subr_bus.c revision 253346
169990Sdes/*-
269990Sdes * Copyright (c) 1997,1998,2003 Doug Rabson
369990Sdes * All rights reserved.
469990Sdes *
569990Sdes * Redistribution and use in source and binary forms, with or without
669990Sdes * modification, are permitted provided that the following conditions
769990Sdes * are met:
869990Sdes * 1. Redistributions of source code must retain the above copyright
969990Sdes *    notice, this list of conditions and the following disclaimer.
1069990Sdes * 2. Redistributions in binary form must reproduce the above copyright
1169990Sdes *    notice, this list of conditions and the following disclaimer in the
1269990Sdes *    documentation and/or other materials provided with the distribution.
1369990Sdes *
1469990Sdes * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1569990Sdes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1669990Sdes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1769990Sdes * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
1869990Sdes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
1969990Sdes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2069990Sdes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2169990Sdes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2269990Sdes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2369990Sdes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2469990Sdes * SUCH DAMAGE.
2569990Sdes */
2669990Sdes
2769990Sdes#include <sys/cdefs.h>
2869990Sdes__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 253346 2013-07-15 01:32:55Z rodrigc $");
29116182Sobrien
30116182Sobrien#include "opt_bus.h"
31116182Sobrien
3269990Sdes#include <sys/param.h>
3374840Sken#include <sys/conf.h>
3474840Sken#include <sys/filio.h>
3584097Sdes#include <sys/lock.h>
3669990Sdes#include <sys/kernel.h>
3769990Sdes#include <sys/kobj.h>
3869990Sdes#include <sys/limits.h>
3984097Sdes#include <sys/malloc.h>
4069990Sdes#include <sys/module.h>
4174840Sken#include <sys/mutex.h>
4284097Sdes#include <sys/poll.h>
4374840Sken#include <sys/proc.h>
4488950Skbyanc#include <sys/condvar.h>
4578340Sjlemon#include <sys/queue.h>
4688950Skbyanc#include <machine/bus.h>
4774840Sken#include <sys/rman.h>
4869990Sdes#include <sys/selinfo.h>
4984097Sdes#include <sys/signalvar.h>
5084097Sdes#include <sys/sysctl.h>
5174840Sken#include <sys/systm.h>
5269990Sdes#include <sys/uio.h>
53111119Simp#include <sys/bus.h>
5489121Skbyanc#include <sys/interrupt.h>
5574840Sken
5689121Skbyanc#include <net/vnet.h>
5789121Skbyanc
5889121Skbyanc#include <machine/stdarg.h>
5989121Skbyanc
6074840Sken#include <vm/uma.h>
6169990Sdes
6271721SdesSYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
6371721SdesSYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
6471721Sdes
6589121Skbyanc/*
6689121Skbyanc * Used to attach drivers to devclasses.
6789121Skbyanc */
6889121Skbyanctypedef struct driverlink *driverlink_t;
6989121Skbyancstruct driverlink {
7088950Skbyanc	kobj_class_t	driver;
7188950Skbyanc	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
7271721Sdes	int		pass;
7371721Sdes	TAILQ_ENTRY(driverlink) passlink;
7471721Sdes};
7571721Sdes
7689121Skbyanc/*
7789121Skbyanc * Forward declarations
7871721Sdes */
7989121Skbyanctypedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
8089121Skbyanctypedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
8189121Skbyanctypedef TAILQ_HEAD(device_list, device) device_list_t;
8288950Skbyanc
8371721Sdesstruct devclass {
8471721Sdes	TAILQ_ENTRY(devclass) link;
8571721Sdes	devclass_t	parent;		/* parent in devclass hierarchy */
8674840Sken	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
8769990Sdes	char		*name;
8892664Speter	device_t	*devices;	/* array of devices indexed by unit */
8969990Sdes	int		maxunit;	/* size of devices array */
9069990Sdes	int		flags;
9173891Sdes#define DC_HAS_CHILDREN		1
9269990Sdes
9388950Skbyanc	struct sysctl_ctx_list sysctl_ctx;
9469990Sdes	struct sysctl_oid *sysctl_tree;
9569990Sdes};
9669990Sdes
9769990Sdes/**
9869990Sdes * @brief Implementation of device.
9992664Speter */
10069990Sdesstruct device {
10169990Sdes	/*
10273891Sdes	 * A device is a kernel object. The first field must be the
10369990Sdes	 * current ops table for the object.
10469990Sdes	 */
10589121Skbyanc	KOBJ_FIELDS;
10689121Skbyanc
10774840Sken	/*
10889121Skbyanc	 * Device hierarchy.
10989121Skbyanc	 */
11074840Sken	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
11169990Sdes	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
11288950Skbyanc	device_t	parent;		/**< parent of this device  */
11388950Skbyanc	device_list_t	children;	/**< list of child devices */
11488950Skbyanc
11588950Skbyanc	/*
11688950Skbyanc	 * Details of this device.
11788950Skbyanc	 */
11888950Skbyanc	driver_t	*driver;	/**< current driver */
119103404Sphk	devclass_t	devclass;	/**< current device class */
12088950Skbyanc	int		unit;		/**< current unit number */
12188950Skbyanc	char*		nameunit;	/**< name+unit e.g. foodev0 */
12288950Skbyanc	char*		desc;		/**< driver specific description */
12388950Skbyanc	int		busy;		/**< count of calls to device_busy() */
12488950Skbyanc	device_state_t	state;		/**< current device state  */
12588950Skbyanc	uint32_t	devflags;	/**< api level flags for device_get_flags() */
12688950Skbyanc	u_int		flags;		/**< internal device flags  */
12788950Skbyanc#define	DF_ENABLED	0x01		/* device should be probed/attached */
12888950Skbyanc#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
12969990Sdes#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
13088950Skbyanc#define	DF_DESCMALLOCED	0x08		/* description was malloced */
13188950Skbyanc#define	DF_QUIET	0x10		/* don't print verbose attach message */
13288950Skbyanc#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
13388950Skbyanc#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
13488950Skbyanc#define	DF_REBID	0x80		/* Can rebid after attach */
13588950Skbyanc	u_int	order;			/**< order from device_add_child_ordered() */
13688950Skbyanc	void	*ivars;			/**< instance variables  */
13788950Skbyanc	void	*softc;			/**< current driver's variables  */
13888950Skbyanc
13988950Skbyanc	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
14088950Skbyanc	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
14188950Skbyanc};
14288950Skbyanc
14388950Skbyancstatic MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
14488950Skbyancstatic MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
14588950Skbyanc
14688950Skbyanc#ifdef BUS_DEBUG
14788950Skbyanc
14888950Skbyancstatic int bus_debug = 1;
14988950SkbyancTUNABLE_INT("bus.debug", &bus_debug);
15088950SkbyancSYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
15188950Skbyanc    "Debug bus code");
15288950Skbyanc
15388950Skbyanc#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
15488950Skbyanc#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
15588950Skbyanc#define DRIVERNAME(d)	((d)? d->name : "no driver")
15669990Sdes#define DEVCLANAME(d)	((d)? d->name : "no devclass")
15769990Sdes
15869990Sdes/**
15969990Sdes * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
16077989Sdes * prevent syslog from deleting initial spaces
16171721Sdes */
16269990Sdes#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
16371721Sdes
16471721Sdesstatic void print_device_short(device_t dev, int indent);
16588950Skbyancstatic void print_device(device_t dev, int indent);
16688950Skbyancvoid print_device_tree_short(device_t dev, int indent);
16769990Sdesvoid print_device_tree(device_t dev, int indent);
16888950Skbyancstatic void print_driver_short(driver_t *driver, int indent);
16977989Sdesstatic void print_driver(driver_t *driver, int indent);
17077989Sdesstatic void print_driver_list(driver_list_t drivers, int indent);
17177989Sdesstatic void print_devclass_short(devclass_t dc, int indent);
17277989Sdesstatic void print_devclass(devclass_t dc, int indent);
17377989Sdesvoid print_devclass_list_short(void);
17488950Skbyancvoid print_devclass_list(void);
17577989Sdes
17677989Sdes#else
17777989Sdes/* Make the compiler ignore the function calls */
17888950Skbyanc#define PDEBUG(a)			/* nop */
17977989Sdes#define DEVICENAME(d)			/* nop */
18069990Sdes#define DRIVERNAME(d)			/* nop */
18169990Sdes#define DEVCLANAME(d)			/* nop */
18269990Sdes
18377989Sdes#define print_device_short(d,i)		/* nop */
18469990Sdes#define print_device(d,i)		/* nop */
18588950Skbyanc#define print_device_tree_short(d,i)	/* nop */
18688950Skbyanc#define print_device_tree(d,i)		/* nop */
18774840Sken#define print_driver_short(d,i)		/* nop */
18877989Sdes#define print_driver(d,i)		/* nop */
18977989Sdes#define print_driver_list(d,i)		/* nop */
19077989Sdes#define print_devclass_short(d,i)	/* nop */
19177989Sdes#define print_devclass(d,i)		/* nop */
19277989Sdes#define print_devclass_list_short()	/* nop */
19369990Sdes#define print_devclass_list()		/* nop */
19477989Sdes#endif
19569990Sdes
19669990Sdes/*
19784097Sdes * dev sysctl tree
19869990Sdes */
19984097Sdes
20084097Sdesenum {
20184097Sdes	DEVCLASS_SYSCTL_PARENT,
20284097Sdes};
20384097Sdes
20484097Sdesstatic int
20587594Sobriendevclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
20684097Sdes{
20787594Sobrien	devclass_t dc = (devclass_t)arg1;
20884097Sdes	const char *value;
20984097Sdes
21084097Sdes	switch (arg2) {
21184097Sdes	case DEVCLASS_SYSCTL_PARENT:
21284097Sdes		value = dc->parent ? dc->parent->name : "";
21384097Sdes		break;
21484097Sdes	default:
21584097Sdes		return (EINVAL);
21684097Sdes	}
21784097Sdes	return (SYSCTL_OUT(req, value, strlen(value)));
21884097Sdes}
21984097Sdes
22084097Sdesstatic void
22184097Sdesdevclass_sysctl_init(devclass_t dc)
22284097Sdes{
22384097Sdes
22484097Sdes	if (dc->sysctl_tree != NULL)
22584097Sdes		return;
22688950Skbyanc	sysctl_ctx_init(&dc->sysctl_ctx);
22771721Sdes	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
22871721Sdes	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
22971721Sdes	    CTLFLAG_RD, NULL, "");
23071721Sdes	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
23171721Sdes	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
23271724Sdes	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
23371721Sdes	    "parent class");
23471721Sdes}
23571721Sdes
23671721Sdesenum {
23771721Sdes	DEVICE_SYSCTL_DESC,
23871721Sdes	DEVICE_SYSCTL_DRIVER,
23971721Sdes	DEVICE_SYSCTL_LOCATION,
24088950Skbyanc	DEVICE_SYSCTL_PNPINFO,
24188950Skbyanc	DEVICE_SYSCTL_PARENT,
24269990Sdes};
24369990Sdes
24471721Sdesstatic int
24569990Sdesdevice_sysctl_handler(SYSCTL_HANDLER_ARGS)
24669990Sdes{
24769990Sdes	device_t dev = (device_t)arg1;
248125937Sdes	const char *value;
24969990Sdes	char *buf;
25069990Sdes	int error;
25169990Sdes
25269990Sdes	buf = NULL;
253125937Sdes	switch (arg2) {
25469990Sdes	case DEVICE_SYSCTL_DESC:
25569990Sdes		value = dev->desc ? dev->desc : "";
25669990Sdes		break;
25769990Sdes	case DEVICE_SYSCTL_DRIVER:
25869990Sdes		value = dev->driver ? dev->driver->name : "";
25969990Sdes		break;
26069990Sdes	case DEVICE_SYSCTL_LOCATION:
26178077Sdes		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
26278077Sdes		bus_child_location_str(dev, buf, 1024);
26378077Sdes		break;
264131869Sdes	case DEVICE_SYSCTL_PNPINFO:
26578077Sdes		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266131869Sdes		bus_child_pnpinfo_str(dev, buf, 1024);
267131868Sdes		break;
26878077Sdes	case DEVICE_SYSCTL_PARENT:
26978077Sdes		value = dev->parent ? dev->parent->nameunit : "";
270125937Sdes		break;
27178077Sdes	default:
27278077Sdes		return (EINVAL);
273125937Sdes	}
27489765Sphk	error = SYSCTL_OUT(req, value, strlen(value));
27588950Skbyanc	if (buf != NULL)
27688950Skbyanc		free(buf, M_BUS);
27778077Sdes	return (error);
27888950Skbyanc}
27978077Sdes
28078077Sdesstatic void
28178077Sdesdevice_sysctl_init(device_t dev)
28278077Sdes{
28378077Sdes	devclass_t dc = dev->devclass;
28478077Sdes
28578077Sdes	if (dev->sysctl_tree != NULL)
28678077Sdes		return;
28778077Sdes	devclass_sysctl_init(dc);
28878077Sdes	sysctl_ctx_init(&dev->sysctl_ctx);
28978077Sdes	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
29078077Sdes	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
29178077Sdes	    dev->nameunit + strlen(dc->name),
29278077Sdes	    CTLFLAG_RD, NULL, "");
29378077Sdes	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
29478077Sdes	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
29578077Sdes	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
29678077Sdes	    "device description");
29778077Sdes	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
29878077Sdes	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
29978077Sdes	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
30078077Sdes	    "device driver name");
30188950Skbyanc	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
30288950Skbyanc	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
30388950Skbyanc	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
30488950Skbyanc	    "device location relative to parent");
30578092Sdes	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
30678092Sdes	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
30778095Sdes	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308125937Sdes	    "device identification");
30978077Sdes	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
31078077Sdes	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
31178077Sdes	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
31278077Sdes	    "parent device");
31378077Sdes}
31478077Sdes
31578077Sdesstatic void
31678077Sdesdevice_sysctl_update(device_t dev)
317131869Sdes{
31878077Sdes	devclass_t dc = dev->devclass;
31978077Sdes
32078077Sdes	if (dev->sysctl_tree == NULL)
321125937Sdes		return;
32278077Sdes	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
323131869Sdes}
32478077Sdes
32578077Sdesstatic void
32678077Sdesdevice_sysctl_fini(device_t dev)
32769990Sdes{
32869990Sdes	if (dev->sysctl_tree == NULL)
32969990Sdes		return;
33074840Sken	sysctl_ctx_free(&dev->sysctl_ctx);
33169990Sdes	dev->sysctl_tree = NULL;
33269990Sdes}
33369990Sdes
334125937Sdes/*
33569990Sdes * /dev/devctl implementation
33669990Sdes */
337125937Sdes
33888950Skbyanc/*
33988950Skbyanc * This design allows only one reader for /dev/devctl.  This is not desirable
34088950Skbyanc * in the long run, but will get a lot of hair out of this implementation.
34169990Sdes * Maybe we should make this device a clonable device.
34288950Skbyanc *
34369990Sdes * Also note: we specifically do not attach a device to the device_t tree
34469990Sdes * to avoid potential chicken and egg problems.  One could argue that all
34569990Sdes * of this belongs to the root node.  One could also further argue that the
34669990Sdes * sysctl interface that we have not might more properly be an ioctl
34769990Sdes * interface, but at this stage of the game, I'm not inclined to rock that
34869990Sdes * boat.
34969990Sdes *
35078077Sdes * I'm also not sure that the SIGIO support is done correctly or not, as
35169990Sdes * I copied it from a driver that had SIGIO support that likely hasn't been
35288950Skbyanc * tested since 3.4 or 2.2.8!
35378077Sdes */
35478077Sdes
35578077Sdes/* Deprecated way to adjust queue length */
35678077Sdesstatic int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
35778077Sdes/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
358125937SdesSYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
35978077Sdes    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
36078077Sdes
36178077Sdes#define DEVCTL_DEFAULT_QUEUE_LEN 1000
36278077Sdesstatic int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
36378077Sdesstatic int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
36478077SdesTUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
36588950SkbyancSYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
36688950Skbyanc    0, sysctl_devctl_queue, "I", "devctl queue length");
36788950Skbyanc
36888950Skbyancstatic d_open_t		devopen;
36988950Skbyancstatic d_close_t	devclose;
37088950Skbyancstatic d_read_t		devread;
37178077Sdesstatic d_ioctl_t	devioctl;
37278077Sdesstatic d_poll_t		devpoll;
37378077Sdes
37478077Sdesstatic struct cdevsw dev_cdevsw = {
37578077Sdes	.d_version =	D_VERSION,
37678077Sdes	.d_flags =	D_NEEDGIANT,
37778077Sdes	.d_open =	devopen,
37878077Sdes	.d_close =	devclose,
37978077Sdes	.d_read =	devread,
38078077Sdes	.d_ioctl =	devioctl,
381125937Sdes	.d_poll =	devpoll,
38278077Sdes	.d_name =	"devctl",
38378077Sdes};
38478077Sdes
38578077Sdesstruct dev_event_info
38678077Sdes{
38769990Sdes	char *dei_data;
38869990Sdes	TAILQ_ENTRY(dev_event_info) dei_link;
38969990Sdes};
39074840Sken
39169990SdesTAILQ_HEAD(devq, dev_event_info);
39269990Sdes
39369990Sdesstatic struct dev_softc
394125937Sdes{
39571721Sdes	int	inuse;
39669990Sdes	int	nonblock;
39769990Sdes	int	queued;
39869990Sdes	struct mtx mtx;
39969990Sdes	struct cv cv;
40088950Skbyanc	struct selinfo sel;
40169990Sdes	struct devq devq;
40269990Sdes	struct proc *async_proc;
40388950Skbyanc} devsoftc;
40469990Sdes
405115311Speterstatic struct cdev *devctl_dev;
40671721Sdes
40769990Sdesstatic void
40869990Sdesdevinit(void)
40969990Sdes{
41088950Skbyanc	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
41169990Sdes	    UID_ROOT, GID_WHEEL, 0600, "devctl");
41287594Sobrien	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
41388950Skbyanc	cv_init(&devsoftc.cv, "dev cv");
41469990Sdes	TAILQ_INIT(&devsoftc.devq);
41569990Sdes}
41669990Sdes
41788950Skbyancstatic int
418115311Speterdevopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
41988950Skbyanc{
420115311Speter	if (devsoftc.inuse)
421115311Speter		return (EBUSY);
42288950Skbyanc	/* move to init */
42388950Skbyanc	devsoftc.inuse = 1;
42469990Sdes	devsoftc.nonblock = 0;
42574840Sken	devsoftc.async_proc = NULL;
42674840Sken	return (0);
42774840Sken}
42874840Sken
42974840Skenstatic int
43074840Skendevclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
43174840Sken{
43274840Sken	devsoftc.inuse = 0;
43374840Sken	mtx_lock(&devsoftc.mtx);
43488950Skbyanc	cv_broadcast(&devsoftc.cv);
43589646Sphk	mtx_unlock(&devsoftc.mtx);
43674840Sken	devsoftc.async_proc = NULL;
43774840Sken	return (0);
43869990Sdes}
43969990Sdes
44069990Sdes/*
44169990Sdes * The read channel for this device is used to report changes to
44269990Sdes * userland in realtime.  We are required to free the data as well as
44369990Sdes * the n1 object because we allocate them separately.  Also note that
44469990Sdes * we return one record at a time.  If you try to read this device a
44569990Sdes * character at a time, you will lose the rest of the data.  Listening
44669990Sdes * programs are expected to cope.
44788950Skbyanc */
44888950Skbyancstatic int
44988950Skbyancdevread(struct cdev *dev, struct uio *uio, int ioflag)
45088950Skbyanc{
45188950Skbyanc	struct dev_event_info *n1;
45288950Skbyanc	int rv;
45388950Skbyanc
45488950Skbyanc	mtx_lock(&devsoftc.mtx);
45588950Skbyanc	while (TAILQ_EMPTY(&devsoftc.devq)) {
45688950Skbyanc		if (devsoftc.nonblock) {
45788950Skbyanc			mtx_unlock(&devsoftc.mtx);
45888950Skbyanc			return (EAGAIN);
45988950Skbyanc		}
46088950Skbyanc		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
46188950Skbyanc		if (rv) {
46269990Sdes			/*
46369990Sdes			 * Need to translate ERESTART to EINTR here? -- jake
46469990Sdes			 */
46569990Sdes			mtx_unlock(&devsoftc.mtx);
46669990Sdes			return (rv);
46769990Sdes		}
46869990Sdes	}
469125937Sdes	n1 = TAILQ_FIRST(&devsoftc.devq);
47069990Sdes	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
47169990Sdes	devsoftc.queued--;
472125937Sdes	mtx_unlock(&devsoftc.mtx);
47388950Skbyanc	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
47469990Sdes	free(n1->dei_data, M_BUS);
47569990Sdes	free(n1, M_BUS);
47669990Sdes	return (rv);
47773891Sdes}
47873891Sdes
47969990Sdesstatic	int
48069990Sdesdevioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
48169990Sdes{
48269990Sdes	switch (cmd) {
48388950Skbyanc
48484097Sdes	case FIONBIO:
48584097Sdes		if (*(int*)data)
48684097Sdes			devsoftc.nonblock = 1;
48784097Sdes		else
48884097Sdes			devsoftc.nonblock = 0;
48984097Sdes		return (0);
490125937Sdes	case FIOASYNC:
49184097Sdes		if (*(int*)data)
49284097Sdes			devsoftc.async_proc = td->td_proc;
493125937Sdes		else
49484097Sdes			devsoftc.async_proc = NULL;
49584097Sdes		return (0);
49684097Sdes
49784097Sdes		/* (un)Support for other fcntl() calls. */
49884097Sdes	case FIOCLEX:
49984097Sdes	case FIONCLEX:
50084097Sdes	case FIONREAD:
50171721Sdes	case FIOSETOWN:
50271721Sdes	case FIOGETOWN:
50371721Sdes	default:
50471721Sdes		break;
50571721Sdes	}
50671721Sdes	return (ENOTTY);
50771721Sdes}
50871721Sdes
50971721Sdesstatic	int
51069990Sdesdevpoll(struct cdev *dev, int events, struct thread *td)
51169990Sdes{
51271721Sdes	int	revents = 0;
51369990Sdes
51469990Sdes	mtx_lock(&devsoftc.mtx);
51569990Sdes	if (events & (POLLIN | POLLRDNORM)) {
51669990Sdes		if (!TAILQ_EMPTY(&devsoftc.devq))
517125937Sdes			revents = events & (POLLIN | POLLRDNORM);
51873891Sdes		else
51971721Sdes			selrecord(td, &devsoftc.sel);
52069990Sdes	}
52169990Sdes	mtx_unlock(&devsoftc.mtx);
52269990Sdes
52369990Sdes	return (revents);
52469990Sdes}
52569990Sdes
52669990Sdes/**
52769990Sdes * @brief Return whether the userland process is running
52869990Sdes */
52969990Sdesboolean_t
53069990Sdesdevctl_process_running(void)
531125937Sdes{
53269990Sdes	return (devsoftc.inuse == 1);
53369990Sdes}
53469990Sdes
53569990Sdes/**
53669990Sdes * @brief Queue data to be read from the devctl device
53769990Sdes *
53871721Sdes * Generic interface to queue data to the devctl device.  It is
53969990Sdes * assumed that @p data is properly formatted.  It is further assumed
54069990Sdes * that @p data is allocated using the M_BUS malloc type.
54169990Sdes */
54271724Sdesvoid
543125937Sdesdevctl_queue_data_f(char *data, int flags)
54469990Sdes{
54571721Sdes	struct dev_event_info *n1 = NULL, *n2 = NULL;
54669990Sdes	struct proc *p;
54769990Sdes
54869990Sdes	if (strlen(data) == 0)
54969990Sdes		goto out;
55069990Sdes	if (devctl_queue_length == 0)
55169990Sdes		goto out;
55269990Sdes	n1 = malloc(sizeof(*n1), M_BUS, flags);
55369990Sdes	if (n1 == NULL)
55469990Sdes		goto out;
55588219Sdillon	n1->dei_data = data;
55688219Sdillon	mtx_lock(&devsoftc.mtx);
55769990Sdes	if (devctl_queue_length == 0) {
55869990Sdes		mtx_unlock(&devsoftc.mtx);
559125937Sdes		free(n1->dei_data, M_BUS);
56069990Sdes		free(n1, M_BUS);
56174840Sken		return;
56288219Sdillon	}
56369990Sdes	/* Leave at least one spot in the queue... */
56488219Sdillon	while (devsoftc.queued > devctl_queue_length - 1) {
56577989Sdes		n2 = TAILQ_FIRST(&devsoftc.devq);
56669990Sdes		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
567104449Sphk		free(n2->dei_data, M_BUS);
568104449Sphk		free(n2, M_BUS);
569104449Sphk		devsoftc.queued--;
570104449Sphk	}
571104449Sphk	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
572104449Sphk	devsoftc.queued++;
573104449Sphk	cv_broadcast(&devsoftc.cv);
574104449Sphk	mtx_unlock(&devsoftc.mtx);
575104449Sphk	selwakeup(&devsoftc.sel);
576104449Sphk	p = devsoftc.async_proc;
577	if (p != NULL) {
578		PROC_LOCK(p);
579		kern_psignal(p, SIGIO);
580		PROC_UNLOCK(p);
581	}
582	return;
583out:
584	/*
585	 * We have to free data on all error paths since the caller
586	 * assumes it will be free'd when this item is dequeued.
587	 */
588	free(data, M_BUS);
589	return;
590}
591
592void
593devctl_queue_data(char *data)
594{
595
596	devctl_queue_data_f(data, M_NOWAIT);
597}
598
599/**
600 * @brief Send a 'notification' to userland, using standard ways
601 */
602void
603devctl_notify_f(const char *system, const char *subsystem, const char *type,
604    const char *data, int flags)
605{
606	int len = 0;
607	char *msg;
608
609	if (system == NULL)
610		return;		/* BOGUS!  Must specify system. */
611	if (subsystem == NULL)
612		return;		/* BOGUS!  Must specify subsystem. */
613	if (type == NULL)
614		return;		/* BOGUS!  Must specify type. */
615	len += strlen(" system=") + strlen(system);
616	len += strlen(" subsystem=") + strlen(subsystem);
617	len += strlen(" type=") + strlen(type);
618	/* add in the data message plus newline. */
619	if (data != NULL)
620		len += strlen(data);
621	len += 3;	/* '!', '\n', and NUL */
622	msg = malloc(len, M_BUS, flags);
623	if (msg == NULL)
624		return;		/* Drop it on the floor */
625	if (data != NULL)
626		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
627		    system, subsystem, type, data);
628	else
629		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
630		    system, subsystem, type);
631	devctl_queue_data_f(msg, flags);
632}
633
634void
635devctl_notify(const char *system, const char *subsystem, const char *type,
636    const char *data)
637{
638
639	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
640}
641
642/*
643 * Common routine that tries to make sending messages as easy as possible.
644 * We allocate memory for the data, copy strings into that, but do not
645 * free it unless there's an error.  The dequeue part of the driver should
646 * free the data.  We don't send data when the device is disabled.  We do
647 * send data, even when we have no listeners, because we wish to avoid
648 * races relating to startup and restart of listening applications.
649 *
650 * devaddq is designed to string together the type of event, with the
651 * object of that event, plus the plug and play info and location info
652 * for that event.  This is likely most useful for devices, but less
653 * useful for other consumers of this interface.  Those should use
654 * the devctl_queue_data() interface instead.
655 */
656static void
657devaddq(const char *type, const char *what, device_t dev)
658{
659	char *data = NULL;
660	char *loc = NULL;
661	char *pnp = NULL;
662	const char *parstr;
663
664	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
665		return;
666	data = malloc(1024, M_BUS, M_NOWAIT);
667	if (data == NULL)
668		goto bad;
669
670	/* get the bus specific location of this device */
671	loc = malloc(1024, M_BUS, M_NOWAIT);
672	if (loc == NULL)
673		goto bad;
674	*loc = '\0';
675	bus_child_location_str(dev, loc, 1024);
676
677	/* Get the bus specific pnp info of this device */
678	pnp = malloc(1024, M_BUS, M_NOWAIT);
679	if (pnp == NULL)
680		goto bad;
681	*pnp = '\0';
682	bus_child_pnpinfo_str(dev, pnp, 1024);
683
684	/* Get the parent of this device, or / if high enough in the tree. */
685	if (device_get_parent(dev) == NULL)
686		parstr = ".";	/* Or '/' ? */
687	else
688		parstr = device_get_nameunit(device_get_parent(dev));
689	/* String it all together. */
690	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
691	  parstr);
692	free(loc, M_BUS);
693	free(pnp, M_BUS);
694	devctl_queue_data(data);
695	return;
696bad:
697	free(pnp, M_BUS);
698	free(loc, M_BUS);
699	free(data, M_BUS);
700	return;
701}
702
703/*
704 * A device was added to the tree.  We are called just after it successfully
705 * attaches (that is, probe and attach success for this device).  No call
706 * is made if a device is merely parented into the tree.  See devnomatch
707 * if probe fails.  If attach fails, no notification is sent (but maybe
708 * we should have a different message for this).
709 */
710static void
711devadded(device_t dev)
712{
713	devaddq("+", device_get_nameunit(dev), dev);
714}
715
716/*
717 * A device was removed from the tree.  We are called just before this
718 * happens.
719 */
720static void
721devremoved(device_t dev)
722{
723	devaddq("-", device_get_nameunit(dev), dev);
724}
725
726/*
727 * Called when there's no match for this device.  This is only called
728 * the first time that no match happens, so we don't keep getting this
729 * message.  Should that prove to be undesirable, we can change it.
730 * This is called when all drivers that can attach to a given bus
731 * decline to accept this device.  Other errors may not be detected.
732 */
733static void
734devnomatch(device_t dev)
735{
736	devaddq("?", "", dev);
737}
738
739static int
740sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
741{
742	struct dev_event_info *n1;
743	int dis, error;
744
745	dis = devctl_queue_length == 0;
746	error = sysctl_handle_int(oidp, &dis, 0, req);
747	if (error || !req->newptr)
748		return (error);
749	mtx_lock(&devsoftc.mtx);
750	if (dis) {
751		while (!TAILQ_EMPTY(&devsoftc.devq)) {
752			n1 = TAILQ_FIRST(&devsoftc.devq);
753			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
754			free(n1->dei_data, M_BUS);
755			free(n1, M_BUS);
756		}
757		devsoftc.queued = 0;
758		devctl_queue_length = 0;
759	} else {
760		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
761	}
762	mtx_unlock(&devsoftc.mtx);
763	return (0);
764}
765
766static int
767sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
768{
769	struct dev_event_info *n1;
770	int q, error;
771
772	q = devctl_queue_length;
773	error = sysctl_handle_int(oidp, &q, 0, req);
774	if (error || !req->newptr)
775		return (error);
776	if (q < 0)
777		return (EINVAL);
778	mtx_lock(&devsoftc.mtx);
779	devctl_queue_length = q;
780	while (devsoftc.queued > devctl_queue_length) {
781		n1 = TAILQ_FIRST(&devsoftc.devq);
782		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
783		free(n1->dei_data, M_BUS);
784		free(n1, M_BUS);
785		devsoftc.queued--;
786	}
787	mtx_unlock(&devsoftc.mtx);
788	return (0);
789}
790
791/* End of /dev/devctl code */
792
793static TAILQ_HEAD(,device)	bus_data_devices;
794static int bus_data_generation = 1;
795
796static kobj_method_t null_methods[] = {
797	KOBJMETHOD_END
798};
799
800DEFINE_CLASS(null, null_methods, 0);
801
802/*
803 * Bus pass implementation
804 */
805
806static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
807int bus_current_pass = BUS_PASS_ROOT;
808
809/**
810 * @internal
811 * @brief Register the pass level of a new driver attachment
812 *
813 * Register a new driver attachment's pass level.  If no driver
814 * attachment with the same pass level has been added, then @p new
815 * will be added to the global passes list.
816 *
817 * @param new		the new driver attachment
818 */
819static void
820driver_register_pass(struct driverlink *new)
821{
822	struct driverlink *dl;
823
824	/* We only consider pass numbers during boot. */
825	if (bus_current_pass == BUS_PASS_DEFAULT)
826		return;
827
828	/*
829	 * Walk the passes list.  If we already know about this pass
830	 * then there is nothing to do.  If we don't, then insert this
831	 * driver link into the list.
832	 */
833	TAILQ_FOREACH(dl, &passes, passlink) {
834		if (dl->pass < new->pass)
835			continue;
836		if (dl->pass == new->pass)
837			return;
838		TAILQ_INSERT_BEFORE(dl, new, passlink);
839		return;
840	}
841	TAILQ_INSERT_TAIL(&passes, new, passlink);
842}
843
844/**
845 * @brief Raise the current bus pass
846 *
847 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
848 * method on the root bus to kick off a new device tree scan for each
849 * new pass level that has at least one driver.
850 */
851void
852bus_set_pass(int pass)
853{
854	struct driverlink *dl;
855
856	if (bus_current_pass > pass)
857		panic("Attempt to lower bus pass level");
858
859	TAILQ_FOREACH(dl, &passes, passlink) {
860		/* Skip pass values below the current pass level. */
861		if (dl->pass <= bus_current_pass)
862			continue;
863
864		/*
865		 * Bail once we hit a driver with a pass level that is
866		 * too high.
867		 */
868		if (dl->pass > pass)
869			break;
870
871		/*
872		 * Raise the pass level to the next level and rescan
873		 * the tree.
874		 */
875		bus_current_pass = dl->pass;
876		BUS_NEW_PASS(root_bus);
877	}
878
879	/*
880	 * If there isn't a driver registered for the requested pass,
881	 * then bus_current_pass might still be less than 'pass'.  Set
882	 * it to 'pass' in that case.
883	 */
884	if (bus_current_pass < pass)
885		bus_current_pass = pass;
886	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
887}
888
889/*
890 * Devclass implementation
891 */
892
893static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
894
895/**
896 * @internal
897 * @brief Find or create a device class
898 *
899 * If a device class with the name @p classname exists, return it,
900 * otherwise if @p create is non-zero create and return a new device
901 * class.
902 *
903 * If @p parentname is non-NULL, the parent of the devclass is set to
904 * the devclass of that name.
905 *
906 * @param classname	the devclass name to find or create
907 * @param parentname	the parent devclass name or @c NULL
908 * @param create	non-zero to create a devclass
909 */
910static devclass_t
911devclass_find_internal(const char *classname, const char *parentname,
912		       int create)
913{
914	devclass_t dc;
915
916	PDEBUG(("looking for %s", classname));
917	if (!classname)
918		return (NULL);
919
920	TAILQ_FOREACH(dc, &devclasses, link) {
921		if (!strcmp(dc->name, classname))
922			break;
923	}
924
925	if (create && !dc) {
926		PDEBUG(("creating %s", classname));
927		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
928		    M_BUS, M_NOWAIT | M_ZERO);
929		if (!dc)
930			return (NULL);
931		dc->parent = NULL;
932		dc->name = (char*) (dc + 1);
933		strcpy(dc->name, classname);
934		TAILQ_INIT(&dc->drivers);
935		TAILQ_INSERT_TAIL(&devclasses, dc, link);
936
937		bus_data_generation_update();
938	}
939
940	/*
941	 * If a parent class is specified, then set that as our parent so
942	 * that this devclass will support drivers for the parent class as
943	 * well.  If the parent class has the same name don't do this though
944	 * as it creates a cycle that can trigger an infinite loop in
945	 * device_probe_child() if a device exists for which there is no
946	 * suitable driver.
947	 */
948	if (parentname && dc && !dc->parent &&
949	    strcmp(classname, parentname) != 0) {
950		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
951		dc->parent->flags |= DC_HAS_CHILDREN;
952	}
953
954	return (dc);
955}
956
957/**
958 * @brief Create a device class
959 *
960 * If a device class with the name @p classname exists, return it,
961 * otherwise create and return a new device class.
962 *
963 * @param classname	the devclass name to find or create
964 */
965devclass_t
966devclass_create(const char *classname)
967{
968	return (devclass_find_internal(classname, NULL, TRUE));
969}
970
971/**
972 * @brief Find a device class
973 *
974 * If a device class with the name @p classname exists, return it,
975 * otherwise return @c NULL.
976 *
977 * @param classname	the devclass name to find
978 */
979devclass_t
980devclass_find(const char *classname)
981{
982	return (devclass_find_internal(classname, NULL, FALSE));
983}
984
985/**
986 * @brief Register that a device driver has been added to a devclass
987 *
988 * Register that a device driver has been added to a devclass.  This
989 * is called by devclass_add_driver to accomplish the recursive
990 * notification of all the children classes of dc, as well as dc.
991 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
992 * the devclass.
993 *
994 * We do a full search here of the devclass list at each iteration
995 * level to save storing children-lists in the devclass structure.  If
996 * we ever move beyond a few dozen devices doing this, we may need to
997 * reevaluate...
998 *
999 * @param dc		the devclass to edit
1000 * @param driver	the driver that was just added
1001 */
1002static void
1003devclass_driver_added(devclass_t dc, driver_t *driver)
1004{
1005	devclass_t parent;
1006	int i;
1007
1008	/*
1009	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1010	 */
1011	for (i = 0; i < dc->maxunit; i++)
1012		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1013			BUS_DRIVER_ADDED(dc->devices[i], driver);
1014
1015	/*
1016	 * Walk through the children classes.  Since we only keep a
1017	 * single parent pointer around, we walk the entire list of
1018	 * devclasses looking for children.  We set the
1019	 * DC_HAS_CHILDREN flag when a child devclass is created on
1020	 * the parent, so we only walk the list for those devclasses
1021	 * that have children.
1022	 */
1023	if (!(dc->flags & DC_HAS_CHILDREN))
1024		return;
1025	parent = dc;
1026	TAILQ_FOREACH(dc, &devclasses, link) {
1027		if (dc->parent == parent)
1028			devclass_driver_added(dc, driver);
1029	}
1030}
1031
1032/**
1033 * @brief Add a device driver to a device class
1034 *
1035 * Add a device driver to a devclass. This is normally called
1036 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1037 * all devices in the devclass will be called to allow them to attempt
1038 * to re-probe any unmatched children.
1039 *
1040 * @param dc		the devclass to edit
1041 * @param driver	the driver to register
1042 */
1043int
1044devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1045{
1046	driverlink_t dl;
1047	const char *parentname;
1048
1049	PDEBUG(("%s", DRIVERNAME(driver)));
1050
1051	/* Don't allow invalid pass values. */
1052	if (pass <= BUS_PASS_ROOT)
1053		return (EINVAL);
1054
1055	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1056	if (!dl)
1057		return (ENOMEM);
1058
1059	/*
1060	 * Compile the driver's methods. Also increase the reference count
1061	 * so that the class doesn't get freed when the last instance
1062	 * goes. This means we can safely use static methods and avoids a
1063	 * double-free in devclass_delete_driver.
1064	 */
1065	kobj_class_compile((kobj_class_t) driver);
1066
1067	/*
1068	 * If the driver has any base classes, make the
1069	 * devclass inherit from the devclass of the driver's
1070	 * first base class. This will allow the system to
1071	 * search for drivers in both devclasses for children
1072	 * of a device using this driver.
1073	 */
1074	if (driver->baseclasses)
1075		parentname = driver->baseclasses[0]->name;
1076	else
1077		parentname = NULL;
1078	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1079
1080	dl->driver = driver;
1081	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1082	driver->refs++;		/* XXX: kobj_mtx */
1083	dl->pass = pass;
1084	driver_register_pass(dl);
1085
1086	devclass_driver_added(dc, driver);
1087	bus_data_generation_update();
1088	return (0);
1089}
1090
1091/**
1092 * @brief Register that a device driver has been deleted from a devclass
1093 *
1094 * Register that a device driver has been removed from a devclass.
1095 * This is called by devclass_delete_driver to accomplish the
1096 * recursive notification of all the children classes of busclass, as
1097 * well as busclass.  Each layer will attempt to detach the driver
1098 * from any devices that are children of the bus's devclass.  The function
1099 * will return an error if a device fails to detach.
1100 *
1101 * We do a full search here of the devclass list at each iteration
1102 * level to save storing children-lists in the devclass structure.  If
1103 * we ever move beyond a few dozen devices doing this, we may need to
1104 * reevaluate...
1105 *
1106 * @param busclass	the devclass of the parent bus
1107 * @param dc		the devclass of the driver being deleted
1108 * @param driver	the driver being deleted
1109 */
1110static int
1111devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1112{
1113	devclass_t parent;
1114	device_t dev;
1115	int error, i;
1116
1117	/*
1118	 * Disassociate from any devices.  We iterate through all the
1119	 * devices in the devclass of the driver and detach any which are
1120	 * using the driver and which have a parent in the devclass which
1121	 * we are deleting from.
1122	 *
1123	 * Note that since a driver can be in multiple devclasses, we
1124	 * should not detach devices which are not children of devices in
1125	 * the affected devclass.
1126	 */
1127	for (i = 0; i < dc->maxunit; i++) {
1128		if (dc->devices[i]) {
1129			dev = dc->devices[i];
1130			if (dev->driver == driver && dev->parent &&
1131			    dev->parent->devclass == busclass) {
1132				if ((error = device_detach(dev)) != 0)
1133					return (error);
1134				BUS_PROBE_NOMATCH(dev->parent, dev);
1135				devnomatch(dev);
1136				dev->flags |= DF_DONENOMATCH;
1137			}
1138		}
1139	}
1140
1141	/*
1142	 * Walk through the children classes.  Since we only keep a
1143	 * single parent pointer around, we walk the entire list of
1144	 * devclasses looking for children.  We set the
1145	 * DC_HAS_CHILDREN flag when a child devclass is created on
1146	 * the parent, so we only walk the list for those devclasses
1147	 * that have children.
1148	 */
1149	if (!(busclass->flags & DC_HAS_CHILDREN))
1150		return (0);
1151	parent = busclass;
1152	TAILQ_FOREACH(busclass, &devclasses, link) {
1153		if (busclass->parent == parent) {
1154			error = devclass_driver_deleted(busclass, dc, driver);
1155			if (error)
1156				return (error);
1157		}
1158	}
1159	return (0);
1160}
1161
1162/**
1163 * @brief Delete a device driver from a device class
1164 *
1165 * Delete a device driver from a devclass. This is normally called
1166 * automatically by DRIVER_MODULE().
1167 *
1168 * If the driver is currently attached to any devices,
1169 * devclass_delete_driver() will first attempt to detach from each
1170 * device. If one of the detach calls fails, the driver will not be
1171 * deleted.
1172 *
1173 * @param dc		the devclass to edit
1174 * @param driver	the driver to unregister
1175 */
1176int
1177devclass_delete_driver(devclass_t busclass, driver_t *driver)
1178{
1179	devclass_t dc = devclass_find(driver->name);
1180	driverlink_t dl;
1181	int error;
1182
1183	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1184
1185	if (!dc)
1186		return (0);
1187
1188	/*
1189	 * Find the link structure in the bus' list of drivers.
1190	 */
1191	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1192		if (dl->driver == driver)
1193			break;
1194	}
1195
1196	if (!dl) {
1197		PDEBUG(("%s not found in %s list", driver->name,
1198		    busclass->name));
1199		return (ENOENT);
1200	}
1201
1202	error = devclass_driver_deleted(busclass, dc, driver);
1203	if (error != 0)
1204		return (error);
1205
1206	TAILQ_REMOVE(&busclass->drivers, dl, link);
1207	free(dl, M_BUS);
1208
1209	/* XXX: kobj_mtx */
1210	driver->refs--;
1211	if (driver->refs == 0)
1212		kobj_class_free((kobj_class_t) driver);
1213
1214	bus_data_generation_update();
1215	return (0);
1216}
1217
1218/**
1219 * @brief Quiesces a set of device drivers from a device class
1220 *
1221 * Quiesce a device driver from a devclass. This is normally called
1222 * automatically by DRIVER_MODULE().
1223 *
1224 * If the driver is currently attached to any devices,
1225 * devclass_quiesece_driver() will first attempt to quiesce each
1226 * device.
1227 *
1228 * @param dc		the devclass to edit
1229 * @param driver	the driver to unregister
1230 */
1231static int
1232devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1233{
1234	devclass_t dc = devclass_find(driver->name);
1235	driverlink_t dl;
1236	device_t dev;
1237	int i;
1238	int error;
1239
1240	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1241
1242	if (!dc)
1243		return (0);
1244
1245	/*
1246	 * Find the link structure in the bus' list of drivers.
1247	 */
1248	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1249		if (dl->driver == driver)
1250			break;
1251	}
1252
1253	if (!dl) {
1254		PDEBUG(("%s not found in %s list", driver->name,
1255		    busclass->name));
1256		return (ENOENT);
1257	}
1258
1259	/*
1260	 * Quiesce all devices.  We iterate through all the devices in
1261	 * the devclass of the driver and quiesce any which are using
1262	 * the driver and which have a parent in the devclass which we
1263	 * are quiescing.
1264	 *
1265	 * Note that since a driver can be in multiple devclasses, we
1266	 * should not quiesce devices which are not children of
1267	 * devices in the affected devclass.
1268	 */
1269	for (i = 0; i < dc->maxunit; i++) {
1270		if (dc->devices[i]) {
1271			dev = dc->devices[i];
1272			if (dev->driver == driver && dev->parent &&
1273			    dev->parent->devclass == busclass) {
1274				if ((error = device_quiesce(dev)) != 0)
1275					return (error);
1276			}
1277		}
1278	}
1279
1280	return (0);
1281}
1282
1283/**
1284 * @internal
1285 */
1286static driverlink_t
1287devclass_find_driver_internal(devclass_t dc, const char *classname)
1288{
1289	driverlink_t dl;
1290
1291	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1292
1293	TAILQ_FOREACH(dl, &dc->drivers, link) {
1294		if (!strcmp(dl->driver->name, classname))
1295			return (dl);
1296	}
1297
1298	PDEBUG(("not found"));
1299	return (NULL);
1300}
1301
1302/**
1303 * @brief Return the name of the devclass
1304 */
1305const char *
1306devclass_get_name(devclass_t dc)
1307{
1308	return (dc->name);
1309}
1310
1311/**
1312 * @brief Find a device given a unit number
1313 *
1314 * @param dc		the devclass to search
1315 * @param unit		the unit number to search for
1316 *
1317 * @returns		the device with the given unit number or @c
1318 *			NULL if there is no such device
1319 */
1320device_t
1321devclass_get_device(devclass_t dc, int unit)
1322{
1323	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1324		return (NULL);
1325	return (dc->devices[unit]);
1326}
1327
1328/**
1329 * @brief Find the softc field of a device given a unit number
1330 *
1331 * @param dc		the devclass to search
1332 * @param unit		the unit number to search for
1333 *
1334 * @returns		the softc field of the device with the given
1335 *			unit number or @c NULL if there is no such
1336 *			device
1337 */
1338void *
1339devclass_get_softc(devclass_t dc, int unit)
1340{
1341	device_t dev;
1342
1343	dev = devclass_get_device(dc, unit);
1344	if (!dev)
1345		return (NULL);
1346
1347	return (device_get_softc(dev));
1348}
1349
1350/**
1351 * @brief Get a list of devices in the devclass
1352 *
1353 * An array containing a list of all the devices in the given devclass
1354 * is allocated and returned in @p *devlistp. The number of devices
1355 * in the array is returned in @p *devcountp. The caller should free
1356 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1357 *
1358 * @param dc		the devclass to examine
1359 * @param devlistp	points at location for array pointer return
1360 *			value
1361 * @param devcountp	points at location for array size return value
1362 *
1363 * @retval 0		success
1364 * @retval ENOMEM	the array allocation failed
1365 */
1366int
1367devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1368{
1369	int count, i;
1370	device_t *list;
1371
1372	count = devclass_get_count(dc);
1373	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1374	if (!list)
1375		return (ENOMEM);
1376
1377	count = 0;
1378	for (i = 0; i < dc->maxunit; i++) {
1379		if (dc->devices[i]) {
1380			list[count] = dc->devices[i];
1381			count++;
1382		}
1383	}
1384
1385	*devlistp = list;
1386	*devcountp = count;
1387
1388	return (0);
1389}
1390
1391/**
1392 * @brief Get a list of drivers in the devclass
1393 *
1394 * An array containing a list of pointers to all the drivers in the
1395 * given devclass is allocated and returned in @p *listp.  The number
1396 * of drivers in the array is returned in @p *countp. The caller should
1397 * free the array using @c free(p, M_TEMP).
1398 *
1399 * @param dc		the devclass to examine
1400 * @param listp		gives location for array pointer return value
1401 * @param countp	gives location for number of array elements
1402 *			return value
1403 *
1404 * @retval 0		success
1405 * @retval ENOMEM	the array allocation failed
1406 */
1407int
1408devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1409{
1410	driverlink_t dl;
1411	driver_t **list;
1412	int count;
1413
1414	count = 0;
1415	TAILQ_FOREACH(dl, &dc->drivers, link)
1416		count++;
1417	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1418	if (list == NULL)
1419		return (ENOMEM);
1420
1421	count = 0;
1422	TAILQ_FOREACH(dl, &dc->drivers, link) {
1423		list[count] = dl->driver;
1424		count++;
1425	}
1426	*listp = list;
1427	*countp = count;
1428
1429	return (0);
1430}
1431
1432/**
1433 * @brief Get the number of devices in a devclass
1434 *
1435 * @param dc		the devclass to examine
1436 */
1437int
1438devclass_get_count(devclass_t dc)
1439{
1440	int count, i;
1441
1442	count = 0;
1443	for (i = 0; i < dc->maxunit; i++)
1444		if (dc->devices[i])
1445			count++;
1446	return (count);
1447}
1448
1449/**
1450 * @brief Get the maximum unit number used in a devclass
1451 *
1452 * Note that this is one greater than the highest currently-allocated
1453 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1454 * that not even the devclass has been allocated yet.
1455 *
1456 * @param dc		the devclass to examine
1457 */
1458int
1459devclass_get_maxunit(devclass_t dc)
1460{
1461	if (dc == NULL)
1462		return (-1);
1463	return (dc->maxunit);
1464}
1465
1466/**
1467 * @brief Find a free unit number in a devclass
1468 *
1469 * This function searches for the first unused unit number greater
1470 * that or equal to @p unit.
1471 *
1472 * @param dc		the devclass to examine
1473 * @param unit		the first unit number to check
1474 */
1475int
1476devclass_find_free_unit(devclass_t dc, int unit)
1477{
1478	if (dc == NULL)
1479		return (unit);
1480	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1481		unit++;
1482	return (unit);
1483}
1484
1485/**
1486 * @brief Set the parent of a devclass
1487 *
1488 * The parent class is normally initialised automatically by
1489 * DRIVER_MODULE().
1490 *
1491 * @param dc		the devclass to edit
1492 * @param pdc		the new parent devclass
1493 */
1494void
1495devclass_set_parent(devclass_t dc, devclass_t pdc)
1496{
1497	dc->parent = pdc;
1498}
1499
1500/**
1501 * @brief Get the parent of a devclass
1502 *
1503 * @param dc		the devclass to examine
1504 */
1505devclass_t
1506devclass_get_parent(devclass_t dc)
1507{
1508	return (dc->parent);
1509}
1510
1511struct sysctl_ctx_list *
1512devclass_get_sysctl_ctx(devclass_t dc)
1513{
1514	return (&dc->sysctl_ctx);
1515}
1516
1517struct sysctl_oid *
1518devclass_get_sysctl_tree(devclass_t dc)
1519{
1520	return (dc->sysctl_tree);
1521}
1522
1523/**
1524 * @internal
1525 * @brief Allocate a unit number
1526 *
1527 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1528 * will do). The allocated unit number is returned in @p *unitp.
1529
1530 * @param dc		the devclass to allocate from
1531 * @param unitp		points at the location for the allocated unit
1532 *			number
1533 *
1534 * @retval 0		success
1535 * @retval EEXIST	the requested unit number is already allocated
1536 * @retval ENOMEM	memory allocation failure
1537 */
1538static int
1539devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1540{
1541	const char *s;
1542	int unit = *unitp;
1543
1544	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1545
1546	/* Ask the parent bus if it wants to wire this device. */
1547	if (unit == -1)
1548		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1549		    &unit);
1550
1551	/* If we were given a wired unit number, check for existing device */
1552	/* XXX imp XXX */
1553	if (unit != -1) {
1554		if (unit >= 0 && unit < dc->maxunit &&
1555		    dc->devices[unit] != NULL) {
1556			if (bootverbose)
1557				printf("%s: %s%d already exists; skipping it\n",
1558				    dc->name, dc->name, *unitp);
1559			return (EEXIST);
1560		}
1561	} else {
1562		/* Unwired device, find the next available slot for it */
1563		unit = 0;
1564		for (unit = 0;; unit++) {
1565			/* If there is an "at" hint for a unit then skip it. */
1566			if (resource_string_value(dc->name, unit, "at", &s) ==
1567			    0)
1568				continue;
1569
1570			/* If this device slot is already in use, skip it. */
1571			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1572				continue;
1573
1574			break;
1575		}
1576	}
1577
1578	/*
1579	 * We've selected a unit beyond the length of the table, so let's
1580	 * extend the table to make room for all units up to and including
1581	 * this one.
1582	 */
1583	if (unit >= dc->maxunit) {
1584		device_t *newlist, *oldlist;
1585		int newsize;
1586
1587		oldlist = dc->devices;
1588		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1589		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1590		if (!newlist)
1591			return (ENOMEM);
1592		if (oldlist != NULL)
1593			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1594		bzero(newlist + dc->maxunit,
1595		    sizeof(device_t) * (newsize - dc->maxunit));
1596		dc->devices = newlist;
1597		dc->maxunit = newsize;
1598		if (oldlist != NULL)
1599			free(oldlist, M_BUS);
1600	}
1601	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1602
1603	*unitp = unit;
1604	return (0);
1605}
1606
1607/**
1608 * @internal
1609 * @brief Add a device to a devclass
1610 *
1611 * A unit number is allocated for the device (using the device's
1612 * preferred unit number if any) and the device is registered in the
1613 * devclass. This allows the device to be looked up by its unit
1614 * number, e.g. by decoding a dev_t minor number.
1615 *
1616 * @param dc		the devclass to add to
1617 * @param dev		the device to add
1618 *
1619 * @retval 0		success
1620 * @retval EEXIST	the requested unit number is already allocated
1621 * @retval ENOMEM	memory allocation failure
1622 */
1623static int
1624devclass_add_device(devclass_t dc, device_t dev)
1625{
1626	int buflen, error;
1627
1628	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1629
1630	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1631	if (buflen < 0)
1632		return (ENOMEM);
1633	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1634	if (!dev->nameunit)
1635		return (ENOMEM);
1636
1637	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1638		free(dev->nameunit, M_BUS);
1639		dev->nameunit = NULL;
1640		return (error);
1641	}
1642	dc->devices[dev->unit] = dev;
1643	dev->devclass = dc;
1644	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1645
1646	return (0);
1647}
1648
1649/**
1650 * @internal
1651 * @brief Delete a device from a devclass
1652 *
1653 * The device is removed from the devclass's device list and its unit
1654 * number is freed.
1655
1656 * @param dc		the devclass to delete from
1657 * @param dev		the device to delete
1658 *
1659 * @retval 0		success
1660 */
1661static int
1662devclass_delete_device(devclass_t dc, device_t dev)
1663{
1664	if (!dc || !dev)
1665		return (0);
1666
1667	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1668
1669	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1670		panic("devclass_delete_device: inconsistent device class");
1671	dc->devices[dev->unit] = NULL;
1672	if (dev->flags & DF_WILDCARD)
1673		dev->unit = -1;
1674	dev->devclass = NULL;
1675	free(dev->nameunit, M_BUS);
1676	dev->nameunit = NULL;
1677
1678	return (0);
1679}
1680
1681/**
1682 * @internal
1683 * @brief Make a new device and add it as a child of @p parent
1684 *
1685 * @param parent	the parent of the new device
1686 * @param name		the devclass name of the new device or @c NULL
1687 *			to leave the devclass unspecified
1688 * @parem unit		the unit number of the new device of @c -1 to
1689 *			leave the unit number unspecified
1690 *
1691 * @returns the new device
1692 */
1693static device_t
1694make_device(device_t parent, const char *name, int unit)
1695{
1696	device_t dev;
1697	devclass_t dc;
1698
1699	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1700
1701	if (name) {
1702		dc = devclass_find_internal(name, NULL, TRUE);
1703		if (!dc) {
1704			printf("make_device: can't find device class %s\n",
1705			    name);
1706			return (NULL);
1707		}
1708	} else {
1709		dc = NULL;
1710	}
1711
1712	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1713	if (!dev)
1714		return (NULL);
1715
1716	dev->parent = parent;
1717	TAILQ_INIT(&dev->children);
1718	kobj_init((kobj_t) dev, &null_class);
1719	dev->driver = NULL;
1720	dev->devclass = NULL;
1721	dev->unit = unit;
1722	dev->nameunit = NULL;
1723	dev->desc = NULL;
1724	dev->busy = 0;
1725	dev->devflags = 0;
1726	dev->flags = DF_ENABLED;
1727	dev->order = 0;
1728	if (unit == -1)
1729		dev->flags |= DF_WILDCARD;
1730	if (name) {
1731		dev->flags |= DF_FIXEDCLASS;
1732		if (devclass_add_device(dc, dev)) {
1733			kobj_delete((kobj_t) dev, M_BUS);
1734			return (NULL);
1735		}
1736	}
1737	dev->ivars = NULL;
1738	dev->softc = NULL;
1739
1740	dev->state = DS_NOTPRESENT;
1741
1742	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1743	bus_data_generation_update();
1744
1745	return (dev);
1746}
1747
1748/**
1749 * @internal
1750 * @brief Print a description of a device.
1751 */
1752static int
1753device_print_child(device_t dev, device_t child)
1754{
1755	int retval = 0;
1756
1757	if (device_is_alive(child))
1758		retval += BUS_PRINT_CHILD(dev, child);
1759	else
1760		retval += device_printf(child, " not found\n");
1761
1762	return (retval);
1763}
1764
1765/**
1766 * @brief Create a new device
1767 *
1768 * This creates a new device and adds it as a child of an existing
1769 * parent device. The new device will be added after the last existing
1770 * child with order zero.
1771 *
1772 * @param dev		the device which will be the parent of the
1773 *			new child device
1774 * @param name		devclass name for new device or @c NULL if not
1775 *			specified
1776 * @param unit		unit number for new device or @c -1 if not
1777 *			specified
1778 *
1779 * @returns		the new device
1780 */
1781device_t
1782device_add_child(device_t dev, const char *name, int unit)
1783{
1784	return (device_add_child_ordered(dev, 0, name, unit));
1785}
1786
1787/**
1788 * @brief Create a new device
1789 *
1790 * This creates a new device and adds it as a child of an existing
1791 * parent device. The new device will be added after the last existing
1792 * child with the same order.
1793 *
1794 * @param dev		the device which will be the parent of the
1795 *			new child device
1796 * @param order		a value which is used to partially sort the
1797 *			children of @p dev - devices created using
1798 *			lower values of @p order appear first in @p
1799 *			dev's list of children
1800 * @param name		devclass name for new device or @c NULL if not
1801 *			specified
1802 * @param unit		unit number for new device or @c -1 if not
1803 *			specified
1804 *
1805 * @returns		the new device
1806 */
1807device_t
1808device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1809{
1810	device_t child;
1811	device_t place;
1812
1813	PDEBUG(("%s at %s with order %u as unit %d",
1814	    name, DEVICENAME(dev), order, unit));
1815	KASSERT(name != NULL || unit == -1,
1816	    ("child device with wildcard name and specific unit number"));
1817
1818	child = make_device(dev, name, unit);
1819	if (child == NULL)
1820		return (child);
1821	child->order = order;
1822
1823	TAILQ_FOREACH(place, &dev->children, link) {
1824		if (place->order > order)
1825			break;
1826	}
1827
1828	if (place) {
1829		/*
1830		 * The device 'place' is the first device whose order is
1831		 * greater than the new child.
1832		 */
1833		TAILQ_INSERT_BEFORE(place, child, link);
1834	} else {
1835		/*
1836		 * The new child's order is greater or equal to the order of
1837		 * any existing device. Add the child to the tail of the list.
1838		 */
1839		TAILQ_INSERT_TAIL(&dev->children, child, link);
1840	}
1841
1842	bus_data_generation_update();
1843	return (child);
1844}
1845
1846/**
1847 * @brief Delete a device
1848 *
1849 * This function deletes a device along with all of its children. If
1850 * the device currently has a driver attached to it, the device is
1851 * detached first using device_detach().
1852 *
1853 * @param dev		the parent device
1854 * @param child		the device to delete
1855 *
1856 * @retval 0		success
1857 * @retval non-zero	a unit error code describing the error
1858 */
1859int
1860device_delete_child(device_t dev, device_t child)
1861{
1862	int error;
1863	device_t grandchild;
1864
1865	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1866
1867	/* remove children first */
1868	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1869		error = device_delete_child(child, grandchild);
1870		if (error)
1871			return (error);
1872	}
1873
1874	if ((error = device_detach(child)) != 0)
1875		return (error);
1876	if (child->devclass)
1877		devclass_delete_device(child->devclass, child);
1878	if (child->parent)
1879		BUS_CHILD_DELETED(dev, child);
1880	TAILQ_REMOVE(&dev->children, child, link);
1881	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1882	kobj_delete((kobj_t) child, M_BUS);
1883
1884	bus_data_generation_update();
1885	return (0);
1886}
1887
1888/**
1889 * @brief Delete all children devices of the given device, if any.
1890 *
1891 * This function deletes all children devices of the given device, if
1892 * any, using the device_delete_child() function for each device it
1893 * finds. If a child device cannot be deleted, this function will
1894 * return an error code.
1895 *
1896 * @param dev		the parent device
1897 *
1898 * @retval 0		success
1899 * @retval non-zero	a device would not detach
1900 */
1901int
1902device_delete_children(device_t dev)
1903{
1904	device_t child;
1905	int error;
1906
1907	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1908
1909	error = 0;
1910
1911	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1912		error = device_delete_child(dev, child);
1913		if (error) {
1914			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1915			break;
1916		}
1917	}
1918	return (error);
1919}
1920
1921/**
1922 * @brief Find a device given a unit number
1923 *
1924 * This is similar to devclass_get_devices() but only searches for
1925 * devices which have @p dev as a parent.
1926 *
1927 * @param dev		the parent device to search
1928 * @param unit		the unit number to search for.  If the unit is -1,
1929 *			return the first child of @p dev which has name
1930 *			@p classname (that is, the one with the lowest unit.)
1931 *
1932 * @returns		the device with the given unit number or @c
1933 *			NULL if there is no such device
1934 */
1935device_t
1936device_find_child(device_t dev, const char *classname, int unit)
1937{
1938	devclass_t dc;
1939	device_t child;
1940
1941	dc = devclass_find(classname);
1942	if (!dc)
1943		return (NULL);
1944
1945	if (unit != -1) {
1946		child = devclass_get_device(dc, unit);
1947		if (child && child->parent == dev)
1948			return (child);
1949	} else {
1950		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1951			child = devclass_get_device(dc, unit);
1952			if (child && child->parent == dev)
1953				return (child);
1954		}
1955	}
1956	return (NULL);
1957}
1958
1959/**
1960 * @internal
1961 */
1962static driverlink_t
1963first_matching_driver(devclass_t dc, device_t dev)
1964{
1965	if (dev->devclass)
1966		return (devclass_find_driver_internal(dc, dev->devclass->name));
1967	return (TAILQ_FIRST(&dc->drivers));
1968}
1969
1970/**
1971 * @internal
1972 */
1973static driverlink_t
1974next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1975{
1976	if (dev->devclass) {
1977		driverlink_t dl;
1978		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1979			if (!strcmp(dev->devclass->name, dl->driver->name))
1980				return (dl);
1981		return (NULL);
1982	}
1983	return (TAILQ_NEXT(last, link));
1984}
1985
1986/**
1987 * @internal
1988 */
1989int
1990device_probe_child(device_t dev, device_t child)
1991{
1992	devclass_t dc;
1993	driverlink_t best = NULL;
1994	driverlink_t dl;
1995	int result, pri = 0;
1996	int hasclass = (child->devclass != NULL);
1997
1998	GIANT_REQUIRED;
1999
2000	dc = dev->devclass;
2001	if (!dc)
2002		panic("device_probe_child: parent device has no devclass");
2003
2004	/*
2005	 * If the state is already probed, then return.  However, don't
2006	 * return if we can rebid this object.
2007	 */
2008	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2009		return (0);
2010
2011	for (; dc; dc = dc->parent) {
2012		for (dl = first_matching_driver(dc, child);
2013		     dl;
2014		     dl = next_matching_driver(dc, child, dl)) {
2015			/* If this driver's pass is too high, then ignore it. */
2016			if (dl->pass > bus_current_pass)
2017				continue;
2018
2019			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2020			result = device_set_driver(child, dl->driver);
2021			if (result == ENOMEM)
2022				return (result);
2023			else if (result != 0)
2024				continue;
2025			if (!hasclass) {
2026				if (device_set_devclass(child,
2027				    dl->driver->name) != 0) {
2028					char const * devname =
2029					    device_get_name(child);
2030					if (devname == NULL)
2031						devname = "(unknown)";
2032					printf("driver bug: Unable to set "
2033					    "devclass (class: %s "
2034					    "devname: %s)\n",
2035					    dl->driver->name,
2036					    devname);
2037					(void)device_set_driver(child, NULL);
2038					continue;
2039				}
2040			}
2041
2042			/* Fetch any flags for the device before probing. */
2043			resource_int_value(dl->driver->name, child->unit,
2044			    "flags", &child->devflags);
2045
2046			result = DEVICE_PROBE(child);
2047
2048			/* Reset flags and devclass before the next probe. */
2049			child->devflags = 0;
2050			if (!hasclass)
2051				(void)device_set_devclass(child, NULL);
2052
2053			/*
2054			 * If the driver returns SUCCESS, there can be
2055			 * no higher match for this device.
2056			 */
2057			if (result == 0) {
2058				best = dl;
2059				pri = 0;
2060				break;
2061			}
2062
2063			/*
2064			 * The driver returned an error so it
2065			 * certainly doesn't match.
2066			 */
2067			if (result > 0) {
2068				(void)device_set_driver(child, NULL);
2069				continue;
2070			}
2071
2072			/*
2073			 * A priority lower than SUCCESS, remember the
2074			 * best matching driver. Initialise the value
2075			 * of pri for the first match.
2076			 */
2077			if (best == NULL || result > pri) {
2078				/*
2079				 * Probes that return BUS_PROBE_NOWILDCARD
2080				 * or lower only match when they are set
2081				 * in stone by the parent bus.
2082				 */
2083				if (result <= BUS_PROBE_NOWILDCARD &&
2084				    child->flags & DF_WILDCARD)
2085					continue;
2086				best = dl;
2087				pri = result;
2088				continue;
2089			}
2090		}
2091		/*
2092		 * If we have an unambiguous match in this devclass,
2093		 * don't look in the parent.
2094		 */
2095		if (best && pri == 0)
2096			break;
2097	}
2098
2099	/*
2100	 * If we found a driver, change state and initialise the devclass.
2101	 */
2102	/* XXX What happens if we rebid and got no best? */
2103	if (best) {
2104		/*
2105		 * If this device was attached, and we were asked to
2106		 * rescan, and it is a different driver, then we have
2107		 * to detach the old driver and reattach this new one.
2108		 * Note, we don't have to check for DF_REBID here
2109		 * because if the state is > DS_ALIVE, we know it must
2110		 * be.
2111		 *
2112		 * This assumes that all DF_REBID drivers can have
2113		 * their probe routine called at any time and that
2114		 * they are idempotent as well as completely benign in
2115		 * normal operations.
2116		 *
2117		 * We also have to make sure that the detach
2118		 * succeeded, otherwise we fail the operation (or
2119		 * maybe it should just fail silently?  I'm torn).
2120		 */
2121		if (child->state > DS_ALIVE && best->driver != child->driver)
2122			if ((result = device_detach(dev)) != 0)
2123				return (result);
2124
2125		/* Set the winning driver, devclass, and flags. */
2126		if (!child->devclass) {
2127			result = device_set_devclass(child, best->driver->name);
2128			if (result != 0)
2129				return (result);
2130		}
2131		result = device_set_driver(child, best->driver);
2132		if (result != 0)
2133			return (result);
2134		resource_int_value(best->driver->name, child->unit,
2135		    "flags", &child->devflags);
2136
2137		if (pri < 0) {
2138			/*
2139			 * A bit bogus. Call the probe method again to make
2140			 * sure that we have the right description.
2141			 */
2142			DEVICE_PROBE(child);
2143#if 0
2144			child->flags |= DF_REBID;
2145#endif
2146		} else
2147			child->flags &= ~DF_REBID;
2148		child->state = DS_ALIVE;
2149
2150		bus_data_generation_update();
2151		return (0);
2152	}
2153
2154	return (ENXIO);
2155}
2156
2157/**
2158 * @brief Return the parent of a device
2159 */
2160device_t
2161device_get_parent(device_t dev)
2162{
2163	return (dev->parent);
2164}
2165
2166/**
2167 * @brief Get a list of children of a device
2168 *
2169 * An array containing a list of all the children of the given device
2170 * is allocated and returned in @p *devlistp. The number of devices
2171 * in the array is returned in @p *devcountp. The caller should free
2172 * the array using @c free(p, M_TEMP).
2173 *
2174 * @param dev		the device to examine
2175 * @param devlistp	points at location for array pointer return
2176 *			value
2177 * @param devcountp	points at location for array size return value
2178 *
2179 * @retval 0		success
2180 * @retval ENOMEM	the array allocation failed
2181 */
2182int
2183device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2184{
2185	int count;
2186	device_t child;
2187	device_t *list;
2188
2189	count = 0;
2190	TAILQ_FOREACH(child, &dev->children, link) {
2191		count++;
2192	}
2193	if (count == 0) {
2194		*devlistp = NULL;
2195		*devcountp = 0;
2196		return (0);
2197	}
2198
2199	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2200	if (!list)
2201		return (ENOMEM);
2202
2203	count = 0;
2204	TAILQ_FOREACH(child, &dev->children, link) {
2205		list[count] = child;
2206		count++;
2207	}
2208
2209	*devlistp = list;
2210	*devcountp = count;
2211
2212	return (0);
2213}
2214
2215/**
2216 * @brief Return the current driver for the device or @c NULL if there
2217 * is no driver currently attached
2218 */
2219driver_t *
2220device_get_driver(device_t dev)
2221{
2222	return (dev->driver);
2223}
2224
2225/**
2226 * @brief Return the current devclass for the device or @c NULL if
2227 * there is none.
2228 */
2229devclass_t
2230device_get_devclass(device_t dev)
2231{
2232	return (dev->devclass);
2233}
2234
2235/**
2236 * @brief Return the name of the device's devclass or @c NULL if there
2237 * is none.
2238 */
2239const char *
2240device_get_name(device_t dev)
2241{
2242	if (dev != NULL && dev->devclass)
2243		return (devclass_get_name(dev->devclass));
2244	return (NULL);
2245}
2246
2247/**
2248 * @brief Return a string containing the device's devclass name
2249 * followed by an ascii representation of the device's unit number
2250 * (e.g. @c "foo2").
2251 */
2252const char *
2253device_get_nameunit(device_t dev)
2254{
2255	return (dev->nameunit);
2256}
2257
2258/**
2259 * @brief Return the device's unit number.
2260 */
2261int
2262device_get_unit(device_t dev)
2263{
2264	return (dev->unit);
2265}
2266
2267/**
2268 * @brief Return the device's description string
2269 */
2270const char *
2271device_get_desc(device_t dev)
2272{
2273	return (dev->desc);
2274}
2275
2276/**
2277 * @brief Return the device's flags
2278 */
2279uint32_t
2280device_get_flags(device_t dev)
2281{
2282	return (dev->devflags);
2283}
2284
2285struct sysctl_ctx_list *
2286device_get_sysctl_ctx(device_t dev)
2287{
2288	return (&dev->sysctl_ctx);
2289}
2290
2291struct sysctl_oid *
2292device_get_sysctl_tree(device_t dev)
2293{
2294	return (dev->sysctl_tree);
2295}
2296
2297/**
2298 * @brief Print the name of the device followed by a colon and a space
2299 *
2300 * @returns the number of characters printed
2301 */
2302int
2303device_print_prettyname(device_t dev)
2304{
2305	const char *name = device_get_name(dev);
2306
2307	if (name == NULL)
2308		return (printf("unknown: "));
2309	return (printf("%s%d: ", name, device_get_unit(dev)));
2310}
2311
2312/**
2313 * @brief Print the name of the device followed by a colon, a space
2314 * and the result of calling vprintf() with the value of @p fmt and
2315 * the following arguments.
2316 *
2317 * @returns the number of characters printed
2318 */
2319int
2320device_printf(device_t dev, const char * fmt, ...)
2321{
2322	va_list ap;
2323	int retval;
2324
2325	retval = device_print_prettyname(dev);
2326	va_start(ap, fmt);
2327	retval += vprintf(fmt, ap);
2328	va_end(ap);
2329	return (retval);
2330}
2331
2332/**
2333 * @internal
2334 */
2335static void
2336device_set_desc_internal(device_t dev, const char* desc, int copy)
2337{
2338	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2339		free(dev->desc, M_BUS);
2340		dev->flags &= ~DF_DESCMALLOCED;
2341		dev->desc = NULL;
2342	}
2343
2344	if (copy && desc) {
2345		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2346		if (dev->desc) {
2347			strcpy(dev->desc, desc);
2348			dev->flags |= DF_DESCMALLOCED;
2349		}
2350	} else {
2351		/* Avoid a -Wcast-qual warning */
2352		dev->desc = (char *)(uintptr_t) desc;
2353	}
2354
2355	bus_data_generation_update();
2356}
2357
2358/**
2359 * @brief Set the device's description
2360 *
2361 * The value of @c desc should be a string constant that will not
2362 * change (at least until the description is changed in a subsequent
2363 * call to device_set_desc() or device_set_desc_copy()).
2364 */
2365void
2366device_set_desc(device_t dev, const char* desc)
2367{
2368	device_set_desc_internal(dev, desc, FALSE);
2369}
2370
2371/**
2372 * @brief Set the device's description
2373 *
2374 * The string pointed to by @c desc is copied. Use this function if
2375 * the device description is generated, (e.g. with sprintf()).
2376 */
2377void
2378device_set_desc_copy(device_t dev, const char* desc)
2379{
2380	device_set_desc_internal(dev, desc, TRUE);
2381}
2382
2383/**
2384 * @brief Set the device's flags
2385 */
2386void
2387device_set_flags(device_t dev, uint32_t flags)
2388{
2389	dev->devflags = flags;
2390}
2391
2392/**
2393 * @brief Return the device's softc field
2394 *
2395 * The softc is allocated and zeroed when a driver is attached, based
2396 * on the size field of the driver.
2397 */
2398void *
2399device_get_softc(device_t dev)
2400{
2401	return (dev->softc);
2402}
2403
2404/**
2405 * @brief Set the device's softc field
2406 *
2407 * Most drivers do not need to use this since the softc is allocated
2408 * automatically when the driver is attached.
2409 */
2410void
2411device_set_softc(device_t dev, void *softc)
2412{
2413	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2414		free(dev->softc, M_BUS_SC);
2415	dev->softc = softc;
2416	if (dev->softc)
2417		dev->flags |= DF_EXTERNALSOFTC;
2418	else
2419		dev->flags &= ~DF_EXTERNALSOFTC;
2420}
2421
2422/**
2423 * @brief Free claimed softc
2424 *
2425 * Most drivers do not need to use this since the softc is freed
2426 * automatically when the driver is detached.
2427 */
2428void
2429device_free_softc(void *softc)
2430{
2431	free(softc, M_BUS_SC);
2432}
2433
2434/**
2435 * @brief Claim softc
2436 *
2437 * This function can be used to let the driver free the automatically
2438 * allocated softc using "device_free_softc()". This function is
2439 * useful when the driver is refcounting the softc and the softc
2440 * cannot be freed when the "device_detach" method is called.
2441 */
2442void
2443device_claim_softc(device_t dev)
2444{
2445	if (dev->softc)
2446		dev->flags |= DF_EXTERNALSOFTC;
2447	else
2448		dev->flags &= ~DF_EXTERNALSOFTC;
2449}
2450
2451/**
2452 * @brief Get the device's ivars field
2453 *
2454 * The ivars field is used by the parent device to store per-device
2455 * state (e.g. the physical location of the device or a list of
2456 * resources).
2457 */
2458void *
2459device_get_ivars(device_t dev)
2460{
2461
2462	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2463	return (dev->ivars);
2464}
2465
2466/**
2467 * @brief Set the device's ivars field
2468 */
2469void
2470device_set_ivars(device_t dev, void * ivars)
2471{
2472
2473	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2474	dev->ivars = ivars;
2475}
2476
2477/**
2478 * @brief Return the device's state
2479 */
2480device_state_t
2481device_get_state(device_t dev)
2482{
2483	return (dev->state);
2484}
2485
2486/**
2487 * @brief Set the DF_ENABLED flag for the device
2488 */
2489void
2490device_enable(device_t dev)
2491{
2492	dev->flags |= DF_ENABLED;
2493}
2494
2495/**
2496 * @brief Clear the DF_ENABLED flag for the device
2497 */
2498void
2499device_disable(device_t dev)
2500{
2501	dev->flags &= ~DF_ENABLED;
2502}
2503
2504/**
2505 * @brief Increment the busy counter for the device
2506 */
2507void
2508device_busy(device_t dev)
2509{
2510	if (dev->state < DS_ATTACHING)
2511		panic("device_busy: called for unattached device");
2512	if (dev->busy == 0 && dev->parent)
2513		device_busy(dev->parent);
2514	dev->busy++;
2515	if (dev->state == DS_ATTACHED)
2516		dev->state = DS_BUSY;
2517}
2518
2519/**
2520 * @brief Decrement the busy counter for the device
2521 */
2522void
2523device_unbusy(device_t dev)
2524{
2525	if (dev->busy != 0 && dev->state != DS_BUSY &&
2526	    dev->state != DS_ATTACHING)
2527		panic("device_unbusy: called for non-busy device %s",
2528		    device_get_nameunit(dev));
2529	dev->busy--;
2530	if (dev->busy == 0) {
2531		if (dev->parent)
2532			device_unbusy(dev->parent);
2533		if (dev->state == DS_BUSY)
2534			dev->state = DS_ATTACHED;
2535	}
2536}
2537
2538/**
2539 * @brief Set the DF_QUIET flag for the device
2540 */
2541void
2542device_quiet(device_t dev)
2543{
2544	dev->flags |= DF_QUIET;
2545}
2546
2547/**
2548 * @brief Clear the DF_QUIET flag for the device
2549 */
2550void
2551device_verbose(device_t dev)
2552{
2553	dev->flags &= ~DF_QUIET;
2554}
2555
2556/**
2557 * @brief Return non-zero if the DF_QUIET flag is set on the device
2558 */
2559int
2560device_is_quiet(device_t dev)
2561{
2562	return ((dev->flags & DF_QUIET) != 0);
2563}
2564
2565/**
2566 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2567 */
2568int
2569device_is_enabled(device_t dev)
2570{
2571	return ((dev->flags & DF_ENABLED) != 0);
2572}
2573
2574/**
2575 * @brief Return non-zero if the device was successfully probed
2576 */
2577int
2578device_is_alive(device_t dev)
2579{
2580	return (dev->state >= DS_ALIVE);
2581}
2582
2583/**
2584 * @brief Return non-zero if the device currently has a driver
2585 * attached to it
2586 */
2587int
2588device_is_attached(device_t dev)
2589{
2590	return (dev->state >= DS_ATTACHED);
2591}
2592
2593/**
2594 * @brief Set the devclass of a device
2595 * @see devclass_add_device().
2596 */
2597int
2598device_set_devclass(device_t dev, const char *classname)
2599{
2600	devclass_t dc;
2601	int error;
2602
2603	if (!classname) {
2604		if (dev->devclass)
2605			devclass_delete_device(dev->devclass, dev);
2606		return (0);
2607	}
2608
2609	if (dev->devclass) {
2610		printf("device_set_devclass: device class already set\n");
2611		return (EINVAL);
2612	}
2613
2614	dc = devclass_find_internal(classname, NULL, TRUE);
2615	if (!dc)
2616		return (ENOMEM);
2617
2618	error = devclass_add_device(dc, dev);
2619
2620	bus_data_generation_update();
2621	return (error);
2622}
2623
2624/**
2625 * @brief Set the driver of a device
2626 *
2627 * @retval 0		success
2628 * @retval EBUSY	the device already has a driver attached
2629 * @retval ENOMEM	a memory allocation failure occurred
2630 */
2631int
2632device_set_driver(device_t dev, driver_t *driver)
2633{
2634	if (dev->state >= DS_ATTACHED)
2635		return (EBUSY);
2636
2637	if (dev->driver == driver)
2638		return (0);
2639
2640	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2641		free(dev->softc, M_BUS_SC);
2642		dev->softc = NULL;
2643	}
2644	device_set_desc(dev, NULL);
2645	kobj_delete((kobj_t) dev, NULL);
2646	dev->driver = driver;
2647	if (driver) {
2648		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2649		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2650			dev->softc = malloc(driver->size, M_BUS_SC,
2651			    M_NOWAIT | M_ZERO);
2652			if (!dev->softc) {
2653				kobj_delete((kobj_t) dev, NULL);
2654				kobj_init((kobj_t) dev, &null_class);
2655				dev->driver = NULL;
2656				return (ENOMEM);
2657			}
2658		}
2659	} else {
2660		kobj_init((kobj_t) dev, &null_class);
2661	}
2662
2663	bus_data_generation_update();
2664	return (0);
2665}
2666
2667/**
2668 * @brief Probe a device, and return this status.
2669 *
2670 * This function is the core of the device autoconfiguration
2671 * system. Its purpose is to select a suitable driver for a device and
2672 * then call that driver to initialise the hardware appropriately. The
2673 * driver is selected by calling the DEVICE_PROBE() method of a set of
2674 * candidate drivers and then choosing the driver which returned the
2675 * best value. This driver is then attached to the device using
2676 * device_attach().
2677 *
2678 * The set of suitable drivers is taken from the list of drivers in
2679 * the parent device's devclass. If the device was originally created
2680 * with a specific class name (see device_add_child()), only drivers
2681 * with that name are probed, otherwise all drivers in the devclass
2682 * are probed. If no drivers return successful probe values in the
2683 * parent devclass, the search continues in the parent of that
2684 * devclass (see devclass_get_parent()) if any.
2685 *
2686 * @param dev		the device to initialise
2687 *
2688 * @retval 0		success
2689 * @retval ENXIO	no driver was found
2690 * @retval ENOMEM	memory allocation failure
2691 * @retval non-zero	some other unix error code
2692 * @retval -1		Device already attached
2693 */
2694int
2695device_probe(device_t dev)
2696{
2697	int error;
2698
2699	GIANT_REQUIRED;
2700
2701	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2702		return (-1);
2703
2704	if (!(dev->flags & DF_ENABLED)) {
2705		if (bootverbose && device_get_name(dev) != NULL) {
2706			device_print_prettyname(dev);
2707			printf("not probed (disabled)\n");
2708		}
2709		return (-1);
2710	}
2711	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2712		if (bus_current_pass == BUS_PASS_DEFAULT &&
2713		    !(dev->flags & DF_DONENOMATCH)) {
2714			BUS_PROBE_NOMATCH(dev->parent, dev);
2715			devnomatch(dev);
2716			dev->flags |= DF_DONENOMATCH;
2717		}
2718		return (error);
2719	}
2720	return (0);
2721}
2722
2723/**
2724 * @brief Probe a device and attach a driver if possible
2725 *
2726 * calls device_probe() and attaches if that was successful.
2727 */
2728int
2729device_probe_and_attach(device_t dev)
2730{
2731	int error;
2732
2733	GIANT_REQUIRED;
2734
2735	error = device_probe(dev);
2736	if (error == -1)
2737		return (0);
2738	else if (error != 0)
2739		return (error);
2740
2741	CURVNET_SET_QUIET(vnet0);
2742	error = device_attach(dev);
2743	CURVNET_RESTORE();
2744	return error;
2745}
2746
2747/**
2748 * @brief Attach a device driver to a device
2749 *
2750 * This function is a wrapper around the DEVICE_ATTACH() driver
2751 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2752 * device's sysctl tree, optionally prints a description of the device
2753 * and queues a notification event for user-based device management
2754 * services.
2755 *
2756 * Normally this function is only called internally from
2757 * device_probe_and_attach().
2758 *
2759 * @param dev		the device to initialise
2760 *
2761 * @retval 0		success
2762 * @retval ENXIO	no driver was found
2763 * @retval ENOMEM	memory allocation failure
2764 * @retval non-zero	some other unix error code
2765 */
2766int
2767device_attach(device_t dev)
2768{
2769	int error;
2770
2771	if (resource_disabled(dev->driver->name, dev->unit)) {
2772		device_disable(dev);
2773		if (bootverbose)
2774			 device_printf(dev, "disabled via hints entry\n");
2775		return (ENXIO);
2776	}
2777
2778	device_sysctl_init(dev);
2779	if (!device_is_quiet(dev))
2780		device_print_child(dev->parent, dev);
2781	dev->state = DS_ATTACHING;
2782	if ((error = DEVICE_ATTACH(dev)) != 0) {
2783		printf("device_attach: %s%d attach returned %d\n",
2784		    dev->driver->name, dev->unit, error);
2785		if (!(dev->flags & DF_FIXEDCLASS))
2786			devclass_delete_device(dev->devclass, dev);
2787		(void)device_set_driver(dev, NULL);
2788		device_sysctl_fini(dev);
2789		KASSERT(dev->busy == 0, ("attach failed but busy"));
2790		dev->state = DS_NOTPRESENT;
2791		return (error);
2792	}
2793	device_sysctl_update(dev);
2794	if (dev->busy)
2795		dev->state = DS_BUSY;
2796	else
2797		dev->state = DS_ATTACHED;
2798	dev->flags &= ~DF_DONENOMATCH;
2799	devadded(dev);
2800	return (0);
2801}
2802
2803/**
2804 * @brief Detach a driver from a device
2805 *
2806 * This function is a wrapper around the DEVICE_DETACH() driver
2807 * method. If the call to DEVICE_DETACH() succeeds, it calls
2808 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2809 * notification event for user-based device management services and
2810 * cleans up the device's sysctl tree.
2811 *
2812 * @param dev		the device to un-initialise
2813 *
2814 * @retval 0		success
2815 * @retval ENXIO	no driver was found
2816 * @retval ENOMEM	memory allocation failure
2817 * @retval non-zero	some other unix error code
2818 */
2819int
2820device_detach(device_t dev)
2821{
2822	int error;
2823
2824	GIANT_REQUIRED;
2825
2826	PDEBUG(("%s", DEVICENAME(dev)));
2827	if (dev->state == DS_BUSY)
2828		return (EBUSY);
2829	if (dev->state != DS_ATTACHED)
2830		return (0);
2831
2832	if ((error = DEVICE_DETACH(dev)) != 0)
2833		return (error);
2834	devremoved(dev);
2835	if (!device_is_quiet(dev))
2836		device_printf(dev, "detached\n");
2837	if (dev->parent)
2838		BUS_CHILD_DETACHED(dev->parent, dev);
2839
2840	if (!(dev->flags & DF_FIXEDCLASS))
2841		devclass_delete_device(dev->devclass, dev);
2842
2843	dev->state = DS_NOTPRESENT;
2844	(void)device_set_driver(dev, NULL);
2845	device_sysctl_fini(dev);
2846
2847	return (0);
2848}
2849
2850/**
2851 * @brief Tells a driver to quiesce itself.
2852 *
2853 * This function is a wrapper around the DEVICE_QUIESCE() driver
2854 * method. If the call to DEVICE_QUIESCE() succeeds.
2855 *
2856 * @param dev		the device to quiesce
2857 *
2858 * @retval 0		success
2859 * @retval ENXIO	no driver was found
2860 * @retval ENOMEM	memory allocation failure
2861 * @retval non-zero	some other unix error code
2862 */
2863int
2864device_quiesce(device_t dev)
2865{
2866
2867	PDEBUG(("%s", DEVICENAME(dev)));
2868	if (dev->state == DS_BUSY)
2869		return (EBUSY);
2870	if (dev->state != DS_ATTACHED)
2871		return (0);
2872
2873	return (DEVICE_QUIESCE(dev));
2874}
2875
2876/**
2877 * @brief Notify a device of system shutdown
2878 *
2879 * This function calls the DEVICE_SHUTDOWN() driver method if the
2880 * device currently has an attached driver.
2881 *
2882 * @returns the value returned by DEVICE_SHUTDOWN()
2883 */
2884int
2885device_shutdown(device_t dev)
2886{
2887	if (dev->state < DS_ATTACHED)
2888		return (0);
2889	return (DEVICE_SHUTDOWN(dev));
2890}
2891
2892/**
2893 * @brief Set the unit number of a device
2894 *
2895 * This function can be used to override the unit number used for a
2896 * device (e.g. to wire a device to a pre-configured unit number).
2897 */
2898int
2899device_set_unit(device_t dev, int unit)
2900{
2901	devclass_t dc;
2902	int err;
2903
2904	dc = device_get_devclass(dev);
2905	if (unit < dc->maxunit && dc->devices[unit])
2906		return (EBUSY);
2907	err = devclass_delete_device(dc, dev);
2908	if (err)
2909		return (err);
2910	dev->unit = unit;
2911	err = devclass_add_device(dc, dev);
2912	if (err)
2913		return (err);
2914
2915	bus_data_generation_update();
2916	return (0);
2917}
2918
2919/*======================================*/
2920/*
2921 * Some useful method implementations to make life easier for bus drivers.
2922 */
2923
2924/**
2925 * @brief Initialise a resource list.
2926 *
2927 * @param rl		the resource list to initialise
2928 */
2929void
2930resource_list_init(struct resource_list *rl)
2931{
2932	STAILQ_INIT(rl);
2933}
2934
2935/**
2936 * @brief Reclaim memory used by a resource list.
2937 *
2938 * This function frees the memory for all resource entries on the list
2939 * (if any).
2940 *
2941 * @param rl		the resource list to free
2942 */
2943void
2944resource_list_free(struct resource_list *rl)
2945{
2946	struct resource_list_entry *rle;
2947
2948	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2949		if (rle->res)
2950			panic("resource_list_free: resource entry is busy");
2951		STAILQ_REMOVE_HEAD(rl, link);
2952		free(rle, M_BUS);
2953	}
2954}
2955
2956/**
2957 * @brief Add a resource entry.
2958 *
2959 * This function adds a resource entry using the given @p type, @p
2960 * start, @p end and @p count values. A rid value is chosen by
2961 * searching sequentially for the first unused rid starting at zero.
2962 *
2963 * @param rl		the resource list to edit
2964 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2965 * @param start		the start address of the resource
2966 * @param end		the end address of the resource
2967 * @param count		XXX end-start+1
2968 */
2969int
2970resource_list_add_next(struct resource_list *rl, int type, u_long start,
2971    u_long end, u_long count)
2972{
2973	int rid;
2974
2975	rid = 0;
2976	while (resource_list_find(rl, type, rid) != NULL)
2977		rid++;
2978	resource_list_add(rl, type, rid, start, end, count);
2979	return (rid);
2980}
2981
2982/**
2983 * @brief Add or modify a resource entry.
2984 *
2985 * If an existing entry exists with the same type and rid, it will be
2986 * modified using the given values of @p start, @p end and @p
2987 * count. If no entry exists, a new one will be created using the
2988 * given values.  The resource list entry that matches is then returned.
2989 *
2990 * @param rl		the resource list to edit
2991 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2992 * @param rid		the resource identifier
2993 * @param start		the start address of the resource
2994 * @param end		the end address of the resource
2995 * @param count		XXX end-start+1
2996 */
2997struct resource_list_entry *
2998resource_list_add(struct resource_list *rl, int type, int rid,
2999    u_long start, u_long end, u_long count)
3000{
3001	struct resource_list_entry *rle;
3002
3003	rle = resource_list_find(rl, type, rid);
3004	if (!rle) {
3005		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3006		    M_NOWAIT);
3007		if (!rle)
3008			panic("resource_list_add: can't record entry");
3009		STAILQ_INSERT_TAIL(rl, rle, link);
3010		rle->type = type;
3011		rle->rid = rid;
3012		rle->res = NULL;
3013		rle->flags = 0;
3014	}
3015
3016	if (rle->res)
3017		panic("resource_list_add: resource entry is busy");
3018
3019	rle->start = start;
3020	rle->end = end;
3021	rle->count = count;
3022	return (rle);
3023}
3024
3025/**
3026 * @brief Determine if a resource entry is busy.
3027 *
3028 * Returns true if a resource entry is busy meaning that it has an
3029 * associated resource that is not an unallocated "reserved" resource.
3030 *
3031 * @param rl		the resource list to search
3032 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3033 * @param rid		the resource identifier
3034 *
3035 * @returns Non-zero if the entry is busy, zero otherwise.
3036 */
3037int
3038resource_list_busy(struct resource_list *rl, int type, int rid)
3039{
3040	struct resource_list_entry *rle;
3041
3042	rle = resource_list_find(rl, type, rid);
3043	if (rle == NULL || rle->res == NULL)
3044		return (0);
3045	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3046		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3047		    ("reserved resource is active"));
3048		return (0);
3049	}
3050	return (1);
3051}
3052
3053/**
3054 * @brief Determine if a resource entry is reserved.
3055 *
3056 * Returns true if a resource entry is reserved meaning that it has an
3057 * associated "reserved" resource.  The resource can either be
3058 * allocated or unallocated.
3059 *
3060 * @param rl		the resource list to search
3061 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3062 * @param rid		the resource identifier
3063 *
3064 * @returns Non-zero if the entry is reserved, zero otherwise.
3065 */
3066int
3067resource_list_reserved(struct resource_list *rl, int type, int rid)
3068{
3069	struct resource_list_entry *rle;
3070
3071	rle = resource_list_find(rl, type, rid);
3072	if (rle != NULL && rle->flags & RLE_RESERVED)
3073		return (1);
3074	return (0);
3075}
3076
3077/**
3078 * @brief Find a resource entry by type and rid.
3079 *
3080 * @param rl		the resource list to search
3081 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3082 * @param rid		the resource identifier
3083 *
3084 * @returns the resource entry pointer or NULL if there is no such
3085 * entry.
3086 */
3087struct resource_list_entry *
3088resource_list_find(struct resource_list *rl, int type, int rid)
3089{
3090	struct resource_list_entry *rle;
3091
3092	STAILQ_FOREACH(rle, rl, link) {
3093		if (rle->type == type && rle->rid == rid)
3094			return (rle);
3095	}
3096	return (NULL);
3097}
3098
3099/**
3100 * @brief Delete a resource entry.
3101 *
3102 * @param rl		the resource list to edit
3103 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3104 * @param rid		the resource identifier
3105 */
3106void
3107resource_list_delete(struct resource_list *rl, int type, int rid)
3108{
3109	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3110
3111	if (rle) {
3112		if (rle->res != NULL)
3113			panic("resource_list_delete: resource has not been released");
3114		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3115		free(rle, M_BUS);
3116	}
3117}
3118
3119/**
3120 * @brief Allocate a reserved resource
3121 *
3122 * This can be used by busses to force the allocation of resources
3123 * that are always active in the system even if they are not allocated
3124 * by a driver (e.g. PCI BARs).  This function is usually called when
3125 * adding a new child to the bus.  The resource is allocated from the
3126 * parent bus when it is reserved.  The resource list entry is marked
3127 * with RLE_RESERVED to note that it is a reserved resource.
3128 *
3129 * Subsequent attempts to allocate the resource with
3130 * resource_list_alloc() will succeed the first time and will set
3131 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3132 * resource that has been allocated is released with
3133 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3134 * the actual resource remains allocated.  The resource can be released to
3135 * the parent bus by calling resource_list_unreserve().
3136 *
3137 * @param rl		the resource list to allocate from
3138 * @param bus		the parent device of @p child
3139 * @param child		the device for which the resource is being reserved
3140 * @param type		the type of resource to allocate
3141 * @param rid		a pointer to the resource identifier
3142 * @param start		hint at the start of the resource range - pass
3143 *			@c 0UL for any start address
3144 * @param end		hint at the end of the resource range - pass
3145 *			@c ~0UL for any end address
3146 * @param count		hint at the size of range required - pass @c 1
3147 *			for any size
3148 * @param flags		any extra flags to control the resource
3149 *			allocation - see @c RF_XXX flags in
3150 *			<sys/rman.h> for details
3151 *
3152 * @returns		the resource which was allocated or @c NULL if no
3153 *			resource could be allocated
3154 */
3155struct resource *
3156resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3157    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3158{
3159	struct resource_list_entry *rle = NULL;
3160	int passthrough = (device_get_parent(child) != bus);
3161	struct resource *r;
3162
3163	if (passthrough)
3164		panic(
3165    "resource_list_reserve() should only be called for direct children");
3166	if (flags & RF_ACTIVE)
3167		panic(
3168    "resource_list_reserve() should only reserve inactive resources");
3169
3170	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3171	    flags);
3172	if (r != NULL) {
3173		rle = resource_list_find(rl, type, *rid);
3174		rle->flags |= RLE_RESERVED;
3175	}
3176	return (r);
3177}
3178
3179/**
3180 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3181 *
3182 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3183 * and passing the allocation up to the parent of @p bus. This assumes
3184 * that the first entry of @c device_get_ivars(child) is a struct
3185 * resource_list. This also handles 'passthrough' allocations where a
3186 * child is a remote descendant of bus by passing the allocation up to
3187 * the parent of bus.
3188 *
3189 * Typically, a bus driver would store a list of child resources
3190 * somewhere in the child device's ivars (see device_get_ivars()) and
3191 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3192 * then call resource_list_alloc() to perform the allocation.
3193 *
3194 * @param rl		the resource list to allocate from
3195 * @param bus		the parent device of @p child
3196 * @param child		the device which is requesting an allocation
3197 * @param type		the type of resource to allocate
3198 * @param rid		a pointer to the resource identifier
3199 * @param start		hint at the start of the resource range - pass
3200 *			@c 0UL for any start address
3201 * @param end		hint at the end of the resource range - pass
3202 *			@c ~0UL for any end address
3203 * @param count		hint at the size of range required - pass @c 1
3204 *			for any size
3205 * @param flags		any extra flags to control the resource
3206 *			allocation - see @c RF_XXX flags in
3207 *			<sys/rman.h> for details
3208 *
3209 * @returns		the resource which was allocated or @c NULL if no
3210 *			resource could be allocated
3211 */
3212struct resource *
3213resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3214    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3215{
3216	struct resource_list_entry *rle = NULL;
3217	int passthrough = (device_get_parent(child) != bus);
3218	int isdefault = (start == 0UL && end == ~0UL);
3219
3220	if (passthrough) {
3221		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3222		    type, rid, start, end, count, flags));
3223	}
3224
3225	rle = resource_list_find(rl, type, *rid);
3226
3227	if (!rle)
3228		return (NULL);		/* no resource of that type/rid */
3229
3230	if (rle->res) {
3231		if (rle->flags & RLE_RESERVED) {
3232			if (rle->flags & RLE_ALLOCATED)
3233				return (NULL);
3234			if ((flags & RF_ACTIVE) &&
3235			    bus_activate_resource(child, type, *rid,
3236			    rle->res) != 0)
3237				return (NULL);
3238			rle->flags |= RLE_ALLOCATED;
3239			return (rle->res);
3240		}
3241		panic("resource_list_alloc: resource entry is busy");
3242	}
3243
3244	if (isdefault) {
3245		start = rle->start;
3246		count = ulmax(count, rle->count);
3247		end = ulmax(rle->end, start + count - 1);
3248	}
3249
3250	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3251	    type, rid, start, end, count, flags);
3252
3253	/*
3254	 * Record the new range.
3255	 */
3256	if (rle->res) {
3257		rle->start = rman_get_start(rle->res);
3258		rle->end = rman_get_end(rle->res);
3259		rle->count = count;
3260	}
3261
3262	return (rle->res);
3263}
3264
3265/**
3266 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3267 *
3268 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3269 * used with resource_list_alloc().
3270 *
3271 * @param rl		the resource list which was allocated from
3272 * @param bus		the parent device of @p child
3273 * @param child		the device which is requesting a release
3274 * @param type		the type of resource to release
3275 * @param rid		the resource identifier
3276 * @param res		the resource to release
3277 *
3278 * @retval 0		success
3279 * @retval non-zero	a standard unix error code indicating what
3280 *			error condition prevented the operation
3281 */
3282int
3283resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3284    int type, int rid, struct resource *res)
3285{
3286	struct resource_list_entry *rle = NULL;
3287	int passthrough = (device_get_parent(child) != bus);
3288	int error;
3289
3290	if (passthrough) {
3291		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3292		    type, rid, res));
3293	}
3294
3295	rle = resource_list_find(rl, type, rid);
3296
3297	if (!rle)
3298		panic("resource_list_release: can't find resource");
3299	if (!rle->res)
3300		panic("resource_list_release: resource entry is not busy");
3301	if (rle->flags & RLE_RESERVED) {
3302		if (rle->flags & RLE_ALLOCATED) {
3303			if (rman_get_flags(res) & RF_ACTIVE) {
3304				error = bus_deactivate_resource(child, type,
3305				    rid, res);
3306				if (error)
3307					return (error);
3308			}
3309			rle->flags &= ~RLE_ALLOCATED;
3310			return (0);
3311		}
3312		return (EINVAL);
3313	}
3314
3315	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3316	    type, rid, res);
3317	if (error)
3318		return (error);
3319
3320	rle->res = NULL;
3321	return (0);
3322}
3323
3324/**
3325 * @brief Release all active resources of a given type
3326 *
3327 * Release all active resources of a specified type.  This is intended
3328 * to be used to cleanup resources leaked by a driver after detach or
3329 * a failed attach.
3330 *
3331 * @param rl		the resource list which was allocated from
3332 * @param bus		the parent device of @p child
3333 * @param child		the device whose active resources are being released
3334 * @param type		the type of resources to release
3335 *
3336 * @retval 0		success
3337 * @retval EBUSY	at least one resource was active
3338 */
3339int
3340resource_list_release_active(struct resource_list *rl, device_t bus,
3341    device_t child, int type)
3342{
3343	struct resource_list_entry *rle;
3344	int error, retval;
3345
3346	retval = 0;
3347	STAILQ_FOREACH(rle, rl, link) {
3348		if (rle->type != type)
3349			continue;
3350		if (rle->res == NULL)
3351			continue;
3352		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3353		    RLE_RESERVED)
3354			continue;
3355		retval = EBUSY;
3356		error = resource_list_release(rl, bus, child, type,
3357		    rman_get_rid(rle->res), rle->res);
3358		if (error != 0)
3359			device_printf(bus,
3360			    "Failed to release active resource: %d\n", error);
3361	}
3362	return (retval);
3363}
3364
3365
3366/**
3367 * @brief Fully release a reserved resource
3368 *
3369 * Fully releases a resource reserved via resource_list_reserve().
3370 *
3371 * @param rl		the resource list which was allocated from
3372 * @param bus		the parent device of @p child
3373 * @param child		the device whose reserved resource is being released
3374 * @param type		the type of resource to release
3375 * @param rid		the resource identifier
3376 * @param res		the resource to release
3377 *
3378 * @retval 0		success
3379 * @retval non-zero	a standard unix error code indicating what
3380 *			error condition prevented the operation
3381 */
3382int
3383resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3384    int type, int rid)
3385{
3386	struct resource_list_entry *rle = NULL;
3387	int passthrough = (device_get_parent(child) != bus);
3388
3389	if (passthrough)
3390		panic(
3391    "resource_list_unreserve() should only be called for direct children");
3392
3393	rle = resource_list_find(rl, type, rid);
3394
3395	if (!rle)
3396		panic("resource_list_unreserve: can't find resource");
3397	if (!(rle->flags & RLE_RESERVED))
3398		return (EINVAL);
3399	if (rle->flags & RLE_ALLOCATED)
3400		return (EBUSY);
3401	rle->flags &= ~RLE_RESERVED;
3402	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3403}
3404
3405/**
3406 * @brief Print a description of resources in a resource list
3407 *
3408 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3409 * The name is printed if at least one resource of the given type is available.
3410 * The format is used to print resource start and end.
3411 *
3412 * @param rl		the resource list to print
3413 * @param name		the name of @p type, e.g. @c "memory"
3414 * @param type		type type of resource entry to print
3415 * @param format	printf(9) format string to print resource
3416 *			start and end values
3417 *
3418 * @returns		the number of characters printed
3419 */
3420int
3421resource_list_print_type(struct resource_list *rl, const char *name, int type,
3422    const char *format)
3423{
3424	struct resource_list_entry *rle;
3425	int printed, retval;
3426
3427	printed = 0;
3428	retval = 0;
3429	/* Yes, this is kinda cheating */
3430	STAILQ_FOREACH(rle, rl, link) {
3431		if (rle->type == type) {
3432			if (printed == 0)
3433				retval += printf(" %s ", name);
3434			else
3435				retval += printf(",");
3436			printed++;
3437			retval += printf(format, rle->start);
3438			if (rle->count > 1) {
3439				retval += printf("-");
3440				retval += printf(format, rle->start +
3441						 rle->count - 1);
3442			}
3443		}
3444	}
3445	return (retval);
3446}
3447
3448/**
3449 * @brief Releases all the resources in a list.
3450 *
3451 * @param rl		The resource list to purge.
3452 *
3453 * @returns		nothing
3454 */
3455void
3456resource_list_purge(struct resource_list *rl)
3457{
3458	struct resource_list_entry *rle;
3459
3460	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3461		if (rle->res)
3462			bus_release_resource(rman_get_device(rle->res),
3463			    rle->type, rle->rid, rle->res);
3464		STAILQ_REMOVE_HEAD(rl, link);
3465		free(rle, M_BUS);
3466	}
3467}
3468
3469device_t
3470bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3471{
3472
3473	return (device_add_child_ordered(dev, order, name, unit));
3474}
3475
3476/**
3477 * @brief Helper function for implementing DEVICE_PROBE()
3478 *
3479 * This function can be used to help implement the DEVICE_PROBE() for
3480 * a bus (i.e. a device which has other devices attached to it). It
3481 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3482 * devclass.
3483 */
3484int
3485bus_generic_probe(device_t dev)
3486{
3487	devclass_t dc = dev->devclass;
3488	driverlink_t dl;
3489
3490	TAILQ_FOREACH(dl, &dc->drivers, link) {
3491		/*
3492		 * If this driver's pass is too high, then ignore it.
3493		 * For most drivers in the default pass, this will
3494		 * never be true.  For early-pass drivers they will
3495		 * only call the identify routines of eligible drivers
3496		 * when this routine is called.  Drivers for later
3497		 * passes should have their identify routines called
3498		 * on early-pass busses during BUS_NEW_PASS().
3499		 */
3500		if (dl->pass > bus_current_pass)
3501			continue;
3502		DEVICE_IDENTIFY(dl->driver, dev);
3503	}
3504
3505	return (0);
3506}
3507
3508/**
3509 * @brief Helper function for implementing DEVICE_ATTACH()
3510 *
3511 * This function can be used to help implement the DEVICE_ATTACH() for
3512 * a bus. It calls device_probe_and_attach() for each of the device's
3513 * children.
3514 */
3515int
3516bus_generic_attach(device_t dev)
3517{
3518	device_t child;
3519
3520	TAILQ_FOREACH(child, &dev->children, link) {
3521		device_probe_and_attach(child);
3522	}
3523
3524	return (0);
3525}
3526
3527/**
3528 * @brief Helper function for implementing DEVICE_DETACH()
3529 *
3530 * This function can be used to help implement the DEVICE_DETACH() for
3531 * a bus. It calls device_detach() for each of the device's
3532 * children.
3533 */
3534int
3535bus_generic_detach(device_t dev)
3536{
3537	device_t child;
3538	int error;
3539
3540	if (dev->state != DS_ATTACHED)
3541		return (EBUSY);
3542
3543	TAILQ_FOREACH(child, &dev->children, link) {
3544		if ((error = device_detach(child)) != 0)
3545			return (error);
3546	}
3547
3548	return (0);
3549}
3550
3551/**
3552 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3553 *
3554 * This function can be used to help implement the DEVICE_SHUTDOWN()
3555 * for a bus. It calls device_shutdown() for each of the device's
3556 * children.
3557 */
3558int
3559bus_generic_shutdown(device_t dev)
3560{
3561	device_t child;
3562
3563	TAILQ_FOREACH(child, &dev->children, link) {
3564		device_shutdown(child);
3565	}
3566
3567	return (0);
3568}
3569
3570/**
3571 * @brief Helper function for implementing DEVICE_SUSPEND()
3572 *
3573 * This function can be used to help implement the DEVICE_SUSPEND()
3574 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3575 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3576 * operation is aborted and any devices which were suspended are
3577 * resumed immediately by calling their DEVICE_RESUME() methods.
3578 */
3579int
3580bus_generic_suspend(device_t dev)
3581{
3582	int		error;
3583	device_t	child, child2;
3584
3585	TAILQ_FOREACH(child, &dev->children, link) {
3586		error = DEVICE_SUSPEND(child);
3587		if (error) {
3588			for (child2 = TAILQ_FIRST(&dev->children);
3589			     child2 && child2 != child;
3590			     child2 = TAILQ_NEXT(child2, link))
3591				DEVICE_RESUME(child2);
3592			return (error);
3593		}
3594	}
3595	return (0);
3596}
3597
3598/**
3599 * @brief Helper function for implementing DEVICE_RESUME()
3600 *
3601 * This function can be used to help implement the DEVICE_RESUME() for
3602 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3603 */
3604int
3605bus_generic_resume(device_t dev)
3606{
3607	device_t	child;
3608
3609	TAILQ_FOREACH(child, &dev->children, link) {
3610		DEVICE_RESUME(child);
3611		/* if resume fails, there's nothing we can usefully do... */
3612	}
3613	return (0);
3614}
3615
3616/**
3617 * @brief Helper function for implementing BUS_PRINT_CHILD().
3618 *
3619 * This function prints the first part of the ascii representation of
3620 * @p child, including its name, unit and description (if any - see
3621 * device_set_desc()).
3622 *
3623 * @returns the number of characters printed
3624 */
3625int
3626bus_print_child_header(device_t dev, device_t child)
3627{
3628	int	retval = 0;
3629
3630	if (device_get_desc(child)) {
3631		retval += device_printf(child, "<%s>", device_get_desc(child));
3632	} else {
3633		retval += printf("%s", device_get_nameunit(child));
3634	}
3635
3636	return (retval);
3637}
3638
3639/**
3640 * @brief Helper function for implementing BUS_PRINT_CHILD().
3641 *
3642 * This function prints the last part of the ascii representation of
3643 * @p child, which consists of the string @c " on " followed by the
3644 * name and unit of the @p dev.
3645 *
3646 * @returns the number of characters printed
3647 */
3648int
3649bus_print_child_footer(device_t dev, device_t child)
3650{
3651	return (printf(" on %s\n", device_get_nameunit(dev)));
3652}
3653
3654/**
3655 * @brief Helper function for implementing BUS_PRINT_CHILD().
3656 *
3657 * This function simply calls bus_print_child_header() followed by
3658 * bus_print_child_footer().
3659 *
3660 * @returns the number of characters printed
3661 */
3662int
3663bus_generic_print_child(device_t dev, device_t child)
3664{
3665	int	retval = 0;
3666
3667	retval += bus_print_child_header(dev, child);
3668	retval += bus_print_child_footer(dev, child);
3669
3670	return (retval);
3671}
3672
3673/**
3674 * @brief Stub function for implementing BUS_READ_IVAR().
3675 *
3676 * @returns ENOENT
3677 */
3678int
3679bus_generic_read_ivar(device_t dev, device_t child, int index,
3680    uintptr_t * result)
3681{
3682	return (ENOENT);
3683}
3684
3685/**
3686 * @brief Stub function for implementing BUS_WRITE_IVAR().
3687 *
3688 * @returns ENOENT
3689 */
3690int
3691bus_generic_write_ivar(device_t dev, device_t child, int index,
3692    uintptr_t value)
3693{
3694	return (ENOENT);
3695}
3696
3697/**
3698 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3699 *
3700 * @returns NULL
3701 */
3702struct resource_list *
3703bus_generic_get_resource_list(device_t dev, device_t child)
3704{
3705	return (NULL);
3706}
3707
3708/**
3709 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3710 *
3711 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3712 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3713 * and then calls device_probe_and_attach() for each unattached child.
3714 */
3715void
3716bus_generic_driver_added(device_t dev, driver_t *driver)
3717{
3718	device_t child;
3719
3720	DEVICE_IDENTIFY(driver, dev);
3721	TAILQ_FOREACH(child, &dev->children, link) {
3722		if (child->state == DS_NOTPRESENT ||
3723		    (child->flags & DF_REBID))
3724			device_probe_and_attach(child);
3725	}
3726}
3727
3728/**
3729 * @brief Helper function for implementing BUS_NEW_PASS().
3730 *
3731 * This implementing of BUS_NEW_PASS() first calls the identify
3732 * routines for any drivers that probe at the current pass.  Then it
3733 * walks the list of devices for this bus.  If a device is already
3734 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3735 * device is not already attached, it attempts to attach a driver to
3736 * it.
3737 */
3738void
3739bus_generic_new_pass(device_t dev)
3740{
3741	driverlink_t dl;
3742	devclass_t dc;
3743	device_t child;
3744
3745	dc = dev->devclass;
3746	TAILQ_FOREACH(dl, &dc->drivers, link) {
3747		if (dl->pass == bus_current_pass)
3748			DEVICE_IDENTIFY(dl->driver, dev);
3749	}
3750	TAILQ_FOREACH(child, &dev->children, link) {
3751		if (child->state >= DS_ATTACHED)
3752			BUS_NEW_PASS(child);
3753		else if (child->state == DS_NOTPRESENT)
3754			device_probe_and_attach(child);
3755	}
3756}
3757
3758/**
3759 * @brief Helper function for implementing BUS_SETUP_INTR().
3760 *
3761 * This simple implementation of BUS_SETUP_INTR() simply calls the
3762 * BUS_SETUP_INTR() method of the parent of @p dev.
3763 */
3764int
3765bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3766    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3767    void **cookiep)
3768{
3769	/* Propagate up the bus hierarchy until someone handles it. */
3770	if (dev->parent)
3771		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3772		    filter, intr, arg, cookiep));
3773	return (EINVAL);
3774}
3775
3776/**
3777 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3778 *
3779 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3780 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3781 */
3782int
3783bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3784    void *cookie)
3785{
3786	/* Propagate up the bus hierarchy until someone handles it. */
3787	if (dev->parent)
3788		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3789	return (EINVAL);
3790}
3791
3792/**
3793 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3794 *
3795 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3796 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3797 */
3798int
3799bus_generic_adjust_resource(device_t dev, device_t child, int type,
3800    struct resource *r, u_long start, u_long end)
3801{
3802	/* Propagate up the bus hierarchy until someone handles it. */
3803	if (dev->parent)
3804		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3805		    end));
3806	return (EINVAL);
3807}
3808
3809/**
3810 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3811 *
3812 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3813 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3814 */
3815struct resource *
3816bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3817    u_long start, u_long end, u_long count, u_int flags)
3818{
3819	/* Propagate up the bus hierarchy until someone handles it. */
3820	if (dev->parent)
3821		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3822		    start, end, count, flags));
3823	return (NULL);
3824}
3825
3826/**
3827 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3828 *
3829 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3830 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3831 */
3832int
3833bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3834    struct resource *r)
3835{
3836	/* Propagate up the bus hierarchy until someone handles it. */
3837	if (dev->parent)
3838		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3839		    r));
3840	return (EINVAL);
3841}
3842
3843/**
3844 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3845 *
3846 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3847 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3848 */
3849int
3850bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3851    struct resource *r)
3852{
3853	/* Propagate up the bus hierarchy until someone handles it. */
3854	if (dev->parent)
3855		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3856		    r));
3857	return (EINVAL);
3858}
3859
3860/**
3861 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3862 *
3863 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3864 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3865 */
3866int
3867bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3868    int rid, struct resource *r)
3869{
3870	/* Propagate up the bus hierarchy until someone handles it. */
3871	if (dev->parent)
3872		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3873		    r));
3874	return (EINVAL);
3875}
3876
3877/**
3878 * @brief Helper function for implementing BUS_BIND_INTR().
3879 *
3880 * This simple implementation of BUS_BIND_INTR() simply calls the
3881 * BUS_BIND_INTR() method of the parent of @p dev.
3882 */
3883int
3884bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3885    int cpu)
3886{
3887
3888	/* Propagate up the bus hierarchy until someone handles it. */
3889	if (dev->parent)
3890		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3891	return (EINVAL);
3892}
3893
3894/**
3895 * @brief Helper function for implementing BUS_CONFIG_INTR().
3896 *
3897 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3898 * BUS_CONFIG_INTR() method of the parent of @p dev.
3899 */
3900int
3901bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3902    enum intr_polarity pol)
3903{
3904
3905	/* Propagate up the bus hierarchy until someone handles it. */
3906	if (dev->parent)
3907		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3908	return (EINVAL);
3909}
3910
3911/**
3912 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3913 *
3914 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3915 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3916 */
3917int
3918bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3919    void *cookie, const char *descr)
3920{
3921
3922	/* Propagate up the bus hierarchy until someone handles it. */
3923	if (dev->parent)
3924		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3925		    descr));
3926	return (EINVAL);
3927}
3928
3929/**
3930 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3931 *
3932 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3933 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3934 */
3935bus_dma_tag_t
3936bus_generic_get_dma_tag(device_t dev, device_t child)
3937{
3938
3939	/* Propagate up the bus hierarchy until someone handles it. */
3940	if (dev->parent != NULL)
3941		return (BUS_GET_DMA_TAG(dev->parent, child));
3942	return (NULL);
3943}
3944
3945/**
3946 * @brief Helper function for implementing BUS_GET_RESOURCE().
3947 *
3948 * This implementation of BUS_GET_RESOURCE() uses the
3949 * resource_list_find() function to do most of the work. It calls
3950 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3951 * search.
3952 */
3953int
3954bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3955    u_long *startp, u_long *countp)
3956{
3957	struct resource_list *		rl = NULL;
3958	struct resource_list_entry *	rle = NULL;
3959
3960	rl = BUS_GET_RESOURCE_LIST(dev, child);
3961	if (!rl)
3962		return (EINVAL);
3963
3964	rle = resource_list_find(rl, type, rid);
3965	if (!rle)
3966		return (ENOENT);
3967
3968	if (startp)
3969		*startp = rle->start;
3970	if (countp)
3971		*countp = rle->count;
3972
3973	return (0);
3974}
3975
3976/**
3977 * @brief Helper function for implementing BUS_SET_RESOURCE().
3978 *
3979 * This implementation of BUS_SET_RESOURCE() uses the
3980 * resource_list_add() function to do most of the work. It calls
3981 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3982 * edit.
3983 */
3984int
3985bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3986    u_long start, u_long count)
3987{
3988	struct resource_list *		rl = NULL;
3989
3990	rl = BUS_GET_RESOURCE_LIST(dev, child);
3991	if (!rl)
3992		return (EINVAL);
3993
3994	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3995
3996	return (0);
3997}
3998
3999/**
4000 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4001 *
4002 * This implementation of BUS_DELETE_RESOURCE() uses the
4003 * resource_list_delete() function to do most of the work. It calls
4004 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4005 * edit.
4006 */
4007void
4008bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4009{
4010	struct resource_list *		rl = NULL;
4011
4012	rl = BUS_GET_RESOURCE_LIST(dev, child);
4013	if (!rl)
4014		return;
4015
4016	resource_list_delete(rl, type, rid);
4017
4018	return;
4019}
4020
4021/**
4022 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4023 *
4024 * This implementation of BUS_RELEASE_RESOURCE() uses the
4025 * resource_list_release() function to do most of the work. It calls
4026 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4027 */
4028int
4029bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4030    int rid, struct resource *r)
4031{
4032	struct resource_list *		rl = NULL;
4033
4034	if (device_get_parent(child) != dev)
4035		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4036		    type, rid, r));
4037
4038	rl = BUS_GET_RESOURCE_LIST(dev, child);
4039	if (!rl)
4040		return (EINVAL);
4041
4042	return (resource_list_release(rl, dev, child, type, rid, r));
4043}
4044
4045/**
4046 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4047 *
4048 * This implementation of BUS_ALLOC_RESOURCE() uses the
4049 * resource_list_alloc() function to do most of the work. It calls
4050 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4051 */
4052struct resource *
4053bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4054    int *rid, u_long start, u_long end, u_long count, u_int flags)
4055{
4056	struct resource_list *		rl = NULL;
4057
4058	if (device_get_parent(child) != dev)
4059		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4060		    type, rid, start, end, count, flags));
4061
4062	rl = BUS_GET_RESOURCE_LIST(dev, child);
4063	if (!rl)
4064		return (NULL);
4065
4066	return (resource_list_alloc(rl, dev, child, type, rid,
4067	    start, end, count, flags));
4068}
4069
4070/**
4071 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4072 *
4073 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4074 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4075 */
4076int
4077bus_generic_child_present(device_t dev, device_t child)
4078{
4079	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4080}
4081
4082/*
4083 * Some convenience functions to make it easier for drivers to use the
4084 * resource-management functions.  All these really do is hide the
4085 * indirection through the parent's method table, making for slightly
4086 * less-wordy code.  In the future, it might make sense for this code
4087 * to maintain some sort of a list of resources allocated by each device.
4088 */
4089
4090int
4091bus_alloc_resources(device_t dev, struct resource_spec *rs,
4092    struct resource **res)
4093{
4094	int i;
4095
4096	for (i = 0; rs[i].type != -1; i++)
4097		res[i] = NULL;
4098	for (i = 0; rs[i].type != -1; i++) {
4099		res[i] = bus_alloc_resource_any(dev,
4100		    rs[i].type, &rs[i].rid, rs[i].flags);
4101		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4102			bus_release_resources(dev, rs, res);
4103			return (ENXIO);
4104		}
4105	}
4106	return (0);
4107}
4108
4109void
4110bus_release_resources(device_t dev, const struct resource_spec *rs,
4111    struct resource **res)
4112{
4113	int i;
4114
4115	for (i = 0; rs[i].type != -1; i++)
4116		if (res[i] != NULL) {
4117			bus_release_resource(
4118			    dev, rs[i].type, rs[i].rid, res[i]);
4119			res[i] = NULL;
4120		}
4121}
4122
4123/**
4124 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4125 *
4126 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4127 * parent of @p dev.
4128 */
4129struct resource *
4130bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4131    u_long count, u_int flags)
4132{
4133	if (dev->parent == NULL)
4134		return (NULL);
4135	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4136	    count, flags));
4137}
4138
4139/**
4140 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4141 *
4142 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4143 * parent of @p dev.
4144 */
4145int
4146bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4147    u_long end)
4148{
4149	if (dev->parent == NULL)
4150		return (EINVAL);
4151	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4152}
4153
4154/**
4155 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4156 *
4157 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4158 * parent of @p dev.
4159 */
4160int
4161bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4162{
4163	if (dev->parent == NULL)
4164		return (EINVAL);
4165	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4166}
4167
4168/**
4169 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4170 *
4171 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4172 * parent of @p dev.
4173 */
4174int
4175bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4176{
4177	if (dev->parent == NULL)
4178		return (EINVAL);
4179	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4180}
4181
4182/**
4183 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4184 *
4185 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4186 * parent of @p dev.
4187 */
4188int
4189bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4190{
4191	if (dev->parent == NULL)
4192		return (EINVAL);
4193	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4194}
4195
4196/**
4197 * @brief Wrapper function for BUS_SETUP_INTR().
4198 *
4199 * This function simply calls the BUS_SETUP_INTR() method of the
4200 * parent of @p dev.
4201 */
4202int
4203bus_setup_intr(device_t dev, struct resource *r, int flags,
4204    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4205{
4206	int error;
4207
4208	if (dev->parent == NULL)
4209		return (EINVAL);
4210	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4211	    arg, cookiep);
4212	if (error != 0)
4213		return (error);
4214	if (handler != NULL && !(flags & INTR_MPSAFE))
4215		device_printf(dev, "[GIANT-LOCKED]\n");
4216	return (0);
4217}
4218
4219/**
4220 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4221 *
4222 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4223 * parent of @p dev.
4224 */
4225int
4226bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4227{
4228	if (dev->parent == NULL)
4229		return (EINVAL);
4230	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4231}
4232
4233/**
4234 * @brief Wrapper function for BUS_BIND_INTR().
4235 *
4236 * This function simply calls the BUS_BIND_INTR() method of the
4237 * parent of @p dev.
4238 */
4239int
4240bus_bind_intr(device_t dev, struct resource *r, int cpu)
4241{
4242	if (dev->parent == NULL)
4243		return (EINVAL);
4244	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4245}
4246
4247/**
4248 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4249 *
4250 * This function first formats the requested description into a
4251 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4252 * the parent of @p dev.
4253 */
4254int
4255bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4256    const char *fmt, ...)
4257{
4258	va_list ap;
4259	char descr[MAXCOMLEN + 1];
4260
4261	if (dev->parent == NULL)
4262		return (EINVAL);
4263	va_start(ap, fmt);
4264	vsnprintf(descr, sizeof(descr), fmt, ap);
4265	va_end(ap);
4266	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4267}
4268
4269/**
4270 * @brief Wrapper function for BUS_SET_RESOURCE().
4271 *
4272 * This function simply calls the BUS_SET_RESOURCE() method of the
4273 * parent of @p dev.
4274 */
4275int
4276bus_set_resource(device_t dev, int type, int rid,
4277    u_long start, u_long count)
4278{
4279	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4280	    start, count));
4281}
4282
4283/**
4284 * @brief Wrapper function for BUS_GET_RESOURCE().
4285 *
4286 * This function simply calls the BUS_GET_RESOURCE() method of the
4287 * parent of @p dev.
4288 */
4289int
4290bus_get_resource(device_t dev, int type, int rid,
4291    u_long *startp, u_long *countp)
4292{
4293	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4294	    startp, countp));
4295}
4296
4297/**
4298 * @brief Wrapper function for BUS_GET_RESOURCE().
4299 *
4300 * This function simply calls the BUS_GET_RESOURCE() method of the
4301 * parent of @p dev and returns the start value.
4302 */
4303u_long
4304bus_get_resource_start(device_t dev, int type, int rid)
4305{
4306	u_long start, count;
4307	int error;
4308
4309	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4310	    &start, &count);
4311	if (error)
4312		return (0);
4313	return (start);
4314}
4315
4316/**
4317 * @brief Wrapper function for BUS_GET_RESOURCE().
4318 *
4319 * This function simply calls the BUS_GET_RESOURCE() method of the
4320 * parent of @p dev and returns the count value.
4321 */
4322u_long
4323bus_get_resource_count(device_t dev, int type, int rid)
4324{
4325	u_long start, count;
4326	int error;
4327
4328	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4329	    &start, &count);
4330	if (error)
4331		return (0);
4332	return (count);
4333}
4334
4335/**
4336 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4337 *
4338 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4339 * parent of @p dev.
4340 */
4341void
4342bus_delete_resource(device_t dev, int type, int rid)
4343{
4344	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4345}
4346
4347/**
4348 * @brief Wrapper function for BUS_CHILD_PRESENT().
4349 *
4350 * This function simply calls the BUS_CHILD_PRESENT() method of the
4351 * parent of @p dev.
4352 */
4353int
4354bus_child_present(device_t child)
4355{
4356	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4357}
4358
4359/**
4360 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4361 *
4362 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4363 * parent of @p dev.
4364 */
4365int
4366bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4367{
4368	device_t parent;
4369
4370	parent = device_get_parent(child);
4371	if (parent == NULL) {
4372		*buf = '\0';
4373		return (0);
4374	}
4375	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4376}
4377
4378/**
4379 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4380 *
4381 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4382 * parent of @p dev.
4383 */
4384int
4385bus_child_location_str(device_t child, char *buf, size_t buflen)
4386{
4387	device_t parent;
4388
4389	parent = device_get_parent(child);
4390	if (parent == NULL) {
4391		*buf = '\0';
4392		return (0);
4393	}
4394	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4395}
4396
4397/**
4398 * @brief Wrapper function for BUS_GET_DMA_TAG().
4399 *
4400 * This function simply calls the BUS_GET_DMA_TAG() method of the
4401 * parent of @p dev.
4402 */
4403bus_dma_tag_t
4404bus_get_dma_tag(device_t dev)
4405{
4406	device_t parent;
4407
4408	parent = device_get_parent(dev);
4409	if (parent == NULL)
4410		return (NULL);
4411	return (BUS_GET_DMA_TAG(parent, dev));
4412}
4413
4414/* Resume all devices and then notify userland that we're up again. */
4415static int
4416root_resume(device_t dev)
4417{
4418	int error;
4419
4420	error = bus_generic_resume(dev);
4421	if (error == 0)
4422		devctl_notify("kern", "power", "resume", NULL);
4423	return (error);
4424}
4425
4426static int
4427root_print_child(device_t dev, device_t child)
4428{
4429	int	retval = 0;
4430
4431	retval += bus_print_child_header(dev, child);
4432	retval += printf("\n");
4433
4434	return (retval);
4435}
4436
4437static int
4438root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4439    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4440{
4441	/*
4442	 * If an interrupt mapping gets to here something bad has happened.
4443	 */
4444	panic("root_setup_intr");
4445}
4446
4447/*
4448 * If we get here, assume that the device is permanant and really is
4449 * present in the system.  Removable bus drivers are expected to intercept
4450 * this call long before it gets here.  We return -1 so that drivers that
4451 * really care can check vs -1 or some ERRNO returned higher in the food
4452 * chain.
4453 */
4454static int
4455root_child_present(device_t dev, device_t child)
4456{
4457	return (-1);
4458}
4459
4460static kobj_method_t root_methods[] = {
4461	/* Device interface */
4462	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4463	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4464	KOBJMETHOD(device_resume,	root_resume),
4465
4466	/* Bus interface */
4467	KOBJMETHOD(bus_print_child,	root_print_child),
4468	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4469	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4470	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4471	KOBJMETHOD(bus_child_present,	root_child_present),
4472
4473	KOBJMETHOD_END
4474};
4475
4476static driver_t root_driver = {
4477	"root",
4478	root_methods,
4479	1,			/* no softc */
4480};
4481
4482device_t	root_bus;
4483devclass_t	root_devclass;
4484
4485static int
4486root_bus_module_handler(module_t mod, int what, void* arg)
4487{
4488	switch (what) {
4489	case MOD_LOAD:
4490		TAILQ_INIT(&bus_data_devices);
4491		kobj_class_compile((kobj_class_t) &root_driver);
4492		root_bus = make_device(NULL, "root", 0);
4493		root_bus->desc = "System root bus";
4494		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4495		root_bus->driver = &root_driver;
4496		root_bus->state = DS_ATTACHED;
4497		root_devclass = devclass_find_internal("root", NULL, FALSE);
4498		devinit();
4499		return (0);
4500
4501	case MOD_SHUTDOWN:
4502		device_shutdown(root_bus);
4503		return (0);
4504	default:
4505		return (EOPNOTSUPP);
4506	}
4507
4508	return (0);
4509}
4510
4511static moduledata_t root_bus_mod = {
4512	"rootbus",
4513	root_bus_module_handler,
4514	NULL
4515};
4516DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4517
4518/**
4519 * @brief Automatically configure devices
4520 *
4521 * This function begins the autoconfiguration process by calling
4522 * device_probe_and_attach() for each child of the @c root0 device.
4523 */
4524void
4525root_bus_configure(void)
4526{
4527
4528	PDEBUG(("."));
4529
4530	/* Eventually this will be split up, but this is sufficient for now. */
4531	bus_set_pass(BUS_PASS_DEFAULT);
4532}
4533
4534/**
4535 * @brief Module handler for registering device drivers
4536 *
4537 * This module handler is used to automatically register device
4538 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4539 * devclass_add_driver() for the driver described by the
4540 * driver_module_data structure pointed to by @p arg
4541 */
4542int
4543driver_module_handler(module_t mod, int what, void *arg)
4544{
4545	struct driver_module_data *dmd;
4546	devclass_t bus_devclass;
4547	kobj_class_t driver;
4548	int error, pass;
4549
4550	dmd = (struct driver_module_data *)arg;
4551	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4552	error = 0;
4553
4554	switch (what) {
4555	case MOD_LOAD:
4556		if (dmd->dmd_chainevh)
4557			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4558
4559		pass = dmd->dmd_pass;
4560		driver = dmd->dmd_driver;
4561		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4562		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4563		error = devclass_add_driver(bus_devclass, driver, pass,
4564		    dmd->dmd_devclass);
4565		break;
4566
4567	case MOD_UNLOAD:
4568		PDEBUG(("Unloading module: driver %s from bus %s",
4569		    DRIVERNAME(dmd->dmd_driver),
4570		    dmd->dmd_busname));
4571		error = devclass_delete_driver(bus_devclass,
4572		    dmd->dmd_driver);
4573
4574		if (!error && dmd->dmd_chainevh)
4575			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4576		break;
4577	case MOD_QUIESCE:
4578		PDEBUG(("Quiesce module: driver %s from bus %s",
4579		    DRIVERNAME(dmd->dmd_driver),
4580		    dmd->dmd_busname));
4581		error = devclass_quiesce_driver(bus_devclass,
4582		    dmd->dmd_driver);
4583
4584		if (!error && dmd->dmd_chainevh)
4585			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4586		break;
4587	default:
4588		error = EOPNOTSUPP;
4589		break;
4590	}
4591
4592	return (error);
4593}
4594
4595/**
4596 * @brief Enumerate all hinted devices for this bus.
4597 *
4598 * Walks through the hints for this bus and calls the bus_hinted_child
4599 * routine for each one it fines.  It searches first for the specific
4600 * bus that's being probed for hinted children (eg isa0), and then for
4601 * generic children (eg isa).
4602 *
4603 * @param	dev	bus device to enumerate
4604 */
4605void
4606bus_enumerate_hinted_children(device_t bus)
4607{
4608	int i;
4609	const char *dname, *busname;
4610	int dunit;
4611
4612	/*
4613	 * enumerate all devices on the specific bus
4614	 */
4615	busname = device_get_nameunit(bus);
4616	i = 0;
4617	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4618		BUS_HINTED_CHILD(bus, dname, dunit);
4619
4620	/*
4621	 * and all the generic ones.
4622	 */
4623	busname = device_get_name(bus);
4624	i = 0;
4625	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4626		BUS_HINTED_CHILD(bus, dname, dunit);
4627}
4628
4629#ifdef BUS_DEBUG
4630
4631/* the _short versions avoid iteration by not calling anything that prints
4632 * more than oneliners. I love oneliners.
4633 */
4634
4635static void
4636print_device_short(device_t dev, int indent)
4637{
4638	if (!dev)
4639		return;
4640
4641	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4642	    dev->unit, dev->desc,
4643	    (dev->parent? "":"no "),
4644	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4645	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4646	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4647	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4648	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4649	    (dev->flags&DF_REBID? "rebiddable,":""),
4650	    (dev->ivars? "":"no "),
4651	    (dev->softc? "":"no "),
4652	    dev->busy));
4653}
4654
4655static void
4656print_device(device_t dev, int indent)
4657{
4658	if (!dev)
4659		return;
4660
4661	print_device_short(dev, indent);
4662
4663	indentprintf(("Parent:\n"));
4664	print_device_short(dev->parent, indent+1);
4665	indentprintf(("Driver:\n"));
4666	print_driver_short(dev->driver, indent+1);
4667	indentprintf(("Devclass:\n"));
4668	print_devclass_short(dev->devclass, indent+1);
4669}
4670
4671void
4672print_device_tree_short(device_t dev, int indent)
4673/* print the device and all its children (indented) */
4674{
4675	device_t child;
4676
4677	if (!dev)
4678		return;
4679
4680	print_device_short(dev, indent);
4681
4682	TAILQ_FOREACH(child, &dev->children, link) {
4683		print_device_tree_short(child, indent+1);
4684	}
4685}
4686
4687void
4688print_device_tree(device_t dev, int indent)
4689/* print the device and all its children (indented) */
4690{
4691	device_t child;
4692
4693	if (!dev)
4694		return;
4695
4696	print_device(dev, indent);
4697
4698	TAILQ_FOREACH(child, &dev->children, link) {
4699		print_device_tree(child, indent+1);
4700	}
4701}
4702
4703static void
4704print_driver_short(driver_t *driver, int indent)
4705{
4706	if (!driver)
4707		return;
4708
4709	indentprintf(("driver %s: softc size = %zd\n",
4710	    driver->name, driver->size));
4711}
4712
4713static void
4714print_driver(driver_t *driver, int indent)
4715{
4716	if (!driver)
4717		return;
4718
4719	print_driver_short(driver, indent);
4720}
4721
4722static void
4723print_driver_list(driver_list_t drivers, int indent)
4724{
4725	driverlink_t driver;
4726
4727	TAILQ_FOREACH(driver, &drivers, link) {
4728		print_driver(driver->driver, indent);
4729	}
4730}
4731
4732static void
4733print_devclass_short(devclass_t dc, int indent)
4734{
4735	if ( !dc )
4736		return;
4737
4738	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4739}
4740
4741static void
4742print_devclass(devclass_t dc, int indent)
4743{
4744	int i;
4745
4746	if ( !dc )
4747		return;
4748
4749	print_devclass_short(dc, indent);
4750	indentprintf(("Drivers:\n"));
4751	print_driver_list(dc->drivers, indent+1);
4752
4753	indentprintf(("Devices:\n"));
4754	for (i = 0; i < dc->maxunit; i++)
4755		if (dc->devices[i])
4756			print_device(dc->devices[i], indent+1);
4757}
4758
4759void
4760print_devclass_list_short(void)
4761{
4762	devclass_t dc;
4763
4764	printf("Short listing of devclasses, drivers & devices:\n");
4765	TAILQ_FOREACH(dc, &devclasses, link) {
4766		print_devclass_short(dc, 0);
4767	}
4768}
4769
4770void
4771print_devclass_list(void)
4772{
4773	devclass_t dc;
4774
4775	printf("Full listing of devclasses, drivers & devices:\n");
4776	TAILQ_FOREACH(dc, &devclasses, link) {
4777		print_devclass(dc, 0);
4778	}
4779}
4780
4781#endif
4782
4783/*
4784 * User-space access to the device tree.
4785 *
4786 * We implement a small set of nodes:
4787 *
4788 * hw.bus			Single integer read method to obtain the
4789 *				current generation count.
4790 * hw.bus.devices		Reads the entire device tree in flat space.
4791 * hw.bus.rman			Resource manager interface
4792 *
4793 * We might like to add the ability to scan devclasses and/or drivers to
4794 * determine what else is currently loaded/available.
4795 */
4796
4797static int
4798sysctl_bus(SYSCTL_HANDLER_ARGS)
4799{
4800	struct u_businfo	ubus;
4801
4802	ubus.ub_version = BUS_USER_VERSION;
4803	ubus.ub_generation = bus_data_generation;
4804
4805	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4806}
4807SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4808    "bus-related data");
4809
4810static int
4811sysctl_devices(SYSCTL_HANDLER_ARGS)
4812{
4813	int			*name = (int *)arg1;
4814	u_int			namelen = arg2;
4815	int			index;
4816	struct device		*dev;
4817	struct u_device		udev;	/* XXX this is a bit big */
4818	int			error;
4819
4820	if (namelen != 2)
4821		return (EINVAL);
4822
4823	if (bus_data_generation_check(name[0]))
4824		return (EINVAL);
4825
4826	index = name[1];
4827
4828	/*
4829	 * Scan the list of devices, looking for the requested index.
4830	 */
4831	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4832		if (index-- == 0)
4833			break;
4834	}
4835	if (dev == NULL)
4836		return (ENOENT);
4837
4838	/*
4839	 * Populate the return array.
4840	 */
4841	bzero(&udev, sizeof(udev));
4842	udev.dv_handle = (uintptr_t)dev;
4843	udev.dv_parent = (uintptr_t)dev->parent;
4844	if (dev->nameunit != NULL)
4845		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4846	if (dev->desc != NULL)
4847		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4848	if (dev->driver != NULL && dev->driver->name != NULL)
4849		strlcpy(udev.dv_drivername, dev->driver->name,
4850		    sizeof(udev.dv_drivername));
4851	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4852	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4853	udev.dv_devflags = dev->devflags;
4854	udev.dv_flags = dev->flags;
4855	udev.dv_state = dev->state;
4856	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4857	return (error);
4858}
4859
4860SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4861    "system device tree");
4862
4863int
4864bus_data_generation_check(int generation)
4865{
4866	if (generation != bus_data_generation)
4867		return (1);
4868
4869	/* XXX generate optimised lists here? */
4870	return (0);
4871}
4872
4873void
4874bus_data_generation_update(void)
4875{
4876	bus_data_generation++;
4877}
4878
4879int
4880bus_free_resource(device_t dev, int type, struct resource *r)
4881{
4882	if (r == NULL)
4883		return (0);
4884	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4885}
4886