subr_bus.c revision 263754
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 263754 2014-03-25 23:19:45Z mjg $");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/uio.h>
55#include <sys/bus.h>
56#include <sys/interrupt.h>
57
58#include <net/vnet.h>
59
60#include <machine/cpu.h>
61#include <machine/stdarg.h>
62
63#include <vm/uma.h>
64
65SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
66SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
67
68/*
69 * Used to attach drivers to devclasses.
70 */
71typedef struct driverlink *driverlink_t;
72struct driverlink {
73	kobj_class_t	driver;
74	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
75	int		pass;
76	TAILQ_ENTRY(driverlink) passlink;
77};
78
79/*
80 * Forward declarations
81 */
82typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
83typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
84typedef TAILQ_HEAD(device_list, device) device_list_t;
85
86struct devclass {
87	TAILQ_ENTRY(devclass) link;
88	devclass_t	parent;		/* parent in devclass hierarchy */
89	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
90	char		*name;
91	device_t	*devices;	/* array of devices indexed by unit */
92	int		maxunit;	/* size of devices array */
93	int		flags;
94#define DC_HAS_CHILDREN		1
95
96	struct sysctl_ctx_list sysctl_ctx;
97	struct sysctl_oid *sysctl_tree;
98};
99
100/**
101 * @brief Implementation of device.
102 */
103struct device {
104	/*
105	 * A device is a kernel object. The first field must be the
106	 * current ops table for the object.
107	 */
108	KOBJ_FIELDS;
109
110	/*
111	 * Device hierarchy.
112	 */
113	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
114	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
115	device_t	parent;		/**< parent of this device  */
116	device_list_t	children;	/**< list of child devices */
117
118	/*
119	 * Details of this device.
120	 */
121	driver_t	*driver;	/**< current driver */
122	devclass_t	devclass;	/**< current device class */
123	int		unit;		/**< current unit number */
124	char*		nameunit;	/**< name+unit e.g. foodev0 */
125	char*		desc;		/**< driver specific description */
126	int		busy;		/**< count of calls to device_busy() */
127	device_state_t	state;		/**< current device state  */
128	uint32_t	devflags;	/**< api level flags for device_get_flags() */
129	u_int		flags;		/**< internal device flags  */
130#define	DF_ENABLED	0x01		/* device should be probed/attached */
131#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
132#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
133#define	DF_DESCMALLOCED	0x08		/* description was malloced */
134#define	DF_QUIET	0x10		/* don't print verbose attach message */
135#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
136#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
137#define	DF_REBID	0x80		/* Can rebid after attach */
138	u_int	order;			/**< order from device_add_child_ordered() */
139	void	*ivars;			/**< instance variables  */
140	void	*softc;			/**< current driver's variables  */
141
142	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
143	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
144};
145
146static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
147static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
148
149#ifdef BUS_DEBUG
150
151static int bus_debug = 1;
152TUNABLE_INT("bus.debug", &bus_debug);
153SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
154    "Debug bus code");
155
156#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
157#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
158#define DRIVERNAME(d)	((d)? d->name : "no driver")
159#define DEVCLANAME(d)	((d)? d->name : "no devclass")
160
161/**
162 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
163 * prevent syslog from deleting initial spaces
164 */
165#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
166
167static void print_device_short(device_t dev, int indent);
168static void print_device(device_t dev, int indent);
169void print_device_tree_short(device_t dev, int indent);
170void print_device_tree(device_t dev, int indent);
171static void print_driver_short(driver_t *driver, int indent);
172static void print_driver(driver_t *driver, int indent);
173static void print_driver_list(driver_list_t drivers, int indent);
174static void print_devclass_short(devclass_t dc, int indent);
175static void print_devclass(devclass_t dc, int indent);
176void print_devclass_list_short(void);
177void print_devclass_list(void);
178
179#else
180/* Make the compiler ignore the function calls */
181#define PDEBUG(a)			/* nop */
182#define DEVICENAME(d)			/* nop */
183#define DRIVERNAME(d)			/* nop */
184#define DEVCLANAME(d)			/* nop */
185
186#define print_device_short(d,i)		/* nop */
187#define print_device(d,i)		/* nop */
188#define print_device_tree_short(d,i)	/* nop */
189#define print_device_tree(d,i)		/* nop */
190#define print_driver_short(d,i)		/* nop */
191#define print_driver(d,i)		/* nop */
192#define print_driver_list(d,i)		/* nop */
193#define print_devclass_short(d,i)	/* nop */
194#define print_devclass(d,i)		/* nop */
195#define print_devclass_list_short()	/* nop */
196#define print_devclass_list()		/* nop */
197#endif
198
199/*
200 * dev sysctl tree
201 */
202
203enum {
204	DEVCLASS_SYSCTL_PARENT,
205};
206
207static int
208devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
209{
210	devclass_t dc = (devclass_t)arg1;
211	const char *value;
212
213	switch (arg2) {
214	case DEVCLASS_SYSCTL_PARENT:
215		value = dc->parent ? dc->parent->name : "";
216		break;
217	default:
218		return (EINVAL);
219	}
220	return (SYSCTL_OUT(req, value, strlen(value)));
221}
222
223static void
224devclass_sysctl_init(devclass_t dc)
225{
226
227	if (dc->sysctl_tree != NULL)
228		return;
229	sysctl_ctx_init(&dc->sysctl_ctx);
230	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
231	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
232	    CTLFLAG_RD, NULL, "");
233	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
234	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
235	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
236	    "parent class");
237}
238
239enum {
240	DEVICE_SYSCTL_DESC,
241	DEVICE_SYSCTL_DRIVER,
242	DEVICE_SYSCTL_LOCATION,
243	DEVICE_SYSCTL_PNPINFO,
244	DEVICE_SYSCTL_PARENT,
245};
246
247static int
248device_sysctl_handler(SYSCTL_HANDLER_ARGS)
249{
250	device_t dev = (device_t)arg1;
251	const char *value;
252	char *buf;
253	int error;
254
255	buf = NULL;
256	switch (arg2) {
257	case DEVICE_SYSCTL_DESC:
258		value = dev->desc ? dev->desc : "";
259		break;
260	case DEVICE_SYSCTL_DRIVER:
261		value = dev->driver ? dev->driver->name : "";
262		break;
263	case DEVICE_SYSCTL_LOCATION:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_location_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PNPINFO:
268		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269		bus_child_pnpinfo_str(dev, buf, 1024);
270		break;
271	case DEVICE_SYSCTL_PARENT:
272		value = dev->parent ? dev->parent->nameunit : "";
273		break;
274	default:
275		return (EINVAL);
276	}
277	error = SYSCTL_OUT(req, value, strlen(value));
278	if (buf != NULL)
279		free(buf, M_BUS);
280	return (error);
281}
282
283static void
284device_sysctl_init(device_t dev)
285{
286	devclass_t dc = dev->devclass;
287
288	if (dev->sysctl_tree != NULL)
289		return;
290	devclass_sysctl_init(dc);
291	sysctl_ctx_init(&dev->sysctl_ctx);
292	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
293	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
294	    dev->nameunit + strlen(dc->name),
295	    CTLFLAG_RD, NULL, "");
296	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
298	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
299	    "device description");
300	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
302	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
303	    "device driver name");
304	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
306	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
307	    "device location relative to parent");
308	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
310	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
311	    "device identification");
312	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
314	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
315	    "parent device");
316}
317
318static void
319device_sysctl_update(device_t dev)
320{
321	devclass_t dc = dev->devclass;
322
323	if (dev->sysctl_tree == NULL)
324		return;
325	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
326}
327
328static void
329device_sysctl_fini(device_t dev)
330{
331	if (dev->sysctl_tree == NULL)
332		return;
333	sysctl_ctx_free(&dev->sysctl_ctx);
334	dev->sysctl_tree = NULL;
335}
336
337/*
338 * /dev/devctl implementation
339 */
340
341/*
342 * This design allows only one reader for /dev/devctl.  This is not desirable
343 * in the long run, but will get a lot of hair out of this implementation.
344 * Maybe we should make this device a clonable device.
345 *
346 * Also note: we specifically do not attach a device to the device_t tree
347 * to avoid potential chicken and egg problems.  One could argue that all
348 * of this belongs to the root node.  One could also further argue that the
349 * sysctl interface that we have not might more properly be an ioctl
350 * interface, but at this stage of the game, I'm not inclined to rock that
351 * boat.
352 *
353 * I'm also not sure that the SIGIO support is done correctly or not, as
354 * I copied it from a driver that had SIGIO support that likely hasn't been
355 * tested since 3.4 or 2.2.8!
356 */
357
358#define DEVCTL_DEFAULT_QUEUE_LEN 1000
359static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
360static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
361TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
362SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
363    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
364
365static d_open_t		devopen;
366static d_close_t	devclose;
367static d_read_t		devread;
368static d_ioctl_t	devioctl;
369static d_poll_t		devpoll;
370
371static struct cdevsw dev_cdevsw = {
372	.d_version =	D_VERSION,
373	.d_open =	devopen,
374	.d_close =	devclose,
375	.d_read =	devread,
376	.d_ioctl =	devioctl,
377	.d_poll =	devpoll,
378	.d_name =	"devctl",
379};
380
381struct dev_event_info
382{
383	char *dei_data;
384	TAILQ_ENTRY(dev_event_info) dei_link;
385};
386
387TAILQ_HEAD(devq, dev_event_info);
388
389static struct dev_softc
390{
391	int	inuse;
392	int	nonblock;
393	int	queued;
394	struct mtx mtx;
395	struct cv cv;
396	struct selinfo sel;
397	struct devq devq;
398	struct proc *async_proc;
399} devsoftc;
400
401static struct cdev *devctl_dev;
402
403static void
404devinit(void)
405{
406	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
407	    UID_ROOT, GID_WHEEL, 0600, "devctl");
408	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
409	cv_init(&devsoftc.cv, "dev cv");
410	TAILQ_INIT(&devsoftc.devq);
411}
412
413static int
414devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
415{
416
417	mtx_lock(&devsoftc.mtx);
418	if (devsoftc.inuse) {
419		mtx_unlock(&devsoftc.mtx);
420		return (EBUSY);
421	}
422	/* move to init */
423	devsoftc.inuse = 1;
424	devsoftc.nonblock = 0;
425	devsoftc.async_proc = NULL;
426	mtx_unlock(&devsoftc.mtx);
427	return (0);
428}
429
430static int
431devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
432{
433
434	mtx_lock(&devsoftc.mtx);
435	devsoftc.inuse = 0;
436	devsoftc.async_proc = NULL;
437	cv_broadcast(&devsoftc.cv);
438	mtx_unlock(&devsoftc.mtx);
439	return (0);
440}
441
442/*
443 * The read channel for this device is used to report changes to
444 * userland in realtime.  We are required to free the data as well as
445 * the n1 object because we allocate them separately.  Also note that
446 * we return one record at a time.  If you try to read this device a
447 * character at a time, you will lose the rest of the data.  Listening
448 * programs are expected to cope.
449 */
450static int
451devread(struct cdev *dev, struct uio *uio, int ioflag)
452{
453	struct dev_event_info *n1;
454	int rv;
455
456	mtx_lock(&devsoftc.mtx);
457	while (TAILQ_EMPTY(&devsoftc.devq)) {
458		if (devsoftc.nonblock) {
459			mtx_unlock(&devsoftc.mtx);
460			return (EAGAIN);
461		}
462		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
463		if (rv) {
464			/*
465			 * Need to translate ERESTART to EINTR here? -- jake
466			 */
467			mtx_unlock(&devsoftc.mtx);
468			return (rv);
469		}
470	}
471	n1 = TAILQ_FIRST(&devsoftc.devq);
472	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
473	devsoftc.queued--;
474	mtx_unlock(&devsoftc.mtx);
475	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
476	free(n1->dei_data, M_BUS);
477	free(n1, M_BUS);
478	return (rv);
479}
480
481static	int
482devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
483{
484	switch (cmd) {
485
486	case FIONBIO:
487		if (*(int*)data)
488			devsoftc.nonblock = 1;
489		else
490			devsoftc.nonblock = 0;
491		return (0);
492	case FIOASYNC:
493		if (*(int*)data)
494			devsoftc.async_proc = td->td_proc;
495		else
496			devsoftc.async_proc = NULL;
497		return (0);
498
499		/* (un)Support for other fcntl() calls. */
500	case FIOCLEX:
501	case FIONCLEX:
502	case FIONREAD:
503	case FIOSETOWN:
504	case FIOGETOWN:
505	default:
506		break;
507	}
508	return (ENOTTY);
509}
510
511static	int
512devpoll(struct cdev *dev, int events, struct thread *td)
513{
514	int	revents = 0;
515
516	mtx_lock(&devsoftc.mtx);
517	if (events & (POLLIN | POLLRDNORM)) {
518		if (!TAILQ_EMPTY(&devsoftc.devq))
519			revents = events & (POLLIN | POLLRDNORM);
520		else
521			selrecord(td, &devsoftc.sel);
522	}
523	mtx_unlock(&devsoftc.mtx);
524
525	return (revents);
526}
527
528/**
529 * @brief Return whether the userland process is running
530 */
531boolean_t
532devctl_process_running(void)
533{
534	return (devsoftc.inuse == 1);
535}
536
537/**
538 * @brief Queue data to be read from the devctl device
539 *
540 * Generic interface to queue data to the devctl device.  It is
541 * assumed that @p data is properly formatted.  It is further assumed
542 * that @p data is allocated using the M_BUS malloc type.
543 */
544void
545devctl_queue_data_f(char *data, int flags)
546{
547	struct dev_event_info *n1 = NULL, *n2 = NULL;
548	struct proc *p;
549
550	if (strlen(data) == 0)
551		goto out;
552	if (devctl_queue_length == 0)
553		goto out;
554	n1 = malloc(sizeof(*n1), M_BUS, flags);
555	if (n1 == NULL)
556		goto out;
557	n1->dei_data = data;
558	mtx_lock(&devsoftc.mtx);
559	if (devctl_queue_length == 0) {
560		mtx_unlock(&devsoftc.mtx);
561		free(n1->dei_data, M_BUS);
562		free(n1, M_BUS);
563		return;
564	}
565	/* Leave at least one spot in the queue... */
566	while (devsoftc.queued > devctl_queue_length - 1) {
567		n2 = TAILQ_FIRST(&devsoftc.devq);
568		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
569		free(n2->dei_data, M_BUS);
570		free(n2, M_BUS);
571		devsoftc.queued--;
572	}
573	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
574	devsoftc.queued++;
575	cv_broadcast(&devsoftc.cv);
576	mtx_unlock(&devsoftc.mtx);
577	selwakeup(&devsoftc.sel);
578	p = devsoftc.async_proc;
579	if (p != NULL) {
580		PROC_LOCK(p);
581		kern_psignal(p, SIGIO);
582		PROC_UNLOCK(p);
583	}
584	return;
585out:
586	/*
587	 * We have to free data on all error paths since the caller
588	 * assumes it will be free'd when this item is dequeued.
589	 */
590	free(data, M_BUS);
591	return;
592}
593
594void
595devctl_queue_data(char *data)
596{
597
598	devctl_queue_data_f(data, M_NOWAIT);
599}
600
601/**
602 * @brief Send a 'notification' to userland, using standard ways
603 */
604void
605devctl_notify_f(const char *system, const char *subsystem, const char *type,
606    const char *data, int flags)
607{
608	int len = 0;
609	char *msg;
610
611	if (system == NULL)
612		return;		/* BOGUS!  Must specify system. */
613	if (subsystem == NULL)
614		return;		/* BOGUS!  Must specify subsystem. */
615	if (type == NULL)
616		return;		/* BOGUS!  Must specify type. */
617	len += strlen(" system=") + strlen(system);
618	len += strlen(" subsystem=") + strlen(subsystem);
619	len += strlen(" type=") + strlen(type);
620	/* add in the data message plus newline. */
621	if (data != NULL)
622		len += strlen(data);
623	len += 3;	/* '!', '\n', and NUL */
624	msg = malloc(len, M_BUS, flags);
625	if (msg == NULL)
626		return;		/* Drop it on the floor */
627	if (data != NULL)
628		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
629		    system, subsystem, type, data);
630	else
631		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
632		    system, subsystem, type);
633	devctl_queue_data_f(msg, flags);
634}
635
636void
637devctl_notify(const char *system, const char *subsystem, const char *type,
638    const char *data)
639{
640
641	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
642}
643
644/*
645 * Common routine that tries to make sending messages as easy as possible.
646 * We allocate memory for the data, copy strings into that, but do not
647 * free it unless there's an error.  The dequeue part of the driver should
648 * free the data.  We don't send data when queue length is 0.  We do send
649 * data, even when we have no listeners, because we wish to avoid races
650 * relating to startup and restart of listening applications.
651 *
652 * devaddq is designed to string together the type of event, with the
653 * object of that event, plus the plug and play info and location info
654 * for that event.  This is likely most useful for devices, but less
655 * useful for other consumers of this interface.  Those should use
656 * the devctl_queue_data() interface instead.
657 */
658static void
659devaddq(const char *type, const char *what, device_t dev)
660{
661	char *data = NULL;
662	char *loc = NULL;
663	char *pnp = NULL;
664	const char *parstr;
665
666	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
667		return;
668	data = malloc(1024, M_BUS, M_NOWAIT);
669	if (data == NULL)
670		goto bad;
671
672	/* get the bus specific location of this device */
673	loc = malloc(1024, M_BUS, M_NOWAIT);
674	if (loc == NULL)
675		goto bad;
676	*loc = '\0';
677	bus_child_location_str(dev, loc, 1024);
678
679	/* Get the bus specific pnp info of this device */
680	pnp = malloc(1024, M_BUS, M_NOWAIT);
681	if (pnp == NULL)
682		goto bad;
683	*pnp = '\0';
684	bus_child_pnpinfo_str(dev, pnp, 1024);
685
686	/* Get the parent of this device, or / if high enough in the tree. */
687	if (device_get_parent(dev) == NULL)
688		parstr = ".";	/* Or '/' ? */
689	else
690		parstr = device_get_nameunit(device_get_parent(dev));
691	/* String it all together. */
692	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
693	  parstr);
694	free(loc, M_BUS);
695	free(pnp, M_BUS);
696	devctl_queue_data(data);
697	return;
698bad:
699	free(pnp, M_BUS);
700	free(loc, M_BUS);
701	free(data, M_BUS);
702	return;
703}
704
705/*
706 * A device was added to the tree.  We are called just after it successfully
707 * attaches (that is, probe and attach success for this device).  No call
708 * is made if a device is merely parented into the tree.  See devnomatch
709 * if probe fails.  If attach fails, no notification is sent (but maybe
710 * we should have a different message for this).
711 */
712static void
713devadded(device_t dev)
714{
715	devaddq("+", device_get_nameunit(dev), dev);
716}
717
718/*
719 * A device was removed from the tree.  We are called just before this
720 * happens.
721 */
722static void
723devremoved(device_t dev)
724{
725	devaddq("-", device_get_nameunit(dev), dev);
726}
727
728/*
729 * Called when there's no match for this device.  This is only called
730 * the first time that no match happens, so we don't keep getting this
731 * message.  Should that prove to be undesirable, we can change it.
732 * This is called when all drivers that can attach to a given bus
733 * decline to accept this device.  Other errors may not be detected.
734 */
735static void
736devnomatch(device_t dev)
737{
738	devaddq("?", "", dev);
739}
740
741static int
742sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
743{
744	struct dev_event_info *n1;
745	int q, error;
746
747	q = devctl_queue_length;
748	error = sysctl_handle_int(oidp, &q, 0, req);
749	if (error || !req->newptr)
750		return (error);
751	if (q < 0)
752		return (EINVAL);
753	mtx_lock(&devsoftc.mtx);
754	devctl_queue_length = q;
755	while (devsoftc.queued > devctl_queue_length) {
756		n1 = TAILQ_FIRST(&devsoftc.devq);
757		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
758		free(n1->dei_data, M_BUS);
759		free(n1, M_BUS);
760		devsoftc.queued--;
761	}
762	mtx_unlock(&devsoftc.mtx);
763	return (0);
764}
765
766/* End of /dev/devctl code */
767
768static TAILQ_HEAD(,device)	bus_data_devices;
769static int bus_data_generation = 1;
770
771static kobj_method_t null_methods[] = {
772	KOBJMETHOD_END
773};
774
775DEFINE_CLASS(null, null_methods, 0);
776
777/*
778 * Bus pass implementation
779 */
780
781static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
782int bus_current_pass = BUS_PASS_ROOT;
783
784/**
785 * @internal
786 * @brief Register the pass level of a new driver attachment
787 *
788 * Register a new driver attachment's pass level.  If no driver
789 * attachment with the same pass level has been added, then @p new
790 * will be added to the global passes list.
791 *
792 * @param new		the new driver attachment
793 */
794static void
795driver_register_pass(struct driverlink *new)
796{
797	struct driverlink *dl;
798
799	/* We only consider pass numbers during boot. */
800	if (bus_current_pass == BUS_PASS_DEFAULT)
801		return;
802
803	/*
804	 * Walk the passes list.  If we already know about this pass
805	 * then there is nothing to do.  If we don't, then insert this
806	 * driver link into the list.
807	 */
808	TAILQ_FOREACH(dl, &passes, passlink) {
809		if (dl->pass < new->pass)
810			continue;
811		if (dl->pass == new->pass)
812			return;
813		TAILQ_INSERT_BEFORE(dl, new, passlink);
814		return;
815	}
816	TAILQ_INSERT_TAIL(&passes, new, passlink);
817}
818
819/**
820 * @brief Raise the current bus pass
821 *
822 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
823 * method on the root bus to kick off a new device tree scan for each
824 * new pass level that has at least one driver.
825 */
826void
827bus_set_pass(int pass)
828{
829	struct driverlink *dl;
830
831	if (bus_current_pass > pass)
832		panic("Attempt to lower bus pass level");
833
834	TAILQ_FOREACH(dl, &passes, passlink) {
835		/* Skip pass values below the current pass level. */
836		if (dl->pass <= bus_current_pass)
837			continue;
838
839		/*
840		 * Bail once we hit a driver with a pass level that is
841		 * too high.
842		 */
843		if (dl->pass > pass)
844			break;
845
846		/*
847		 * Raise the pass level to the next level and rescan
848		 * the tree.
849		 */
850		bus_current_pass = dl->pass;
851		BUS_NEW_PASS(root_bus);
852	}
853
854	/*
855	 * If there isn't a driver registered for the requested pass,
856	 * then bus_current_pass might still be less than 'pass'.  Set
857	 * it to 'pass' in that case.
858	 */
859	if (bus_current_pass < pass)
860		bus_current_pass = pass;
861	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
862}
863
864/*
865 * Devclass implementation
866 */
867
868static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
869
870/**
871 * @internal
872 * @brief Find or create a device class
873 *
874 * If a device class with the name @p classname exists, return it,
875 * otherwise if @p create is non-zero create and return a new device
876 * class.
877 *
878 * If @p parentname is non-NULL, the parent of the devclass is set to
879 * the devclass of that name.
880 *
881 * @param classname	the devclass name to find or create
882 * @param parentname	the parent devclass name or @c NULL
883 * @param create	non-zero to create a devclass
884 */
885static devclass_t
886devclass_find_internal(const char *classname, const char *parentname,
887		       int create)
888{
889	devclass_t dc;
890
891	PDEBUG(("looking for %s", classname));
892	if (!classname)
893		return (NULL);
894
895	TAILQ_FOREACH(dc, &devclasses, link) {
896		if (!strcmp(dc->name, classname))
897			break;
898	}
899
900	if (create && !dc) {
901		PDEBUG(("creating %s", classname));
902		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
903		    M_BUS, M_NOWAIT | M_ZERO);
904		if (!dc)
905			return (NULL);
906		dc->parent = NULL;
907		dc->name = (char*) (dc + 1);
908		strcpy(dc->name, classname);
909		TAILQ_INIT(&dc->drivers);
910		TAILQ_INSERT_TAIL(&devclasses, dc, link);
911
912		bus_data_generation_update();
913	}
914
915	/*
916	 * If a parent class is specified, then set that as our parent so
917	 * that this devclass will support drivers for the parent class as
918	 * well.  If the parent class has the same name don't do this though
919	 * as it creates a cycle that can trigger an infinite loop in
920	 * device_probe_child() if a device exists for which there is no
921	 * suitable driver.
922	 */
923	if (parentname && dc && !dc->parent &&
924	    strcmp(classname, parentname) != 0) {
925		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
926		dc->parent->flags |= DC_HAS_CHILDREN;
927	}
928
929	return (dc);
930}
931
932/**
933 * @brief Create a device class
934 *
935 * If a device class with the name @p classname exists, return it,
936 * otherwise create and return a new device class.
937 *
938 * @param classname	the devclass name to find or create
939 */
940devclass_t
941devclass_create(const char *classname)
942{
943	return (devclass_find_internal(classname, NULL, TRUE));
944}
945
946/**
947 * @brief Find a device class
948 *
949 * If a device class with the name @p classname exists, return it,
950 * otherwise return @c NULL.
951 *
952 * @param classname	the devclass name to find
953 */
954devclass_t
955devclass_find(const char *classname)
956{
957	return (devclass_find_internal(classname, NULL, FALSE));
958}
959
960/**
961 * @brief Register that a device driver has been added to a devclass
962 *
963 * Register that a device driver has been added to a devclass.  This
964 * is called by devclass_add_driver to accomplish the recursive
965 * notification of all the children classes of dc, as well as dc.
966 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
967 * the devclass.
968 *
969 * We do a full search here of the devclass list at each iteration
970 * level to save storing children-lists in the devclass structure.  If
971 * we ever move beyond a few dozen devices doing this, we may need to
972 * reevaluate...
973 *
974 * @param dc		the devclass to edit
975 * @param driver	the driver that was just added
976 */
977static void
978devclass_driver_added(devclass_t dc, driver_t *driver)
979{
980	devclass_t parent;
981	int i;
982
983	/*
984	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
985	 */
986	for (i = 0; i < dc->maxunit; i++)
987		if (dc->devices[i] && device_is_attached(dc->devices[i]))
988			BUS_DRIVER_ADDED(dc->devices[i], driver);
989
990	/*
991	 * Walk through the children classes.  Since we only keep a
992	 * single parent pointer around, we walk the entire list of
993	 * devclasses looking for children.  We set the
994	 * DC_HAS_CHILDREN flag when a child devclass is created on
995	 * the parent, so we only walk the list for those devclasses
996	 * that have children.
997	 */
998	if (!(dc->flags & DC_HAS_CHILDREN))
999		return;
1000	parent = dc;
1001	TAILQ_FOREACH(dc, &devclasses, link) {
1002		if (dc->parent == parent)
1003			devclass_driver_added(dc, driver);
1004	}
1005}
1006
1007/**
1008 * @brief Add a device driver to a device class
1009 *
1010 * Add a device driver to a devclass. This is normally called
1011 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1012 * all devices in the devclass will be called to allow them to attempt
1013 * to re-probe any unmatched children.
1014 *
1015 * @param dc		the devclass to edit
1016 * @param driver	the driver to register
1017 */
1018int
1019devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1020{
1021	driverlink_t dl;
1022	const char *parentname;
1023
1024	PDEBUG(("%s", DRIVERNAME(driver)));
1025
1026	/* Don't allow invalid pass values. */
1027	if (pass <= BUS_PASS_ROOT)
1028		return (EINVAL);
1029
1030	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1031	if (!dl)
1032		return (ENOMEM);
1033
1034	/*
1035	 * Compile the driver's methods. Also increase the reference count
1036	 * so that the class doesn't get freed when the last instance
1037	 * goes. This means we can safely use static methods and avoids a
1038	 * double-free in devclass_delete_driver.
1039	 */
1040	kobj_class_compile((kobj_class_t) driver);
1041
1042	/*
1043	 * If the driver has any base classes, make the
1044	 * devclass inherit from the devclass of the driver's
1045	 * first base class. This will allow the system to
1046	 * search for drivers in both devclasses for children
1047	 * of a device using this driver.
1048	 */
1049	if (driver->baseclasses)
1050		parentname = driver->baseclasses[0]->name;
1051	else
1052		parentname = NULL;
1053	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1054
1055	dl->driver = driver;
1056	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1057	driver->refs++;		/* XXX: kobj_mtx */
1058	dl->pass = pass;
1059	driver_register_pass(dl);
1060
1061	devclass_driver_added(dc, driver);
1062	bus_data_generation_update();
1063	return (0);
1064}
1065
1066/**
1067 * @brief Register that a device driver has been deleted from a devclass
1068 *
1069 * Register that a device driver has been removed from a devclass.
1070 * This is called by devclass_delete_driver to accomplish the
1071 * recursive notification of all the children classes of busclass, as
1072 * well as busclass.  Each layer will attempt to detach the driver
1073 * from any devices that are children of the bus's devclass.  The function
1074 * will return an error if a device fails to detach.
1075 *
1076 * We do a full search here of the devclass list at each iteration
1077 * level to save storing children-lists in the devclass structure.  If
1078 * we ever move beyond a few dozen devices doing this, we may need to
1079 * reevaluate...
1080 *
1081 * @param busclass	the devclass of the parent bus
1082 * @param dc		the devclass of the driver being deleted
1083 * @param driver	the driver being deleted
1084 */
1085static int
1086devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1087{
1088	devclass_t parent;
1089	device_t dev;
1090	int error, i;
1091
1092	/*
1093	 * Disassociate from any devices.  We iterate through all the
1094	 * devices in the devclass of the driver and detach any which are
1095	 * using the driver and which have a parent in the devclass which
1096	 * we are deleting from.
1097	 *
1098	 * Note that since a driver can be in multiple devclasses, we
1099	 * should not detach devices which are not children of devices in
1100	 * the affected devclass.
1101	 */
1102	for (i = 0; i < dc->maxunit; i++) {
1103		if (dc->devices[i]) {
1104			dev = dc->devices[i];
1105			if (dev->driver == driver && dev->parent &&
1106			    dev->parent->devclass == busclass) {
1107				if ((error = device_detach(dev)) != 0)
1108					return (error);
1109				BUS_PROBE_NOMATCH(dev->parent, dev);
1110				devnomatch(dev);
1111				dev->flags |= DF_DONENOMATCH;
1112			}
1113		}
1114	}
1115
1116	/*
1117	 * Walk through the children classes.  Since we only keep a
1118	 * single parent pointer around, we walk the entire list of
1119	 * devclasses looking for children.  We set the
1120	 * DC_HAS_CHILDREN flag when a child devclass is created on
1121	 * the parent, so we only walk the list for those devclasses
1122	 * that have children.
1123	 */
1124	if (!(busclass->flags & DC_HAS_CHILDREN))
1125		return (0);
1126	parent = busclass;
1127	TAILQ_FOREACH(busclass, &devclasses, link) {
1128		if (busclass->parent == parent) {
1129			error = devclass_driver_deleted(busclass, dc, driver);
1130			if (error)
1131				return (error);
1132		}
1133	}
1134	return (0);
1135}
1136
1137/**
1138 * @brief Delete a device driver from a device class
1139 *
1140 * Delete a device driver from a devclass. This is normally called
1141 * automatically by DRIVER_MODULE().
1142 *
1143 * If the driver is currently attached to any devices,
1144 * devclass_delete_driver() will first attempt to detach from each
1145 * device. If one of the detach calls fails, the driver will not be
1146 * deleted.
1147 *
1148 * @param dc		the devclass to edit
1149 * @param driver	the driver to unregister
1150 */
1151int
1152devclass_delete_driver(devclass_t busclass, driver_t *driver)
1153{
1154	devclass_t dc = devclass_find(driver->name);
1155	driverlink_t dl;
1156	int error;
1157
1158	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1159
1160	if (!dc)
1161		return (0);
1162
1163	/*
1164	 * Find the link structure in the bus' list of drivers.
1165	 */
1166	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1167		if (dl->driver == driver)
1168			break;
1169	}
1170
1171	if (!dl) {
1172		PDEBUG(("%s not found in %s list", driver->name,
1173		    busclass->name));
1174		return (ENOENT);
1175	}
1176
1177	error = devclass_driver_deleted(busclass, dc, driver);
1178	if (error != 0)
1179		return (error);
1180
1181	TAILQ_REMOVE(&busclass->drivers, dl, link);
1182	free(dl, M_BUS);
1183
1184	/* XXX: kobj_mtx */
1185	driver->refs--;
1186	if (driver->refs == 0)
1187		kobj_class_free((kobj_class_t) driver);
1188
1189	bus_data_generation_update();
1190	return (0);
1191}
1192
1193/**
1194 * @brief Quiesces a set of device drivers from a device class
1195 *
1196 * Quiesce a device driver from a devclass. This is normally called
1197 * automatically by DRIVER_MODULE().
1198 *
1199 * If the driver is currently attached to any devices,
1200 * devclass_quiesece_driver() will first attempt to quiesce each
1201 * device.
1202 *
1203 * @param dc		the devclass to edit
1204 * @param driver	the driver to unregister
1205 */
1206static int
1207devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1208{
1209	devclass_t dc = devclass_find(driver->name);
1210	driverlink_t dl;
1211	device_t dev;
1212	int i;
1213	int error;
1214
1215	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1216
1217	if (!dc)
1218		return (0);
1219
1220	/*
1221	 * Find the link structure in the bus' list of drivers.
1222	 */
1223	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1224		if (dl->driver == driver)
1225			break;
1226	}
1227
1228	if (!dl) {
1229		PDEBUG(("%s not found in %s list", driver->name,
1230		    busclass->name));
1231		return (ENOENT);
1232	}
1233
1234	/*
1235	 * Quiesce all devices.  We iterate through all the devices in
1236	 * the devclass of the driver and quiesce any which are using
1237	 * the driver and which have a parent in the devclass which we
1238	 * are quiescing.
1239	 *
1240	 * Note that since a driver can be in multiple devclasses, we
1241	 * should not quiesce devices which are not children of
1242	 * devices in the affected devclass.
1243	 */
1244	for (i = 0; i < dc->maxunit; i++) {
1245		if (dc->devices[i]) {
1246			dev = dc->devices[i];
1247			if (dev->driver == driver && dev->parent &&
1248			    dev->parent->devclass == busclass) {
1249				if ((error = device_quiesce(dev)) != 0)
1250					return (error);
1251			}
1252		}
1253	}
1254
1255	return (0);
1256}
1257
1258/**
1259 * @internal
1260 */
1261static driverlink_t
1262devclass_find_driver_internal(devclass_t dc, const char *classname)
1263{
1264	driverlink_t dl;
1265
1266	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1267
1268	TAILQ_FOREACH(dl, &dc->drivers, link) {
1269		if (!strcmp(dl->driver->name, classname))
1270			return (dl);
1271	}
1272
1273	PDEBUG(("not found"));
1274	return (NULL);
1275}
1276
1277/**
1278 * @brief Return the name of the devclass
1279 */
1280const char *
1281devclass_get_name(devclass_t dc)
1282{
1283	return (dc->name);
1284}
1285
1286/**
1287 * @brief Find a device given a unit number
1288 *
1289 * @param dc		the devclass to search
1290 * @param unit		the unit number to search for
1291 *
1292 * @returns		the device with the given unit number or @c
1293 *			NULL if there is no such device
1294 */
1295device_t
1296devclass_get_device(devclass_t dc, int unit)
1297{
1298	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1299		return (NULL);
1300	return (dc->devices[unit]);
1301}
1302
1303/**
1304 * @brief Find the softc field of a device given a unit number
1305 *
1306 * @param dc		the devclass to search
1307 * @param unit		the unit number to search for
1308 *
1309 * @returns		the softc field of the device with the given
1310 *			unit number or @c NULL if there is no such
1311 *			device
1312 */
1313void *
1314devclass_get_softc(devclass_t dc, int unit)
1315{
1316	device_t dev;
1317
1318	dev = devclass_get_device(dc, unit);
1319	if (!dev)
1320		return (NULL);
1321
1322	return (device_get_softc(dev));
1323}
1324
1325/**
1326 * @brief Get a list of devices in the devclass
1327 *
1328 * An array containing a list of all the devices in the given devclass
1329 * is allocated and returned in @p *devlistp. The number of devices
1330 * in the array is returned in @p *devcountp. The caller should free
1331 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1332 *
1333 * @param dc		the devclass to examine
1334 * @param devlistp	points at location for array pointer return
1335 *			value
1336 * @param devcountp	points at location for array size return value
1337 *
1338 * @retval 0		success
1339 * @retval ENOMEM	the array allocation failed
1340 */
1341int
1342devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1343{
1344	int count, i;
1345	device_t *list;
1346
1347	count = devclass_get_count(dc);
1348	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1349	if (!list)
1350		return (ENOMEM);
1351
1352	count = 0;
1353	for (i = 0; i < dc->maxunit; i++) {
1354		if (dc->devices[i]) {
1355			list[count] = dc->devices[i];
1356			count++;
1357		}
1358	}
1359
1360	*devlistp = list;
1361	*devcountp = count;
1362
1363	return (0);
1364}
1365
1366/**
1367 * @brief Get a list of drivers in the devclass
1368 *
1369 * An array containing a list of pointers to all the drivers in the
1370 * given devclass is allocated and returned in @p *listp.  The number
1371 * of drivers in the array is returned in @p *countp. The caller should
1372 * free the array using @c free(p, M_TEMP).
1373 *
1374 * @param dc		the devclass to examine
1375 * @param listp		gives location for array pointer return value
1376 * @param countp	gives location for number of array elements
1377 *			return value
1378 *
1379 * @retval 0		success
1380 * @retval ENOMEM	the array allocation failed
1381 */
1382int
1383devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1384{
1385	driverlink_t dl;
1386	driver_t **list;
1387	int count;
1388
1389	count = 0;
1390	TAILQ_FOREACH(dl, &dc->drivers, link)
1391		count++;
1392	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1393	if (list == NULL)
1394		return (ENOMEM);
1395
1396	count = 0;
1397	TAILQ_FOREACH(dl, &dc->drivers, link) {
1398		list[count] = dl->driver;
1399		count++;
1400	}
1401	*listp = list;
1402	*countp = count;
1403
1404	return (0);
1405}
1406
1407/**
1408 * @brief Get the number of devices in a devclass
1409 *
1410 * @param dc		the devclass to examine
1411 */
1412int
1413devclass_get_count(devclass_t dc)
1414{
1415	int count, i;
1416
1417	count = 0;
1418	for (i = 0; i < dc->maxunit; i++)
1419		if (dc->devices[i])
1420			count++;
1421	return (count);
1422}
1423
1424/**
1425 * @brief Get the maximum unit number used in a devclass
1426 *
1427 * Note that this is one greater than the highest currently-allocated
1428 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1429 * that not even the devclass has been allocated yet.
1430 *
1431 * @param dc		the devclass to examine
1432 */
1433int
1434devclass_get_maxunit(devclass_t dc)
1435{
1436	if (dc == NULL)
1437		return (-1);
1438	return (dc->maxunit);
1439}
1440
1441/**
1442 * @brief Find a free unit number in a devclass
1443 *
1444 * This function searches for the first unused unit number greater
1445 * that or equal to @p unit.
1446 *
1447 * @param dc		the devclass to examine
1448 * @param unit		the first unit number to check
1449 */
1450int
1451devclass_find_free_unit(devclass_t dc, int unit)
1452{
1453	if (dc == NULL)
1454		return (unit);
1455	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1456		unit++;
1457	return (unit);
1458}
1459
1460/**
1461 * @brief Set the parent of a devclass
1462 *
1463 * The parent class is normally initialised automatically by
1464 * DRIVER_MODULE().
1465 *
1466 * @param dc		the devclass to edit
1467 * @param pdc		the new parent devclass
1468 */
1469void
1470devclass_set_parent(devclass_t dc, devclass_t pdc)
1471{
1472	dc->parent = pdc;
1473}
1474
1475/**
1476 * @brief Get the parent of a devclass
1477 *
1478 * @param dc		the devclass to examine
1479 */
1480devclass_t
1481devclass_get_parent(devclass_t dc)
1482{
1483	return (dc->parent);
1484}
1485
1486struct sysctl_ctx_list *
1487devclass_get_sysctl_ctx(devclass_t dc)
1488{
1489	return (&dc->sysctl_ctx);
1490}
1491
1492struct sysctl_oid *
1493devclass_get_sysctl_tree(devclass_t dc)
1494{
1495	return (dc->sysctl_tree);
1496}
1497
1498/**
1499 * @internal
1500 * @brief Allocate a unit number
1501 *
1502 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1503 * will do). The allocated unit number is returned in @p *unitp.
1504
1505 * @param dc		the devclass to allocate from
1506 * @param unitp		points at the location for the allocated unit
1507 *			number
1508 *
1509 * @retval 0		success
1510 * @retval EEXIST	the requested unit number is already allocated
1511 * @retval ENOMEM	memory allocation failure
1512 */
1513static int
1514devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1515{
1516	const char *s;
1517	int unit = *unitp;
1518
1519	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1520
1521	/* Ask the parent bus if it wants to wire this device. */
1522	if (unit == -1)
1523		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1524		    &unit);
1525
1526	/* If we were given a wired unit number, check for existing device */
1527	/* XXX imp XXX */
1528	if (unit != -1) {
1529		if (unit >= 0 && unit < dc->maxunit &&
1530		    dc->devices[unit] != NULL) {
1531			if (bootverbose)
1532				printf("%s: %s%d already exists; skipping it\n",
1533				    dc->name, dc->name, *unitp);
1534			return (EEXIST);
1535		}
1536	} else {
1537		/* Unwired device, find the next available slot for it */
1538		unit = 0;
1539		for (unit = 0;; unit++) {
1540			/* If there is an "at" hint for a unit then skip it. */
1541			if (resource_string_value(dc->name, unit, "at", &s) ==
1542			    0)
1543				continue;
1544
1545			/* If this device slot is already in use, skip it. */
1546			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1547				continue;
1548
1549			break;
1550		}
1551	}
1552
1553	/*
1554	 * We've selected a unit beyond the length of the table, so let's
1555	 * extend the table to make room for all units up to and including
1556	 * this one.
1557	 */
1558	if (unit >= dc->maxunit) {
1559		device_t *newlist, *oldlist;
1560		int newsize;
1561
1562		oldlist = dc->devices;
1563		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1564		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1565		if (!newlist)
1566			return (ENOMEM);
1567		if (oldlist != NULL)
1568			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1569		bzero(newlist + dc->maxunit,
1570		    sizeof(device_t) * (newsize - dc->maxunit));
1571		dc->devices = newlist;
1572		dc->maxunit = newsize;
1573		if (oldlist != NULL)
1574			free(oldlist, M_BUS);
1575	}
1576	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1577
1578	*unitp = unit;
1579	return (0);
1580}
1581
1582/**
1583 * @internal
1584 * @brief Add a device to a devclass
1585 *
1586 * A unit number is allocated for the device (using the device's
1587 * preferred unit number if any) and the device is registered in the
1588 * devclass. This allows the device to be looked up by its unit
1589 * number, e.g. by decoding a dev_t minor number.
1590 *
1591 * @param dc		the devclass to add to
1592 * @param dev		the device to add
1593 *
1594 * @retval 0		success
1595 * @retval EEXIST	the requested unit number is already allocated
1596 * @retval ENOMEM	memory allocation failure
1597 */
1598static int
1599devclass_add_device(devclass_t dc, device_t dev)
1600{
1601	int buflen, error;
1602
1603	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1604
1605	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1606	if (buflen < 0)
1607		return (ENOMEM);
1608	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1609	if (!dev->nameunit)
1610		return (ENOMEM);
1611
1612	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1613		free(dev->nameunit, M_BUS);
1614		dev->nameunit = NULL;
1615		return (error);
1616	}
1617	dc->devices[dev->unit] = dev;
1618	dev->devclass = dc;
1619	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1620
1621	return (0);
1622}
1623
1624/**
1625 * @internal
1626 * @brief Delete a device from a devclass
1627 *
1628 * The device is removed from the devclass's device list and its unit
1629 * number is freed.
1630
1631 * @param dc		the devclass to delete from
1632 * @param dev		the device to delete
1633 *
1634 * @retval 0		success
1635 */
1636static int
1637devclass_delete_device(devclass_t dc, device_t dev)
1638{
1639	if (!dc || !dev)
1640		return (0);
1641
1642	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1643
1644	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1645		panic("devclass_delete_device: inconsistent device class");
1646	dc->devices[dev->unit] = NULL;
1647	if (dev->flags & DF_WILDCARD)
1648		dev->unit = -1;
1649	dev->devclass = NULL;
1650	free(dev->nameunit, M_BUS);
1651	dev->nameunit = NULL;
1652
1653	return (0);
1654}
1655
1656/**
1657 * @internal
1658 * @brief Make a new device and add it as a child of @p parent
1659 *
1660 * @param parent	the parent of the new device
1661 * @param name		the devclass name of the new device or @c NULL
1662 *			to leave the devclass unspecified
1663 * @parem unit		the unit number of the new device of @c -1 to
1664 *			leave the unit number unspecified
1665 *
1666 * @returns the new device
1667 */
1668static device_t
1669make_device(device_t parent, const char *name, int unit)
1670{
1671	device_t dev;
1672	devclass_t dc;
1673
1674	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1675
1676	if (name) {
1677		dc = devclass_find_internal(name, NULL, TRUE);
1678		if (!dc) {
1679			printf("make_device: can't find device class %s\n",
1680			    name);
1681			return (NULL);
1682		}
1683	} else {
1684		dc = NULL;
1685	}
1686
1687	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1688	if (!dev)
1689		return (NULL);
1690
1691	dev->parent = parent;
1692	TAILQ_INIT(&dev->children);
1693	kobj_init((kobj_t) dev, &null_class);
1694	dev->driver = NULL;
1695	dev->devclass = NULL;
1696	dev->unit = unit;
1697	dev->nameunit = NULL;
1698	dev->desc = NULL;
1699	dev->busy = 0;
1700	dev->devflags = 0;
1701	dev->flags = DF_ENABLED;
1702	dev->order = 0;
1703	if (unit == -1)
1704		dev->flags |= DF_WILDCARD;
1705	if (name) {
1706		dev->flags |= DF_FIXEDCLASS;
1707		if (devclass_add_device(dc, dev)) {
1708			kobj_delete((kobj_t) dev, M_BUS);
1709			return (NULL);
1710		}
1711	}
1712	dev->ivars = NULL;
1713	dev->softc = NULL;
1714
1715	dev->state = DS_NOTPRESENT;
1716
1717	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1718	bus_data_generation_update();
1719
1720	return (dev);
1721}
1722
1723/**
1724 * @internal
1725 * @brief Print a description of a device.
1726 */
1727static int
1728device_print_child(device_t dev, device_t child)
1729{
1730	int retval = 0;
1731
1732	if (device_is_alive(child))
1733		retval += BUS_PRINT_CHILD(dev, child);
1734	else
1735		retval += device_printf(child, " not found\n");
1736
1737	return (retval);
1738}
1739
1740/**
1741 * @brief Create a new device
1742 *
1743 * This creates a new device and adds it as a child of an existing
1744 * parent device. The new device will be added after the last existing
1745 * child with order zero.
1746 *
1747 * @param dev		the device which will be the parent of the
1748 *			new child device
1749 * @param name		devclass name for new device or @c NULL if not
1750 *			specified
1751 * @param unit		unit number for new device or @c -1 if not
1752 *			specified
1753 *
1754 * @returns		the new device
1755 */
1756device_t
1757device_add_child(device_t dev, const char *name, int unit)
1758{
1759	return (device_add_child_ordered(dev, 0, name, unit));
1760}
1761
1762/**
1763 * @brief Create a new device
1764 *
1765 * This creates a new device and adds it as a child of an existing
1766 * parent device. The new device will be added after the last existing
1767 * child with the same order.
1768 *
1769 * @param dev		the device which will be the parent of the
1770 *			new child device
1771 * @param order		a value which is used to partially sort the
1772 *			children of @p dev - devices created using
1773 *			lower values of @p order appear first in @p
1774 *			dev's list of children
1775 * @param name		devclass name for new device or @c NULL if not
1776 *			specified
1777 * @param unit		unit number for new device or @c -1 if not
1778 *			specified
1779 *
1780 * @returns		the new device
1781 */
1782device_t
1783device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1784{
1785	device_t child;
1786	device_t place;
1787
1788	PDEBUG(("%s at %s with order %u as unit %d",
1789	    name, DEVICENAME(dev), order, unit));
1790	KASSERT(name != NULL || unit == -1,
1791	    ("child device with wildcard name and specific unit number"));
1792
1793	child = make_device(dev, name, unit);
1794	if (child == NULL)
1795		return (child);
1796	child->order = order;
1797
1798	TAILQ_FOREACH(place, &dev->children, link) {
1799		if (place->order > order)
1800			break;
1801	}
1802
1803	if (place) {
1804		/*
1805		 * The device 'place' is the first device whose order is
1806		 * greater than the new child.
1807		 */
1808		TAILQ_INSERT_BEFORE(place, child, link);
1809	} else {
1810		/*
1811		 * The new child's order is greater or equal to the order of
1812		 * any existing device. Add the child to the tail of the list.
1813		 */
1814		TAILQ_INSERT_TAIL(&dev->children, child, link);
1815	}
1816
1817	bus_data_generation_update();
1818	return (child);
1819}
1820
1821/**
1822 * @brief Delete a device
1823 *
1824 * This function deletes a device along with all of its children. If
1825 * the device currently has a driver attached to it, the device is
1826 * detached first using device_detach().
1827 *
1828 * @param dev		the parent device
1829 * @param child		the device to delete
1830 *
1831 * @retval 0		success
1832 * @retval non-zero	a unit error code describing the error
1833 */
1834int
1835device_delete_child(device_t dev, device_t child)
1836{
1837	int error;
1838	device_t grandchild;
1839
1840	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1841
1842	/* remove children first */
1843	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1844		error = device_delete_child(child, grandchild);
1845		if (error)
1846			return (error);
1847	}
1848
1849	if ((error = device_detach(child)) != 0)
1850		return (error);
1851	if (child->devclass)
1852		devclass_delete_device(child->devclass, child);
1853	if (child->parent)
1854		BUS_CHILD_DELETED(dev, child);
1855	TAILQ_REMOVE(&dev->children, child, link);
1856	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1857	kobj_delete((kobj_t) child, M_BUS);
1858
1859	bus_data_generation_update();
1860	return (0);
1861}
1862
1863/**
1864 * @brief Delete all children devices of the given device, if any.
1865 *
1866 * This function deletes all children devices of the given device, if
1867 * any, using the device_delete_child() function for each device it
1868 * finds. If a child device cannot be deleted, this function will
1869 * return an error code.
1870 *
1871 * @param dev		the parent device
1872 *
1873 * @retval 0		success
1874 * @retval non-zero	a device would not detach
1875 */
1876int
1877device_delete_children(device_t dev)
1878{
1879	device_t child;
1880	int error;
1881
1882	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1883
1884	error = 0;
1885
1886	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1887		error = device_delete_child(dev, child);
1888		if (error) {
1889			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1890			break;
1891		}
1892	}
1893	return (error);
1894}
1895
1896/**
1897 * @brief Find a device given a unit number
1898 *
1899 * This is similar to devclass_get_devices() but only searches for
1900 * devices which have @p dev as a parent.
1901 *
1902 * @param dev		the parent device to search
1903 * @param unit		the unit number to search for.  If the unit is -1,
1904 *			return the first child of @p dev which has name
1905 *			@p classname (that is, the one with the lowest unit.)
1906 *
1907 * @returns		the device with the given unit number or @c
1908 *			NULL if there is no such device
1909 */
1910device_t
1911device_find_child(device_t dev, const char *classname, int unit)
1912{
1913	devclass_t dc;
1914	device_t child;
1915
1916	dc = devclass_find(classname);
1917	if (!dc)
1918		return (NULL);
1919
1920	if (unit != -1) {
1921		child = devclass_get_device(dc, unit);
1922		if (child && child->parent == dev)
1923			return (child);
1924	} else {
1925		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1926			child = devclass_get_device(dc, unit);
1927			if (child && child->parent == dev)
1928				return (child);
1929		}
1930	}
1931	return (NULL);
1932}
1933
1934/**
1935 * @internal
1936 */
1937static driverlink_t
1938first_matching_driver(devclass_t dc, device_t dev)
1939{
1940	if (dev->devclass)
1941		return (devclass_find_driver_internal(dc, dev->devclass->name));
1942	return (TAILQ_FIRST(&dc->drivers));
1943}
1944
1945/**
1946 * @internal
1947 */
1948static driverlink_t
1949next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1950{
1951	if (dev->devclass) {
1952		driverlink_t dl;
1953		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1954			if (!strcmp(dev->devclass->name, dl->driver->name))
1955				return (dl);
1956		return (NULL);
1957	}
1958	return (TAILQ_NEXT(last, link));
1959}
1960
1961/**
1962 * @internal
1963 */
1964int
1965device_probe_child(device_t dev, device_t child)
1966{
1967	devclass_t dc;
1968	driverlink_t best = NULL;
1969	driverlink_t dl;
1970	int result, pri = 0;
1971	int hasclass = (child->devclass != NULL);
1972
1973	GIANT_REQUIRED;
1974
1975	dc = dev->devclass;
1976	if (!dc)
1977		panic("device_probe_child: parent device has no devclass");
1978
1979	/*
1980	 * If the state is already probed, then return.  However, don't
1981	 * return if we can rebid this object.
1982	 */
1983	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1984		return (0);
1985
1986	for (; dc; dc = dc->parent) {
1987		for (dl = first_matching_driver(dc, child);
1988		     dl;
1989		     dl = next_matching_driver(dc, child, dl)) {
1990			/* If this driver's pass is too high, then ignore it. */
1991			if (dl->pass > bus_current_pass)
1992				continue;
1993
1994			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1995			result = device_set_driver(child, dl->driver);
1996			if (result == ENOMEM)
1997				return (result);
1998			else if (result != 0)
1999				continue;
2000			if (!hasclass) {
2001				if (device_set_devclass(child,
2002				    dl->driver->name) != 0) {
2003					char const * devname =
2004					    device_get_name(child);
2005					if (devname == NULL)
2006						devname = "(unknown)";
2007					printf("driver bug: Unable to set "
2008					    "devclass (class: %s "
2009					    "devname: %s)\n",
2010					    dl->driver->name,
2011					    devname);
2012					(void)device_set_driver(child, NULL);
2013					continue;
2014				}
2015			}
2016
2017			/* Fetch any flags for the device before probing. */
2018			resource_int_value(dl->driver->name, child->unit,
2019			    "flags", &child->devflags);
2020
2021			result = DEVICE_PROBE(child);
2022
2023			/* Reset flags and devclass before the next probe. */
2024			child->devflags = 0;
2025			if (!hasclass)
2026				(void)device_set_devclass(child, NULL);
2027
2028			/*
2029			 * If the driver returns SUCCESS, there can be
2030			 * no higher match for this device.
2031			 */
2032			if (result == 0) {
2033				best = dl;
2034				pri = 0;
2035				break;
2036			}
2037
2038			/*
2039			 * The driver returned an error so it
2040			 * certainly doesn't match.
2041			 */
2042			if (result > 0) {
2043				(void)device_set_driver(child, NULL);
2044				continue;
2045			}
2046
2047			/*
2048			 * A priority lower than SUCCESS, remember the
2049			 * best matching driver. Initialise the value
2050			 * of pri for the first match.
2051			 */
2052			if (best == NULL || result > pri) {
2053				/*
2054				 * Probes that return BUS_PROBE_NOWILDCARD
2055				 * or lower only match on devices whose
2056				 * driver was explicitly specified.
2057				 */
2058				if (result <= BUS_PROBE_NOWILDCARD &&
2059				    !(child->flags & DF_FIXEDCLASS))
2060					continue;
2061				best = dl;
2062				pri = result;
2063				continue;
2064			}
2065		}
2066		/*
2067		 * If we have an unambiguous match in this devclass,
2068		 * don't look in the parent.
2069		 */
2070		if (best && pri == 0)
2071			break;
2072	}
2073
2074	/*
2075	 * If we found a driver, change state and initialise the devclass.
2076	 */
2077	/* XXX What happens if we rebid and got no best? */
2078	if (best) {
2079		/*
2080		 * If this device was attached, and we were asked to
2081		 * rescan, and it is a different driver, then we have
2082		 * to detach the old driver and reattach this new one.
2083		 * Note, we don't have to check for DF_REBID here
2084		 * because if the state is > DS_ALIVE, we know it must
2085		 * be.
2086		 *
2087		 * This assumes that all DF_REBID drivers can have
2088		 * their probe routine called at any time and that
2089		 * they are idempotent as well as completely benign in
2090		 * normal operations.
2091		 *
2092		 * We also have to make sure that the detach
2093		 * succeeded, otherwise we fail the operation (or
2094		 * maybe it should just fail silently?  I'm torn).
2095		 */
2096		if (child->state > DS_ALIVE && best->driver != child->driver)
2097			if ((result = device_detach(dev)) != 0)
2098				return (result);
2099
2100		/* Set the winning driver, devclass, and flags. */
2101		if (!child->devclass) {
2102			result = device_set_devclass(child, best->driver->name);
2103			if (result != 0)
2104				return (result);
2105		}
2106		result = device_set_driver(child, best->driver);
2107		if (result != 0)
2108			return (result);
2109		resource_int_value(best->driver->name, child->unit,
2110		    "flags", &child->devflags);
2111
2112		if (pri < 0) {
2113			/*
2114			 * A bit bogus. Call the probe method again to make
2115			 * sure that we have the right description.
2116			 */
2117			DEVICE_PROBE(child);
2118#if 0
2119			child->flags |= DF_REBID;
2120#endif
2121		} else
2122			child->flags &= ~DF_REBID;
2123		child->state = DS_ALIVE;
2124
2125		bus_data_generation_update();
2126		return (0);
2127	}
2128
2129	return (ENXIO);
2130}
2131
2132/**
2133 * @brief Return the parent of a device
2134 */
2135device_t
2136device_get_parent(device_t dev)
2137{
2138	return (dev->parent);
2139}
2140
2141/**
2142 * @brief Get a list of children of a device
2143 *
2144 * An array containing a list of all the children of the given device
2145 * is allocated and returned in @p *devlistp. The number of devices
2146 * in the array is returned in @p *devcountp. The caller should free
2147 * the array using @c free(p, M_TEMP).
2148 *
2149 * @param dev		the device to examine
2150 * @param devlistp	points at location for array pointer return
2151 *			value
2152 * @param devcountp	points at location for array size return value
2153 *
2154 * @retval 0		success
2155 * @retval ENOMEM	the array allocation failed
2156 */
2157int
2158device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2159{
2160	int count;
2161	device_t child;
2162	device_t *list;
2163
2164	count = 0;
2165	TAILQ_FOREACH(child, &dev->children, link) {
2166		count++;
2167	}
2168	if (count == 0) {
2169		*devlistp = NULL;
2170		*devcountp = 0;
2171		return (0);
2172	}
2173
2174	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2175	if (!list)
2176		return (ENOMEM);
2177
2178	count = 0;
2179	TAILQ_FOREACH(child, &dev->children, link) {
2180		list[count] = child;
2181		count++;
2182	}
2183
2184	*devlistp = list;
2185	*devcountp = count;
2186
2187	return (0);
2188}
2189
2190/**
2191 * @brief Return the current driver for the device or @c NULL if there
2192 * is no driver currently attached
2193 */
2194driver_t *
2195device_get_driver(device_t dev)
2196{
2197	return (dev->driver);
2198}
2199
2200/**
2201 * @brief Return the current devclass for the device or @c NULL if
2202 * there is none.
2203 */
2204devclass_t
2205device_get_devclass(device_t dev)
2206{
2207	return (dev->devclass);
2208}
2209
2210/**
2211 * @brief Return the name of the device's devclass or @c NULL if there
2212 * is none.
2213 */
2214const char *
2215device_get_name(device_t dev)
2216{
2217	if (dev != NULL && dev->devclass)
2218		return (devclass_get_name(dev->devclass));
2219	return (NULL);
2220}
2221
2222/**
2223 * @brief Return a string containing the device's devclass name
2224 * followed by an ascii representation of the device's unit number
2225 * (e.g. @c "foo2").
2226 */
2227const char *
2228device_get_nameunit(device_t dev)
2229{
2230	return (dev->nameunit);
2231}
2232
2233/**
2234 * @brief Return the device's unit number.
2235 */
2236int
2237device_get_unit(device_t dev)
2238{
2239	return (dev->unit);
2240}
2241
2242/**
2243 * @brief Return the device's description string
2244 */
2245const char *
2246device_get_desc(device_t dev)
2247{
2248	return (dev->desc);
2249}
2250
2251/**
2252 * @brief Return the device's flags
2253 */
2254uint32_t
2255device_get_flags(device_t dev)
2256{
2257	return (dev->devflags);
2258}
2259
2260struct sysctl_ctx_list *
2261device_get_sysctl_ctx(device_t dev)
2262{
2263	return (&dev->sysctl_ctx);
2264}
2265
2266struct sysctl_oid *
2267device_get_sysctl_tree(device_t dev)
2268{
2269	return (dev->sysctl_tree);
2270}
2271
2272/**
2273 * @brief Print the name of the device followed by a colon and a space
2274 *
2275 * @returns the number of characters printed
2276 */
2277int
2278device_print_prettyname(device_t dev)
2279{
2280	const char *name = device_get_name(dev);
2281
2282	if (name == NULL)
2283		return (printf("unknown: "));
2284	return (printf("%s%d: ", name, device_get_unit(dev)));
2285}
2286
2287/**
2288 * @brief Print the name of the device followed by a colon, a space
2289 * and the result of calling vprintf() with the value of @p fmt and
2290 * the following arguments.
2291 *
2292 * @returns the number of characters printed
2293 */
2294int
2295device_printf(device_t dev, const char * fmt, ...)
2296{
2297	va_list ap;
2298	int retval;
2299
2300	retval = device_print_prettyname(dev);
2301	va_start(ap, fmt);
2302	retval += vprintf(fmt, ap);
2303	va_end(ap);
2304	return (retval);
2305}
2306
2307/**
2308 * @internal
2309 */
2310static void
2311device_set_desc_internal(device_t dev, const char* desc, int copy)
2312{
2313	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2314		free(dev->desc, M_BUS);
2315		dev->flags &= ~DF_DESCMALLOCED;
2316		dev->desc = NULL;
2317	}
2318
2319	if (copy && desc) {
2320		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2321		if (dev->desc) {
2322			strcpy(dev->desc, desc);
2323			dev->flags |= DF_DESCMALLOCED;
2324		}
2325	} else {
2326		/* Avoid a -Wcast-qual warning */
2327		dev->desc = (char *)(uintptr_t) desc;
2328	}
2329
2330	bus_data_generation_update();
2331}
2332
2333/**
2334 * @brief Set the device's description
2335 *
2336 * The value of @c desc should be a string constant that will not
2337 * change (at least until the description is changed in a subsequent
2338 * call to device_set_desc() or device_set_desc_copy()).
2339 */
2340void
2341device_set_desc(device_t dev, const char* desc)
2342{
2343	device_set_desc_internal(dev, desc, FALSE);
2344}
2345
2346/**
2347 * @brief Set the device's description
2348 *
2349 * The string pointed to by @c desc is copied. Use this function if
2350 * the device description is generated, (e.g. with sprintf()).
2351 */
2352void
2353device_set_desc_copy(device_t dev, const char* desc)
2354{
2355	device_set_desc_internal(dev, desc, TRUE);
2356}
2357
2358/**
2359 * @brief Set the device's flags
2360 */
2361void
2362device_set_flags(device_t dev, uint32_t flags)
2363{
2364	dev->devflags = flags;
2365}
2366
2367/**
2368 * @brief Return the device's softc field
2369 *
2370 * The softc is allocated and zeroed when a driver is attached, based
2371 * on the size field of the driver.
2372 */
2373void *
2374device_get_softc(device_t dev)
2375{
2376	return (dev->softc);
2377}
2378
2379/**
2380 * @brief Set the device's softc field
2381 *
2382 * Most drivers do not need to use this since the softc is allocated
2383 * automatically when the driver is attached.
2384 */
2385void
2386device_set_softc(device_t dev, void *softc)
2387{
2388	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2389		free(dev->softc, M_BUS_SC);
2390	dev->softc = softc;
2391	if (dev->softc)
2392		dev->flags |= DF_EXTERNALSOFTC;
2393	else
2394		dev->flags &= ~DF_EXTERNALSOFTC;
2395}
2396
2397/**
2398 * @brief Free claimed softc
2399 *
2400 * Most drivers do not need to use this since the softc is freed
2401 * automatically when the driver is detached.
2402 */
2403void
2404device_free_softc(void *softc)
2405{
2406	free(softc, M_BUS_SC);
2407}
2408
2409/**
2410 * @brief Claim softc
2411 *
2412 * This function can be used to let the driver free the automatically
2413 * allocated softc using "device_free_softc()". This function is
2414 * useful when the driver is refcounting the softc and the softc
2415 * cannot be freed when the "device_detach" method is called.
2416 */
2417void
2418device_claim_softc(device_t dev)
2419{
2420	if (dev->softc)
2421		dev->flags |= DF_EXTERNALSOFTC;
2422	else
2423		dev->flags &= ~DF_EXTERNALSOFTC;
2424}
2425
2426/**
2427 * @brief Get the device's ivars field
2428 *
2429 * The ivars field is used by the parent device to store per-device
2430 * state (e.g. the physical location of the device or a list of
2431 * resources).
2432 */
2433void *
2434device_get_ivars(device_t dev)
2435{
2436
2437	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2438	return (dev->ivars);
2439}
2440
2441/**
2442 * @brief Set the device's ivars field
2443 */
2444void
2445device_set_ivars(device_t dev, void * ivars)
2446{
2447
2448	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2449	dev->ivars = ivars;
2450}
2451
2452/**
2453 * @brief Return the device's state
2454 */
2455device_state_t
2456device_get_state(device_t dev)
2457{
2458	return (dev->state);
2459}
2460
2461/**
2462 * @brief Set the DF_ENABLED flag for the device
2463 */
2464void
2465device_enable(device_t dev)
2466{
2467	dev->flags |= DF_ENABLED;
2468}
2469
2470/**
2471 * @brief Clear the DF_ENABLED flag for the device
2472 */
2473void
2474device_disable(device_t dev)
2475{
2476	dev->flags &= ~DF_ENABLED;
2477}
2478
2479/**
2480 * @brief Increment the busy counter for the device
2481 */
2482void
2483device_busy(device_t dev)
2484{
2485	if (dev->state < DS_ATTACHING)
2486		panic("device_busy: called for unattached device");
2487	if (dev->busy == 0 && dev->parent)
2488		device_busy(dev->parent);
2489	dev->busy++;
2490	if (dev->state == DS_ATTACHED)
2491		dev->state = DS_BUSY;
2492}
2493
2494/**
2495 * @brief Decrement the busy counter for the device
2496 */
2497void
2498device_unbusy(device_t dev)
2499{
2500	if (dev->busy != 0 && dev->state != DS_BUSY &&
2501	    dev->state != DS_ATTACHING)
2502		panic("device_unbusy: called for non-busy device %s",
2503		    device_get_nameunit(dev));
2504	dev->busy--;
2505	if (dev->busy == 0) {
2506		if (dev->parent)
2507			device_unbusy(dev->parent);
2508		if (dev->state == DS_BUSY)
2509			dev->state = DS_ATTACHED;
2510	}
2511}
2512
2513/**
2514 * @brief Set the DF_QUIET flag for the device
2515 */
2516void
2517device_quiet(device_t dev)
2518{
2519	dev->flags |= DF_QUIET;
2520}
2521
2522/**
2523 * @brief Clear the DF_QUIET flag for the device
2524 */
2525void
2526device_verbose(device_t dev)
2527{
2528	dev->flags &= ~DF_QUIET;
2529}
2530
2531/**
2532 * @brief Return non-zero if the DF_QUIET flag is set on the device
2533 */
2534int
2535device_is_quiet(device_t dev)
2536{
2537	return ((dev->flags & DF_QUIET) != 0);
2538}
2539
2540/**
2541 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2542 */
2543int
2544device_is_enabled(device_t dev)
2545{
2546	return ((dev->flags & DF_ENABLED) != 0);
2547}
2548
2549/**
2550 * @brief Return non-zero if the device was successfully probed
2551 */
2552int
2553device_is_alive(device_t dev)
2554{
2555	return (dev->state >= DS_ALIVE);
2556}
2557
2558/**
2559 * @brief Return non-zero if the device currently has a driver
2560 * attached to it
2561 */
2562int
2563device_is_attached(device_t dev)
2564{
2565	return (dev->state >= DS_ATTACHED);
2566}
2567
2568/**
2569 * @brief Set the devclass of a device
2570 * @see devclass_add_device().
2571 */
2572int
2573device_set_devclass(device_t dev, const char *classname)
2574{
2575	devclass_t dc;
2576	int error;
2577
2578	if (!classname) {
2579		if (dev->devclass)
2580			devclass_delete_device(dev->devclass, dev);
2581		return (0);
2582	}
2583
2584	if (dev->devclass) {
2585		printf("device_set_devclass: device class already set\n");
2586		return (EINVAL);
2587	}
2588
2589	dc = devclass_find_internal(classname, NULL, TRUE);
2590	if (!dc)
2591		return (ENOMEM);
2592
2593	error = devclass_add_device(dc, dev);
2594
2595	bus_data_generation_update();
2596	return (error);
2597}
2598
2599/**
2600 * @brief Set the driver of a device
2601 *
2602 * @retval 0		success
2603 * @retval EBUSY	the device already has a driver attached
2604 * @retval ENOMEM	a memory allocation failure occurred
2605 */
2606int
2607device_set_driver(device_t dev, driver_t *driver)
2608{
2609	if (dev->state >= DS_ATTACHED)
2610		return (EBUSY);
2611
2612	if (dev->driver == driver)
2613		return (0);
2614
2615	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2616		free(dev->softc, M_BUS_SC);
2617		dev->softc = NULL;
2618	}
2619	device_set_desc(dev, NULL);
2620	kobj_delete((kobj_t) dev, NULL);
2621	dev->driver = driver;
2622	if (driver) {
2623		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2624		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2625			dev->softc = malloc(driver->size, M_BUS_SC,
2626			    M_NOWAIT | M_ZERO);
2627			if (!dev->softc) {
2628				kobj_delete((kobj_t) dev, NULL);
2629				kobj_init((kobj_t) dev, &null_class);
2630				dev->driver = NULL;
2631				return (ENOMEM);
2632			}
2633		}
2634	} else {
2635		kobj_init((kobj_t) dev, &null_class);
2636	}
2637
2638	bus_data_generation_update();
2639	return (0);
2640}
2641
2642/**
2643 * @brief Probe a device, and return this status.
2644 *
2645 * This function is the core of the device autoconfiguration
2646 * system. Its purpose is to select a suitable driver for a device and
2647 * then call that driver to initialise the hardware appropriately. The
2648 * driver is selected by calling the DEVICE_PROBE() method of a set of
2649 * candidate drivers and then choosing the driver which returned the
2650 * best value. This driver is then attached to the device using
2651 * device_attach().
2652 *
2653 * The set of suitable drivers is taken from the list of drivers in
2654 * the parent device's devclass. If the device was originally created
2655 * with a specific class name (see device_add_child()), only drivers
2656 * with that name are probed, otherwise all drivers in the devclass
2657 * are probed. If no drivers return successful probe values in the
2658 * parent devclass, the search continues in the parent of that
2659 * devclass (see devclass_get_parent()) if any.
2660 *
2661 * @param dev		the device to initialise
2662 *
2663 * @retval 0		success
2664 * @retval ENXIO	no driver was found
2665 * @retval ENOMEM	memory allocation failure
2666 * @retval non-zero	some other unix error code
2667 * @retval -1		Device already attached
2668 */
2669int
2670device_probe(device_t dev)
2671{
2672	int error;
2673
2674	GIANT_REQUIRED;
2675
2676	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2677		return (-1);
2678
2679	if (!(dev->flags & DF_ENABLED)) {
2680		if (bootverbose && device_get_name(dev) != NULL) {
2681			device_print_prettyname(dev);
2682			printf("not probed (disabled)\n");
2683		}
2684		return (-1);
2685	}
2686	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2687		if (bus_current_pass == BUS_PASS_DEFAULT &&
2688		    !(dev->flags & DF_DONENOMATCH)) {
2689			BUS_PROBE_NOMATCH(dev->parent, dev);
2690			devnomatch(dev);
2691			dev->flags |= DF_DONENOMATCH;
2692		}
2693		return (error);
2694	}
2695	return (0);
2696}
2697
2698/**
2699 * @brief Probe a device and attach a driver if possible
2700 *
2701 * calls device_probe() and attaches if that was successful.
2702 */
2703int
2704device_probe_and_attach(device_t dev)
2705{
2706	int error;
2707
2708	GIANT_REQUIRED;
2709
2710	error = device_probe(dev);
2711	if (error == -1)
2712		return (0);
2713	else if (error != 0)
2714		return (error);
2715
2716	CURVNET_SET_QUIET(vnet0);
2717	error = device_attach(dev);
2718	CURVNET_RESTORE();
2719	return error;
2720}
2721
2722/**
2723 * @brief Attach a device driver to a device
2724 *
2725 * This function is a wrapper around the DEVICE_ATTACH() driver
2726 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2727 * device's sysctl tree, optionally prints a description of the device
2728 * and queues a notification event for user-based device management
2729 * services.
2730 *
2731 * Normally this function is only called internally from
2732 * device_probe_and_attach().
2733 *
2734 * @param dev		the device to initialise
2735 *
2736 * @retval 0		success
2737 * @retval ENXIO	no driver was found
2738 * @retval ENOMEM	memory allocation failure
2739 * @retval non-zero	some other unix error code
2740 */
2741int
2742device_attach(device_t dev)
2743{
2744	uint64_t attachtime;
2745	int error;
2746
2747	if (resource_disabled(dev->driver->name, dev->unit)) {
2748		device_disable(dev);
2749		if (bootverbose)
2750			 device_printf(dev, "disabled via hints entry\n");
2751		return (ENXIO);
2752	}
2753
2754	device_sysctl_init(dev);
2755	if (!device_is_quiet(dev))
2756		device_print_child(dev->parent, dev);
2757	attachtime = get_cyclecount();
2758	dev->state = DS_ATTACHING;
2759	if ((error = DEVICE_ATTACH(dev)) != 0) {
2760		printf("device_attach: %s%d attach returned %d\n",
2761		    dev->driver->name, dev->unit, error);
2762		if (!(dev->flags & DF_FIXEDCLASS))
2763			devclass_delete_device(dev->devclass, dev);
2764		(void)device_set_driver(dev, NULL);
2765		device_sysctl_fini(dev);
2766		KASSERT(dev->busy == 0, ("attach failed but busy"));
2767		dev->state = DS_NOTPRESENT;
2768		return (error);
2769	}
2770	attachtime = get_cyclecount() - attachtime;
2771	/*
2772	 * 4 bits per device is a reasonable value for desktop and server
2773	 * hardware with good get_cyclecount() implementations, but may
2774	 * need to be adjusted on other platforms.
2775	 */
2776#ifdef RANDOM_DEBUG
2777	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2778	    __func__, 4, dev->driver->name, dev->unit);
2779#endif
2780	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2781	device_sysctl_update(dev);
2782	if (dev->busy)
2783		dev->state = DS_BUSY;
2784	else
2785		dev->state = DS_ATTACHED;
2786	dev->flags &= ~DF_DONENOMATCH;
2787	devadded(dev);
2788	return (0);
2789}
2790
2791/**
2792 * @brief Detach a driver from a device
2793 *
2794 * This function is a wrapper around the DEVICE_DETACH() driver
2795 * method. If the call to DEVICE_DETACH() succeeds, it calls
2796 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2797 * notification event for user-based device management services and
2798 * cleans up the device's sysctl tree.
2799 *
2800 * @param dev		the device to un-initialise
2801 *
2802 * @retval 0		success
2803 * @retval ENXIO	no driver was found
2804 * @retval ENOMEM	memory allocation failure
2805 * @retval non-zero	some other unix error code
2806 */
2807int
2808device_detach(device_t dev)
2809{
2810	int error;
2811
2812	GIANT_REQUIRED;
2813
2814	PDEBUG(("%s", DEVICENAME(dev)));
2815	if (dev->state == DS_BUSY)
2816		return (EBUSY);
2817	if (dev->state != DS_ATTACHED)
2818		return (0);
2819
2820	if ((error = DEVICE_DETACH(dev)) != 0)
2821		return (error);
2822	devremoved(dev);
2823	if (!device_is_quiet(dev))
2824		device_printf(dev, "detached\n");
2825	if (dev->parent)
2826		BUS_CHILD_DETACHED(dev->parent, dev);
2827
2828	if (!(dev->flags & DF_FIXEDCLASS))
2829		devclass_delete_device(dev->devclass, dev);
2830
2831	dev->state = DS_NOTPRESENT;
2832	(void)device_set_driver(dev, NULL);
2833	device_sysctl_fini(dev);
2834
2835	return (0);
2836}
2837
2838/**
2839 * @brief Tells a driver to quiesce itself.
2840 *
2841 * This function is a wrapper around the DEVICE_QUIESCE() driver
2842 * method. If the call to DEVICE_QUIESCE() succeeds.
2843 *
2844 * @param dev		the device to quiesce
2845 *
2846 * @retval 0		success
2847 * @retval ENXIO	no driver was found
2848 * @retval ENOMEM	memory allocation failure
2849 * @retval non-zero	some other unix error code
2850 */
2851int
2852device_quiesce(device_t dev)
2853{
2854
2855	PDEBUG(("%s", DEVICENAME(dev)));
2856	if (dev->state == DS_BUSY)
2857		return (EBUSY);
2858	if (dev->state != DS_ATTACHED)
2859		return (0);
2860
2861	return (DEVICE_QUIESCE(dev));
2862}
2863
2864/**
2865 * @brief Notify a device of system shutdown
2866 *
2867 * This function calls the DEVICE_SHUTDOWN() driver method if the
2868 * device currently has an attached driver.
2869 *
2870 * @returns the value returned by DEVICE_SHUTDOWN()
2871 */
2872int
2873device_shutdown(device_t dev)
2874{
2875	if (dev->state < DS_ATTACHED)
2876		return (0);
2877	return (DEVICE_SHUTDOWN(dev));
2878}
2879
2880/**
2881 * @brief Set the unit number of a device
2882 *
2883 * This function can be used to override the unit number used for a
2884 * device (e.g. to wire a device to a pre-configured unit number).
2885 */
2886int
2887device_set_unit(device_t dev, int unit)
2888{
2889	devclass_t dc;
2890	int err;
2891
2892	dc = device_get_devclass(dev);
2893	if (unit < dc->maxunit && dc->devices[unit])
2894		return (EBUSY);
2895	err = devclass_delete_device(dc, dev);
2896	if (err)
2897		return (err);
2898	dev->unit = unit;
2899	err = devclass_add_device(dc, dev);
2900	if (err)
2901		return (err);
2902
2903	bus_data_generation_update();
2904	return (0);
2905}
2906
2907/*======================================*/
2908/*
2909 * Some useful method implementations to make life easier for bus drivers.
2910 */
2911
2912/**
2913 * @brief Initialise a resource list.
2914 *
2915 * @param rl		the resource list to initialise
2916 */
2917void
2918resource_list_init(struct resource_list *rl)
2919{
2920	STAILQ_INIT(rl);
2921}
2922
2923/**
2924 * @brief Reclaim memory used by a resource list.
2925 *
2926 * This function frees the memory for all resource entries on the list
2927 * (if any).
2928 *
2929 * @param rl		the resource list to free
2930 */
2931void
2932resource_list_free(struct resource_list *rl)
2933{
2934	struct resource_list_entry *rle;
2935
2936	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2937		if (rle->res)
2938			panic("resource_list_free: resource entry is busy");
2939		STAILQ_REMOVE_HEAD(rl, link);
2940		free(rle, M_BUS);
2941	}
2942}
2943
2944/**
2945 * @brief Add a resource entry.
2946 *
2947 * This function adds a resource entry using the given @p type, @p
2948 * start, @p end and @p count values. A rid value is chosen by
2949 * searching sequentially for the first unused rid starting at zero.
2950 *
2951 * @param rl		the resource list to edit
2952 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2953 * @param start		the start address of the resource
2954 * @param end		the end address of the resource
2955 * @param count		XXX end-start+1
2956 */
2957int
2958resource_list_add_next(struct resource_list *rl, int type, u_long start,
2959    u_long end, u_long count)
2960{
2961	int rid;
2962
2963	rid = 0;
2964	while (resource_list_find(rl, type, rid) != NULL)
2965		rid++;
2966	resource_list_add(rl, type, rid, start, end, count);
2967	return (rid);
2968}
2969
2970/**
2971 * @brief Add or modify a resource entry.
2972 *
2973 * If an existing entry exists with the same type and rid, it will be
2974 * modified using the given values of @p start, @p end and @p
2975 * count. If no entry exists, a new one will be created using the
2976 * given values.  The resource list entry that matches is then returned.
2977 *
2978 * @param rl		the resource list to edit
2979 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2980 * @param rid		the resource identifier
2981 * @param start		the start address of the resource
2982 * @param end		the end address of the resource
2983 * @param count		XXX end-start+1
2984 */
2985struct resource_list_entry *
2986resource_list_add(struct resource_list *rl, int type, int rid,
2987    u_long start, u_long end, u_long count)
2988{
2989	struct resource_list_entry *rle;
2990
2991	rle = resource_list_find(rl, type, rid);
2992	if (!rle) {
2993		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2994		    M_NOWAIT);
2995		if (!rle)
2996			panic("resource_list_add: can't record entry");
2997		STAILQ_INSERT_TAIL(rl, rle, link);
2998		rle->type = type;
2999		rle->rid = rid;
3000		rle->res = NULL;
3001		rle->flags = 0;
3002	}
3003
3004	if (rle->res)
3005		panic("resource_list_add: resource entry is busy");
3006
3007	rle->start = start;
3008	rle->end = end;
3009	rle->count = count;
3010	return (rle);
3011}
3012
3013/**
3014 * @brief Determine if a resource entry is busy.
3015 *
3016 * Returns true if a resource entry is busy meaning that it has an
3017 * associated resource that is not an unallocated "reserved" resource.
3018 *
3019 * @param rl		the resource list to search
3020 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3021 * @param rid		the resource identifier
3022 *
3023 * @returns Non-zero if the entry is busy, zero otherwise.
3024 */
3025int
3026resource_list_busy(struct resource_list *rl, int type, int rid)
3027{
3028	struct resource_list_entry *rle;
3029
3030	rle = resource_list_find(rl, type, rid);
3031	if (rle == NULL || rle->res == NULL)
3032		return (0);
3033	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3034		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3035		    ("reserved resource is active"));
3036		return (0);
3037	}
3038	return (1);
3039}
3040
3041/**
3042 * @brief Determine if a resource entry is reserved.
3043 *
3044 * Returns true if a resource entry is reserved meaning that it has an
3045 * associated "reserved" resource.  The resource can either be
3046 * allocated or unallocated.
3047 *
3048 * @param rl		the resource list to search
3049 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3050 * @param rid		the resource identifier
3051 *
3052 * @returns Non-zero if the entry is reserved, zero otherwise.
3053 */
3054int
3055resource_list_reserved(struct resource_list *rl, int type, int rid)
3056{
3057	struct resource_list_entry *rle;
3058
3059	rle = resource_list_find(rl, type, rid);
3060	if (rle != NULL && rle->flags & RLE_RESERVED)
3061		return (1);
3062	return (0);
3063}
3064
3065/**
3066 * @brief Find a resource entry by type and rid.
3067 *
3068 * @param rl		the resource list to search
3069 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3070 * @param rid		the resource identifier
3071 *
3072 * @returns the resource entry pointer or NULL if there is no such
3073 * entry.
3074 */
3075struct resource_list_entry *
3076resource_list_find(struct resource_list *rl, int type, int rid)
3077{
3078	struct resource_list_entry *rle;
3079
3080	STAILQ_FOREACH(rle, rl, link) {
3081		if (rle->type == type && rle->rid == rid)
3082			return (rle);
3083	}
3084	return (NULL);
3085}
3086
3087/**
3088 * @brief Delete a resource entry.
3089 *
3090 * @param rl		the resource list to edit
3091 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3092 * @param rid		the resource identifier
3093 */
3094void
3095resource_list_delete(struct resource_list *rl, int type, int rid)
3096{
3097	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3098
3099	if (rle) {
3100		if (rle->res != NULL)
3101			panic("resource_list_delete: resource has not been released");
3102		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3103		free(rle, M_BUS);
3104	}
3105}
3106
3107/**
3108 * @brief Allocate a reserved resource
3109 *
3110 * This can be used by busses to force the allocation of resources
3111 * that are always active in the system even if they are not allocated
3112 * by a driver (e.g. PCI BARs).  This function is usually called when
3113 * adding a new child to the bus.  The resource is allocated from the
3114 * parent bus when it is reserved.  The resource list entry is marked
3115 * with RLE_RESERVED to note that it is a reserved resource.
3116 *
3117 * Subsequent attempts to allocate the resource with
3118 * resource_list_alloc() will succeed the first time and will set
3119 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3120 * resource that has been allocated is released with
3121 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3122 * the actual resource remains allocated.  The resource can be released to
3123 * the parent bus by calling resource_list_unreserve().
3124 *
3125 * @param rl		the resource list to allocate from
3126 * @param bus		the parent device of @p child
3127 * @param child		the device for which the resource is being reserved
3128 * @param type		the type of resource to allocate
3129 * @param rid		a pointer to the resource identifier
3130 * @param start		hint at the start of the resource range - pass
3131 *			@c 0UL for any start address
3132 * @param end		hint at the end of the resource range - pass
3133 *			@c ~0UL for any end address
3134 * @param count		hint at the size of range required - pass @c 1
3135 *			for any size
3136 * @param flags		any extra flags to control the resource
3137 *			allocation - see @c RF_XXX flags in
3138 *			<sys/rman.h> for details
3139 *
3140 * @returns		the resource which was allocated or @c NULL if no
3141 *			resource could be allocated
3142 */
3143struct resource *
3144resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3145    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3146{
3147	struct resource_list_entry *rle = NULL;
3148	int passthrough = (device_get_parent(child) != bus);
3149	struct resource *r;
3150
3151	if (passthrough)
3152		panic(
3153    "resource_list_reserve() should only be called for direct children");
3154	if (flags & RF_ACTIVE)
3155		panic(
3156    "resource_list_reserve() should only reserve inactive resources");
3157
3158	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3159	    flags);
3160	if (r != NULL) {
3161		rle = resource_list_find(rl, type, *rid);
3162		rle->flags |= RLE_RESERVED;
3163	}
3164	return (r);
3165}
3166
3167/**
3168 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3169 *
3170 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3171 * and passing the allocation up to the parent of @p bus. This assumes
3172 * that the first entry of @c device_get_ivars(child) is a struct
3173 * resource_list. This also handles 'passthrough' allocations where a
3174 * child is a remote descendant of bus by passing the allocation up to
3175 * the parent of bus.
3176 *
3177 * Typically, a bus driver would store a list of child resources
3178 * somewhere in the child device's ivars (see device_get_ivars()) and
3179 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3180 * then call resource_list_alloc() to perform the allocation.
3181 *
3182 * @param rl		the resource list to allocate from
3183 * @param bus		the parent device of @p child
3184 * @param child		the device which is requesting an allocation
3185 * @param type		the type of resource to allocate
3186 * @param rid		a pointer to the resource identifier
3187 * @param start		hint at the start of the resource range - pass
3188 *			@c 0UL for any start address
3189 * @param end		hint at the end of the resource range - pass
3190 *			@c ~0UL for any end address
3191 * @param count		hint at the size of range required - pass @c 1
3192 *			for any size
3193 * @param flags		any extra flags to control the resource
3194 *			allocation - see @c RF_XXX flags in
3195 *			<sys/rman.h> for details
3196 *
3197 * @returns		the resource which was allocated or @c NULL if no
3198 *			resource could be allocated
3199 */
3200struct resource *
3201resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3202    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3203{
3204	struct resource_list_entry *rle = NULL;
3205	int passthrough = (device_get_parent(child) != bus);
3206	int isdefault = (start == 0UL && end == ~0UL);
3207
3208	if (passthrough) {
3209		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3210		    type, rid, start, end, count, flags));
3211	}
3212
3213	rle = resource_list_find(rl, type, *rid);
3214
3215	if (!rle)
3216		return (NULL);		/* no resource of that type/rid */
3217
3218	if (rle->res) {
3219		if (rle->flags & RLE_RESERVED) {
3220			if (rle->flags & RLE_ALLOCATED)
3221				return (NULL);
3222			if ((flags & RF_ACTIVE) &&
3223			    bus_activate_resource(child, type, *rid,
3224			    rle->res) != 0)
3225				return (NULL);
3226			rle->flags |= RLE_ALLOCATED;
3227			return (rle->res);
3228		}
3229		panic("resource_list_alloc: resource entry is busy");
3230	}
3231
3232	if (isdefault) {
3233		start = rle->start;
3234		count = ulmax(count, rle->count);
3235		end = ulmax(rle->end, start + count - 1);
3236	}
3237
3238	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3239	    type, rid, start, end, count, flags);
3240
3241	/*
3242	 * Record the new range.
3243	 */
3244	if (rle->res) {
3245		rle->start = rman_get_start(rle->res);
3246		rle->end = rman_get_end(rle->res);
3247		rle->count = count;
3248	}
3249
3250	return (rle->res);
3251}
3252
3253/**
3254 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3255 *
3256 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3257 * used with resource_list_alloc().
3258 *
3259 * @param rl		the resource list which was allocated from
3260 * @param bus		the parent device of @p child
3261 * @param child		the device which is requesting a release
3262 * @param type		the type of resource to release
3263 * @param rid		the resource identifier
3264 * @param res		the resource to release
3265 *
3266 * @retval 0		success
3267 * @retval non-zero	a standard unix error code indicating what
3268 *			error condition prevented the operation
3269 */
3270int
3271resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3272    int type, int rid, struct resource *res)
3273{
3274	struct resource_list_entry *rle = NULL;
3275	int passthrough = (device_get_parent(child) != bus);
3276	int error;
3277
3278	if (passthrough) {
3279		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3280		    type, rid, res));
3281	}
3282
3283	rle = resource_list_find(rl, type, rid);
3284
3285	if (!rle)
3286		panic("resource_list_release: can't find resource");
3287	if (!rle->res)
3288		panic("resource_list_release: resource entry is not busy");
3289	if (rle->flags & RLE_RESERVED) {
3290		if (rle->flags & RLE_ALLOCATED) {
3291			if (rman_get_flags(res) & RF_ACTIVE) {
3292				error = bus_deactivate_resource(child, type,
3293				    rid, res);
3294				if (error)
3295					return (error);
3296			}
3297			rle->flags &= ~RLE_ALLOCATED;
3298			return (0);
3299		}
3300		return (EINVAL);
3301	}
3302
3303	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3304	    type, rid, res);
3305	if (error)
3306		return (error);
3307
3308	rle->res = NULL;
3309	return (0);
3310}
3311
3312/**
3313 * @brief Release all active resources of a given type
3314 *
3315 * Release all active resources of a specified type.  This is intended
3316 * to be used to cleanup resources leaked by a driver after detach or
3317 * a failed attach.
3318 *
3319 * @param rl		the resource list which was allocated from
3320 * @param bus		the parent device of @p child
3321 * @param child		the device whose active resources are being released
3322 * @param type		the type of resources to release
3323 *
3324 * @retval 0		success
3325 * @retval EBUSY	at least one resource was active
3326 */
3327int
3328resource_list_release_active(struct resource_list *rl, device_t bus,
3329    device_t child, int type)
3330{
3331	struct resource_list_entry *rle;
3332	int error, retval;
3333
3334	retval = 0;
3335	STAILQ_FOREACH(rle, rl, link) {
3336		if (rle->type != type)
3337			continue;
3338		if (rle->res == NULL)
3339			continue;
3340		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3341		    RLE_RESERVED)
3342			continue;
3343		retval = EBUSY;
3344		error = resource_list_release(rl, bus, child, type,
3345		    rman_get_rid(rle->res), rle->res);
3346		if (error != 0)
3347			device_printf(bus,
3348			    "Failed to release active resource: %d\n", error);
3349	}
3350	return (retval);
3351}
3352
3353
3354/**
3355 * @brief Fully release a reserved resource
3356 *
3357 * Fully releases a resource reserved via resource_list_reserve().
3358 *
3359 * @param rl		the resource list which was allocated from
3360 * @param bus		the parent device of @p child
3361 * @param child		the device whose reserved resource is being released
3362 * @param type		the type of resource to release
3363 * @param rid		the resource identifier
3364 * @param res		the resource to release
3365 *
3366 * @retval 0		success
3367 * @retval non-zero	a standard unix error code indicating what
3368 *			error condition prevented the operation
3369 */
3370int
3371resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3372    int type, int rid)
3373{
3374	struct resource_list_entry *rle = NULL;
3375	int passthrough = (device_get_parent(child) != bus);
3376
3377	if (passthrough)
3378		panic(
3379    "resource_list_unreserve() should only be called for direct children");
3380
3381	rle = resource_list_find(rl, type, rid);
3382
3383	if (!rle)
3384		panic("resource_list_unreserve: can't find resource");
3385	if (!(rle->flags & RLE_RESERVED))
3386		return (EINVAL);
3387	if (rle->flags & RLE_ALLOCATED)
3388		return (EBUSY);
3389	rle->flags &= ~RLE_RESERVED;
3390	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3391}
3392
3393/**
3394 * @brief Print a description of resources in a resource list
3395 *
3396 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3397 * The name is printed if at least one resource of the given type is available.
3398 * The format is used to print resource start and end.
3399 *
3400 * @param rl		the resource list to print
3401 * @param name		the name of @p type, e.g. @c "memory"
3402 * @param type		type type of resource entry to print
3403 * @param format	printf(9) format string to print resource
3404 *			start and end values
3405 *
3406 * @returns		the number of characters printed
3407 */
3408int
3409resource_list_print_type(struct resource_list *rl, const char *name, int type,
3410    const char *format)
3411{
3412	struct resource_list_entry *rle;
3413	int printed, retval;
3414
3415	printed = 0;
3416	retval = 0;
3417	/* Yes, this is kinda cheating */
3418	STAILQ_FOREACH(rle, rl, link) {
3419		if (rle->type == type) {
3420			if (printed == 0)
3421				retval += printf(" %s ", name);
3422			else
3423				retval += printf(",");
3424			printed++;
3425			retval += printf(format, rle->start);
3426			if (rle->count > 1) {
3427				retval += printf("-");
3428				retval += printf(format, rle->start +
3429						 rle->count - 1);
3430			}
3431		}
3432	}
3433	return (retval);
3434}
3435
3436/**
3437 * @brief Releases all the resources in a list.
3438 *
3439 * @param rl		The resource list to purge.
3440 *
3441 * @returns		nothing
3442 */
3443void
3444resource_list_purge(struct resource_list *rl)
3445{
3446	struct resource_list_entry *rle;
3447
3448	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3449		if (rle->res)
3450			bus_release_resource(rman_get_device(rle->res),
3451			    rle->type, rle->rid, rle->res);
3452		STAILQ_REMOVE_HEAD(rl, link);
3453		free(rle, M_BUS);
3454	}
3455}
3456
3457device_t
3458bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3459{
3460
3461	return (device_add_child_ordered(dev, order, name, unit));
3462}
3463
3464/**
3465 * @brief Helper function for implementing DEVICE_PROBE()
3466 *
3467 * This function can be used to help implement the DEVICE_PROBE() for
3468 * a bus (i.e. a device which has other devices attached to it). It
3469 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3470 * devclass.
3471 */
3472int
3473bus_generic_probe(device_t dev)
3474{
3475	devclass_t dc = dev->devclass;
3476	driverlink_t dl;
3477
3478	TAILQ_FOREACH(dl, &dc->drivers, link) {
3479		/*
3480		 * If this driver's pass is too high, then ignore it.
3481		 * For most drivers in the default pass, this will
3482		 * never be true.  For early-pass drivers they will
3483		 * only call the identify routines of eligible drivers
3484		 * when this routine is called.  Drivers for later
3485		 * passes should have their identify routines called
3486		 * on early-pass busses during BUS_NEW_PASS().
3487		 */
3488		if (dl->pass > bus_current_pass)
3489			continue;
3490		DEVICE_IDENTIFY(dl->driver, dev);
3491	}
3492
3493	return (0);
3494}
3495
3496/**
3497 * @brief Helper function for implementing DEVICE_ATTACH()
3498 *
3499 * This function can be used to help implement the DEVICE_ATTACH() for
3500 * a bus. It calls device_probe_and_attach() for each of the device's
3501 * children.
3502 */
3503int
3504bus_generic_attach(device_t dev)
3505{
3506	device_t child;
3507
3508	TAILQ_FOREACH(child, &dev->children, link) {
3509		device_probe_and_attach(child);
3510	}
3511
3512	return (0);
3513}
3514
3515/**
3516 * @brief Helper function for implementing DEVICE_DETACH()
3517 *
3518 * This function can be used to help implement the DEVICE_DETACH() for
3519 * a bus. It calls device_detach() for each of the device's
3520 * children.
3521 */
3522int
3523bus_generic_detach(device_t dev)
3524{
3525	device_t child;
3526	int error;
3527
3528	if (dev->state != DS_ATTACHED)
3529		return (EBUSY);
3530
3531	TAILQ_FOREACH(child, &dev->children, link) {
3532		if ((error = device_detach(child)) != 0)
3533			return (error);
3534	}
3535
3536	return (0);
3537}
3538
3539/**
3540 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3541 *
3542 * This function can be used to help implement the DEVICE_SHUTDOWN()
3543 * for a bus. It calls device_shutdown() for each of the device's
3544 * children.
3545 */
3546int
3547bus_generic_shutdown(device_t dev)
3548{
3549	device_t child;
3550
3551	TAILQ_FOREACH(child, &dev->children, link) {
3552		device_shutdown(child);
3553	}
3554
3555	return (0);
3556}
3557
3558/**
3559 * @brief Helper function for implementing DEVICE_SUSPEND()
3560 *
3561 * This function can be used to help implement the DEVICE_SUSPEND()
3562 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3563 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3564 * operation is aborted and any devices which were suspended are
3565 * resumed immediately by calling their DEVICE_RESUME() methods.
3566 */
3567int
3568bus_generic_suspend(device_t dev)
3569{
3570	int		error;
3571	device_t	child, child2;
3572
3573	TAILQ_FOREACH(child, &dev->children, link) {
3574		error = DEVICE_SUSPEND(child);
3575		if (error) {
3576			for (child2 = TAILQ_FIRST(&dev->children);
3577			     child2 && child2 != child;
3578			     child2 = TAILQ_NEXT(child2, link))
3579				DEVICE_RESUME(child2);
3580			return (error);
3581		}
3582	}
3583	return (0);
3584}
3585
3586/**
3587 * @brief Helper function for implementing DEVICE_RESUME()
3588 *
3589 * This function can be used to help implement the DEVICE_RESUME() for
3590 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3591 */
3592int
3593bus_generic_resume(device_t dev)
3594{
3595	device_t	child;
3596
3597	TAILQ_FOREACH(child, &dev->children, link) {
3598		DEVICE_RESUME(child);
3599		/* if resume fails, there's nothing we can usefully do... */
3600	}
3601	return (0);
3602}
3603
3604/**
3605 * @brief Helper function for implementing BUS_PRINT_CHILD().
3606 *
3607 * This function prints the first part of the ascii representation of
3608 * @p child, including its name, unit and description (if any - see
3609 * device_set_desc()).
3610 *
3611 * @returns the number of characters printed
3612 */
3613int
3614bus_print_child_header(device_t dev, device_t child)
3615{
3616	int	retval = 0;
3617
3618	if (device_get_desc(child)) {
3619		retval += device_printf(child, "<%s>", device_get_desc(child));
3620	} else {
3621		retval += printf("%s", device_get_nameunit(child));
3622	}
3623
3624	return (retval);
3625}
3626
3627/**
3628 * @brief Helper function for implementing BUS_PRINT_CHILD().
3629 *
3630 * This function prints the last part of the ascii representation of
3631 * @p child, which consists of the string @c " on " followed by the
3632 * name and unit of the @p dev.
3633 *
3634 * @returns the number of characters printed
3635 */
3636int
3637bus_print_child_footer(device_t dev, device_t child)
3638{
3639	return (printf(" on %s\n", device_get_nameunit(dev)));
3640}
3641
3642/**
3643 * @brief Helper function for implementing BUS_PRINT_CHILD().
3644 *
3645 * This function simply calls bus_print_child_header() followed by
3646 * bus_print_child_footer().
3647 *
3648 * @returns the number of characters printed
3649 */
3650int
3651bus_generic_print_child(device_t dev, device_t child)
3652{
3653	int	retval = 0;
3654
3655	retval += bus_print_child_header(dev, child);
3656	retval += bus_print_child_footer(dev, child);
3657
3658	return (retval);
3659}
3660
3661/**
3662 * @brief Stub function for implementing BUS_READ_IVAR().
3663 *
3664 * @returns ENOENT
3665 */
3666int
3667bus_generic_read_ivar(device_t dev, device_t child, int index,
3668    uintptr_t * result)
3669{
3670	return (ENOENT);
3671}
3672
3673/**
3674 * @brief Stub function for implementing BUS_WRITE_IVAR().
3675 *
3676 * @returns ENOENT
3677 */
3678int
3679bus_generic_write_ivar(device_t dev, device_t child, int index,
3680    uintptr_t value)
3681{
3682	return (ENOENT);
3683}
3684
3685/**
3686 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3687 *
3688 * @returns NULL
3689 */
3690struct resource_list *
3691bus_generic_get_resource_list(device_t dev, device_t child)
3692{
3693	return (NULL);
3694}
3695
3696/**
3697 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3698 *
3699 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3700 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3701 * and then calls device_probe_and_attach() for each unattached child.
3702 */
3703void
3704bus_generic_driver_added(device_t dev, driver_t *driver)
3705{
3706	device_t child;
3707
3708	DEVICE_IDENTIFY(driver, dev);
3709	TAILQ_FOREACH(child, &dev->children, link) {
3710		if (child->state == DS_NOTPRESENT ||
3711		    (child->flags & DF_REBID))
3712			device_probe_and_attach(child);
3713	}
3714}
3715
3716/**
3717 * @brief Helper function for implementing BUS_NEW_PASS().
3718 *
3719 * This implementing of BUS_NEW_PASS() first calls the identify
3720 * routines for any drivers that probe at the current pass.  Then it
3721 * walks the list of devices for this bus.  If a device is already
3722 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3723 * device is not already attached, it attempts to attach a driver to
3724 * it.
3725 */
3726void
3727bus_generic_new_pass(device_t dev)
3728{
3729	driverlink_t dl;
3730	devclass_t dc;
3731	device_t child;
3732
3733	dc = dev->devclass;
3734	TAILQ_FOREACH(dl, &dc->drivers, link) {
3735		if (dl->pass == bus_current_pass)
3736			DEVICE_IDENTIFY(dl->driver, dev);
3737	}
3738	TAILQ_FOREACH(child, &dev->children, link) {
3739		if (child->state >= DS_ATTACHED)
3740			BUS_NEW_PASS(child);
3741		else if (child->state == DS_NOTPRESENT)
3742			device_probe_and_attach(child);
3743	}
3744}
3745
3746/**
3747 * @brief Helper function for implementing BUS_SETUP_INTR().
3748 *
3749 * This simple implementation of BUS_SETUP_INTR() simply calls the
3750 * BUS_SETUP_INTR() method of the parent of @p dev.
3751 */
3752int
3753bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3754    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3755    void **cookiep)
3756{
3757	/* Propagate up the bus hierarchy until someone handles it. */
3758	if (dev->parent)
3759		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3760		    filter, intr, arg, cookiep));
3761	return (EINVAL);
3762}
3763
3764/**
3765 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3766 *
3767 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3768 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3769 */
3770int
3771bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3772    void *cookie)
3773{
3774	/* Propagate up the bus hierarchy until someone handles it. */
3775	if (dev->parent)
3776		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3777	return (EINVAL);
3778}
3779
3780/**
3781 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3782 *
3783 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3784 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3785 */
3786int
3787bus_generic_adjust_resource(device_t dev, device_t child, int type,
3788    struct resource *r, u_long start, u_long end)
3789{
3790	/* Propagate up the bus hierarchy until someone handles it. */
3791	if (dev->parent)
3792		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3793		    end));
3794	return (EINVAL);
3795}
3796
3797/**
3798 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3799 *
3800 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3801 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3802 */
3803struct resource *
3804bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3805    u_long start, u_long end, u_long count, u_int flags)
3806{
3807	/* Propagate up the bus hierarchy until someone handles it. */
3808	if (dev->parent)
3809		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3810		    start, end, count, flags));
3811	return (NULL);
3812}
3813
3814/**
3815 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3816 *
3817 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3818 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3819 */
3820int
3821bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3822    struct resource *r)
3823{
3824	/* Propagate up the bus hierarchy until someone handles it. */
3825	if (dev->parent)
3826		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3827		    r));
3828	return (EINVAL);
3829}
3830
3831/**
3832 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3833 *
3834 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3835 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3836 */
3837int
3838bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3839    struct resource *r)
3840{
3841	/* Propagate up the bus hierarchy until someone handles it. */
3842	if (dev->parent)
3843		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3844		    r));
3845	return (EINVAL);
3846}
3847
3848/**
3849 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3850 *
3851 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3852 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3853 */
3854int
3855bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3856    int rid, struct resource *r)
3857{
3858	/* Propagate up the bus hierarchy until someone handles it. */
3859	if (dev->parent)
3860		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3861		    r));
3862	return (EINVAL);
3863}
3864
3865/**
3866 * @brief Helper function for implementing BUS_BIND_INTR().
3867 *
3868 * This simple implementation of BUS_BIND_INTR() simply calls the
3869 * BUS_BIND_INTR() method of the parent of @p dev.
3870 */
3871int
3872bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3873    int cpu)
3874{
3875
3876	/* Propagate up the bus hierarchy until someone handles it. */
3877	if (dev->parent)
3878		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3879	return (EINVAL);
3880}
3881
3882/**
3883 * @brief Helper function for implementing BUS_CONFIG_INTR().
3884 *
3885 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3886 * BUS_CONFIG_INTR() method of the parent of @p dev.
3887 */
3888int
3889bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3890    enum intr_polarity pol)
3891{
3892
3893	/* Propagate up the bus hierarchy until someone handles it. */
3894	if (dev->parent)
3895		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3896	return (EINVAL);
3897}
3898
3899/**
3900 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3901 *
3902 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3903 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3904 */
3905int
3906bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3907    void *cookie, const char *descr)
3908{
3909
3910	/* Propagate up the bus hierarchy until someone handles it. */
3911	if (dev->parent)
3912		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3913		    descr));
3914	return (EINVAL);
3915}
3916
3917/**
3918 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3919 *
3920 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3921 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3922 */
3923bus_dma_tag_t
3924bus_generic_get_dma_tag(device_t dev, device_t child)
3925{
3926
3927	/* Propagate up the bus hierarchy until someone handles it. */
3928	if (dev->parent != NULL)
3929		return (BUS_GET_DMA_TAG(dev->parent, child));
3930	return (NULL);
3931}
3932
3933/**
3934 * @brief Helper function for implementing BUS_GET_RESOURCE().
3935 *
3936 * This implementation of BUS_GET_RESOURCE() uses the
3937 * resource_list_find() function to do most of the work. It calls
3938 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3939 * search.
3940 */
3941int
3942bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3943    u_long *startp, u_long *countp)
3944{
3945	struct resource_list *		rl = NULL;
3946	struct resource_list_entry *	rle = NULL;
3947
3948	rl = BUS_GET_RESOURCE_LIST(dev, child);
3949	if (!rl)
3950		return (EINVAL);
3951
3952	rle = resource_list_find(rl, type, rid);
3953	if (!rle)
3954		return (ENOENT);
3955
3956	if (startp)
3957		*startp = rle->start;
3958	if (countp)
3959		*countp = rle->count;
3960
3961	return (0);
3962}
3963
3964/**
3965 * @brief Helper function for implementing BUS_SET_RESOURCE().
3966 *
3967 * This implementation of BUS_SET_RESOURCE() uses the
3968 * resource_list_add() function to do most of the work. It calls
3969 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3970 * edit.
3971 */
3972int
3973bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3974    u_long start, u_long count)
3975{
3976	struct resource_list *		rl = NULL;
3977
3978	rl = BUS_GET_RESOURCE_LIST(dev, child);
3979	if (!rl)
3980		return (EINVAL);
3981
3982	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3983
3984	return (0);
3985}
3986
3987/**
3988 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3989 *
3990 * This implementation of BUS_DELETE_RESOURCE() uses the
3991 * resource_list_delete() function to do most of the work. It calls
3992 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3993 * edit.
3994 */
3995void
3996bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3997{
3998	struct resource_list *		rl = NULL;
3999
4000	rl = BUS_GET_RESOURCE_LIST(dev, child);
4001	if (!rl)
4002		return;
4003
4004	resource_list_delete(rl, type, rid);
4005
4006	return;
4007}
4008
4009/**
4010 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4011 *
4012 * This implementation of BUS_RELEASE_RESOURCE() uses the
4013 * resource_list_release() function to do most of the work. It calls
4014 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4015 */
4016int
4017bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4018    int rid, struct resource *r)
4019{
4020	struct resource_list *		rl = NULL;
4021
4022	if (device_get_parent(child) != dev)
4023		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4024		    type, rid, r));
4025
4026	rl = BUS_GET_RESOURCE_LIST(dev, child);
4027	if (!rl)
4028		return (EINVAL);
4029
4030	return (resource_list_release(rl, dev, child, type, rid, r));
4031}
4032
4033/**
4034 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4035 *
4036 * This implementation of BUS_ALLOC_RESOURCE() uses the
4037 * resource_list_alloc() function to do most of the work. It calls
4038 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4039 */
4040struct resource *
4041bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4042    int *rid, u_long start, u_long end, u_long count, u_int flags)
4043{
4044	struct resource_list *		rl = NULL;
4045
4046	if (device_get_parent(child) != dev)
4047		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4048		    type, rid, start, end, count, flags));
4049
4050	rl = BUS_GET_RESOURCE_LIST(dev, child);
4051	if (!rl)
4052		return (NULL);
4053
4054	return (resource_list_alloc(rl, dev, child, type, rid,
4055	    start, end, count, flags));
4056}
4057
4058/**
4059 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4060 *
4061 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4062 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4063 */
4064int
4065bus_generic_child_present(device_t dev, device_t child)
4066{
4067	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4068}
4069
4070/*
4071 * Some convenience functions to make it easier for drivers to use the
4072 * resource-management functions.  All these really do is hide the
4073 * indirection through the parent's method table, making for slightly
4074 * less-wordy code.  In the future, it might make sense for this code
4075 * to maintain some sort of a list of resources allocated by each device.
4076 */
4077
4078int
4079bus_alloc_resources(device_t dev, struct resource_spec *rs,
4080    struct resource **res)
4081{
4082	int i;
4083
4084	for (i = 0; rs[i].type != -1; i++)
4085		res[i] = NULL;
4086	for (i = 0; rs[i].type != -1; i++) {
4087		res[i] = bus_alloc_resource_any(dev,
4088		    rs[i].type, &rs[i].rid, rs[i].flags);
4089		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4090			bus_release_resources(dev, rs, res);
4091			return (ENXIO);
4092		}
4093	}
4094	return (0);
4095}
4096
4097void
4098bus_release_resources(device_t dev, const struct resource_spec *rs,
4099    struct resource **res)
4100{
4101	int i;
4102
4103	for (i = 0; rs[i].type != -1; i++)
4104		if (res[i] != NULL) {
4105			bus_release_resource(
4106			    dev, rs[i].type, rs[i].rid, res[i]);
4107			res[i] = NULL;
4108		}
4109}
4110
4111/**
4112 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4113 *
4114 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4115 * parent of @p dev.
4116 */
4117struct resource *
4118bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4119    u_long count, u_int flags)
4120{
4121	if (dev->parent == NULL)
4122		return (NULL);
4123	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4124	    count, flags));
4125}
4126
4127/**
4128 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4129 *
4130 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4131 * parent of @p dev.
4132 */
4133int
4134bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4135    u_long end)
4136{
4137	if (dev->parent == NULL)
4138		return (EINVAL);
4139	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4140}
4141
4142/**
4143 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4144 *
4145 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4146 * parent of @p dev.
4147 */
4148int
4149bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4150{
4151	if (dev->parent == NULL)
4152		return (EINVAL);
4153	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4154}
4155
4156/**
4157 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4158 *
4159 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4160 * parent of @p dev.
4161 */
4162int
4163bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4164{
4165	if (dev->parent == NULL)
4166		return (EINVAL);
4167	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4168}
4169
4170/**
4171 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4172 *
4173 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4174 * parent of @p dev.
4175 */
4176int
4177bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4178{
4179	if (dev->parent == NULL)
4180		return (EINVAL);
4181	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4182}
4183
4184/**
4185 * @brief Wrapper function for BUS_SETUP_INTR().
4186 *
4187 * This function simply calls the BUS_SETUP_INTR() method of the
4188 * parent of @p dev.
4189 */
4190int
4191bus_setup_intr(device_t dev, struct resource *r, int flags,
4192    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4193{
4194	int error;
4195
4196	if (dev->parent == NULL)
4197		return (EINVAL);
4198	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4199	    arg, cookiep);
4200	if (error != 0)
4201		return (error);
4202	if (handler != NULL && !(flags & INTR_MPSAFE))
4203		device_printf(dev, "[GIANT-LOCKED]\n");
4204	return (0);
4205}
4206
4207/**
4208 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4209 *
4210 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4211 * parent of @p dev.
4212 */
4213int
4214bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4215{
4216	if (dev->parent == NULL)
4217		return (EINVAL);
4218	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4219}
4220
4221/**
4222 * @brief Wrapper function for BUS_BIND_INTR().
4223 *
4224 * This function simply calls the BUS_BIND_INTR() method of the
4225 * parent of @p dev.
4226 */
4227int
4228bus_bind_intr(device_t dev, struct resource *r, int cpu)
4229{
4230	if (dev->parent == NULL)
4231		return (EINVAL);
4232	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4233}
4234
4235/**
4236 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4237 *
4238 * This function first formats the requested description into a
4239 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4240 * the parent of @p dev.
4241 */
4242int
4243bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4244    const char *fmt, ...)
4245{
4246	va_list ap;
4247	char descr[MAXCOMLEN + 1];
4248
4249	if (dev->parent == NULL)
4250		return (EINVAL);
4251	va_start(ap, fmt);
4252	vsnprintf(descr, sizeof(descr), fmt, ap);
4253	va_end(ap);
4254	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4255}
4256
4257/**
4258 * @brief Wrapper function for BUS_SET_RESOURCE().
4259 *
4260 * This function simply calls the BUS_SET_RESOURCE() method of the
4261 * parent of @p dev.
4262 */
4263int
4264bus_set_resource(device_t dev, int type, int rid,
4265    u_long start, u_long count)
4266{
4267	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4268	    start, count));
4269}
4270
4271/**
4272 * @brief Wrapper function for BUS_GET_RESOURCE().
4273 *
4274 * This function simply calls the BUS_GET_RESOURCE() method of the
4275 * parent of @p dev.
4276 */
4277int
4278bus_get_resource(device_t dev, int type, int rid,
4279    u_long *startp, u_long *countp)
4280{
4281	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4282	    startp, countp));
4283}
4284
4285/**
4286 * @brief Wrapper function for BUS_GET_RESOURCE().
4287 *
4288 * This function simply calls the BUS_GET_RESOURCE() method of the
4289 * parent of @p dev and returns the start value.
4290 */
4291u_long
4292bus_get_resource_start(device_t dev, int type, int rid)
4293{
4294	u_long start, count;
4295	int error;
4296
4297	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4298	    &start, &count);
4299	if (error)
4300		return (0);
4301	return (start);
4302}
4303
4304/**
4305 * @brief Wrapper function for BUS_GET_RESOURCE().
4306 *
4307 * This function simply calls the BUS_GET_RESOURCE() method of the
4308 * parent of @p dev and returns the count value.
4309 */
4310u_long
4311bus_get_resource_count(device_t dev, int type, int rid)
4312{
4313	u_long start, count;
4314	int error;
4315
4316	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4317	    &start, &count);
4318	if (error)
4319		return (0);
4320	return (count);
4321}
4322
4323/**
4324 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4325 *
4326 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4327 * parent of @p dev.
4328 */
4329void
4330bus_delete_resource(device_t dev, int type, int rid)
4331{
4332	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4333}
4334
4335/**
4336 * @brief Wrapper function for BUS_CHILD_PRESENT().
4337 *
4338 * This function simply calls the BUS_CHILD_PRESENT() method of the
4339 * parent of @p dev.
4340 */
4341int
4342bus_child_present(device_t child)
4343{
4344	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4345}
4346
4347/**
4348 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4349 *
4350 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4351 * parent of @p dev.
4352 */
4353int
4354bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4355{
4356	device_t parent;
4357
4358	parent = device_get_parent(child);
4359	if (parent == NULL) {
4360		*buf = '\0';
4361		return (0);
4362	}
4363	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4364}
4365
4366/**
4367 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4368 *
4369 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4370 * parent of @p dev.
4371 */
4372int
4373bus_child_location_str(device_t child, char *buf, size_t buflen)
4374{
4375	device_t parent;
4376
4377	parent = device_get_parent(child);
4378	if (parent == NULL) {
4379		*buf = '\0';
4380		return (0);
4381	}
4382	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4383}
4384
4385/**
4386 * @brief Wrapper function for BUS_GET_DMA_TAG().
4387 *
4388 * This function simply calls the BUS_GET_DMA_TAG() method of the
4389 * parent of @p dev.
4390 */
4391bus_dma_tag_t
4392bus_get_dma_tag(device_t dev)
4393{
4394	device_t parent;
4395
4396	parent = device_get_parent(dev);
4397	if (parent == NULL)
4398		return (NULL);
4399	return (BUS_GET_DMA_TAG(parent, dev));
4400}
4401
4402/* Resume all devices and then notify userland that we're up again. */
4403static int
4404root_resume(device_t dev)
4405{
4406	int error;
4407
4408	error = bus_generic_resume(dev);
4409	if (error == 0)
4410		devctl_notify("kern", "power", "resume", NULL);
4411	return (error);
4412}
4413
4414static int
4415root_print_child(device_t dev, device_t child)
4416{
4417	int	retval = 0;
4418
4419	retval += bus_print_child_header(dev, child);
4420	retval += printf("\n");
4421
4422	return (retval);
4423}
4424
4425static int
4426root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4427    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4428{
4429	/*
4430	 * If an interrupt mapping gets to here something bad has happened.
4431	 */
4432	panic("root_setup_intr");
4433}
4434
4435/*
4436 * If we get here, assume that the device is permanant and really is
4437 * present in the system.  Removable bus drivers are expected to intercept
4438 * this call long before it gets here.  We return -1 so that drivers that
4439 * really care can check vs -1 or some ERRNO returned higher in the food
4440 * chain.
4441 */
4442static int
4443root_child_present(device_t dev, device_t child)
4444{
4445	return (-1);
4446}
4447
4448static kobj_method_t root_methods[] = {
4449	/* Device interface */
4450	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4451	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4452	KOBJMETHOD(device_resume,	root_resume),
4453
4454	/* Bus interface */
4455	KOBJMETHOD(bus_print_child,	root_print_child),
4456	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4457	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4458	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4459	KOBJMETHOD(bus_child_present,	root_child_present),
4460
4461	KOBJMETHOD_END
4462};
4463
4464static driver_t root_driver = {
4465	"root",
4466	root_methods,
4467	1,			/* no softc */
4468};
4469
4470device_t	root_bus;
4471devclass_t	root_devclass;
4472
4473static int
4474root_bus_module_handler(module_t mod, int what, void* arg)
4475{
4476	switch (what) {
4477	case MOD_LOAD:
4478		TAILQ_INIT(&bus_data_devices);
4479		kobj_class_compile((kobj_class_t) &root_driver);
4480		root_bus = make_device(NULL, "root", 0);
4481		root_bus->desc = "System root bus";
4482		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4483		root_bus->driver = &root_driver;
4484		root_bus->state = DS_ATTACHED;
4485		root_devclass = devclass_find_internal("root", NULL, FALSE);
4486		devinit();
4487		return (0);
4488
4489	case MOD_SHUTDOWN:
4490		device_shutdown(root_bus);
4491		return (0);
4492	default:
4493		return (EOPNOTSUPP);
4494	}
4495
4496	return (0);
4497}
4498
4499static moduledata_t root_bus_mod = {
4500	"rootbus",
4501	root_bus_module_handler,
4502	NULL
4503};
4504DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4505
4506/**
4507 * @brief Automatically configure devices
4508 *
4509 * This function begins the autoconfiguration process by calling
4510 * device_probe_and_attach() for each child of the @c root0 device.
4511 */
4512void
4513root_bus_configure(void)
4514{
4515
4516	PDEBUG(("."));
4517
4518	/* Eventually this will be split up, but this is sufficient for now. */
4519	bus_set_pass(BUS_PASS_DEFAULT);
4520}
4521
4522/**
4523 * @brief Module handler for registering device drivers
4524 *
4525 * This module handler is used to automatically register device
4526 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4527 * devclass_add_driver() for the driver described by the
4528 * driver_module_data structure pointed to by @p arg
4529 */
4530int
4531driver_module_handler(module_t mod, int what, void *arg)
4532{
4533	struct driver_module_data *dmd;
4534	devclass_t bus_devclass;
4535	kobj_class_t driver;
4536	int error, pass;
4537
4538	dmd = (struct driver_module_data *)arg;
4539	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4540	error = 0;
4541
4542	switch (what) {
4543	case MOD_LOAD:
4544		if (dmd->dmd_chainevh)
4545			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4546
4547		pass = dmd->dmd_pass;
4548		driver = dmd->dmd_driver;
4549		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4550		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4551		error = devclass_add_driver(bus_devclass, driver, pass,
4552		    dmd->dmd_devclass);
4553		break;
4554
4555	case MOD_UNLOAD:
4556		PDEBUG(("Unloading module: driver %s from bus %s",
4557		    DRIVERNAME(dmd->dmd_driver),
4558		    dmd->dmd_busname));
4559		error = devclass_delete_driver(bus_devclass,
4560		    dmd->dmd_driver);
4561
4562		if (!error && dmd->dmd_chainevh)
4563			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4564		break;
4565	case MOD_QUIESCE:
4566		PDEBUG(("Quiesce module: driver %s from bus %s",
4567		    DRIVERNAME(dmd->dmd_driver),
4568		    dmd->dmd_busname));
4569		error = devclass_quiesce_driver(bus_devclass,
4570		    dmd->dmd_driver);
4571
4572		if (!error && dmd->dmd_chainevh)
4573			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4574		break;
4575	default:
4576		error = EOPNOTSUPP;
4577		break;
4578	}
4579
4580	return (error);
4581}
4582
4583/**
4584 * @brief Enumerate all hinted devices for this bus.
4585 *
4586 * Walks through the hints for this bus and calls the bus_hinted_child
4587 * routine for each one it fines.  It searches first for the specific
4588 * bus that's being probed for hinted children (eg isa0), and then for
4589 * generic children (eg isa).
4590 *
4591 * @param	dev	bus device to enumerate
4592 */
4593void
4594bus_enumerate_hinted_children(device_t bus)
4595{
4596	int i;
4597	const char *dname, *busname;
4598	int dunit;
4599
4600	/*
4601	 * enumerate all devices on the specific bus
4602	 */
4603	busname = device_get_nameunit(bus);
4604	i = 0;
4605	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4606		BUS_HINTED_CHILD(bus, dname, dunit);
4607
4608	/*
4609	 * and all the generic ones.
4610	 */
4611	busname = device_get_name(bus);
4612	i = 0;
4613	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4614		BUS_HINTED_CHILD(bus, dname, dunit);
4615}
4616
4617#ifdef BUS_DEBUG
4618
4619/* the _short versions avoid iteration by not calling anything that prints
4620 * more than oneliners. I love oneliners.
4621 */
4622
4623static void
4624print_device_short(device_t dev, int indent)
4625{
4626	if (!dev)
4627		return;
4628
4629	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4630	    dev->unit, dev->desc,
4631	    (dev->parent? "":"no "),
4632	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4633	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4634	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4635	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4636	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4637	    (dev->flags&DF_REBID? "rebiddable,":""),
4638	    (dev->ivars? "":"no "),
4639	    (dev->softc? "":"no "),
4640	    dev->busy));
4641}
4642
4643static void
4644print_device(device_t dev, int indent)
4645{
4646	if (!dev)
4647		return;
4648
4649	print_device_short(dev, indent);
4650
4651	indentprintf(("Parent:\n"));
4652	print_device_short(dev->parent, indent+1);
4653	indentprintf(("Driver:\n"));
4654	print_driver_short(dev->driver, indent+1);
4655	indentprintf(("Devclass:\n"));
4656	print_devclass_short(dev->devclass, indent+1);
4657}
4658
4659void
4660print_device_tree_short(device_t dev, int indent)
4661/* print the device and all its children (indented) */
4662{
4663	device_t child;
4664
4665	if (!dev)
4666		return;
4667
4668	print_device_short(dev, indent);
4669
4670	TAILQ_FOREACH(child, &dev->children, link) {
4671		print_device_tree_short(child, indent+1);
4672	}
4673}
4674
4675void
4676print_device_tree(device_t dev, int indent)
4677/* print the device and all its children (indented) */
4678{
4679	device_t child;
4680
4681	if (!dev)
4682		return;
4683
4684	print_device(dev, indent);
4685
4686	TAILQ_FOREACH(child, &dev->children, link) {
4687		print_device_tree(child, indent+1);
4688	}
4689}
4690
4691static void
4692print_driver_short(driver_t *driver, int indent)
4693{
4694	if (!driver)
4695		return;
4696
4697	indentprintf(("driver %s: softc size = %zd\n",
4698	    driver->name, driver->size));
4699}
4700
4701static void
4702print_driver(driver_t *driver, int indent)
4703{
4704	if (!driver)
4705		return;
4706
4707	print_driver_short(driver, indent);
4708}
4709
4710static void
4711print_driver_list(driver_list_t drivers, int indent)
4712{
4713	driverlink_t driver;
4714
4715	TAILQ_FOREACH(driver, &drivers, link) {
4716		print_driver(driver->driver, indent);
4717	}
4718}
4719
4720static void
4721print_devclass_short(devclass_t dc, int indent)
4722{
4723	if ( !dc )
4724		return;
4725
4726	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4727}
4728
4729static void
4730print_devclass(devclass_t dc, int indent)
4731{
4732	int i;
4733
4734	if ( !dc )
4735		return;
4736
4737	print_devclass_short(dc, indent);
4738	indentprintf(("Drivers:\n"));
4739	print_driver_list(dc->drivers, indent+1);
4740
4741	indentprintf(("Devices:\n"));
4742	for (i = 0; i < dc->maxunit; i++)
4743		if (dc->devices[i])
4744			print_device(dc->devices[i], indent+1);
4745}
4746
4747void
4748print_devclass_list_short(void)
4749{
4750	devclass_t dc;
4751
4752	printf("Short listing of devclasses, drivers & devices:\n");
4753	TAILQ_FOREACH(dc, &devclasses, link) {
4754		print_devclass_short(dc, 0);
4755	}
4756}
4757
4758void
4759print_devclass_list(void)
4760{
4761	devclass_t dc;
4762
4763	printf("Full listing of devclasses, drivers & devices:\n");
4764	TAILQ_FOREACH(dc, &devclasses, link) {
4765		print_devclass(dc, 0);
4766	}
4767}
4768
4769#endif
4770
4771/*
4772 * User-space access to the device tree.
4773 *
4774 * We implement a small set of nodes:
4775 *
4776 * hw.bus			Single integer read method to obtain the
4777 *				current generation count.
4778 * hw.bus.devices		Reads the entire device tree in flat space.
4779 * hw.bus.rman			Resource manager interface
4780 *
4781 * We might like to add the ability to scan devclasses and/or drivers to
4782 * determine what else is currently loaded/available.
4783 */
4784
4785static int
4786sysctl_bus(SYSCTL_HANDLER_ARGS)
4787{
4788	struct u_businfo	ubus;
4789
4790	ubus.ub_version = BUS_USER_VERSION;
4791	ubus.ub_generation = bus_data_generation;
4792
4793	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4794}
4795SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4796    "bus-related data");
4797
4798static int
4799sysctl_devices(SYSCTL_HANDLER_ARGS)
4800{
4801	int			*name = (int *)arg1;
4802	u_int			namelen = arg2;
4803	int			index;
4804	struct device		*dev;
4805	struct u_device		udev;	/* XXX this is a bit big */
4806	int			error;
4807
4808	if (namelen != 2)
4809		return (EINVAL);
4810
4811	if (bus_data_generation_check(name[0]))
4812		return (EINVAL);
4813
4814	index = name[1];
4815
4816	/*
4817	 * Scan the list of devices, looking for the requested index.
4818	 */
4819	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4820		if (index-- == 0)
4821			break;
4822	}
4823	if (dev == NULL)
4824		return (ENOENT);
4825
4826	/*
4827	 * Populate the return array.
4828	 */
4829	bzero(&udev, sizeof(udev));
4830	udev.dv_handle = (uintptr_t)dev;
4831	udev.dv_parent = (uintptr_t)dev->parent;
4832	if (dev->nameunit != NULL)
4833		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4834	if (dev->desc != NULL)
4835		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4836	if (dev->driver != NULL && dev->driver->name != NULL)
4837		strlcpy(udev.dv_drivername, dev->driver->name,
4838		    sizeof(udev.dv_drivername));
4839	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4840	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4841	udev.dv_devflags = dev->devflags;
4842	udev.dv_flags = dev->flags;
4843	udev.dv_state = dev->state;
4844	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4845	return (error);
4846}
4847
4848SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4849    "system device tree");
4850
4851int
4852bus_data_generation_check(int generation)
4853{
4854	if (generation != bus_data_generation)
4855		return (1);
4856
4857	/* XXX generate optimised lists here? */
4858	return (0);
4859}
4860
4861void
4862bus_data_generation_update(void)
4863{
4864	bus_data_generation++;
4865}
4866
4867int
4868bus_free_resource(device_t dev, int type, struct resource *r)
4869{
4870	if (r == NULL)
4871		return (0);
4872	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4873}
4874