137 *			<sys/rman.h> for details
3138 *
3139 * @returns		the resource which was allocated or @c NULL if no
3140 *			resource could be allocated
3141 */
3142struct resource *
3143resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3144    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3145{
3146	struct resource_list_entry *rle = NULL;
3147	int passthrough = (device_get_parent(child) != bus);
3148	struct resource *r;
3149
3150	if (passthrough)
3151		panic(
3152    "resource_list_reserve() should only be called for direct children");
3153	if (flags & RF_ACTIVE)
3154		panic(
3155    "resource_list_reserve() should only reserve inactive resources");
3156
3157	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3158	    flags);
3159	if (r != NULL) {
3160		rle = resource_list_find(rl, type, *rid);
3161		rle->flags |= RLE_RESERVED;
3162	}
3163	return (r);
3164}
3165
3166/**
3167 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3168 *
3169 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3170 * and passing the allocation up to the parent of @p bus. This assumes
3171 * that the first entry of @c device_get_ivars(child) is a struct
3172 * resource_list. This also handles 'passthrough' allocations where a
3173 * child is a remote descendant of bus by passing the allocation up to
3174 * the parent of bus.
3175 *
3176 * Typically, a bus driver would store a list of child resources
3177 * somewhere in the child device's ivars (see device_get_ivars()) and
3178 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3179 * then call resource_list_alloc() to perform the allocation.
3180 *
3181 * @param rl		the resource list to allocate from
3182 * @param bus		the parent device of @p child
3183 * @param child		the device which is requesting an allocation
3184 * @param type		the type of resource to allocate
3185 * @param rid		a pointer to the resource identifier
3186 * @param start		hint at the start of the resource range - pass
3187 *			@c 0UL for any start address
3188 * @param end		hint at the end of the resource range - pass
3189 *			@c ~0UL for any end address
3190 * @param count		hint at the size of range required - pass @c 1
3191 *			for any size
3192 * @param flags		any extra flags to control the resource
3193 *			allocation - see @c RF_XXX flags in
3194 *			<sys/rman.h> for details
3195 *
3196 * @returns		the resource which was allocated or @c NULL if no
3197 *			resource could be allocated
3198 */
3199struct resource *
3200resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3201    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3202{
3203	struct resource_list_entry *rle = NULL;
3204	int passthrough = (device_get_parent(child) != bus);
3205	int isdefault = (start == 0UL && end == ~0UL);
3206
3207	if (passthrough) {
3208		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3209		    type, rid, start, end, count, flags));
3210	}
3211
3212	rle = resource_list_find(rl, type, *rid);
3213
3214	if (!rle)
3215		return (NULL);		/* no resource of that type/rid */
3216
3217	if (rle->res) {
3218		if (rle->flags & RLE_RESERVED) {
3219			if (rle->flags & RLE_ALLOCATED)
3220				return (NULL);
3221			if ((flags & RF_ACTIVE) &&
3222			    bus_activate_resource(child, type, *rid,
3223			    rle->res) != 0)
3224				return (NULL);
3225			rle->flags |= RLE_ALLOCATED;
3226			return (rle->res);
3227		}
3228		panic("resource_list_alloc: resource entry is busy");
3229	}
3230
3231	if (isdefault) {
3232		start = rle->start;
3233		count = ulmax(count, rle->count);
3234		end = ulmax(rle->end, start + count - 1);
3235	}
3236
3237	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3238	    type, rid, start, end, count, flags);
3239
3240	/*
3241	 * Record the new range.
3242	 */
3243	if (rle->res) {
3244		rle->start = rman_get_start(rle->res);
3245		rle->end = rman_get_end(rle->res);
3246		rle->count = count;
3247	}
3248
3249	return (rle->res);
3250}
3251
3252/**
3253 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3254 *
3255 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3256 * used with resource_list_alloc().
3257 *
3258 * @param rl		the resource list which was allocated from
3259 * @param bus		the parent device of @p child
3260 * @param child		the device which is requesting a release
3261 * @param type		the type of resource to release
3262 * @param rid		the resource identifier
3263 * @param res		the resource to release
3264 *
3265 * @retval 0		success
3266 * @retval non-zero	a standard unix error code indicating what
3267 *			error condition prevented the operation
3268 */
3269int
3270resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3271    int type, int rid, struct resource *res)
3272{
3273	struct resource_list_entry *rle = NULL;
3274	int passthrough = (device_get_parent(child) != bus);
3275	int error;
3276
3277	if (passthrough) {
3278		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3279		    type, rid, res));
3280	}
3281
3282	rle = resource_list_find(rl, type, rid);
3283
3284	if (!rle)
3285		panic("resource_list_release: can't find resource");
3286	if (!rle->res)
3287		panic("resource_list_release: resource entry is not busy");
3288	if (rle->flags & RLE_RESERVED) {
3289		if (rle->flags & RLE_ALLOCATED) {
3290			if (rman_get_flags(res) & RF_ACTIVE) {
3291				error = bus_deactivate_resource(child, type,
3292				    rid, res);
3293				if (error)
3294					return (error);
3295			}
3296			rle->flags &= ~RLE_ALLOCATED;
3297			return (0);
3298		}
3299		return (EINVAL);
3300	}
3301
3302	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3303	    type, rid, res);
3304	if (error)
3305		return (error);
3306
3307	rle->res = NULL;
3308	return (0);
3309}
3310
3311/**
3312 * @brief Release all active resources of a given type
3313 *
3314 * Release all active resources of a specified type.  This is intended
3315 * to be used to cleanup resources leaked by a driver after detach or
3316 * a failed attach.
3317 *
3318 * @param rl		the resource list which was allocated from
3319 * @param bus		the parent device of @p child
3320 * @param child		the device whose active resources are being released
3321 * @param type		the type of resources to release
3322 *
3323 * @retval 0		success
3324 * @retval EBUSY	at least one resource was active
3325 */
3326int
3327resource_list_release_active(struct resource_list *rl, device_t bus,
3328    device_t child, int type)
3329{
3330	struct resource_list_entry *rle;
3331	int error, retval;
3332
3333	retval = 0;
3334	STAILQ_FOREACH(rle, rl, link) {
3335		if (rle->type != type)
3336			continue;
3337		if (rle->res == NULL)
3338			continue;
3339		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3340		    RLE_RESERVED)
3341			continue;
3342		retval = EBUSY;
3343		error = resource_list_release(rl, bus, child, type,
3344		    rman_get_rid(rle->res), rle->res);
3345		if (error != 0)
3346			device_printf(bus,
3347			    "Failed to release active resource: %d\n", error);
3348	}
3349	return (retval);
3350}
3351
3352
3353/**
3354 * @brief Fully release a reserved resource
3355 *
3356 * Fully releases a resource reserved via resource_list_reserve().
3357 *
3358 * @param rl		the resource list which was allocated from
3359 * @param bus		the parent device of @p child
3360 * @param child		the device whose reserved resource is being released
3361 * @param type		the type of resource to release
3362 * @param rid		the resource identifier
3363 * @param res		the resource to release
3364 *
3365 * @retval 0		success
3366 * @retval non-zero	a standard unix error code indicating what
3367 *			error condition prevented the operation
3368 */
3369int
3370resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3371    int type, int rid)
3372{
3373	struct resource_list_entry *rle = NULL;
3374	int passthrough = (device_get_parent(child) != bus);
3375
3376	if (passthrough)
3377		panic(
3378    "resource_list_unreserve() should only be called for direct children");
3379
3380	rle = resource_list_find(rl, type, rid);
3381
3382	if (!rle)
3383		panic("resource_list_unreserve: can't find resource");
3384	if (!(rle->flags & RLE_RESERVED))
3385		return (EINVAL);
3386	if (rle->flags & RLE_ALLOCATED)
3387		return (EBUSY);
3388	rle->flags &= ~RLE_RESERVED;
3389	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3390}
3391
3392/**
3393 * @brief Print a description of resources in a resource list
3394 *
3395 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3396 * The name is printed if at least one resource of the given type is available.
3397 * The format is used to print resource start and end.
3398 *
3399 * @param rl		the resource list to print
3400 * @param name		the name of @p type, e.g. @c "memory"
3401 * @param type		type type of resource entry to print
3402 * @param format	printf(9) format string to print resource
3403 *			start and end values
3404 *
3405 * @returns		the number of characters printed
3406 */
3407int
3408resource_list_print_type(struct resource_list *rl, const char *name, int type,
3409    const char *format)
3410{
3411	struct resource_list_entry *rle;
3412	int printed, retval;
3413
3414	printed = 0;
3415	retval = 0;
3416	/* Yes, this is kinda cheating */
3417	STAILQ_FOREACH(rle, rl, link) {
3418		if (rle->type == type) {
3419			if (printed == 0)
3420				retval += printf(" %s ", name);
3421			else
3422				retval += printf(",");
3423			printed++;
3424			retval += printf(format, rle->start);
3425			if (rle->count > 1) {
3426				retval += printf("-");
3427				retval += printf(format, rle->start +
3428						 rle->count - 1);
3429			}
3430		}
3431	}
3432	return (retval);
3433}
3434
3435/**
3436 * @brief Releases all the resources in a list.
3437 *
3438 * @param rl		The resource list to purge.
3439 *
3440 * @returns		nothing
3441 */
3442void
3443resource_list_purge(struct resource_list *rl)
3444{
3445	struct resource_list_entry *rle;
3446
3447	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3448		if (rle->res)
3449			bus_release_resource(rman_get_device(rle->res),
3450			    rle->type, rle->rid, rle->res);
3451		STAILQ_REMOVE_HEAD(rl, link);
3452		free(rle, M_BUS);
3453	}
3454}
3455
3456device_t
3457bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3458{
3459
3460	return (device_add_child_ordered(dev, order, name, unit));
3461}
3462
3463/**
3464 * @brief Helper function for implementing DEVICE_PROBE()
3465 *
3466 * This function can be used to help implement the DEVICE_PROBE() for
3467 * a bus (i.e. a device which has other devices attached to it). It
3468 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3469 * devclass.
3470 */
3471int
3472bus_generic_probe(device_t dev)
3473{
3474	devclass_t dc = dev->devclass;
3475	driverlink_t dl;
3476
3477	TAILQ_FOREACH(dl, &dc->drivers, link) {
3478		/*
3479		 * If this driver's pass is too high, then ignore it.
3480		 * For most drivers in the default pass, this will
3481		 * never be true.  For early-pass drivers they will
3482		 * only call the identify routines of eligible drivers
3483		 * when this routine is called.  Drivers for later
3484		 * passes should have their identify routines called
3485		 * on early-pass busses during BUS_NEW_PASS().
3486		 */
3487		if (dl->pass > bus_current_pass)
3488			continue;
3489		DEVICE_IDENTIFY(dl->driver, dev);
3490	}
3491
3492	return (0);
3493}
3494
3495/**
3496 * @brief Helper function for implementing DEVICE_ATTACH()
3497 *
3498 * This function can be used to help implement the DEVICE_ATTACH() for
3499 * a bus. It calls device_probe_and_attach() for each of the device's
3500 * children.
3501 */
3502int
3503bus_generic_attach(device_t dev)
3504{
3505	device_t child;
3506
3507	TAILQ_FOREACH(child, &dev->children, link) {
3508		device_probe_and_attach(child);
3509	}
3510
3511	return (0);
3512}
3513
3514/**
3515 * @brief Helper function for implementing DEVICE_DETACH()
3516 *
3517 * This function can be used to help implement the DEVICE_DETACH() for
3518 * a bus. It calls device_detach() for each of the device's
3519 * children.
3520 */
3521int
3522bus_generic_detach(device_t dev)
3523{
3524	device_t child;
3525	int error;
3526
3527	if (dev->state != DS_ATTACHED)
3528		return (EBUSY);
3529
3530	TAILQ_FOREACH(child, &dev->children, link) {
3531		if ((error = device_detach(child)) != 0)
3532			return (error);
3533	}
3534
3535	return (0);
3536}
3537
3538/**
3539 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3540 *
3541 * This function can be used to help implement the DEVICE_SHUTDOWN()
3542 * for a bus. It calls device_shutdown() for each of the device's
3543 * children.
3544 */
3545int
3546bus_generic_shutdown(device_t dev)
3547{
3548	device_t child;
3549
3550	TAILQ_FOREACH(child, &dev->children, link) {
3551		device_shutdown(child);
3552	}
3553
3554	return (0);
3555}
3556
3557/**
3558 * @brief Helper function for implementing DEVICE_SUSPEND()
3559 *
3560 * This function can be used to help implement the DEVICE_SUSPEND()
3561 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3562 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3563 * operation is aborted and any devices which were suspended are
3564 * resumed immediately by calling their DEVICE_RESUME() methods.
3565 */
3566int
3567bus_generic_suspend(device_t dev)
3568{
3569	int		error;
3570	device_t	child, child2;
3571
3572	TAILQ_FOREACH(child, &dev->children, link) {
3573		error = DEVICE_SUSPEND(child);
3574		if (error) {
3575			for (child2 = TAILQ_FIRST(&dev->children);
3576			     child2 && child2 != child;
3577			     child2 = TAILQ_NEXT(child2, link))
3578				DEVICE_RESUME(child2);
3579			return (error);
3580		}
3581	}
3582	return (0);
3583}
3584
3585/**
3586 * @brief Helper function for implementing DEVICE_RESUME()
3587 *
3588 * This function can be used to help implement the DEVICE_RESUME() for
3589 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3590 */
3591int
3592bus_generic_resume(device_t dev)
3593{
3594	device_t	child;
3595
3596	TAILQ_FOREACH(child, &dev->children, link) {
3597		DEVICE_RESUME(child);
3598		/* if resume fails, there's nothing we can usefully do... */
3599	}
3600	return (0);
3601}
3602
3603/**
3604 * @brief Helper function for implementing BUS_PRINT_CHILD().
3605 *
3606 * This function prints the first part of the ascii representation of
3607 * @p child, including its name, unit and description (if any - see
3608 * device_set_desc()).
3609 *
3610 * @returns the number of characters printed
3611 */
3612int
3613bus_print_child_header(device_t dev, device_t child)
3614{
3615	int	retval = 0;
3616
3617	if (device_get_desc(child)) {
3618		retval += device_printf(child, "<%s>", device_get_desc(child));
3619	} else {
3620		retval += printf("%s", device_get_nameunit(child));
3621	}
3622
3623	return (retval);
3624}
3625
3626/**
3627 * @brief Helper function for implementing BUS_PRINT_CHILD().
3628 *
3629 * This function prints the last part of the ascii representation of
3630 * @p child, which consists of the string @c " on " followed by the
3631 * name and unit of the @p dev.
3632 *
3633 * @returns the number of characters printed
3634 */
3635int
3636bus_print_child_footer(device_t dev, device_t child)
3637{
3638	return (printf(" on %s\n", device_get_nameunit(dev)));
3639}
3640
3641/**
3642 * @brief Helper function for implementing BUS_PRINT_CHILD().
3643 *
3644 * This function simply calls bus_print_child_header() followed by
3645 * bus_print_child_footer().
3646 *
3647 * @returns the number of characters printed
3648 */
3649int
3650bus_generic_print_child(device_t dev, device_t child)
3651{
3652	int	retval = 0;
3653
3654	retval += bus_print_child_header(dev, child);
3655	retval += bus_print_child_footer(dev, child);
3656
3657	return (retval);
3658}
3659
3660/**
3661 * @brief Stub function for implementing BUS_READ_IVAR().
3662 *
3663 * @returns ENOENT
3664 */
3665int
3666bus_generic_read_ivar(device_t dev, device_t child, int index,
3667    uintptr_t * result)
3668{
3669	return (ENOENT);
3670}
3671
3672/**
3673 * @brief Stub function for implementing BUS_WRITE_IVAR().
3674 *
3675 * @returns ENOENT
3676 */
3677int
3678bus_generic_write_ivar(device_t dev, device_t child, int index,
3679    uintptr_t value)
3680{
3681	return (ENOENT);
3682}
3683
3684/**
3685 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3686 *
3687 * @returns NULL
3688 */
3689struct resource_list *
3690bus_generic_get_resource_list(device_t dev, device_t child)
3691{
3692	return (NULL);
3693}
3694
3695/**
3696 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3697 *
3698 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3699 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3700 * and then calls device_probe_and_attach() for each unattached child.
3701 */
3702void
3703bus_generic_driver_added(device_t dev, driver_t *driver)
3704{
3705	device_t child;
3706
3707	DEVICE_IDENTIFY(driver, dev);
3708	TAILQ_FOREACH(child, &dev->children, link) {
3709		if (child->state == DS_NOTPRESENT ||
3710		    (child->flags & DF_REBID))
3711			device_probe_and_attach(child);
3712	}
3713}
3714
3715/**
3716 * @brief Helper function for implementing BUS_NEW_PASS().
3717 *
3718 * This implementing of BUS_NEW_PASS() first calls the identify
3719 * routines for any drivers that probe at the current pass.  Then it
3720 * walks the list of devices for this bus.  If a device is already
3721 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3722 * device is not already attached, it attempts to attach a driver to
3723 * it.
3724 */
3725void
3726bus_generic_new_pass(device_t dev)
3727{
3728	driverlink_t dl;
3729	devclass_t dc;
3730	device_t child;
3731
3732	dc = dev->devclass;
3733	TAILQ_FOREACH(dl, &dc->drivers, link) {
3734		if (dl->pass == bus_current_pass)
3735			DEVICE_IDENTIFY(dl->driver, dev);
3736	}
3737	TAILQ_FOREACH(child, &dev->children, link) {
3738		if (child->state >= DS_ATTACHED)
3739			BUS_NEW_PASS(child);
3740		else if (child->state == DS_NOTPRESENT)
3741			device_probe_and_attach(child);
3742	}
3743}
3744
3745/**
3746 * @brief Helper function for implementing BUS_SETUP_INTR().
3747 *
3748 * This simple implementation of BUS_SETUP_INTR() simply calls the
3749 * BUS_SETUP_INTR() method of the parent of @p dev.
3750 */
3751int
3752bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3753    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3754    void **cookiep)
3755{
3756	/* Propagate up the bus hierarchy until someone handles it. */
3757	if (dev->parent)
3758		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3759		    filter, intr, arg, cookiep));
3760	return (EINVAL);
3761}
3762
3763/**
3764 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3765 *
3766 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3767 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3768 */
3769int
3770bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3771    void *cookie)
3772{
3773	/* Propagate up the bus hierarchy until someone handles it. */
3774	if (dev->parent)
3775		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3776	return (EINVAL);
3777}
3778
3779/**
3780 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3781 *
3782 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3783 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3784 */
3785int
3786bus_generic_adjust_resource(device_t dev, device_t child, int type,
3787    struct resource *r, u_long start, u_long end)
3788{
3789	/* Propagate up the bus hierarchy until someone handles it. */
3790	if (dev->parent)
3791		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3792		    end));
3793	return (EINVAL);
3794}
3795
3796/**
3797 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3798 *
3799 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3800 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3801 */
3802struct resource *
3803bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3804    u_long start, u_long end, u_long count, u_int flags)
3805{
3806	/* Propagate up the bus hierarchy until someone handles it. */
3807	if (dev->parent)
3808		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3809		    start, end, count, flags));
3810	return (NULL);
3811}
3812
3813/**
3814 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3815 *
3816 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3817 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3818 */
3819int
3820bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3821    struct resource *r)
3822{
3823	/* Propagate up the bus hierarchy until someone handles it. */
3824	if (dev->parent)
3825		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3826		    r));
3827	return (EINVAL);
3828}
3829
3830/**
3831 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3832 *
3833 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3834 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3835 */
3836int
3837bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3838    struct resource *r)
3839{
3840	/* Propagate up the bus hierarchy until someone handles it. */
3841	if (dev->parent)
3842		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3843		    r));
3844	return (EINVAL);
3845}
3846
3847/**
3848 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3849 *
3850 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3851 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3852 */
3853int
3854bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3855    int rid, struct resource *r)
3856{
3857	/* Propagate up the bus hierarchy until someone handles it. */
3858	if (dev->parent)
3859		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3860		    r));
3861	return (EINVAL);
3862}
3863
3864/**
3865 * @brief Helper function for implementing BUS_BIND_INTR().
3866 *
3867 * This simple implementation of BUS_BIND_INTR() simply calls the
3868 * BUS_BIND_INTR() method of the parent of @p dev.
3869 */
3870int
3871bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3872    int cpu)
3873{
3874
3875	/* Propagate up the bus hierarchy until someone handles it. */
3876	if (dev->parent)
3877		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3878	return (EINVAL);
3879}
3880
3881/**
3882 * @brief Helper function for implementing BUS_CONFIG_INTR().
3883 *
3884 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3885 * BUS_CONFIG_INTR() method of the parent of @p dev.
3886 */
3887int
3888bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3889    enum intr_polarity pol)
3890{
3891
3892	/* Propagate up the bus hierarchy until someone handles it. */
3893	if (dev->parent)
3894		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3895	return (EINVAL);
3896}
3897
3898/**
3899 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3900 *
3901 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3902 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3903 */
3904int
3905bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3906    void *cookie, const char *descr)
3907{
3908
3909	/* Propagate up the bus hierarchy until someone handles it. */
3910	if (dev->parent)
3911		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3912		    descr));
3913	return (EINVAL);
3914}
3915
3916/**
3917 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3918 *
3919 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3920 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3921 */
3922bus_dma_tag_t
3923bus_generic_get_dma_tag(device_t dev, device_t child)
3924{
3925
3926	/* Propagate up the bus hierarchy until someone handles it. */
3927	if (dev->parent != NULL)
3928		return (BUS_GET_DMA_TAG(dev->parent, child));
3929	return (NULL);
3930}
3931
3932/**
3933 * @brief Helper function for implementing BUS_GET_RESOURCE().
3934 *
3935 * This implementation of BUS_GET_RESOURCE() uses the
3936 * resource_list_find() function to do most of the work. It calls
3937 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3938 * search.
3939 */
3940int
3941bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3942    u_long *startp, u_long *countp)
3943{
3944	struct resource_list *		rl = NULL;
3945	struct resource_list_entry *	rle = NULL;
3946
3947	rl = BUS_GET_RESOURCE_LIST(dev, child);
3948	if (!rl)
3949		return (EINVAL);
3950
3951	rle = resource_list_find(rl, type, rid);
3952	if (!rle)
3953		return (ENOENT);
3954
3955	if (startp)
3956		*startp = rle->start;
3957	if (countp)
3958		*countp = rle->count;
3959
3960	return (0);
3961}
3962
3963/**
3964 * @brief Helper function for implementing BUS_SET_RESOURCE().
3965 *
3966 * This implementation of BUS_SET_RESOURCE() uses the
3967 * resource_list_add() function to do most of the work. It calls
3968 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3969 * edit.
3970 */
3971int
3972bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3973    u_long start, u_long count)
3974{
3975	struct resource_list *		rl = NULL;
3976
3977	rl = BUS_GET_RESOURCE_LIST(dev, child);
3978	if (!rl)
3979		return (EINVAL);
3980
3981	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3982
3983	return (0);
3984}
3985
3986/**
3987 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3988 *
3989 * This implementation of BUS_DELETE_RESOURCE() uses the
3990 * resource_list_delete() function to do most of the work. It calls
3991 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3992 * edit.
3993 */
3994void
3995bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3996{
3997	struct resource_list *		rl = NULL;
3998
3999	rl = BUS_GET_RESOURCE_LIST(dev, child);
4000	if (!rl)
4001		return;
4002
4003	resource_list_delete(rl, type, rid);
4004
4005	return;
4006}
4007
4008/**
4009 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4010 *
4011 * This implementation of BUS_RELEASE_RESOURCE() uses the
4012 * resource_list_release() function to do most of the work. It calls
4013 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4014 */
4015int
4016bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4017    int rid, struct resource *r)
4018{
4019	struct resource_list *		rl = NULL;
4020
4021	if (device_get_parent(child) != dev)
4022		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4023		    type, rid, r));
4024
4025	rl = BUS_GET_RESOURCE_LIST(dev, child);
4026	if (!rl)
4027		return (EINVAL);
4028
4029	return (resource_list_release(rl, dev, child, type, rid, r));
4030}
4031
4032/**
4033 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4034 *
4035 * This implementation of BUS_ALLOC_RESOURCE() uses the
4036 * resource_list_alloc() function to do most of the work. It calls
4037 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4038 */
4039struct resource *
4040bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4041    int *rid, u_long start, u_long end, u_long count, u_int flags)
4042{
4043	struct resource_list *		rl = NULL;
4044
4045	if (device_get_parent(child) != dev)
4046		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4047		    type, rid, start, end, count, flags));
4048
4049	rl = BUS_GET_RESOURCE_LIST(dev, child);
4050	if (!rl)
4051		return (NULL);
4052
4053	return (resource_list_alloc(rl, dev, child, type, rid,
4054	    start, end, count, flags));
4055}
4056
4057/**
4058 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4059 *
4060 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4061 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4062 */
4063int
4064bus_generic_child_present(device_t dev, device_t child)
4065{
4066	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4067}
4068
4069/*
4070 * Some convenience functions to make it easier for drivers to use the
4071 * resource-management functions.  All these really do is hide the
4072 * indirection through the parent's method table, making for slightly
4073 * less-wordy code.  In the future, it might make sense for this code
4074 * to maintain some sort of a list of resources allocated by each device.
4075 */
4076
4077int
4078bus_alloc_resources(device_t dev, struct resource_spec *rs,
4079    struct resource **res)
4080{
4081	int i;
4082
4083	for (i = 0; rs[i].type != -1; i++)
4084		res[i] = NULL;
4085	for (i = 0; rs[i].type != -1; i++) {
4086		res[i] = bus_alloc_resource_any(dev,
4087		    rs[i].type, &rs[i].rid, rs[i].flags);
4088		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4089			bus_release_resources(dev, rs, res);
4090			return (ENXIO);
4091		}
4092	}
4093	return (0);
4094}
4095
4096void
4097bus_release_resources(device_t dev, const struct resource_spec *rs,
4098    struct resource **res)
4099{
4100	int i;
4101
4102	for (i = 0; rs[i].type != -1; i++)
4103		if (res[i] != NULL) {
4104			bus_release_resource(
4105			    dev, rs[i].type, rs[i].rid, res[i]);
4106			res[i] = NULL;
4107		}
4108}
4109
4110/**
4111 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4112 *
4113 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4114 * parent of @p dev.
4115 */
4116struct resource *
4117bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4118    u_long count, u_int flags)
4119{
4120	if (dev->parent == NULL)
4121		return (NULL);
4122	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4123	    count, flags));
4124}
4125
4126/**
4127 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4128 *
4129 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4130 * parent of @p dev.
4131 */
4132int
4133bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4134    u_long end)
4135{
4136	if (dev->parent == NULL)
4137		return (EINVAL);
4138	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4139}
4140
4141/**
4142 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4143 *
4144 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4145 * parent of @p dev.
4146 */
4147int
4148bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4149{
4150	if (dev->parent == NULL)
4151		return (EINVAL);
4152	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4153}
4154
4155/**
4156 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4157 *
4158 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4159 * parent of @p dev.
4160 */
4161int
4162bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4163{
4164	if (dev->parent == NULL)
4165		return (EINVAL);
4166	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4167}
4168
4169/**
4170 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4171 *
4172 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4173 * parent of @p dev.
4174 */
4175int
4176bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4177{
4178	if (dev->parent == NULL)
4179		return (EINVAL);
4180	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4181}
4182
4183/**
4184 * @brief Wrapper function for BUS_SETUP_INTR().
4185 *
4186 * This function simply calls the BUS_SETUP_INTR() method of the
4187 * parent of @p dev.
4188 */
4189int
4190bus_setup_intr(device_t dev, struct resource *r, int flags,
4191    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4192{
4193	int error;
4194
4195	if (dev->parent == NULL)
4196		return (EINVAL);
4197	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4198	    arg, cookiep);
4199	if (error != 0)
4200		return (error);
4201	if (handler != NULL && !(flags & INTR_MPSAFE))
4202		device_printf(dev, "[GIANT-LOCKED]\n");
4203	return (0);
4204}
4205
4206/**
4207 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4208 *
4209 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4210 * parent of @p dev.
4211 */
4212int
4213bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4214{
4215	if (dev->parent == NULL)
4216		return (EINVAL);
4217	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4218}
4219
4220/**
4221 * @brief Wrapper function for BUS_BIND_INTR().
4222 *
4223 * This function simply calls the BUS_BIND_INTR() method of the
4224 * parent of @p dev.
4225 */
4226int
4227bus_bind_intr(device_t dev, struct resource *r, int cpu)
4228{
4229	if (dev->parent == NULL)
4230		return (EINVAL);
4231	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4232}
4233
4234/**
4235 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4236 *
4237 * This function first formats the requested description into a
4238 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4239 * the parent of @p dev.
4240 */
4241int
4242bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4243    const char *fmt, ...)
4244{
4245	va_list ap;
4246	char descr[MAXCOMLEN + 1];
4247
4248	if (dev->parent == NULL)
4249		return (EINVAL);
4250	va_start(ap, fmt);
4251	vsnprintf(descr, sizeof(descr), fmt, ap);
4252	va_end(ap);
4253	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4254}
4255
4256/**
4257 * @brief Wrapper function for BUS_SET_RESOURCE().
4258 *
4259 * This function simply calls the BUS_SET_RESOURCE() method of the
4260 * parent of @p dev.
4261 */
4262int
4263bus_set_resource(device_t dev, int type, int rid,
4264    u_long start, u_long count)
4265{
4266	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4267	    start, count));
4268}
4269
4270/**
4271 * @brief Wrapper function for BUS_GET_RESOURCE().
4272 *
4273 * This function simply calls the BUS_GET_RESOURCE() method of the
4274 * parent of @p dev.
4275 */
4276int
4277bus_get_resource(device_t dev, int type, int rid,
4278    u_long *startp, u_long *countp)
4279{
4280	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4281	    startp, countp));
4282}
4283
4284/**
4285 * @brief Wrapper function for BUS_GET_RESOURCE().
4286 *
4287 * This function simply calls the BUS_GET_RESOURCE() method of the
4288 * parent of @p dev and returns the start value.
4289 */
4290u_long
4291bus_get_resource_start(device_t dev, int type, int rid)
4292{
4293	u_long start, count;
4294	int error;
4295
4296	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4297	    &start, &count);
4298	if (error)
4299		return (0);
4300	return (start);
4301}
4302
4303/**
4304 * @brief Wrapper function for BUS_GET_RESOURCE().
4305 *
4306 * This function simply calls the BUS_GET_RESOURCE() method of the
4307 * parent of @p dev and returns the count value.
4308 */
4309u_long
4310bus_get_resource_count(device_t dev, int type, int rid)
4311{
4312	u_long start, count;
4313	int error;
4314
4315	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4316	    &start, &count);
4317	if (error)
4318		return (0);
4319	return (count);
4320}
4321
4322/**
4323 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4324 *
4325 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4326 * parent of @p dev.
4327 */
4328void
4329bus_delete_resource(device_t dev, int type, int rid)
4330{
4331	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4332}
4333
4334/**
4335 * @brief Wrapper function for BUS_CHILD_PRESENT().
4336 *
4337 * This function simply calls the BUS_CHILD_PRESENT() method of the
4338 * parent of @p dev.
4339 */
4340int
4341bus_child_present(device_t child)
4342{
4343	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4344}
4345
4346/**
4347 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4348 *
4349 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4350 * parent of @p dev.
4351 */
4352int
4353bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4354{
4355	device_t parent;
4356
4357	parent = device_get_parent(child);
4358	if (parent == NULL) {
4359		*buf = '\0';
4360		return (0);
4361	}
4362	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4363}
4364
4365/**
4366 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4367 *
4368 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4369 * parent of @p dev.
4370 */
4371int
4372bus_child_location_str(device_t child, char *buf, size_t buflen)
4373{
4374	device_t parent;
4375
4376	parent = device_get_parent(child);
4377	if (parent == NULL) {
4378		*buf = '\0';
4379		return (0);
4380	}
4381	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4382}
4383
4384/**
4385 * @brief Wrapper function for BUS_GET_DMA_TAG().
4386 *
4387 * This function simply calls the BUS_GET_DMA_TAG() method of the
4388 * parent of @p dev.
4389 */
4390bus_dma_tag_t
4391bus_get_dma_tag(device_t dev)
4392{
4393	device_t parent;
4394
4395	parent = device_get_parent(dev);
4396	if (parent == NULL)
4397		return (NULL);
4398	return (BUS_GET_DMA_TAG(parent, dev));
4399}
4400
4401/* Resume all devices and then notify userland that we're up again. */
4402static int
4403root_resume(device_t dev)
4404{
4405	int error;
4406
4407	error = bus_generic_resume(dev);
4408	if (error == 0)
4409		devctl_notify("kern", "power", "resume", NULL);
4410	return (error);
4411}
4412
4413static int
4414root_print_child(device_t dev, device_t child)
4415{
4416	int	retval = 0;
4417
4418	retval += bus_print_child_header(dev, child);
4419	retval += printf("\n");
4420
4421	return (retval);
4422}
4423
4424static int
4425root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4426    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4427{
4428	/*
4429	 * If an interrupt mapping gets to here something bad has happened.
4430	 */
4431	panic("root_setup_intr");
4432}
4433
4434/*
4435 * If we get here, assume that the device is permanant and really is
4436 * present in the system.  Removable bus drivers are expected to intercept
4437 * this call long before it gets here.  We return -1 so that drivers that
4438 * really care can check vs -1 or some ERRNO returned higher in the food
4439 * chain.
4440 */
4441static int
4442root_child_present(device_t dev, device_t child)
4443{
4444	return (-1);
4445}
4446
4447static kobj_method_t root_methods[] = {
4448	/* Device interface */
4449	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4450	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4451	KOBJMETHOD(device_resume,	root_resume),
4452
4453	/* Bus interface */
4454	KOBJMETHOD(bus_print_child,	root_print_child),
4455	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4456	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4457	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4458	KOBJMETHOD(bus_child_present,	root_child_present),
4459
4460	KOBJMETHOD_END
4461};
4462
4463static driver_t root_driver = {
4464	"root",
4465	root_methods,
4466	1,			/* no softc */
4467};
4468
4469device_t	root_bus;
4470devclass_t	root_devclass;
4471
4472static int
4473root_bus_module_handler(module_t mod, int what, void* arg)
4474{
4475	switch (what) {
4476	case MOD_LOAD:
4477		TAILQ_INIT(&bus_data_devices);
4478		kobj_class_compile((kobj_class_t) &root_driver);
4479		root_bus = make_device(NULL, "root", 0);
4480		root_bus->desc = "System root bus";
4481		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4482		root_bus->driver = &root_driver;
4483		root_bus->state = DS_ATTACHED;
4484		root_devclass = devclass_find_internal("root", NULL, FALSE);
4485		devinit();
4486		return (0);
4487
4488	case MOD_SHUTDOWN:
4489		device_shutdown(root_bus);
4490		return (0);
4491	default:
4492		return (EOPNOTSUPP);
4493	}
4494
4495	return (0);
4496}
4497
4498static moduledata_t root_bus_mod = {
4499	"rootbus",
4500	root_bus_module_handler,
4501	NULL
4502};
4503DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4504
4505/**
4506 * @brief Automatically configure devices
4507 *
4508 * This function begins the autoconfiguration process by calling
4509 * device_probe_and_attach() for each child of the @c root0 device.
4510 */
4511void
4512root_bus_configure(void)
4513{
4514
4515	PDEBUG(("."));
4516
4517	/* Eventually this will be split up, but this is sufficient for now. */
4518	bus_set_pass(BUS_PASS_DEFAULT);
4519}
4520
4521/**
4522 * @brief Module handler for registering device drivers
4523 *
4524 * This module handler is used to automatically register device
4525 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4526 * devclass_add_driver() for the driver described by the
4527 * driver_module_data structure pointed to by @p arg
4528 */
4529int
4530driver_module_handler(module_t mod, int what, void *arg)
4531{
4532	struct driver_module_data *dmd;
4533	devclass_t bus_devclass;
4534	kobj_class_t driver;
4535	int error, pass;
4536
4537	dmd = (struct driver_module_data *)arg;
4538	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4539	error = 0;
4540
4541	switch (what) {
4542	case MOD_LOAD:
4543		if (dmd->dmd_chainevh)
4544			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4545
4546		pass = dmd->dmd_pass;
4547		driver = dmd->dmd_driver;
4548		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4549		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4550		error = devclass_add_driver(bus_devclass, driver, pass,
4551		    dmd->dmd_devclass);
4552		break;
4553
4554	case MOD_UNLOAD:
4555		PDEBUG(("Unloading module: driver %s from bus %s",
4556		    DRIVERNAME(dmd->dmd_driver),
4557		    dmd->dmd_busname));
4558		error = devclass_delete_driver(bus_devclass,
4559		    dmd->dmd_driver);
4560
4561		if (!error && dmd->dmd_chainevh)
4562			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4563		break;
4564	case MOD_QUIESCE:
4565		PDEBUG(("Quiesce module: driver %s from bus %s",
4566		    DRIVERNAME(dmd->dmd_driver),
4567		    dmd->dmd_busname));
4568		error = devclass_quiesce_driver(bus_devclass,
4569		    dmd->dmd_driver);
4570
4571		if (!error && dmd->dmd_chainevh)
4572			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4573		break;
4574	default:
4575		error = EOPNOTSUPP;
4576		break;
4577	}
4578
4579	return (error);
4580}
4581
4582/**
4583 * @brief Enumerate all hinted devices for this bus.
4584 *
4585 * Walks through the hints for this bus and calls the bus_hinted_child
4586 * routine for each one it fines.  It searches first for the specific
4587 * bus that's being probed for hinted children (eg isa0), and then for
4588 * generic children (eg isa).
4589 *
4590 * @param	dev	bus device to enumerate
4591 */
4592void
4593bus_enumerate_hinted_children(device_t bus)
4594{
4595	int i;
4596	const char *dname, *busname;
4597	int dunit;
4598
4599	/*
4600	 * enumerate all devices on the specific bus
4601	 */
4602	busname = device_get_nameunit(bus);
4603	i = 0;
4604	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4605		BUS_HINTED_CHILD(bus, dname, dunit);
4606
4607	/*
4608	 * and all the generic ones.
4609	 */
4610	busname = device_get_name(bus);
4611	i = 0;
4612	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4613		BUS_HINTED_CHILD(bus, dname, dunit);
4614}
4615
4616#ifdef BUS_DEBUG
4617
4618/* the _short versions avoid iteration by not calling anything that prints
4619 * more than oneliners. I love oneliners.
4620 */
4621
4622static void
4623print_device_short(device_t dev, int indent)
4624{
4625	if (!dev)
4626		return;
4627
4628	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4629	    dev->unit, dev->desc,
4630	    (dev->parent? "":"no "),
4631	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4632	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4633	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4634	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4635	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4636	    (dev->flags&DF_REBID? "rebiddable,":""),
4637	    (dev->ivars? "":"no "),
4638	    (dev->softc? "":"no "),
4639	    dev->busy));
4640}
4641
4642static void
4643print_device(device_t dev, int indent)
4644{
4645	if (!dev)
4646		return;
4647
4648	print_device_short(dev, indent);
4649
4650	indentprintf(("Parent:\n"));
4651	print_device_short(dev->parent, indent+1);
4652	indentprintf(("Driver:\n"));
4653	print_driver_short(dev->driver, indent+1);
4654	indentprintf(("Devclass:\n"));
4655	print_devclass_short(dev->devclass, indent+1);
4656}
4657
4658void
4659print_device_tree_short(device_t dev, int indent)
4660/* print the device and all its children (indented) */
4661{
4662	device_t child;
4663
4664	if (!dev)
4665		return;
4666
4667	print_device_short(dev, indent);
4668
4669	TAILQ_FOREACH(child, &dev->children, link) {
4670		print_device_tree_short(child, indent+1);
4671	}
4672}
4673
4674void
4675print_device_tree(device_t dev, int indent)
4676/* print the device and all its children (indented) */
4677{
4678	device_t child;
4679
4680	if (!dev)
4681		return;
4682
4683	print_device(dev, indent);
4684
4685	TAILQ_FOREACH(child, &dev->children, link) {
4686		print_device_tree(child, indent+1);
4687	}
4688}
4689
4690static void
4691print_driver_short(driver_t *driver, int indent)
4692{
4693	if (!driver)
4694		return;
4695
4696	indentprintf(("driver %s: softc size = %zd\n",
4697	    driver->name, driver->size));
4698}
4699
4700static void
4701print_driver(driver_t *driver, int indent)
4702{
4703	if (!driver)
4704		return;
4705
4706	print_driver_short(driver, indent);
4707}
4708
4709static void
4710print_driver_list(driver_list_t drivers, int indent)
4711{
4712	driverlink_t driver;
4713
4714	TAILQ_FOREACH(driver, &drivers, link) {
4715		print_driver(driver->driver, indent);
4716	}
4717}
4718
4719static void
4720print_devclass_short(devclass_t dc, int indent)
4721{
4722	if ( !dc )
4723		return;
4724
4725	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4726}
4727
4728static void
4729print_devclass(devclass_t dc, int indent)
4730{
4731	int i;
4732
4733	if ( !dc )
4734		return;
4735
4736	print_devclass_short(dc, indent);
4737	indentprintf(("Drivers:\n"));
4738	print_driver_list(dc->drivers, indent+1);
4739
4740	indentprintf(("Devices:\n"));
4741	for (i = 0; i < dc->maxunit; i++)
4742		if (dc->devices[i])
4743			print_device(dc->devices[i], indent+1);
4744}
4745
4746void
4747print_devclass_list_short(void)
4748{
4749	devclass_t dc;
4750
4751	printf("Short listing of devclasses, drivers & devices:\n");
4752	TAILQ_FOREACH(dc, &devclasses, link) {
4753		print_devclass_short(dc, 0);
4754	}
4755}
4756
4757void
4758print_devclass_list(void)
4759{
4760	devclass_t dc;
4761
4762	printf("Full listing of devclasses, drivers & devices:\n");
4763	TAILQ_FOREACH(dc, &devclasses, link) {
4764		print_devclass(dc, 0);
4765	}
4766}
4767
4768#endif
4769
4770/*
4771 * User-space access to the device tree.
4772 *
4773 * We implement a small set of nodes:
4774 *
4775 * hw.bus			Single integer read method to obtain the
4776 *				current generation count.
4777 * hw.bus.devices		Reads the entire device tree in flat space.
4778 * hw.bus.rman			Resource manager interface
4779 *
4780 * We might like to add the ability to scan devclasses and/or drivers to
4781 * determine what else is currently loaded/available.
4782 */
4783
4784static int
4785sysctl_bus(SYSCTL_HANDLER_ARGS)
4786{
4787	struct u_businfo	ubus;
4788
4789	ubus.ub_version = BUS_USER_VERSION;
4790	ubus.ub_generation = bus_data_generation;
4791
4792	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4793}
4794SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4795    "bus-related data");
4796
4797static int
4798sysctl_devices(SYSCTL_HANDLER_ARGS)
4799{
4800	int			*name = (int *)arg1;
4801	u_int			namelen = arg2;
4802	int			index;
4803	struct device		*dev;
4804	struct u_device		udev;	/* XXX this is a bit big */
4805	int			error;
4806
4807	if (namelen != 2)
4808		return (EINVAL);
4809
4810	if (bus_data_generation_check(name[0]))
4811		return (EINVAL);
4812
4813	index = name[1];
4814
4815	/*
4816	 * Scan the list of devices, looking for the requested index.
4817	 */
4818	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4819		if (index-- == 0)
4820			break;
4821	}
4822	if (dev == NULL)
4823		return (ENOENT);
4824
4825	/*
4826	 * Populate the return array.
4827	 */
4828	bzero(&udev, sizeof(udev));
4829	udev.dv_handle = (uintptr_t)dev;
4830	udev.dv_parent = (uintptr_t)dev->parent;
4831	if (dev->nameunit != NULL)
4832		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4833	if (dev->desc != NULL)
4834		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4835	if (dev->driver != NULL && dev->driver->name != NULL)
4836		strlcpy(udev.dv_drivername, dev->driver->name,
4837		    sizeof(udev.dv_drivername));
4838	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4839	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4840	udev.dv_devflags = dev->devflags;
4841	udev.dv_flags = dev->flags;
4842	udev.dv_state = dev->state;
4843	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4844	return (error);
4845}
4846
4847SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4848    "system device tree");
4849
4850int
4851bus_data_generation_check(int generation)
4852{
4853	if (generation != bus_data_generation)
4854		return (1);
4855
4856	/* XXX generate optimised lists here? */
4857	return (0);
4858}
4859
4860void
4861bus_data_generation_update(void)
4862{
4863	bus_data_generation++;
4864}
4865
4866int
4867bus_free_resource(device_t dev, int type, struct resource *r)
4868{
4869	if (r == NULL)
4870		return (0);
4871	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4872}
4873