subr_bus.c revision 252315
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 252315 2013-06-27 20:21:54Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <machine/stdarg.h>
57
58#include <vm/uma.h>
59
60SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62
63/*
64 * Used to attach drivers to devclasses.
65 */
66typedef struct driverlink *driverlink_t;
67struct driverlink {
68	kobj_class_t	driver;
69	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70	int		pass;
71	TAILQ_ENTRY(driverlink) passlink;
72};
73
74/*
75 * Forward declarations
76 */
77typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79typedef TAILQ_HEAD(device_list, device) device_list_t;
80
81struct devclass {
82	TAILQ_ENTRY(devclass) link;
83	devclass_t	parent;		/* parent in devclass hierarchy */
84	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85	char		*name;
86	device_t	*devices;	/* array of devices indexed by unit */
87	int		maxunit;	/* size of devices array */
88	int		flags;
89#define DC_HAS_CHILDREN		1
90
91	struct sysctl_ctx_list sysctl_ctx;
92	struct sysctl_oid *sysctl_tree;
93};
94
95/**
96 * @brief Implementation of device.
97 */
98struct device {
99	/*
100	 * A device is a kernel object. The first field must be the
101	 * current ops table for the object.
102	 */
103	KOBJ_FIELDS;
104
105	/*
106	 * Device hierarchy.
107	 */
108	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110	device_t	parent;		/**< parent of this device  */
111	device_list_t	children;	/**< list of child devices */
112
113	/*
114	 * Details of this device.
115	 */
116	driver_t	*driver;	/**< current driver */
117	devclass_t	devclass;	/**< current device class */
118	int		unit;		/**< current unit number */
119	char*		nameunit;	/**< name+unit e.g. foodev0 */
120	char*		desc;		/**< driver specific description */
121	int		busy;		/**< count of calls to device_busy() */
122	device_state_t	state;		/**< current device state  */
123	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124	u_int		flags;		/**< internal device flags  */
125#define	DF_ENABLED	0x01		/* device should be probed/attached */
126#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128#define	DF_DESCMALLOCED	0x08		/* description was malloced */
129#define	DF_QUIET	0x10		/* don't print verbose attach message */
130#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132#define	DF_REBID	0x80		/* Can rebid after attach */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147TUNABLE_INT("bus.debug", &bus_debug);
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149    "Debug bus code");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT(req, value, strlen(value)));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT(req, value, strlen(value));
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311}
312
313static void
314device_sysctl_update(device_t dev)
315{
316	devclass_t dc = dev->devclass;
317
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321}
322
323static void
324device_sysctl_fini(device_t dev)
325{
326	if (dev->sysctl_tree == NULL)
327		return;
328	sysctl_ctx_free(&dev->sysctl_ctx);
329	dev->sysctl_tree = NULL;
330}
331
332/*
333 * /dev/devctl implementation
334 */
335
336/*
337 * This design allows only one reader for /dev/devctl.  This is not desirable
338 * in the long run, but will get a lot of hair out of this implementation.
339 * Maybe we should make this device a clonable device.
340 *
341 * Also note: we specifically do not attach a device to the device_t tree
342 * to avoid potential chicken and egg problems.  One could argue that all
343 * of this belongs to the root node.  One could also further argue that the
344 * sysctl interface that we have not might more properly be an ioctl
345 * interface, but at this stage of the game, I'm not inclined to rock that
346 * boat.
347 *
348 * I'm also not sure that the SIGIO support is done correctly or not, as
349 * I copied it from a driver that had SIGIO support that likely hasn't been
350 * tested since 3.4 or 2.2.8!
351 */
352
353/* Deprecated way to adjust queue length */
354static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358
359#define DEVCTL_DEFAULT_QUEUE_LEN 1000
360static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364    0, sysctl_devctl_queue, "I", "devctl queue length");
365
366static d_open_t		devopen;
367static d_close_t	devclose;
368static d_read_t		devread;
369static d_ioctl_t	devioctl;
370static d_poll_t		devpoll;
371
372static struct cdevsw dev_cdevsw = {
373	.d_version =	D_VERSION,
374	.d_flags =	D_NEEDGIANT,
375	.d_open =	devopen,
376	.d_close =	devclose,
377	.d_read =	devread,
378	.d_ioctl =	devioctl,
379	.d_poll =	devpoll,
380	.d_name =	"devctl",
381};
382
383struct dev_event_info
384{
385	char *dei_data;
386	TAILQ_ENTRY(dev_event_info) dei_link;
387};
388
389TAILQ_HEAD(devq, dev_event_info);
390
391static struct dev_softc
392{
393	int	inuse;
394	int	nonblock;
395	int	queued;
396	struct mtx mtx;
397	struct cv cv;
398	struct selinfo sel;
399	struct devq devq;
400	struct proc *async_proc;
401} devsoftc;
402
403static struct cdev *devctl_dev;
404
405static void
406devinit(void)
407{
408	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411	cv_init(&devsoftc.cv, "dev cv");
412	TAILQ_INIT(&devsoftc.devq);
413}
414
415static int
416devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417{
418	if (devsoftc.inuse)
419		return (EBUSY);
420	/* move to init */
421	devsoftc.inuse = 1;
422	devsoftc.nonblock = 0;
423	devsoftc.async_proc = NULL;
424	return (0);
425}
426
427static int
428devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429{
430	devsoftc.inuse = 0;
431	mtx_lock(&devsoftc.mtx);
432	cv_broadcast(&devsoftc.cv);
433	mtx_unlock(&devsoftc.mtx);
434	devsoftc.async_proc = NULL;
435	return (0);
436}
437
438/*
439 * The read channel for this device is used to report changes to
440 * userland in realtime.  We are required to free the data as well as
441 * the n1 object because we allocate them separately.  Also note that
442 * we return one record at a time.  If you try to read this device a
443 * character at a time, you will lose the rest of the data.  Listening
444 * programs are expected to cope.
445 */
446static int
447devread(struct cdev *dev, struct uio *uio, int ioflag)
448{
449	struct dev_event_info *n1;
450	int rv;
451
452	mtx_lock(&devsoftc.mtx);
453	while (TAILQ_EMPTY(&devsoftc.devq)) {
454		if (devsoftc.nonblock) {
455			mtx_unlock(&devsoftc.mtx);
456			return (EAGAIN);
457		}
458		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459		if (rv) {
460			/*
461			 * Need to translate ERESTART to EINTR here? -- jake
462			 */
463			mtx_unlock(&devsoftc.mtx);
464			return (rv);
465		}
466	}
467	n1 = TAILQ_FIRST(&devsoftc.devq);
468	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469	devsoftc.queued--;
470	mtx_unlock(&devsoftc.mtx);
471	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472	free(n1->dei_data, M_BUS);
473	free(n1, M_BUS);
474	return (rv);
475}
476
477static	int
478devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479{
480	switch (cmd) {
481
482	case FIONBIO:
483		if (*(int*)data)
484			devsoftc.nonblock = 1;
485		else
486			devsoftc.nonblock = 0;
487		return (0);
488	case FIOASYNC:
489		if (*(int*)data)
490			devsoftc.async_proc = td->td_proc;
491		else
492			devsoftc.async_proc = NULL;
493		return (0);
494
495		/* (un)Support for other fcntl() calls. */
496	case FIOCLEX:
497	case FIONCLEX:
498	case FIONREAD:
499	case FIOSETOWN:
500	case FIOGETOWN:
501	default:
502		break;
503	}
504	return (ENOTTY);
505}
506
507static	int
508devpoll(struct cdev *dev, int events, struct thread *td)
509{
510	int	revents = 0;
511
512	mtx_lock(&devsoftc.mtx);
513	if (events & (POLLIN | POLLRDNORM)) {
514		if (!TAILQ_EMPTY(&devsoftc.devq))
515			revents = events & (POLLIN | POLLRDNORM);
516		else
517			selrecord(td, &devsoftc.sel);
518	}
519	mtx_unlock(&devsoftc.mtx);
520
521	return (revents);
522}
523
524/**
525 * @brief Return whether the userland process is running
526 */
527boolean_t
528devctl_process_running(void)
529{
530	return (devsoftc.inuse == 1);
531}
532
533/**
534 * @brief Queue data to be read from the devctl device
535 *
536 * Generic interface to queue data to the devctl device.  It is
537 * assumed that @p data is properly formatted.  It is further assumed
538 * that @p data is allocated using the M_BUS malloc type.
539 */
540void
541devctl_queue_data_f(char *data, int flags)
542{
543	struct dev_event_info *n1 = NULL, *n2 = NULL;
544	struct proc *p;
545
546	if (strlen(data) == 0)
547		goto out;
548	if (devctl_queue_length == 0)
549		goto out;
550	n1 = malloc(sizeof(*n1), M_BUS, flags);
551	if (n1 == NULL)
552		goto out;
553	n1->dei_data = data;
554	mtx_lock(&devsoftc.mtx);
555	if (devctl_queue_length == 0) {
556		mtx_unlock(&devsoftc.mtx);
557		free(n1->dei_data, M_BUS);
558		free(n1, M_BUS);
559		return;
560	}
561	/* Leave at least one spot in the queue... */
562	while (devsoftc.queued > devctl_queue_length - 1) {
563		n2 = TAILQ_FIRST(&devsoftc.devq);
564		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565		free(n2->dei_data, M_BUS);
566		free(n2, M_BUS);
567		devsoftc.queued--;
568	}
569	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570	devsoftc.queued++;
571	cv_broadcast(&devsoftc.cv);
572	mtx_unlock(&devsoftc.mtx);
573	selwakeup(&devsoftc.sel);
574	p = devsoftc.async_proc;
575	if (p != NULL) {
576		PROC_LOCK(p);
577		kern_psignal(p, SIGIO);
578		PROC_UNLOCK(p);
579	}
580	return;
581out:
582	/*
583	 * We have to free data on all error paths since the caller
584	 * assumes it will be free'd when this item is dequeued.
585	 */
586	free(data, M_BUS);
587	return;
588}
589
590void
591devctl_queue_data(char *data)
592{
593
594	devctl_queue_data_f(data, M_NOWAIT);
595}
596
597/**
598 * @brief Send a 'notification' to userland, using standard ways
599 */
600void
601devctl_notify_f(const char *system, const char *subsystem, const char *type,
602    const char *data, int flags)
603{
604	int len = 0;
605	char *msg;
606
607	if (system == NULL)
608		return;		/* BOGUS!  Must specify system. */
609	if (subsystem == NULL)
610		return;		/* BOGUS!  Must specify subsystem. */
611	if (type == NULL)
612		return;		/* BOGUS!  Must specify type. */
613	len += strlen(" system=") + strlen(system);
614	len += strlen(" subsystem=") + strlen(subsystem);
615	len += strlen(" type=") + strlen(type);
616	/* add in the data message plus newline. */
617	if (data != NULL)
618		len += strlen(data);
619	len += 3;	/* '!', '\n', and NUL */
620	msg = malloc(len, M_BUS, flags);
621	if (msg == NULL)
622		return;		/* Drop it on the floor */
623	if (data != NULL)
624		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625		    system, subsystem, type, data);
626	else
627		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628		    system, subsystem, type);
629	devctl_queue_data_f(msg, flags);
630}
631
632void
633devctl_notify(const char *system, const char *subsystem, const char *type,
634    const char *data)
635{
636
637	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638}
639
640/*
641 * Common routine that tries to make sending messages as easy as possible.
642 * We allocate memory for the data, copy strings into that, but do not
643 * free it unless there's an error.  The dequeue part of the driver should
644 * free the data.  We don't send data when the device is disabled.  We do
645 * send data, even when we have no listeners, because we wish to avoid
646 * races relating to startup and restart of listening applications.
647 *
648 * devaddq is designed to string together the type of event, with the
649 * object of that event, plus the plug and play info and location info
650 * for that event.  This is likely most useful for devices, but less
651 * useful for other consumers of this interface.  Those should use
652 * the devctl_queue_data() interface instead.
653 */
654static void
655devaddq(const char *type, const char *what, device_t dev)
656{
657	char *data = NULL;
658	char *loc = NULL;
659	char *pnp = NULL;
660	const char *parstr;
661
662	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663		return;
664	data = malloc(1024, M_BUS, M_NOWAIT);
665	if (data == NULL)
666		goto bad;
667
668	/* get the bus specific location of this device */
669	loc = malloc(1024, M_BUS, M_NOWAIT);
670	if (loc == NULL)
671		goto bad;
672	*loc = '\0';
673	bus_child_location_str(dev, loc, 1024);
674
675	/* Get the bus specific pnp info of this device */
676	pnp = malloc(1024, M_BUS, M_NOWAIT);
677	if (pnp == NULL)
678		goto bad;
679	*pnp = '\0';
680	bus_child_pnpinfo_str(dev, pnp, 1024);
681
682	/* Get the parent of this device, or / if high enough in the tree. */
683	if (device_get_parent(dev) == NULL)
684		parstr = ".";	/* Or '/' ? */
685	else
686		parstr = device_get_nameunit(device_get_parent(dev));
687	/* String it all together. */
688	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689	  parstr);
690	free(loc, M_BUS);
691	free(pnp, M_BUS);
692	devctl_queue_data(data);
693	return;
694bad:
695	free(pnp, M_BUS);
696	free(loc, M_BUS);
697	free(data, M_BUS);
698	return;
699}
700
701/*
702 * A device was added to the tree.  We are called just after it successfully
703 * attaches (that is, probe and attach success for this device).  No call
704 * is made if a device is merely parented into the tree.  See devnomatch
705 * if probe fails.  If attach fails, no notification is sent (but maybe
706 * we should have a different message for this).
707 */
708static void
709devadded(device_t dev)
710{
711	devaddq("+", device_get_nameunit(dev), dev);
712}
713
714/*
715 * A device was removed from the tree.  We are called just before this
716 * happens.
717 */
718static void
719devremoved(device_t dev)
720{
721	devaddq("-", device_get_nameunit(dev), dev);
722}
723
724/*
725 * Called when there's no match for this device.  This is only called
726 * the first time that no match happens, so we don't keep getting this
727 * message.  Should that prove to be undesirable, we can change it.
728 * This is called when all drivers that can attach to a given bus
729 * decline to accept this device.  Other errors may not be detected.
730 */
731static void
732devnomatch(device_t dev)
733{
734	devaddq("?", "", dev);
735}
736
737static int
738sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739{
740	struct dev_event_info *n1;
741	int dis, error;
742
743	dis = devctl_queue_length == 0;
744	error = sysctl_handle_int(oidp, &dis, 0, req);
745	if (error || !req->newptr)
746		return (error);
747	mtx_lock(&devsoftc.mtx);
748	if (dis) {
749		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750			n1 = TAILQ_FIRST(&devsoftc.devq);
751			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752			free(n1->dei_data, M_BUS);
753			free(n1, M_BUS);
754		}
755		devsoftc.queued = 0;
756		devctl_queue_length = 0;
757	} else {
758		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759	}
760	mtx_unlock(&devsoftc.mtx);
761	return (0);
762}
763
764static int
765sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766{
767	struct dev_event_info *n1;
768	int q, error;
769
770	q = devctl_queue_length;
771	error = sysctl_handle_int(oidp, &q, 0, req);
772	if (error || !req->newptr)
773		return (error);
774	if (q < 0)
775		return (EINVAL);
776	mtx_lock(&devsoftc.mtx);
777	devctl_queue_length = q;
778	while (devsoftc.queued > devctl_queue_length) {
779		n1 = TAILQ_FIRST(&devsoftc.devq);
780		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781		free(n1->dei_data, M_BUS);
782		free(n1, M_BUS);
783		devsoftc.queued--;
784	}
785	mtx_unlock(&devsoftc.mtx);
786	return (0);
787}
788
789/* End of /dev/devctl code */
790
791static TAILQ_HEAD(,device)	bus_data_devices;
792static int bus_data_generation = 1;
793
794static kobj_method_t null_methods[] = {
795	KOBJMETHOD_END
796};
797
798DEFINE_CLASS(null, null_methods, 0);
799
800/*
801 * Bus pass implementation
802 */
803
804static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805int bus_current_pass = BUS_PASS_ROOT;
806
807/**
808 * @internal
809 * @brief Register the pass level of a new driver attachment
810 *
811 * Register a new driver attachment's pass level.  If no driver
812 * attachment with the same pass level has been added, then @p new
813 * will be added to the global passes list.
814 *
815 * @param new		the new driver attachment
816 */
817static void
818driver_register_pass(struct driverlink *new)
819{
820	struct driverlink *dl;
821
822	/* We only consider pass numbers during boot. */
823	if (bus_current_pass == BUS_PASS_DEFAULT)
824		return;
825
826	/*
827	 * Walk the passes list.  If we already know about this pass
828	 * then there is nothing to do.  If we don't, then insert this
829	 * driver link into the list.
830	 */
831	TAILQ_FOREACH(dl, &passes, passlink) {
832		if (dl->pass < new->pass)
833			continue;
834		if (dl->pass == new->pass)
835			return;
836		TAILQ_INSERT_BEFORE(dl, new, passlink);
837		return;
838	}
839	TAILQ_INSERT_TAIL(&passes, new, passlink);
840}
841
842/**
843 * @brief Raise the current bus pass
844 *
845 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846 * method on the root bus to kick off a new device tree scan for each
847 * new pass level that has at least one driver.
848 */
849void
850bus_set_pass(int pass)
851{
852	struct driverlink *dl;
853
854	if (bus_current_pass > pass)
855		panic("Attempt to lower bus pass level");
856
857	TAILQ_FOREACH(dl, &passes, passlink) {
858		/* Skip pass values below the current pass level. */
859		if (dl->pass <= bus_current_pass)
860			continue;
861
862		/*
863		 * Bail once we hit a driver with a pass level that is
864		 * too high.
865		 */
866		if (dl->pass > pass)
867			break;
868
869		/*
870		 * Raise the pass level to the next level and rescan
871		 * the tree.
872		 */
873		bus_current_pass = dl->pass;
874		BUS_NEW_PASS(root_bus);
875	}
876
877	/*
878	 * If there isn't a driver registered for the requested pass,
879	 * then bus_current_pass might still be less than 'pass'.  Set
880	 * it to 'pass' in that case.
881	 */
882	if (bus_current_pass < pass)
883		bus_current_pass = pass;
884	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885}
886
887/*
888 * Devclass implementation
889 */
890
891static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892
893/**
894 * @internal
895 * @brief Find or create a device class
896 *
897 * If a device class with the name @p classname exists, return it,
898 * otherwise if @p create is non-zero create and return a new device
899 * class.
900 *
901 * If @p parentname is non-NULL, the parent of the devclass is set to
902 * the devclass of that name.
903 *
904 * @param classname	the devclass name to find or create
905 * @param parentname	the parent devclass name or @c NULL
906 * @param create	non-zero to create a devclass
907 */
908static devclass_t
909devclass_find_internal(const char *classname, const char *parentname,
910		       int create)
911{
912	devclass_t dc;
913
914	PDEBUG(("looking for %s", classname));
915	if (!classname)
916		return (NULL);
917
918	TAILQ_FOREACH(dc, &devclasses, link) {
919		if (!strcmp(dc->name, classname))
920			break;
921	}
922
923	if (create && !dc) {
924		PDEBUG(("creating %s", classname));
925		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926		    M_BUS, M_NOWAIT | M_ZERO);
927		if (!dc)
928			return (NULL);
929		dc->parent = NULL;
930		dc->name = (char*) (dc + 1);
931		strcpy(dc->name, classname);
932		TAILQ_INIT(&dc->drivers);
933		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934
935		bus_data_generation_update();
936	}
937
938	/*
939	 * If a parent class is specified, then set that as our parent so
940	 * that this devclass will support drivers for the parent class as
941	 * well.  If the parent class has the same name don't do this though
942	 * as it creates a cycle that can trigger an infinite loop in
943	 * device_probe_child() if a device exists for which there is no
944	 * suitable driver.
945	 */
946	if (parentname && dc && !dc->parent &&
947	    strcmp(classname, parentname) != 0) {
948		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949		dc->parent->flags |= DC_HAS_CHILDREN;
950	}
951
952	return (dc);
953}
954
955/**
956 * @brief Create a device class
957 *
958 * If a device class with the name @p classname exists, return it,
959 * otherwise create and return a new device class.
960 *
961 * @param classname	the devclass name to find or create
962 */
963devclass_t
964devclass_create(const char *classname)
965{
966	return (devclass_find_internal(classname, NULL, TRUE));
967}
968
969/**
970 * @brief Find a device class
971 *
972 * If a device class with the name @p classname exists, return it,
973 * otherwise return @c NULL.
974 *
975 * @param classname	the devclass name to find
976 */
977devclass_t
978devclass_find(const char *classname)
979{
980	return (devclass_find_internal(classname, NULL, FALSE));
981}
982
983/**
984 * @brief Register that a device driver has been added to a devclass
985 *
986 * Register that a device driver has been added to a devclass.  This
987 * is called by devclass_add_driver to accomplish the recursive
988 * notification of all the children classes of dc, as well as dc.
989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990 * the devclass.
991 *
992 * We do a full search here of the devclass list at each iteration
993 * level to save storing children-lists in the devclass structure.  If
994 * we ever move beyond a few dozen devices doing this, we may need to
995 * reevaluate...
996 *
997 * @param dc		the devclass to edit
998 * @param driver	the driver that was just added
999 */
1000static void
1001devclass_driver_added(devclass_t dc, driver_t *driver)
1002{
1003	devclass_t parent;
1004	int i;
1005
1006	/*
1007	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008	 */
1009	for (i = 0; i < dc->maxunit; i++)
1010		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012
1013	/*
1014	 * Walk through the children classes.  Since we only keep a
1015	 * single parent pointer around, we walk the entire list of
1016	 * devclasses looking for children.  We set the
1017	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018	 * the parent, so we only walk the list for those devclasses
1019	 * that have children.
1020	 */
1021	if (!(dc->flags & DC_HAS_CHILDREN))
1022		return;
1023	parent = dc;
1024	TAILQ_FOREACH(dc, &devclasses, link) {
1025		if (dc->parent == parent)
1026			devclass_driver_added(dc, driver);
1027	}
1028}
1029
1030/**
1031 * @brief Add a device driver to a device class
1032 *
1033 * Add a device driver to a devclass. This is normally called
1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035 * all devices in the devclass will be called to allow them to attempt
1036 * to re-probe any unmatched children.
1037 *
1038 * @param dc		the devclass to edit
1039 * @param driver	the driver to register
1040 */
1041int
1042devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043{
1044	driverlink_t dl;
1045	const char *parentname;
1046
1047	PDEBUG(("%s", DRIVERNAME(driver)));
1048
1049	/* Don't allow invalid pass values. */
1050	if (pass <= BUS_PASS_ROOT)
1051		return (EINVAL);
1052
1053	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054	if (!dl)
1055		return (ENOMEM);
1056
1057	/*
1058	 * Compile the driver's methods. Also increase the reference count
1059	 * so that the class doesn't get freed when the last instance
1060	 * goes. This means we can safely use static methods and avoids a
1061	 * double-free in devclass_delete_driver.
1062	 */
1063	kobj_class_compile((kobj_class_t) driver);
1064
1065	/*
1066	 * If the driver has any base classes, make the
1067	 * devclass inherit from the devclass of the driver's
1068	 * first base class. This will allow the system to
1069	 * search for drivers in both devclasses for children
1070	 * of a device using this driver.
1071	 */
1072	if (driver->baseclasses)
1073		parentname = driver->baseclasses[0]->name;
1074	else
1075		parentname = NULL;
1076	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077
1078	dl->driver = driver;
1079	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080	driver->refs++;		/* XXX: kobj_mtx */
1081	dl->pass = pass;
1082	driver_register_pass(dl);
1083
1084	devclass_driver_added(dc, driver);
1085	bus_data_generation_update();
1086	return (0);
1087}
1088
1089/**
1090 * @brief Register that a device driver has been deleted from a devclass
1091 *
1092 * Register that a device driver has been removed from a devclass.
1093 * This is called by devclass_delete_driver to accomplish the
1094 * recursive notification of all the children classes of busclass, as
1095 * well as busclass.  Each layer will attempt to detach the driver
1096 * from any devices that are children of the bus's devclass.  The function
1097 * will return an error if a device fails to detach.
1098 *
1099 * We do a full search here of the devclass list at each iteration
1100 * level to save storing children-lists in the devclass structure.  If
1101 * we ever move beyond a few dozen devices doing this, we may need to
1102 * reevaluate...
1103 *
1104 * @param busclass	the devclass of the parent bus
1105 * @param dc		the devclass of the driver being deleted
1106 * @param driver	the driver being deleted
1107 */
1108static int
1109devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110{
1111	devclass_t parent;
1112	device_t dev;
1113	int error, i;
1114
1115	/*
1116	 * Disassociate from any devices.  We iterate through all the
1117	 * devices in the devclass of the driver and detach any which are
1118	 * using the driver and which have a parent in the devclass which
1119	 * we are deleting from.
1120	 *
1121	 * Note that since a driver can be in multiple devclasses, we
1122	 * should not detach devices which are not children of devices in
1123	 * the affected devclass.
1124	 */
1125	for (i = 0; i < dc->maxunit; i++) {
1126		if (dc->devices[i]) {
1127			dev = dc->devices[i];
1128			if (dev->driver == driver && dev->parent &&
1129			    dev->parent->devclass == busclass) {
1130				if ((error = device_detach(dev)) != 0)
1131					return (error);
1132				BUS_PROBE_NOMATCH(dev->parent, dev);
1133				devnomatch(dev);
1134				dev->flags |= DF_DONENOMATCH;
1135			}
1136		}
1137	}
1138
1139	/*
1140	 * Walk through the children classes.  Since we only keep a
1141	 * single parent pointer around, we walk the entire list of
1142	 * devclasses looking for children.  We set the
1143	 * DC_HAS_CHILDREN flag when a child devclass is created on
1144	 * the parent, so we only walk the list for those devclasses
1145	 * that have children.
1146	 */
1147	if (!(busclass->flags & DC_HAS_CHILDREN))
1148		return (0);
1149	parent = busclass;
1150	TAILQ_FOREACH(busclass, &devclasses, link) {
1151		if (busclass->parent == parent) {
1152			error = devclass_driver_deleted(busclass, dc, driver);
1153			if (error)
1154				return (error);
1155		}
1156	}
1157	return (0);
1158}
1159
1160/**
1161 * @brief Delete a device driver from a device class
1162 *
1163 * Delete a device driver from a devclass. This is normally called
1164 * automatically by DRIVER_MODULE().
1165 *
1166 * If the driver is currently attached to any devices,
1167 * devclass_delete_driver() will first attempt to detach from each
1168 * device. If one of the detach calls fails, the driver will not be
1169 * deleted.
1170 *
1171 * @param dc		the devclass to edit
1172 * @param driver	the driver to unregister
1173 */
1174int
1175devclass_delete_driver(devclass_t busclass, driver_t *driver)
1176{
1177	devclass_t dc = devclass_find(driver->name);
1178	driverlink_t dl;
1179	int error;
1180
1181	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1182
1183	if (!dc)
1184		return (0);
1185
1186	/*
1187	 * Find the link structure in the bus' list of drivers.
1188	 */
1189	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1190		if (dl->driver == driver)
1191			break;
1192	}
1193
1194	if (!dl) {
1195		PDEBUG(("%s not found in %s list", driver->name,
1196		    busclass->name));
1197		return (ENOENT);
1198	}
1199
1200	error = devclass_driver_deleted(busclass, dc, driver);
1201	if (error != 0)
1202		return (error);
1203
1204	TAILQ_REMOVE(&busclass->drivers, dl, link);
1205	free(dl, M_BUS);
1206
1207	/* XXX: kobj_mtx */
1208	driver->refs--;
1209	if (driver->refs == 0)
1210		kobj_class_free((kobj_class_t) driver);
1211
1212	bus_data_generation_update();
1213	return (0);
1214}
1215
1216/**
1217 * @brief Quiesces a set of device drivers from a device class
1218 *
1219 * Quiesce a device driver from a devclass. This is normally called
1220 * automatically by DRIVER_MODULE().
1221 *
1222 * If the driver is currently attached to any devices,
1223 * devclass_quiesece_driver() will first attempt to quiesce each
1224 * device.
1225 *
1226 * @param dc		the devclass to edit
1227 * @param driver	the driver to unregister
1228 */
1229static int
1230devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1231{
1232	devclass_t dc = devclass_find(driver->name);
1233	driverlink_t dl;
1234	device_t dev;
1235	int i;
1236	int error;
1237
1238	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1239
1240	if (!dc)
1241		return (0);
1242
1243	/*
1244	 * Find the link structure in the bus' list of drivers.
1245	 */
1246	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1247		if (dl->driver == driver)
1248			break;
1249	}
1250
1251	if (!dl) {
1252		PDEBUG(("%s not found in %s list", driver->name,
1253		    busclass->name));
1254		return (ENOENT);
1255	}
1256
1257	/*
1258	 * Quiesce all devices.  We iterate through all the devices in
1259	 * the devclass of the driver and quiesce any which are using
1260	 * the driver and which have a parent in the devclass which we
1261	 * are quiescing.
1262	 *
1263	 * Note that since a driver can be in multiple devclasses, we
1264	 * should not quiesce devices which are not children of
1265	 * devices in the affected devclass.
1266	 */
1267	for (i = 0; i < dc->maxunit; i++) {
1268		if (dc->devices[i]) {
1269			dev = dc->devices[i];
1270			if (dev->driver == driver && dev->parent &&
1271			    dev->parent->devclass == busclass) {
1272				if ((error = device_quiesce(dev)) != 0)
1273					return (error);
1274			}
1275		}
1276	}
1277
1278	return (0);
1279}
1280
1281/**
1282 * @internal
1283 */
1284static driverlink_t
1285devclass_find_driver_internal(devclass_t dc, const char *classname)
1286{
1287	driverlink_t dl;
1288
1289	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1290
1291	TAILQ_FOREACH(dl, &dc->drivers, link) {
1292		if (!strcmp(dl->driver->name, classname))
1293			return (dl);
1294	}
1295
1296	PDEBUG(("not found"));
1297	return (NULL);
1298}
1299
1300/**
1301 * @brief Return the name of the devclass
1302 */
1303const char *
1304devclass_get_name(devclass_t dc)
1305{
1306	return (dc->name);
1307}
1308
1309/**
1310 * @brief Find a device given a unit number
1311 *
1312 * @param dc		the devclass to search
1313 * @param unit		the unit number to search for
1314 *
1315 * @returns		the device with the given unit number or @c
1316 *			NULL if there is no such device
1317 */
1318device_t
1319devclass_get_device(devclass_t dc, int unit)
1320{
1321	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1322		return (NULL);
1323	return (dc->devices[unit]);
1324}
1325
1326/**
1327 * @brief Find the softc field of a device given a unit number
1328 *
1329 * @param dc		the devclass to search
1330 * @param unit		the unit number to search for
1331 *
1332 * @returns		the softc field of the device with the given
1333 *			unit number or @c NULL if there is no such
1334 *			device
1335 */
1336void *
1337devclass_get_softc(devclass_t dc, int unit)
1338{
1339	device_t dev;
1340
1341	dev = devclass_get_device(dc, unit);
1342	if (!dev)
1343		return (NULL);
1344
1345	return (device_get_softc(dev));
1346}
1347
1348/**
1349 * @brief Get a list of devices in the devclass
1350 *
1351 * An array containing a list of all the devices in the given devclass
1352 * is allocated and returned in @p *devlistp. The number of devices
1353 * in the array is returned in @p *devcountp. The caller should free
1354 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1355 *
1356 * @param dc		the devclass to examine
1357 * @param devlistp	points at location for array pointer return
1358 *			value
1359 * @param devcountp	points at location for array size return value
1360 *
1361 * @retval 0		success
1362 * @retval ENOMEM	the array allocation failed
1363 */
1364int
1365devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1366{
1367	int count, i;
1368	device_t *list;
1369
1370	count = devclass_get_count(dc);
1371	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1372	if (!list)
1373		return (ENOMEM);
1374
1375	count = 0;
1376	for (i = 0; i < dc->maxunit; i++) {
1377		if (dc->devices[i]) {
1378			list[count] = dc->devices[i];
1379			count++;
1380		}
1381	}
1382
1383	*devlistp = list;
1384	*devcountp = count;
1385
1386	return (0);
1387}
1388
1389/**
1390 * @brief Get a list of drivers in the devclass
1391 *
1392 * An array containing a list of pointers to all the drivers in the
1393 * given devclass is allocated and returned in @p *listp.  The number
1394 * of drivers in the array is returned in @p *countp. The caller should
1395 * free the array using @c free(p, M_TEMP).
1396 *
1397 * @param dc		the devclass to examine
1398 * @param listp		gives location for array pointer return value
1399 * @param countp	gives location for number of array elements
1400 *			return value
1401 *
1402 * @retval 0		success
1403 * @retval ENOMEM	the array allocation failed
1404 */
1405int
1406devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1407{
1408	driverlink_t dl;
1409	driver_t **list;
1410	int count;
1411
1412	count = 0;
1413	TAILQ_FOREACH(dl, &dc->drivers, link)
1414		count++;
1415	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1416	if (list == NULL)
1417		return (ENOMEM);
1418
1419	count = 0;
1420	TAILQ_FOREACH(dl, &dc->drivers, link) {
1421		list[count] = dl->driver;
1422		count++;
1423	}
1424	*listp = list;
1425	*countp = count;
1426
1427	return (0);
1428}
1429
1430/**
1431 * @brief Get the number of devices in a devclass
1432 *
1433 * @param dc		the devclass to examine
1434 */
1435int
1436devclass_get_count(devclass_t dc)
1437{
1438	int count, i;
1439
1440	count = 0;
1441	for (i = 0; i < dc->maxunit; i++)
1442		if (dc->devices[i])
1443			count++;
1444	return (count);
1445}
1446
1447/**
1448 * @brief Get the maximum unit number used in a devclass
1449 *
1450 * Note that this is one greater than the highest currently-allocated
1451 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1452 * that not even the devclass has been allocated yet.
1453 *
1454 * @param dc		the devclass to examine
1455 */
1456int
1457devclass_get_maxunit(devclass_t dc)
1458{
1459	if (dc == NULL)
1460		return (-1);
1461	return (dc->maxunit);
1462}
1463
1464/**
1465 * @brief Find a free unit number in a devclass
1466 *
1467 * This function searches for the first unused unit number greater
1468 * that or equal to @p unit.
1469 *
1470 * @param dc		the devclass to examine
1471 * @param unit		the first unit number to check
1472 */
1473int
1474devclass_find_free_unit(devclass_t dc, int unit)
1475{
1476	if (dc == NULL)
1477		return (unit);
1478	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1479		unit++;
1480	return (unit);
1481}
1482
1483/**
1484 * @brief Set the parent of a devclass
1485 *
1486 * The parent class is normally initialised automatically by
1487 * DRIVER_MODULE().
1488 *
1489 * @param dc		the devclass to edit
1490 * @param pdc		the new parent devclass
1491 */
1492void
1493devclass_set_parent(devclass_t dc, devclass_t pdc)
1494{
1495	dc->parent = pdc;
1496}
1497
1498/**
1499 * @brief Get the parent of a devclass
1500 *
1501 * @param dc		the devclass to examine
1502 */
1503devclass_t
1504devclass_get_parent(devclass_t dc)
1505{
1506	return (dc->parent);
1507}
1508
1509struct sysctl_ctx_list *
1510devclass_get_sysctl_ctx(devclass_t dc)
1511{
1512	return (&dc->sysctl_ctx);
1513}
1514
1515struct sysctl_oid *
1516devclass_get_sysctl_tree(devclass_t dc)
1517{
1518	return (dc->sysctl_tree);
1519}
1520
1521/**
1522 * @internal
1523 * @brief Allocate a unit number
1524 *
1525 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1526 * will do). The allocated unit number is returned in @p *unitp.
1527
1528 * @param dc		the devclass to allocate from
1529 * @param unitp		points at the location for the allocated unit
1530 *			number
1531 *
1532 * @retval 0		success
1533 * @retval EEXIST	the requested unit number is already allocated
1534 * @retval ENOMEM	memory allocation failure
1535 */
1536static int
1537devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1538{
1539	const char *s;
1540	int unit = *unitp;
1541
1542	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1543
1544	/* Ask the parent bus if it wants to wire this device. */
1545	if (unit == -1)
1546		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1547		    &unit);
1548
1549	/* If we were given a wired unit number, check for existing device */
1550	/* XXX imp XXX */
1551	if (unit != -1) {
1552		if (unit >= 0 && unit < dc->maxunit &&
1553		    dc->devices[unit] != NULL) {
1554			if (bootverbose)
1555				printf("%s: %s%d already exists; skipping it\n",
1556				    dc->name, dc->name, *unitp);
1557			return (EEXIST);
1558		}
1559	} else {
1560		/* Unwired device, find the next available slot for it */
1561		unit = 0;
1562		for (unit = 0;; unit++) {
1563			/* If there is an "at" hint for a unit then skip it. */
1564			if (resource_string_value(dc->name, unit, "at", &s) ==
1565			    0)
1566				continue;
1567
1568			/* If this device slot is already in use, skip it. */
1569			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1570				continue;
1571
1572			break;
1573		}
1574	}
1575
1576	/*
1577	 * We've selected a unit beyond the length of the table, so let's
1578	 * extend the table to make room for all units up to and including
1579	 * this one.
1580	 */
1581	if (unit >= dc->maxunit) {
1582		device_t *newlist, *oldlist;
1583		int newsize;
1584
1585		oldlist = dc->devices;
1586		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1587		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1588		if (!newlist)
1589			return (ENOMEM);
1590		if (oldlist != NULL)
1591			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1592		bzero(newlist + dc->maxunit,
1593		    sizeof(device_t) * (newsize - dc->maxunit));
1594		dc->devices = newlist;
1595		dc->maxunit = newsize;
1596		if (oldlist != NULL)
1597			free(oldlist, M_BUS);
1598	}
1599	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1600
1601	*unitp = unit;
1602	return (0);
1603}
1604
1605/**
1606 * @internal
1607 * @brief Add a device to a devclass
1608 *
1609 * A unit number is allocated for the device (using the device's
1610 * preferred unit number if any) and the device is registered in the
1611 * devclass. This allows the device to be looked up by its unit
1612 * number, e.g. by decoding a dev_t minor number.
1613 *
1614 * @param dc		the devclass to add to
1615 * @param dev		the device to add
1616 *
1617 * @retval 0		success
1618 * @retval EEXIST	the requested unit number is already allocated
1619 * @retval ENOMEM	memory allocation failure
1620 */
1621static int
1622devclass_add_device(devclass_t dc, device_t dev)
1623{
1624	int buflen, error;
1625
1626	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1627
1628	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1629	if (buflen < 0)
1630		return (ENOMEM);
1631	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1632	if (!dev->nameunit)
1633		return (ENOMEM);
1634
1635	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1636		free(dev->nameunit, M_BUS);
1637		dev->nameunit = NULL;
1638		return (error);
1639	}
1640	dc->devices[dev->unit] = dev;
1641	dev->devclass = dc;
1642	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1643
1644	return (0);
1645}
1646
1647/**
1648 * @internal
1649 * @brief Delete a device from a devclass
1650 *
1651 * The device is removed from the devclass's device list and its unit
1652 * number is freed.
1653
1654 * @param dc		the devclass to delete from
1655 * @param dev		the device to delete
1656 *
1657 * @retval 0		success
1658 */
1659static int
1660devclass_delete_device(devclass_t dc, device_t dev)
1661{
1662	if (!dc || !dev)
1663		return (0);
1664
1665	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1666
1667	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1668		panic("devclass_delete_device: inconsistent device class");
1669	dc->devices[dev->unit] = NULL;
1670	if (dev->flags & DF_WILDCARD)
1671		dev->unit = -1;
1672	dev->devclass = NULL;
1673	free(dev->nameunit, M_BUS);
1674	dev->nameunit = NULL;
1675
1676	return (0);
1677}
1678
1679/**
1680 * @internal
1681 * @brief Make a new device and add it as a child of @p parent
1682 *
1683 * @param parent	the parent of the new device
1684 * @param name		the devclass name of the new device or @c NULL
1685 *			to leave the devclass unspecified
1686 * @parem unit		the unit number of the new device of @c -1 to
1687 *			leave the unit number unspecified
1688 *
1689 * @returns the new device
1690 */
1691static device_t
1692make_device(device_t parent, const char *name, int unit)
1693{
1694	device_t dev;
1695	devclass_t dc;
1696
1697	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1698
1699	if (name) {
1700		dc = devclass_find_internal(name, NULL, TRUE);
1701		if (!dc) {
1702			printf("make_device: can't find device class %s\n",
1703			    name);
1704			return (NULL);
1705		}
1706	} else {
1707		dc = NULL;
1708	}
1709
1710	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1711	if (!dev)
1712		return (NULL);
1713
1714	dev->parent = parent;
1715	TAILQ_INIT(&dev->children);
1716	kobj_init((kobj_t) dev, &null_class);
1717	dev->driver = NULL;
1718	dev->devclass = NULL;
1719	dev->unit = unit;
1720	dev->nameunit = NULL;
1721	dev->desc = NULL;
1722	dev->busy = 0;
1723	dev->devflags = 0;
1724	dev->flags = DF_ENABLED;
1725	dev->order = 0;
1726	if (unit == -1)
1727		dev->flags |= DF_WILDCARD;
1728	if (name) {
1729		dev->flags |= DF_FIXEDCLASS;
1730		if (devclass_add_device(dc, dev)) {
1731			kobj_delete((kobj_t) dev, M_BUS);
1732			return (NULL);
1733		}
1734	}
1735	dev->ivars = NULL;
1736	dev->softc = NULL;
1737
1738	dev->state = DS_NOTPRESENT;
1739
1740	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1741	bus_data_generation_update();
1742
1743	return (dev);
1744}
1745
1746/**
1747 * @internal
1748 * @brief Print a description of a device.
1749 */
1750static int
1751device_print_child(device_t dev, device_t child)
1752{
1753	int retval = 0;
1754
1755	if (device_is_alive(child))
1756		retval += BUS_PRINT_CHILD(dev, child);
1757	else
1758		retval += device_printf(child, " not found\n");
1759
1760	return (retval);
1761}
1762
1763/**
1764 * @brief Create a new device
1765 *
1766 * This creates a new device and adds it as a child of an existing
1767 * parent device. The new device will be added after the last existing
1768 * child with order zero.
1769 *
1770 * @param dev		the device which will be the parent of the
1771 *			new child device
1772 * @param name		devclass name for new device or @c NULL if not
1773 *			specified
1774 * @param unit		unit number for new device or @c -1 if not
1775 *			specified
1776 *
1777 * @returns		the new device
1778 */
1779device_t
1780device_add_child(device_t dev, const char *name, int unit)
1781{
1782	return (device_add_child_ordered(dev, 0, name, unit));
1783}
1784
1785/**
1786 * @brief Create a new device
1787 *
1788 * This creates a new device and adds it as a child of an existing
1789 * parent device. The new device will be added after the last existing
1790 * child with the same order.
1791 *
1792 * @param dev		the device which will be the parent of the
1793 *			new child device
1794 * @param order		a value which is used to partially sort the
1795 *			children of @p dev - devices created using
1796 *			lower values of @p order appear first in @p
1797 *			dev's list of children
1798 * @param name		devclass name for new device or @c NULL if not
1799 *			specified
1800 * @param unit		unit number for new device or @c -1 if not
1801 *			specified
1802 *
1803 * @returns		the new device
1804 */
1805device_t
1806device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1807{
1808	device_t child;
1809	device_t place;
1810
1811	PDEBUG(("%s at %s with order %u as unit %d",
1812	    name, DEVICENAME(dev), order, unit));
1813	KASSERT(name != NULL || unit == -1,
1814	    ("child device with wildcard name and specific unit number"));
1815
1816	child = make_device(dev, name, unit);
1817	if (child == NULL)
1818		return (child);
1819	child->order = order;
1820
1821	TAILQ_FOREACH(place, &dev->children, link) {
1822		if (place->order > order)
1823			break;
1824	}
1825
1826	if (place) {
1827		/*
1828		 * The device 'place' is the first device whose order is
1829		 * greater than the new child.
1830		 */
1831		TAILQ_INSERT_BEFORE(place, child, link);
1832	} else {
1833		/*
1834		 * The new child's order is greater or equal to the order of
1835		 * any existing device. Add the child to the tail of the list.
1836		 */
1837		TAILQ_INSERT_TAIL(&dev->children, child, link);
1838	}
1839
1840	bus_data_generation_update();
1841	return (child);
1842}
1843
1844/**
1845 * @brief Delete a device
1846 *
1847 * This function deletes a device along with all of its children. If
1848 * the device currently has a driver attached to it, the device is
1849 * detached first using device_detach().
1850 *
1851 * @param dev		the parent device
1852 * @param child		the device to delete
1853 *
1854 * @retval 0		success
1855 * @retval non-zero	a unit error code describing the error
1856 */
1857int
1858device_delete_child(device_t dev, device_t child)
1859{
1860	int error;
1861	device_t grandchild;
1862
1863	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1864
1865	/* remove children first */
1866	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1867		error = device_delete_child(child, grandchild);
1868		if (error)
1869			return (error);
1870	}
1871
1872	if ((error = device_detach(child)) != 0)
1873		return (error);
1874	if (child->devclass)
1875		devclass_delete_device(child->devclass, child);
1876	if (child->parent)
1877		BUS_CHILD_DELETED(dev, child);
1878	TAILQ_REMOVE(&dev->children, child, link);
1879	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1880	kobj_delete((kobj_t) child, M_BUS);
1881
1882	bus_data_generation_update();
1883	return (0);
1884}
1885
1886/**
1887 * @brief Delete all children devices of the given device, if any.
1888 *
1889 * This function deletes all children devices of the given device, if
1890 * any, using the device_delete_child() function for each device it
1891 * finds. If a child device cannot be deleted, this function will
1892 * return an error code.
1893 *
1894 * @param dev		the parent device
1895 *
1896 * @retval 0		success
1897 * @retval non-zero	a device would not detach
1898 */
1899int
1900device_delete_children(device_t dev)
1901{
1902	device_t child;
1903	int error;
1904
1905	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1906
1907	error = 0;
1908
1909	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1910		error = device_delete_child(dev, child);
1911		if (error) {
1912			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1913			break;
1914		}
1915	}
1916	return (error);
1917}
1918
1919/**
1920 * @brief Find a device given a unit number
1921 *
1922 * This is similar to devclass_get_devices() but only searches for
1923 * devices which have @p dev as a parent.
1924 *
1925 * @param dev		the parent device to search
1926 * @param unit		the unit number to search for.  If the unit is -1,
1927 *			return the first child of @p dev which has name
1928 *			@p classname (that is, the one with the lowest unit.)
1929 *
1930 * @returns		the device with the given unit number or @c
1931 *			NULL if there is no such device
1932 */
1933device_t
1934device_find_child(device_t dev, const char *classname, int unit)
1935{
1936	devclass_t dc;
1937	device_t child;
1938
1939	dc = devclass_find(classname);
1940	if (!dc)
1941		return (NULL);
1942
1943	if (unit != -1) {
1944		child = devclass_get_device(dc, unit);
1945		if (child && child->parent == dev)
1946			return (child);
1947	} else {
1948		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1949			child = devclass_get_device(dc, unit);
1950			if (child && child->parent == dev)
1951				return (child);
1952		}
1953	}
1954	return (NULL);
1955}
1956
1957/**
1958 * @internal
1959 */
1960static driverlink_t
1961first_matching_driver(devclass_t dc, device_t dev)
1962{
1963	if (dev->devclass)
1964		return (devclass_find_driver_internal(dc, dev->devclass->name));
1965	return (TAILQ_FIRST(&dc->drivers));
1966}
1967
1968/**
1969 * @internal
1970 */
1971static driverlink_t
1972next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1973{
1974	if (dev->devclass) {
1975		driverlink_t dl;
1976		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1977			if (!strcmp(dev->devclass->name, dl->driver->name))
1978				return (dl);
1979		return (NULL);
1980	}
1981	return (TAILQ_NEXT(last, link));
1982}
1983
1984/**
1985 * @internal
1986 */
1987int
1988device_probe_child(device_t dev, device_t child)
1989{
1990	devclass_t dc;
1991	driverlink_t best = NULL;
1992	driverlink_t dl;
1993	int result, pri = 0;
1994	int hasclass = (child->devclass != NULL);
1995
1996	GIANT_REQUIRED;
1997
1998	dc = dev->devclass;
1999	if (!dc)
2000		panic("device_probe_child: parent device has no devclass");
2001
2002	/*
2003	 * If the state is already probed, then return.  However, don't
2004	 * return if we can rebid this object.
2005	 */
2006	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2007		return (0);
2008
2009	for (; dc; dc = dc->parent) {
2010		for (dl = first_matching_driver(dc, child);
2011		     dl;
2012		     dl = next_matching_driver(dc, child, dl)) {
2013			/* If this driver's pass is too high, then ignore it. */
2014			if (dl->pass > bus_current_pass)
2015				continue;
2016
2017			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2018			result = device_set_driver(child, dl->driver);
2019			if (result == ENOMEM)
2020				return (result);
2021			else if (result != 0)
2022				continue;
2023			if (!hasclass) {
2024				if (device_set_devclass(child,
2025				    dl->driver->name) != 0) {
2026					char const * devname =
2027					    device_get_name(child);
2028					if (devname == NULL)
2029						devname = "(unknown)";
2030					printf("driver bug: Unable to set "
2031					    "devclass (class: %s "
2032					    "devname: %s)\n",
2033					    dl->driver->name,
2034					    devname);
2035					(void)device_set_driver(child, NULL);
2036					continue;
2037				}
2038			}
2039
2040			/* Fetch any flags for the device before probing. */
2041			resource_int_value(dl->driver->name, child->unit,
2042			    "flags", &child->devflags);
2043
2044			result = DEVICE_PROBE(child);
2045
2046			/* Reset flags and devclass before the next probe. */
2047			child->devflags = 0;
2048			if (!hasclass)
2049				(void)device_set_devclass(child, NULL);
2050
2051			/*
2052			 * If the driver returns SUCCESS, there can be
2053			 * no higher match for this device.
2054			 */
2055			if (result == 0) {
2056				best = dl;
2057				pri = 0;
2058				break;
2059			}
2060
2061			/*
2062			 * The driver returned an error so it
2063			 * certainly doesn't match.
2064			 */
2065			if (result > 0) {
2066				(void)device_set_driver(child, NULL);
2067				continue;
2068			}
2069
2070			/*
2071			 * A priority lower than SUCCESS, remember the
2072			 * best matching driver. Initialise the value
2073			 * of pri for the first match.
2074			 */
2075			if (best == NULL || result > pri) {
2076				/*
2077				 * Probes that return BUS_PROBE_NOWILDCARD
2078				 * or lower only match when they are set
2079				 * in stone by the parent bus.
2080				 */
2081				if (result <= BUS_PROBE_NOWILDCARD &&
2082				    child->flags & DF_WILDCARD)
2083					continue;
2084				best = dl;
2085				pri = result;
2086				continue;
2087			}
2088		}
2089		/*
2090		 * If we have an unambiguous match in this devclass,
2091		 * don't look in the parent.
2092		 */
2093		if (best && pri == 0)
2094			break;
2095	}
2096
2097	/*
2098	 * If we found a driver, change state and initialise the devclass.
2099	 */
2100	/* XXX What happens if we rebid and got no best? */
2101	if (best) {
2102		/*
2103		 * If this device was attached, and we were asked to
2104		 * rescan, and it is a different driver, then we have
2105		 * to detach the old driver and reattach this new one.
2106		 * Note, we don't have to check for DF_REBID here
2107		 * because if the state is > DS_ALIVE, we know it must
2108		 * be.
2109		 *
2110		 * This assumes that all DF_REBID drivers can have
2111		 * their probe routine called at any time and that
2112		 * they are idempotent as well as completely benign in
2113		 * normal operations.
2114		 *
2115		 * We also have to make sure that the detach
2116		 * succeeded, otherwise we fail the operation (or
2117		 * maybe it should just fail silently?  I'm torn).
2118		 */
2119		if (child->state > DS_ALIVE && best->driver != child->driver)
2120			if ((result = device_detach(dev)) != 0)
2121				return (result);
2122
2123		/* Set the winning driver, devclass, and flags. */
2124		if (!child->devclass) {
2125			result = device_set_devclass(child, best->driver->name);
2126			if (result != 0)
2127				return (result);
2128		}
2129		result = device_set_driver(child, best->driver);
2130		if (result != 0)
2131			return (result);
2132		resource_int_value(best->driver->name, child->unit,
2133		    "flags", &child->devflags);
2134
2135		if (pri < 0) {
2136			/*
2137			 * A bit bogus. Call the probe method again to make
2138			 * sure that we have the right description.
2139			 */
2140			DEVICE_PROBE(child);
2141#if 0
2142			child->flags |= DF_REBID;
2143#endif
2144		} else
2145			child->flags &= ~DF_REBID;
2146		child->state = DS_ALIVE;
2147
2148		bus_data_generation_update();
2149		return (0);
2150	}
2151
2152	return (ENXIO);
2153}
2154
2155/**
2156 * @brief Return the parent of a device
2157 */
2158device_t
2159device_get_parent(device_t dev)
2160{
2161	return (dev->parent);
2162}
2163
2164/**
2165 * @brief Get a list of children of a device
2166 *
2167 * An array containing a list of all the children of the given device
2168 * is allocated and returned in @p *devlistp. The number of devices
2169 * in the array is returned in @p *devcountp. The caller should free
2170 * the array using @c free(p, M_TEMP).
2171 *
2172 * @param dev		the device to examine
2173 * @param devlistp	points at location for array pointer return
2174 *			value
2175 * @param devcountp	points at location for array size return value
2176 *
2177 * @retval 0		success
2178 * @retval ENOMEM	the array allocation failed
2179 */
2180int
2181device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2182{
2183	int count;
2184	device_t child;
2185	device_t *list;
2186
2187	count = 0;
2188	TAILQ_FOREACH(child, &dev->children, link) {
2189		count++;
2190	}
2191	if (count == 0) {
2192		*devlistp = NULL;
2193		*devcountp = 0;
2194		return (0);
2195	}
2196
2197	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2198	if (!list)
2199		return (ENOMEM);
2200
2201	count = 0;
2202	TAILQ_FOREACH(child, &dev->children, link) {
2203		list[count] = child;
2204		count++;
2205	}
2206
2207	*devlistp = list;
2208	*devcountp = count;
2209
2210	return (0);
2211}
2212
2213/**
2214 * @brief Return the current driver for the device or @c NULL if there
2215 * is no driver currently attached
2216 */
2217driver_t *
2218device_get_driver(device_t dev)
2219{
2220	return (dev->driver);
2221}
2222
2223/**
2224 * @brief Return the current devclass for the device or @c NULL if
2225 * there is none.
2226 */
2227devclass_t
2228device_get_devclass(device_t dev)
2229{
2230	return (dev->devclass);
2231}
2232
2233/**
2234 * @brief Return the name of the device's devclass or @c NULL if there
2235 * is none.
2236 */
2237const char *
2238device_get_name(device_t dev)
2239{
2240	if (dev != NULL && dev->devclass)
2241		return (devclass_get_name(dev->devclass));
2242	return (NULL);
2243}
2244
2245/**
2246 * @brief Return a string containing the device's devclass name
2247 * followed by an ascii representation of the device's unit number
2248 * (e.g. @c "foo2").
2249 */
2250const char *
2251device_get_nameunit(device_t dev)
2252{
2253	return (dev->nameunit);
2254}
2255
2256/**
2257 * @brief Return the device's unit number.
2258 */
2259int
2260device_get_unit(device_t dev)
2261{
2262	return (dev->unit);
2263}
2264
2265/**
2266 * @brief Return the device's description string
2267 */
2268const char *
2269device_get_desc(device_t dev)
2270{
2271	return (dev->desc);
2272}
2273
2274/**
2275 * @brief Return the device's flags
2276 */
2277uint32_t
2278device_get_flags(device_t dev)
2279{
2280	return (dev->devflags);
2281}
2282
2283struct sysctl_ctx_list *
2284device_get_sysctl_ctx(device_t dev)
2285{
2286	return (&dev->sysctl_ctx);
2287}
2288
2289struct sysctl_oid *
2290device_get_sysctl_tree(device_t dev)
2291{
2292	return (dev->sysctl_tree);
2293}
2294
2295/**
2296 * @brief Print the name of the device followed by a colon and a space
2297 *
2298 * @returns the number of characters printed
2299 */
2300int
2301device_print_prettyname(device_t dev)
2302{
2303	const char *name = device_get_name(dev);
2304
2305	if (name == NULL)
2306		return (printf("unknown: "));
2307	return (printf("%s%d: ", name, device_get_unit(dev)));
2308}
2309
2310/**
2311 * @brief Print the name of the device followed by a colon, a space
2312 * and the result of calling vprintf() with the value of @p fmt and
2313 * the following arguments.
2314 *
2315 * @returns the number of characters printed
2316 */
2317int
2318device_printf(device_t dev, const char * fmt, ...)
2319{
2320	va_list ap;
2321	int retval;
2322
2323	retval = device_print_prettyname(dev);
2324	va_start(ap, fmt);
2325	retval += vprintf(fmt, ap);
2326	va_end(ap);
2327	return (retval);
2328}
2329
2330/**
2331 * @internal
2332 */
2333static void
2334device_set_desc_internal(device_t dev, const char* desc, int copy)
2335{
2336	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2337		free(dev->desc, M_BUS);
2338		dev->flags &= ~DF_DESCMALLOCED;
2339		dev->desc = NULL;
2340	}
2341
2342	if (copy && desc) {
2343		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2344		if (dev->desc) {
2345			strcpy(dev->desc, desc);
2346			dev->flags |= DF_DESCMALLOCED;
2347		}
2348	} else {
2349		/* Avoid a -Wcast-qual warning */
2350		dev->desc = (char *)(uintptr_t) desc;
2351	}
2352
2353	bus_data_generation_update();
2354}
2355
2356/**
2357 * @brief Set the device's description
2358 *
2359 * The value of @c desc should be a string constant that will not
2360 * change (at least until the description is changed in a subsequent
2361 * call to device_set_desc() or device_set_desc_copy()).
2362 */
2363void
2364device_set_desc(device_t dev, const char* desc)
2365{
2366	device_set_desc_internal(dev, desc, FALSE);
2367}
2368
2369/**
2370 * @brief Set the device's description
2371 *
2372 * The string pointed to by @c desc is copied. Use this function if
2373 * the device description is generated, (e.g. with sprintf()).
2374 */
2375void
2376device_set_desc_copy(device_t dev, const char* desc)
2377{
2378	device_set_desc_internal(dev, desc, TRUE);
2379}
2380
2381/**
2382 * @brief Set the device's flags
2383 */
2384void
2385device_set_flags(device_t dev, uint32_t flags)
2386{
2387	dev->devflags = flags;
2388}
2389
2390/**
2391 * @brief Return the device's softc field
2392 *
2393 * The softc is allocated and zeroed when a driver is attached, based
2394 * on the size field of the driver.
2395 */
2396void *
2397device_get_softc(device_t dev)
2398{
2399	return (dev->softc);
2400}
2401
2402/**
2403 * @brief Set the device's softc field
2404 *
2405 * Most drivers do not need to use this since the softc is allocated
2406 * automatically when the driver is attached.
2407 */
2408void
2409device_set_softc(device_t dev, void *softc)
2410{
2411	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2412		free(dev->softc, M_BUS_SC);
2413	dev->softc = softc;
2414	if (dev->softc)
2415		dev->flags |= DF_EXTERNALSOFTC;
2416	else
2417		dev->flags &= ~DF_EXTERNALSOFTC;
2418}
2419
2420/**
2421 * @brief Free claimed softc
2422 *
2423 * Most drivers do not need to use this since the softc is freed
2424 * automatically when the driver is detached.
2425 */
2426void
2427device_free_softc(void *softc)
2428{
2429	free(softc, M_BUS_SC);
2430}
2431
2432/**
2433 * @brief Claim softc
2434 *
2435 * This function can be used to let the driver free the automatically
2436 * allocated softc using "device_free_softc()". This function is
2437 * useful when the driver is refcounting the softc and the softc
2438 * cannot be freed when the "device_detach" method is called.
2439 */
2440void
2441device_claim_softc(device_t dev)
2442{
2443	if (dev->softc)
2444		dev->flags |= DF_EXTERNALSOFTC;
2445	else
2446		dev->flags &= ~DF_EXTERNALSOFTC;
2447}
2448
2449/**
2450 * @brief Get the device's ivars field
2451 *
2452 * The ivars field is used by the parent device to store per-device
2453 * state (e.g. the physical location of the device or a list of
2454 * resources).
2455 */
2456void *
2457device_get_ivars(device_t dev)
2458{
2459
2460	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2461	return (dev->ivars);
2462}
2463
2464/**
2465 * @brief Set the device's ivars field
2466 */
2467void
2468device_set_ivars(device_t dev, void * ivars)
2469{
2470
2471	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2472	dev->ivars = ivars;
2473}
2474
2475/**
2476 * @brief Return the device's state
2477 */
2478device_state_t
2479device_get_state(device_t dev)
2480{
2481	return (dev->state);
2482}
2483
2484/**
2485 * @brief Set the DF_ENABLED flag for the device
2486 */
2487void
2488device_enable(device_t dev)
2489{
2490	dev->flags |= DF_ENABLED;
2491}
2492
2493/**
2494 * @brief Clear the DF_ENABLED flag for the device
2495 */
2496void
2497device_disable(device_t dev)
2498{
2499	dev->flags &= ~DF_ENABLED;
2500}
2501
2502/**
2503 * @brief Increment the busy counter for the device
2504 */
2505void
2506device_busy(device_t dev)
2507{
2508	if (dev->state < DS_ATTACHING)
2509		panic("device_busy: called for unattached device");
2510	if (dev->busy == 0 && dev->parent)
2511		device_busy(dev->parent);
2512	dev->busy++;
2513	if (dev->state == DS_ATTACHED)
2514		dev->state = DS_BUSY;
2515}
2516
2517/**
2518 * @brief Decrement the busy counter for the device
2519 */
2520void
2521device_unbusy(device_t dev)
2522{
2523	if (dev->busy != 0 && dev->state != DS_BUSY &&
2524	    dev->state != DS_ATTACHING)
2525		panic("device_unbusy: called for non-busy device %s",
2526		    device_get_nameunit(dev));
2527	dev->busy--;
2528	if (dev->busy == 0) {
2529		if (dev->parent)
2530			device_unbusy(dev->parent);
2531		if (dev->state == DS_BUSY)
2532			dev->state = DS_ATTACHED;
2533	}
2534}
2535
2536/**
2537 * @brief Set the DF_QUIET flag for the device
2538 */
2539void
2540device_quiet(device_t dev)
2541{
2542	dev->flags |= DF_QUIET;
2543}
2544
2545/**
2546 * @brief Clear the DF_QUIET flag for the device
2547 */
2548void
2549device_verbose(device_t dev)
2550{
2551	dev->flags &= ~DF_QUIET;
2552}
2553
2554/**
2555 * @brief Return non-zero if the DF_QUIET flag is set on the device
2556 */
2557int
2558device_is_quiet(device_t dev)
2559{
2560	return ((dev->flags & DF_QUIET) != 0);
2561}
2562
2563/**
2564 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2565 */
2566int
2567device_is_enabled(device_t dev)
2568{
2569	return ((dev->flags & DF_ENABLED) != 0);
2570}
2571
2572/**
2573 * @brief Return non-zero if the device was successfully probed
2574 */
2575int
2576device_is_alive(device_t dev)
2577{
2578	return (dev->state >= DS_ALIVE);
2579}
2580
2581/**
2582 * @brief Return non-zero if the device currently has a driver
2583 * attached to it
2584 */
2585int
2586device_is_attached(device_t dev)
2587{
2588	return (dev->state >= DS_ATTACHED);
2589}
2590
2591/**
2592 * @brief Set the devclass of a device
2593 * @see devclass_add_device().
2594 */
2595int
2596device_set_devclass(device_t dev, const char *classname)
2597{
2598	devclass_t dc;
2599	int error;
2600
2601	if (!classname) {
2602		if (dev->devclass)
2603			devclass_delete_device(dev->devclass, dev);
2604		return (0);
2605	}
2606
2607	if (dev->devclass) {
2608		printf("device_set_devclass: device class already set\n");
2609		return (EINVAL);
2610	}
2611
2612	dc = devclass_find_internal(classname, NULL, TRUE);
2613	if (!dc)
2614		return (ENOMEM);
2615
2616	error = devclass_add_device(dc, dev);
2617
2618	bus_data_generation_update();
2619	return (error);
2620}
2621
2622/**
2623 * @brief Set the driver of a device
2624 *
2625 * @retval 0		success
2626 * @retval EBUSY	the device already has a driver attached
2627 * @retval ENOMEM	a memory allocation failure occurred
2628 */
2629int
2630device_set_driver(device_t dev, driver_t *driver)
2631{
2632	if (dev->state >= DS_ATTACHED)
2633		return (EBUSY);
2634
2635	if (dev->driver == driver)
2636		return (0);
2637
2638	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2639		free(dev->softc, M_BUS_SC);
2640		dev->softc = NULL;
2641	}
2642	device_set_desc(dev, NULL);
2643	kobj_delete((kobj_t) dev, NULL);
2644	dev->driver = driver;
2645	if (driver) {
2646		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2647		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2648			dev->softc = malloc(driver->size, M_BUS_SC,
2649			    M_NOWAIT | M_ZERO);
2650			if (!dev->softc) {
2651				kobj_delete((kobj_t) dev, NULL);
2652				kobj_init((kobj_t) dev, &null_class);
2653				dev->driver = NULL;
2654				return (ENOMEM);
2655			}
2656		}
2657	} else {
2658		kobj_init((kobj_t) dev, &null_class);
2659	}
2660
2661	bus_data_generation_update();
2662	return (0);
2663}
2664
2665/**
2666 * @brief Probe a device, and return this status.
2667 *
2668 * This function is the core of the device autoconfiguration
2669 * system. Its purpose is to select a suitable driver for a device and
2670 * then call that driver to initialise the hardware appropriately. The
2671 * driver is selected by calling the DEVICE_PROBE() method of a set of
2672 * candidate drivers and then choosing the driver which returned the
2673 * best value. This driver is then attached to the device using
2674 * device_attach().
2675 *
2676 * The set of suitable drivers is taken from the list of drivers in
2677 * the parent device's devclass. If the device was originally created
2678 * with a specific class name (see device_add_child()), only drivers
2679 * with that name are probed, otherwise all drivers in the devclass
2680 * are probed. If no drivers return successful probe values in the
2681 * parent devclass, the search continues in the parent of that
2682 * devclass (see devclass_get_parent()) if any.
2683 *
2684 * @param dev		the device to initialise
2685 *
2686 * @retval 0		success
2687 * @retval ENXIO	no driver was found
2688 * @retval ENOMEM	memory allocation failure
2689 * @retval non-zero	some other unix error code
2690 * @retval -1		Device already attached
2691 */
2692int
2693device_probe(device_t dev)
2694{
2695	int error;
2696
2697	GIANT_REQUIRED;
2698
2699	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2700		return (-1);
2701
2702	if (!(dev->flags & DF_ENABLED)) {
2703		if (bootverbose && device_get_name(dev) != NULL) {
2704			device_print_prettyname(dev);
2705			printf("not probed (disabled)\n");
2706		}
2707		return (-1);
2708	}
2709	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2710		if (bus_current_pass == BUS_PASS_DEFAULT &&
2711		    !(dev->flags & DF_DONENOMATCH)) {
2712			BUS_PROBE_NOMATCH(dev->parent, dev);
2713			devnomatch(dev);
2714			dev->flags |= DF_DONENOMATCH;
2715		}
2716		return (error);
2717	}
2718	return (0);
2719}
2720
2721/**
2722 * @brief Probe a device and attach a driver if possible
2723 *
2724 * calls device_probe() and attaches if that was successful.
2725 */
2726int
2727device_probe_and_attach(device_t dev)
2728{
2729	int error;
2730
2731	GIANT_REQUIRED;
2732
2733	error = device_probe(dev);
2734	if (error == -1)
2735		return (0);
2736	else if (error != 0)
2737		return (error);
2738	return (device_attach(dev));
2739}
2740
2741/**
2742 * @brief Attach a device driver to a device
2743 *
2744 * This function is a wrapper around the DEVICE_ATTACH() driver
2745 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2746 * device's sysctl tree, optionally prints a description of the device
2747 * and queues a notification event for user-based device management
2748 * services.
2749 *
2750 * Normally this function is only called internally from
2751 * device_probe_and_attach().
2752 *
2753 * @param dev		the device to initialise
2754 *
2755 * @retval 0		success
2756 * @retval ENXIO	no driver was found
2757 * @retval ENOMEM	memory allocation failure
2758 * @retval non-zero	some other unix error code
2759 */
2760int
2761device_attach(device_t dev)
2762{
2763	int error;
2764
2765	if (resource_disabled(dev->driver->name, dev->unit)) {
2766		device_disable(dev);
2767		if (bootverbose)
2768			 device_printf(dev, "disabled via hints entry\n");
2769		return (ENXIO);
2770	}
2771
2772	device_sysctl_init(dev);
2773	if (!device_is_quiet(dev))
2774		device_print_child(dev->parent, dev);
2775	dev->state = DS_ATTACHING;
2776	if ((error = DEVICE_ATTACH(dev)) != 0) {
2777		printf("device_attach: %s%d attach returned %d\n",
2778		    dev->driver->name, dev->unit, error);
2779		if (!(dev->flags & DF_FIXEDCLASS))
2780			devclass_delete_device(dev->devclass, dev);
2781		(void)device_set_driver(dev, NULL);
2782		device_sysctl_fini(dev);
2783		KASSERT(dev->busy == 0, ("attach failed but busy"));
2784		dev->state = DS_NOTPRESENT;
2785		return (error);
2786	}
2787	device_sysctl_update(dev);
2788	if (dev->busy)
2789		dev->state = DS_BUSY;
2790	else
2791		dev->state = DS_ATTACHED;
2792	dev->flags &= ~DF_DONENOMATCH;
2793	devadded(dev);
2794	return (0);
2795}
2796
2797/**
2798 * @brief Detach a driver from a device
2799 *
2800 * This function is a wrapper around the DEVICE_DETACH() driver
2801 * method. If the call to DEVICE_DETACH() succeeds, it calls
2802 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2803 * notification event for user-based device management services and
2804 * cleans up the device's sysctl tree.
2805 *
2806 * @param dev		the device to un-initialise
2807 *
2808 * @retval 0		success
2809 * @retval ENXIO	no driver was found
2810 * @retval ENOMEM	memory allocation failure
2811 * @retval non-zero	some other unix error code
2812 */
2813int
2814device_detach(device_t dev)
2815{
2816	int error;
2817
2818	GIANT_REQUIRED;
2819
2820	PDEBUG(("%s", DEVICENAME(dev)));
2821	if (dev->state == DS_BUSY)
2822		return (EBUSY);
2823	if (dev->state != DS_ATTACHED)
2824		return (0);
2825
2826	if ((error = DEVICE_DETACH(dev)) != 0)
2827		return (error);
2828	devremoved(dev);
2829	if (!device_is_quiet(dev))
2830		device_printf(dev, "detached\n");
2831	if (dev->parent)
2832		BUS_CHILD_DETACHED(dev->parent, dev);
2833
2834	if (!(dev->flags & DF_FIXEDCLASS))
2835		devclass_delete_device(dev->devclass, dev);
2836
2837	dev->state = DS_NOTPRESENT;
2838	(void)device_set_driver(dev, NULL);
2839	device_sysctl_fini(dev);
2840
2841	return (0);
2842}
2843
2844/**
2845 * @brief Tells a driver to quiesce itself.
2846 *
2847 * This function is a wrapper around the DEVICE_QUIESCE() driver
2848 * method. If the call to DEVICE_QUIESCE() succeeds.
2849 *
2850 * @param dev		the device to quiesce
2851 *
2852 * @retval 0		success
2853 * @retval ENXIO	no driver was found
2854 * @retval ENOMEM	memory allocation failure
2855 * @retval non-zero	some other unix error code
2856 */
2857int
2858device_quiesce(device_t dev)
2859{
2860
2861	PDEBUG(("%s", DEVICENAME(dev)));
2862	if (dev->state == DS_BUSY)
2863		return (EBUSY);
2864	if (dev->state != DS_ATTACHED)
2865		return (0);
2866
2867	return (DEVICE_QUIESCE(dev));
2868}
2869
2870/**
2871 * @brief Notify a device of system shutdown
2872 *
2873 * This function calls the DEVICE_SHUTDOWN() driver method if the
2874 * device currently has an attached driver.
2875 *
2876 * @returns the value returned by DEVICE_SHUTDOWN()
2877 */
2878int
2879device_shutdown(device_t dev)
2880{
2881	if (dev->state < DS_ATTACHED)
2882		return (0);
2883	return (DEVICE_SHUTDOWN(dev));
2884}
2885
2886/**
2887 * @brief Set the unit number of a device
2888 *
2889 * This function can be used to override the unit number used for a
2890 * device (e.g. to wire a device to a pre-configured unit number).
2891 */
2892int
2893device_set_unit(device_t dev, int unit)
2894{
2895	devclass_t dc;
2896	int err;
2897
2898	dc = device_get_devclass(dev);
2899	if (unit < dc->maxunit && dc->devices[unit])
2900		return (EBUSY);
2901	err = devclass_delete_device(dc, dev);
2902	if (err)
2903		return (err);
2904	dev->unit = unit;
2905	err = devclass_add_device(dc, dev);
2906	if (err)
2907		return (err);
2908
2909	bus_data_generation_update();
2910	return (0);
2911}
2912
2913/*======================================*/
2914/*
2915 * Some useful method implementations to make life easier for bus drivers.
2916 */
2917
2918/**
2919 * @brief Initialise a resource list.
2920 *
2921 * @param rl		the resource list to initialise
2922 */
2923void
2924resource_list_init(struct resource_list *rl)
2925{
2926	STAILQ_INIT(rl);
2927}
2928
2929/**
2930 * @brief Reclaim memory used by a resource list.
2931 *
2932 * This function frees the memory for all resource entries on the list
2933 * (if any).
2934 *
2935 * @param rl		the resource list to free
2936 */
2937void
2938resource_list_free(struct resource_list *rl)
2939{
2940	struct resource_list_entry *rle;
2941
2942	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2943		if (rle->res)
2944			panic("resource_list_free: resource entry is busy");
2945		STAILQ_REMOVE_HEAD(rl, link);
2946		free(rle, M_BUS);
2947	}
2948}
2949
2950/**
2951 * @brief Add a resource entry.
2952 *
2953 * This function adds a resource entry using the given @p type, @p
2954 * start, @p end and @p count values. A rid value is chosen by
2955 * searching sequentially for the first unused rid starting at zero.
2956 *
2957 * @param rl		the resource list to edit
2958 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2959 * @param start		the start address of the resource
2960 * @param end		the end address of the resource
2961 * @param count		XXX end-start+1
2962 */
2963int
2964resource_list_add_next(struct resource_list *rl, int type, u_long start,
2965    u_long end, u_long count)
2966{
2967	int rid;
2968
2969	rid = 0;
2970	while (resource_list_find(rl, type, rid) != NULL)
2971		rid++;
2972	resource_list_add(rl, type, rid, start, end, count);
2973	return (rid);
2974}
2975
2976/**
2977 * @brief Add or modify a resource entry.
2978 *
2979 * If an existing entry exists with the same type and rid, it will be
2980 * modified using the given values of @p start, @p end and @p
2981 * count. If no entry exists, a new one will be created using the
2982 * given values.  The resource list entry that matches is then returned.
2983 *
2984 * @param rl		the resource list to edit
2985 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2986 * @param rid		the resource identifier
2987 * @param start		the start address of the resource
2988 * @param end		the end address of the resource
2989 * @param count		XXX end-start+1
2990 */
2991struct resource_list_entry *
2992resource_list_add(struct resource_list *rl, int type, int rid,
2993    u_long start, u_long end, u_long count)
2994{
2995	struct resource_list_entry *rle;
2996
2997	rle = resource_list_find(rl, type, rid);
2998	if (!rle) {
2999		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3000		    M_NOWAIT);
3001		if (!rle)
3002			panic("resource_list_add: can't record entry");
3003		STAILQ_INSERT_TAIL(rl, rle, link);
3004		rle->type = type;
3005		rle->rid = rid;
3006		rle->res = NULL;
3007		rle->flags = 0;
3008	}
3009
3010	if (rle->res)
3011		panic("resource_list_add: resource entry is busy");
3012
3013	rle->start = start;
3014	rle->end = end;
3015	rle->count = count;
3016	return (rle);
3017}
3018
3019/**
3020 * @brief Determine if a resource entry is busy.
3021 *
3022 * Returns true if a resource entry is busy meaning that it has an
3023 * associated resource that is not an unallocated "reserved" resource.
3024 *
3025 * @param rl		the resource list to search
3026 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3027 * @param rid		the resource identifier
3028 *
3029 * @returns Non-zero if the entry is busy, zero otherwise.
3030 */
3031int
3032resource_list_busy(struct resource_list *rl, int type, int rid)
3033{
3034	struct resource_list_entry *rle;
3035
3036	rle = resource_list_find(rl, type, rid);
3037	if (rle == NULL || rle->res == NULL)
3038		return (0);
3039	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3040		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3041		    ("reserved resource is active"));
3042		return (0);
3043	}
3044	return (1);
3045}
3046
3047/**
3048 * @brief Determine if a resource entry is reserved.
3049 *
3050 * Returns true if a resource entry is reserved meaning that it has an
3051 * associated "reserved" resource.  The resource can either be
3052 * allocated or unallocated.
3053 *
3054 * @param rl		the resource list to search
3055 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3056 * @param rid		the resource identifier
3057 *
3058 * @returns Non-zero if the entry is reserved, zero otherwise.
3059 */
3060int
3061resource_list_reserved(struct resource_list *rl, int type, int rid)
3062{
3063	struct resource_list_entry *rle;
3064
3065	rle = resource_list_find(rl, type, rid);
3066	if (rle != NULL && rle->flags & RLE_RESERVED)
3067		return (1);
3068	return (0);
3069}
3070
3071/**
3072 * @brief Find a resource entry by type and rid.
3073 *
3074 * @param rl		the resource list to search
3075 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3076 * @param rid		the resource identifier
3077 *
3078 * @returns the resource entry pointer or NULL if there is no such
3079 * entry.
3080 */
3081struct resource_list_entry *
3082resource_list_find(struct resource_list *rl, int type, int rid)
3083{
3084	struct resource_list_entry *rle;
3085
3086	STAILQ_FOREACH(rle, rl, link) {
3087		if (rle->type == type && rle->rid == rid)
3088			return (rle);
3089	}
3090	return (NULL);
3091}
3092
3093/**
3094 * @brief Delete a resource entry.
3095 *
3096 * @param rl		the resource list to edit
3097 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3098 * @param rid		the resource identifier
3099 */
3100void
3101resource_list_delete(struct resource_list *rl, int type, int rid)
3102{
3103	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3104
3105	if (rle) {
3106		if (rle->res != NULL)
3107			panic("resource_list_delete: resource has not been released");
3108		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3109		free(rle, M_BUS);
3110	}
3111}
3112
3113/**
3114 * @brief Allocate a reserved resource
3115 *
3116 * This can be used by busses to force the allocation of resources
3117 * that are always active in the system even if they are not allocated
3118 * by a driver (e.g. PCI BARs).  This function is usually called when
3119 * adding a new child to the bus.  The resource is allocated from the
3120 * parent bus when it is reserved.  The resource list entry is marked
3121 * with RLE_RESERVED to note that it is a reserved resource.
3122 *
3123 * Subsequent attempts to allocate the resource with
3124 * resource_list_alloc() will succeed the first time and will set
3125 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3126 * resource that has been allocated is released with
3127 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3128 * the actual resource remains allocated.  The resource can be released to
3129 * the parent bus by calling resource_list_unreserve().
3130 *
3131 * @param rl		the resource list to allocate from
3132 * @param bus		the parent device of @p child
3133 * @param child		the device for which the resource is being reserved
3134 * @param type		the type of resource to allocate
3135 * @param rid		a pointer to the resource identifier
3136 * @param start		hint at the start of the resource range - pass
3137 *			@c 0UL for any start address
3138 * @param end		hint at the end of the resource range - pass
3139 *			@c ~0UL for any end address
3140 * @param count		hint at the size of range required - pass @c 1
3141 *			for any size
3142 * @param flags		any extra flags to control the resource
3143 *			allocation - see @c RF_XXX flags in
3144 *			<sys/rman.h> for details
3145 *
3146 * @returns		the resource which was allocated or @c NULL if no
3147 *			resource could be allocated
3148 */
3149struct resource *
3150resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3151    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3152{
3153	struct resource_list_entry *rle = NULL;
3154	int passthrough = (device_get_parent(child) != bus);
3155	struct resource *r;
3156
3157	if (passthrough)
3158		panic(
3159    "resource_list_reserve() should only be called for direct children");
3160	if (flags & RF_ACTIVE)
3161		panic(
3162    "resource_list_reserve() should only reserve inactive resources");
3163
3164	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3165	    flags);
3166	if (r != NULL) {
3167		rle = resource_list_find(rl, type, *rid);
3168		rle->flags |= RLE_RESERVED;
3169	}
3170	return (r);
3171}
3172
3173/**
3174 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3175 *
3176 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3177 * and passing the allocation up to the parent of @p bus. This assumes
3178 * that the first entry of @c device_get_ivars(child) is a struct
3179 * resource_list. This also handles 'passthrough' allocations where a
3180 * child is a remote descendant of bus by passing the allocation up to
3181 * the parent of bus.
3182 *
3183 * Typically, a bus driver would store a list of child resources
3184 * somewhere in the child device's ivars (see device_get_ivars()) and
3185 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3186 * then call resource_list_alloc() to perform the allocation.
3187 *
3188 * @param rl		the resource list to allocate from
3189 * @param bus		the parent device of @p child
3190 * @param child		the device which is requesting an allocation
3191 * @param type		the type of resource to allocate
3192 * @param rid		a pointer to the resource identifier
3193 * @param start		hint at the start of the resource range - pass
3194 *			@c 0UL for any start address
3195 * @param end		hint at the end of the resource range - pass
3196 *			@c ~0UL for any end address
3197 * @param count		hint at the size of range required - pass @c 1
3198 *			for any size
3199 * @param flags		any extra flags to control the resource
3200 *			allocation - see @c RF_XXX flags in
3201 *			<sys/rman.h> for details
3202 *
3203 * @returns		the resource which was allocated or @c NULL if no
3204 *			resource could be allocated
3205 */
3206struct resource *
3207resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3208    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3209{
3210	struct resource_list_entry *rle = NULL;
3211	int passthrough = (device_get_parent(child) != bus);
3212	int isdefault = (start == 0UL && end == ~0UL);
3213
3214	if (passthrough) {
3215		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3216		    type, rid, start, end, count, flags));
3217	}
3218
3219	rle = resource_list_find(rl, type, *rid);
3220
3221	if (!rle)
3222		return (NULL);		/* no resource of that type/rid */
3223
3224	if (rle->res) {
3225		if (rle->flags & RLE_RESERVED) {
3226			if (rle->flags & RLE_ALLOCATED)
3227				return (NULL);
3228			if ((flags & RF_ACTIVE) &&
3229			    bus_activate_resource(child, type, *rid,
3230			    rle->res) != 0)
3231				return (NULL);
3232			rle->flags |= RLE_ALLOCATED;
3233			return (rle->res);
3234		}
3235		panic("resource_list_alloc: resource entry is busy");
3236	}
3237
3238	if (isdefault) {
3239		start = rle->start;
3240		count = ulmax(count, rle->count);
3241		end = ulmax(rle->end, start + count - 1);
3242	}
3243
3244	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3245	    type, rid, start, end, count, flags);
3246
3247	/*
3248	 * Record the new range.
3249	 */
3250	if (rle->res) {
3251		rle->start = rman_get_start(rle->res);
3252		rle->end = rman_get_end(rle->res);
3253		rle->count = count;
3254	}
3255
3256	return (rle->res);
3257}
3258
3259/**
3260 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3261 *
3262 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3263 * used with resource_list_alloc().
3264 *
3265 * @param rl		the resource list which was allocated from
3266 * @param bus		the parent device of @p child
3267 * @param child		the device which is requesting a release
3268 * @param type		the type of resource to release
3269 * @param rid		the resource identifier
3270 * @param res		the resource to release
3271 *
3272 * @retval 0		success
3273 * @retval non-zero	a standard unix error code indicating what
3274 *			error condition prevented the operation
3275 */
3276int
3277resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3278    int type, int rid, struct resource *res)
3279{
3280	struct resource_list_entry *rle = NULL;
3281	int passthrough = (device_get_parent(child) != bus);
3282	int error;
3283
3284	if (passthrough) {
3285		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3286		    type, rid, res));
3287	}
3288
3289	rle = resource_list_find(rl, type, rid);
3290
3291	if (!rle)
3292		panic("resource_list_release: can't find resource");
3293	if (!rle->res)
3294		panic("resource_list_release: resource entry is not busy");
3295	if (rle->flags & RLE_RESERVED) {
3296		if (rle->flags & RLE_ALLOCATED) {
3297			if (rman_get_flags(res) & RF_ACTIVE) {
3298				error = bus_deactivate_resource(child, type,
3299				    rid, res);
3300				if (error)
3301					return (error);
3302			}
3303			rle->flags &= ~RLE_ALLOCATED;
3304			return (0);
3305		}
3306		return (EINVAL);
3307	}
3308
3309	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3310	    type, rid, res);
3311	if (error)
3312		return (error);
3313
3314	rle->res = NULL;
3315	return (0);
3316}
3317
3318/**
3319 * @brief Release all active resources of a given type
3320 *
3321 * Release all active resources of a specified type.  This is intended
3322 * to be used to cleanup resources leaked by a driver after detach or
3323 * a failed attach.
3324 *
3325 * @param rl		the resource list which was allocated from
3326 * @param bus		the parent device of @p child
3327 * @param child		the device whose active resources are being released
3328 * @param type		the type of resources to release
3329 *
3330 * @retval 0		success
3331 * @retval EBUSY	at least one resource was active
3332 */
3333int
3334resource_list_release_active(struct resource_list *rl, device_t bus,
3335    device_t child, int type)
3336{
3337	struct resource_list_entry *rle;
3338	int error, retval;
3339
3340	retval = 0;
3341	STAILQ_FOREACH(rle, rl, link) {
3342		if (rle->type != type)
3343			continue;
3344		if (rle->res == NULL)
3345			continue;
3346		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3347		    RLE_RESERVED)
3348			continue;
3349		retval = EBUSY;
3350		error = resource_list_release(rl, bus, child, type,
3351		    rman_get_rid(rle->res), rle->res);
3352		if (error != 0)
3353			device_printf(bus,
3354			    "Failed to release active resource: %d\n", error);
3355	}
3356	return (retval);
3357}
3358
3359
3360/**
3361 * @brief Fully release a reserved resource
3362 *
3363 * Fully releases a resource reserved via resource_list_reserve().
3364 *
3365 * @param rl		the resource list which was allocated from
3366 * @param bus		the parent device of @p child
3367 * @param child		the device whose reserved resource is being released
3368 * @param type		the type of resource to release
3369 * @param rid		the resource identifier
3370 * @param res		the resource to release
3371 *
3372 * @retval 0		success
3373 * @retval non-zero	a standard unix error code indicating what
3374 *			error condition prevented the operation
3375 */
3376int
3377resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3378    int type, int rid)
3379{
3380	struct resource_list_entry *rle = NULL;
3381	int passthrough = (device_get_parent(child) != bus);
3382
3383	if (passthrough)
3384		panic(
3385    "resource_list_unreserve() should only be called for direct children");
3386
3387	rle = resource_list_find(rl, type, rid);
3388
3389	if (!rle)
3390		panic("resource_list_unreserve: can't find resource");
3391	if (!(rle->flags & RLE_RESERVED))
3392		return (EINVAL);
3393	if (rle->flags & RLE_ALLOCATED)
3394		return (EBUSY);
3395	rle->flags &= ~RLE_RESERVED;
3396	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3397}
3398
3399/**
3400 * @brief Print a description of resources in a resource list
3401 *
3402 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3403 * The name is printed if at least one resource of the given type is available.
3404 * The format is used to print resource start and end.
3405 *
3406 * @param rl		the resource list to print
3407 * @param name		the name of @p type, e.g. @c "memory"
3408 * @param type		type type of resource entry to print
3409 * @param format	printf(9) format string to print resource
3410 *			start and end values
3411 *
3412 * @returns		the number of characters printed
3413 */
3414int
3415resource_list_print_type(struct resource_list *rl, const char *name, int type,
3416    const char *format)
3417{
3418	struct resource_list_entry *rle;
3419	int printed, retval;
3420
3421	printed = 0;
3422	retval = 0;
3423	/* Yes, this is kinda cheating */
3424	STAILQ_FOREACH(rle, rl, link) {
3425		if (rle->type == type) {
3426			if (printed == 0)
3427				retval += printf(" %s ", name);
3428			else
3429				retval += printf(",");
3430			printed++;
3431			retval += printf(format, rle->start);
3432			if (rle->count > 1) {
3433				retval += printf("-");
3434				retval += printf(format, rle->start +
3435						 rle->count - 1);
3436			}
3437		}
3438	}
3439	return (retval);
3440}
3441
3442/**
3443 * @brief Releases all the resources in a list.
3444 *
3445 * @param rl		The resource list to purge.
3446 *
3447 * @returns		nothing
3448 */
3449void
3450resource_list_purge(struct resource_list *rl)
3451{
3452	struct resource_list_entry *rle;
3453
3454	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3455		if (rle->res)
3456			bus_release_resource(rman_get_device(rle->res),
3457			    rle->type, rle->rid, rle->res);
3458		STAILQ_REMOVE_HEAD(rl, link);
3459		free(rle, M_BUS);
3460	}
3461}
3462
3463device_t
3464bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3465{
3466
3467	return (device_add_child_ordered(dev, order, name, unit));
3468}
3469
3470/**
3471 * @brief Helper function for implementing DEVICE_PROBE()
3472 *
3473 * This function can be used to help implement the DEVICE_PROBE() for
3474 * a bus (i.e. a device which has other devices attached to it). It
3475 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3476 * devclass.
3477 */
3478int
3479bus_generic_probe(device_t dev)
3480{
3481	devclass_t dc = dev->devclass;
3482	driverlink_t dl;
3483
3484	TAILQ_FOREACH(dl, &dc->drivers, link) {
3485		/*
3486		 * If this driver's pass is too high, then ignore it.
3487		 * For most drivers in the default pass, this will
3488		 * never be true.  For early-pass drivers they will
3489		 * only call the identify routines of eligible drivers
3490		 * when this routine is called.  Drivers for later
3491		 * passes should have their identify routines called
3492		 * on early-pass busses during BUS_NEW_PASS().
3493		 */
3494		if (dl->pass > bus_current_pass)
3495			continue;
3496		DEVICE_IDENTIFY(dl->driver, dev);
3497	}
3498
3499	return (0);
3500}
3501
3502/**
3503 * @brief Helper function for implementing DEVICE_ATTACH()
3504 *
3505 * This function can be used to help implement the DEVICE_ATTACH() for
3506 * a bus. It calls device_probe_and_attach() for each of the device's
3507 * children.
3508 */
3509int
3510bus_generic_attach(device_t dev)
3511{
3512	device_t child;
3513
3514	TAILQ_FOREACH(child, &dev->children, link) {
3515		device_probe_and_attach(child);
3516	}
3517
3518	return (0);
3519}
3520
3521/**
3522 * @brief Helper function for implementing DEVICE_DETACH()
3523 *
3524 * This function can be used to help implement the DEVICE_DETACH() for
3525 * a bus. It calls device_detach() for each of the device's
3526 * children.
3527 */
3528int
3529bus_generic_detach(device_t dev)
3530{
3531	device_t child;
3532	int error;
3533
3534	if (dev->state != DS_ATTACHED)
3535		return (EBUSY);
3536
3537	TAILQ_FOREACH(child, &dev->children, link) {
3538		if ((error = device_detach(child)) != 0)
3539			return (error);
3540	}
3541
3542	return (0);
3543}
3544
3545/**
3546 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3547 *
3548 * This function can be used to help implement the DEVICE_SHUTDOWN()
3549 * for a bus. It calls device_shutdown() for each of the device's
3550 * children.
3551 */
3552int
3553bus_generic_shutdown(device_t dev)
3554{
3555	device_t child;
3556
3557	TAILQ_FOREACH(child, &dev->children, link) {
3558		device_shutdown(child);
3559	}
3560
3561	return (0);
3562}
3563
3564/**
3565 * @brief Helper function for implementing DEVICE_SUSPEND()
3566 *
3567 * This function can be used to help implement the DEVICE_SUSPEND()
3568 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3569 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3570 * operation is aborted and any devices which were suspended are
3571 * resumed immediately by calling their DEVICE_RESUME() methods.
3572 */
3573int
3574bus_generic_suspend(device_t dev)
3575{
3576	int		error;
3577	device_t	child, child2;
3578
3579	TAILQ_FOREACH(child, &dev->children, link) {
3580		error = DEVICE_SUSPEND(child);
3581		if (error) {
3582			for (child2 = TAILQ_FIRST(&dev->children);
3583			     child2 && child2 != child;
3584			     child2 = TAILQ_NEXT(child2, link))
3585				DEVICE_RESUME(child2);
3586			return (error);
3587		}
3588	}
3589	return (0);
3590}
3591
3592/**
3593 * @brief Helper function for implementing DEVICE_RESUME()
3594 *
3595 * This function can be used to help implement the DEVICE_RESUME() for
3596 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3597 */
3598int
3599bus_generic_resume(device_t dev)
3600{
3601	device_t	child;
3602
3603	TAILQ_FOREACH(child, &dev->children, link) {
3604		DEVICE_RESUME(child);
3605		/* if resume fails, there's nothing we can usefully do... */
3606	}
3607	return (0);
3608}
3609
3610/**
3611 * @brief Helper function for implementing BUS_PRINT_CHILD().
3612 *
3613 * This function prints the first part of the ascii representation of
3614 * @p child, including its name, unit and description (if any - see
3615 * device_set_desc()).
3616 *
3617 * @returns the number of characters printed
3618 */
3619int
3620bus_print_child_header(device_t dev, device_t child)
3621{
3622	int	retval = 0;
3623
3624	if (device_get_desc(child)) {
3625		retval += device_printf(child, "<%s>", device_get_desc(child));
3626	} else {
3627		retval += printf("%s", device_get_nameunit(child));
3628	}
3629
3630	return (retval);
3631}
3632
3633/**
3634 * @brief Helper function for implementing BUS_PRINT_CHILD().
3635 *
3636 * This function prints the last part of the ascii representation of
3637 * @p child, which consists of the string @c " on " followed by the
3638 * name and unit of the @p dev.
3639 *
3640 * @returns the number of characters printed
3641 */
3642int
3643bus_print_child_footer(device_t dev, device_t child)
3644{
3645	return (printf(" on %s\n", device_get_nameunit(dev)));
3646}
3647
3648/**
3649 * @brief Helper function for implementing BUS_PRINT_CHILD().
3650 *
3651 * This function simply calls bus_print_child_header() followed by
3652 * bus_print_child_footer().
3653 *
3654 * @returns the number of characters printed
3655 */
3656int
3657bus_generic_print_child(device_t dev, device_t child)
3658{
3659	int	retval = 0;
3660
3661	retval += bus_print_child_header(dev, child);
3662	retval += bus_print_child_footer(dev, child);
3663
3664	return (retval);
3665}
3666
3667/**
3668 * @brief Stub function for implementing BUS_READ_IVAR().
3669 *
3670 * @returns ENOENT
3671 */
3672int
3673bus_generic_read_ivar(device_t dev, device_t child, int index,
3674    uintptr_t * result)
3675{
3676	return (ENOENT);
3677}
3678
3679/**
3680 * @brief Stub function for implementing BUS_WRITE_IVAR().
3681 *
3682 * @returns ENOENT
3683 */
3684int
3685bus_generic_write_ivar(device_t dev, device_t child, int index,
3686    uintptr_t value)
3687{
3688	return (ENOENT);
3689}
3690
3691/**
3692 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3693 *
3694 * @returns NULL
3695 */
3696struct resource_list *
3697bus_generic_get_resource_list(device_t dev, device_t child)
3698{
3699	return (NULL);
3700}
3701
3702/**
3703 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3704 *
3705 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3706 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3707 * and then calls device_probe_and_attach() for each unattached child.
3708 */
3709void
3710bus_generic_driver_added(device_t dev, driver_t *driver)
3711{
3712	device_t child;
3713
3714	DEVICE_IDENTIFY(driver, dev);
3715	TAILQ_FOREACH(child, &dev->children, link) {
3716		if (child->state == DS_NOTPRESENT ||
3717		    (child->flags & DF_REBID))
3718			device_probe_and_attach(child);
3719	}
3720}
3721
3722/**
3723 * @brief Helper function for implementing BUS_NEW_PASS().
3724 *
3725 * This implementing of BUS_NEW_PASS() first calls the identify
3726 * routines for any drivers that probe at the current pass.  Then it
3727 * walks the list of devices for this bus.  If a device is already
3728 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3729 * device is not already attached, it attempts to attach a driver to
3730 * it.
3731 */
3732void
3733bus_generic_new_pass(device_t dev)
3734{
3735	driverlink_t dl;
3736	devclass_t dc;
3737	device_t child;
3738
3739	dc = dev->devclass;
3740	TAILQ_FOREACH(dl, &dc->drivers, link) {
3741		if (dl->pass == bus_current_pass)
3742			DEVICE_IDENTIFY(dl->driver, dev);
3743	}
3744	TAILQ_FOREACH(child, &dev->children, link) {
3745		if (child->state >= DS_ATTACHED)
3746			BUS_NEW_PASS(child);
3747		else if (child->state == DS_NOTPRESENT)
3748			device_probe_and_attach(child);
3749	}
3750}
3751
3752/**
3753 * @brief Helper function for implementing BUS_SETUP_INTR().
3754 *
3755 * This simple implementation of BUS_SETUP_INTR() simply calls the
3756 * BUS_SETUP_INTR() method of the parent of @p dev.
3757 */
3758int
3759bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3760    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3761    void **cookiep)
3762{
3763	/* Propagate up the bus hierarchy until someone handles it. */
3764	if (dev->parent)
3765		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3766		    filter, intr, arg, cookiep));
3767	return (EINVAL);
3768}
3769
3770/**
3771 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3772 *
3773 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3774 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3775 */
3776int
3777bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3778    void *cookie)
3779{
3780	/* Propagate up the bus hierarchy until someone handles it. */
3781	if (dev->parent)
3782		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3783	return (EINVAL);
3784}
3785
3786/**
3787 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3788 *
3789 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3790 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3791 */
3792int
3793bus_generic_adjust_resource(device_t dev, device_t child, int type,
3794    struct resource *r, u_long start, u_long end)
3795{
3796	/* Propagate up the bus hierarchy until someone handles it. */
3797	if (dev->parent)
3798		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3799		    end));
3800	return (EINVAL);
3801}
3802
3803/**
3804 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3805 *
3806 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3807 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3808 */
3809struct resource *
3810bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3811    u_long start, u_long end, u_long count, u_int flags)
3812{
3813	/* Propagate up the bus hierarchy until someone handles it. */
3814	if (dev->parent)
3815		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3816		    start, end, count, flags));
3817	return (NULL);
3818}
3819
3820/**
3821 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3822 *
3823 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3824 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3825 */
3826int
3827bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3828    struct resource *r)
3829{
3830	/* Propagate up the bus hierarchy until someone handles it. */
3831	if (dev->parent)
3832		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3833		    r));
3834	return (EINVAL);
3835}
3836
3837/**
3838 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3839 *
3840 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3841 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3842 */
3843int
3844bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3845    struct resource *r)
3846{
3847	/* Propagate up the bus hierarchy until someone handles it. */
3848	if (dev->parent)
3849		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3850		    r));
3851	return (EINVAL);
3852}
3853
3854/**
3855 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3856 *
3857 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3858 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3859 */
3860int
3861bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3862    int rid, struct resource *r)
3863{
3864	/* Propagate up the bus hierarchy until someone handles it. */
3865	if (dev->parent)
3866		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3867		    r));
3868	return (EINVAL);
3869}
3870
3871/**
3872 * @brief Helper function for implementing BUS_BIND_INTR().
3873 *
3874 * This simple implementation of BUS_BIND_INTR() simply calls the
3875 * BUS_BIND_INTR() method of the parent of @p dev.
3876 */
3877int
3878bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3879    int cpu)
3880{
3881
3882	/* Propagate up the bus hierarchy until someone handles it. */
3883	if (dev->parent)
3884		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3885	return (EINVAL);
3886}
3887
3888/**
3889 * @brief Helper function for implementing BUS_CONFIG_INTR().
3890 *
3891 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3892 * BUS_CONFIG_INTR() method of the parent of @p dev.
3893 */
3894int
3895bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3896    enum intr_polarity pol)
3897{
3898
3899	/* Propagate up the bus hierarchy until someone handles it. */
3900	if (dev->parent)
3901		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3902	return (EINVAL);
3903}
3904
3905/**
3906 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3907 *
3908 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3909 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3910 */
3911int
3912bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3913    void *cookie, const char *descr)
3914{
3915
3916	/* Propagate up the bus hierarchy until someone handles it. */
3917	if (dev->parent)
3918		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3919		    descr));
3920	return (EINVAL);
3921}
3922
3923/**
3924 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3925 *
3926 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3927 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3928 */
3929bus_dma_tag_t
3930bus_generic_get_dma_tag(device_t dev, device_t child)
3931{
3932
3933	/* Propagate up the bus hierarchy until someone handles it. */
3934	if (dev->parent != NULL)
3935		return (BUS_GET_DMA_TAG(dev->parent, child));
3936	return (NULL);
3937}
3938
3939/**
3940 * @brief Helper function for implementing BUS_GET_RESOURCE().
3941 *
3942 * This implementation of BUS_GET_RESOURCE() uses the
3943 * resource_list_find() function to do most of the work. It calls
3944 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3945 * search.
3946 */
3947int
3948bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3949    u_long *startp, u_long *countp)
3950{
3951	struct resource_list *		rl = NULL;
3952	struct resource_list_entry *	rle = NULL;
3953
3954	rl = BUS_GET_RESOURCE_LIST(dev, child);
3955	if (!rl)
3956		return (EINVAL);
3957
3958	rle = resource_list_find(rl, type, rid);
3959	if (!rle)
3960		return (ENOENT);
3961
3962	if (startp)
3963		*startp = rle->start;
3964	if (countp)
3965		*countp = rle->count;
3966
3967	return (0);
3968}
3969
3970/**
3971 * @brief Helper function for implementing BUS_SET_RESOURCE().
3972 *
3973 * This implementation of BUS_SET_RESOURCE() uses the
3974 * resource_list_add() function to do most of the work. It calls
3975 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3976 * edit.
3977 */
3978int
3979bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3980    u_long start, u_long count)
3981{
3982	struct resource_list *		rl = NULL;
3983
3984	rl = BUS_GET_RESOURCE_LIST(dev, child);
3985	if (!rl)
3986		return (EINVAL);
3987
3988	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3989
3990	return (0);
3991}
3992
3993/**
3994 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3995 *
3996 * This implementation of BUS_DELETE_RESOURCE() uses the
3997 * resource_list_delete() function to do most of the work. It calls
3998 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3999 * edit.
4000 */
4001void
4002bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4003{
4004	struct resource_list *		rl = NULL;
4005
4006	rl = BUS_GET_RESOURCE_LIST(dev, child);
4007	if (!rl)
4008		return;
4009
4010	resource_list_delete(rl, type, rid);
4011
4012	return;
4013}
4014
4015/**
4016 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4017 *
4018 * This implementation of BUS_RELEASE_RESOURCE() uses the
4019 * resource_list_release() function to do most of the work. It calls
4020 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4021 */
4022int
4023bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4024    int rid, struct resource *r)
4025{
4026	struct resource_list *		rl = NULL;
4027
4028	if (device_get_parent(child) != dev)
4029		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4030		    type, rid, r));
4031
4032	rl = BUS_GET_RESOURCE_LIST(dev, child);
4033	if (!rl)
4034		return (EINVAL);
4035
4036	return (resource_list_release(rl, dev, child, type, rid, r));
4037}
4038
4039/**
4040 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4041 *
4042 * This implementation of BUS_ALLOC_RESOURCE() uses the
4043 * resource_list_alloc() function to do most of the work. It calls
4044 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4045 */
4046struct resource *
4047bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4048    int *rid, u_long start, u_long end, u_long count, u_int flags)
4049{
4050	struct resource_list *		rl = NULL;
4051
4052	if (device_get_parent(child) != dev)
4053		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4054		    type, rid, start, end, count, flags));
4055
4056	rl = BUS_GET_RESOURCE_LIST(dev, child);
4057	if (!rl)
4058		return (NULL);
4059
4060	return (resource_list_alloc(rl, dev, child, type, rid,
4061	    start, end, count, flags));
4062}
4063
4064/**
4065 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4066 *
4067 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4068 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4069 */
4070int
4071bus_generic_child_present(device_t dev, device_t child)
4072{
4073	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4074}
4075
4076/*
4077 * Some convenience functions to make it easier for drivers to use the
4078 * resource-management functions.  All these really do is hide the
4079 * indirection through the parent's method table, making for slightly
4080 * less-wordy code.  In the future, it might make sense for this code
4081 * to maintain some sort of a list of resources allocated by each device.
4082 */
4083
4084int
4085bus_alloc_resources(device_t dev, struct resource_spec *rs,
4086    struct resource **res)
4087{
4088	int i;
4089
4090	for (i = 0; rs[i].type != -1; i++)
4091		res[i] = NULL;
4092	for (i = 0; rs[i].type != -1; i++) {
4093		res[i] = bus_alloc_resource_any(dev,
4094		    rs[i].type, &rs[i].rid, rs[i].flags);
4095		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4096			bus_release_resources(dev, rs, res);
4097			return (ENXIO);
4098		}
4099	}
4100	return (0);
4101}
4102
4103void
4104bus_release_resources(device_t dev, const struct resource_spec *rs,
4105    struct resource **res)
4106{
4107	int i;
4108
4109	for (i = 0; rs[i].type != -1; i++)
4110		if (res[i] != NULL) {
4111			bus_release_resource(
4112			    dev, rs[i].type, rs[i].rid, res[i]);
4113			res[i] = NULL;
4114		}
4115}
4116
4117/**
4118 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4119 *
4120 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4121 * parent of @p dev.
4122 */
4123struct resource *
4124bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4125    u_long count, u_int flags)
4126{
4127	if (dev->parent == NULL)
4128		return (NULL);
4129	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4130	    count, flags));
4131}
4132
4133/**
4134 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4135 *
4136 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4137 * parent of @p dev.
4138 */
4139int
4140bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4141    u_long end)
4142{
4143	if (dev->parent == NULL)
4144		return (EINVAL);
4145	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4146}
4147
4148/**
4149 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4150 *
4151 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4152 * parent of @p dev.
4153 */
4154int
4155bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4156{
4157	if (dev->parent == NULL)
4158		return (EINVAL);
4159	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4160}
4161
4162/**
4163 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4164 *
4165 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4166 * parent of @p dev.
4167 */
4168int
4169bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4170{
4171	if (dev->parent == NULL)
4172		return (EINVAL);
4173	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4174}
4175
4176/**
4177 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4178 *
4179 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4180 * parent of @p dev.
4181 */
4182int
4183bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4184{
4185	if (dev->parent == NULL)
4186		return (EINVAL);
4187	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4188}
4189
4190/**
4191 * @brief Wrapper function for BUS_SETUP_INTR().
4192 *
4193 * This function simply calls the BUS_SETUP_INTR() method of the
4194 * parent of @p dev.
4195 */
4196int
4197bus_setup_intr(device_t dev, struct resource *r, int flags,
4198    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4199{
4200	int error;
4201
4202	if (dev->parent == NULL)
4203		return (EINVAL);
4204	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4205	    arg, cookiep);
4206	if (error != 0)
4207		return (error);
4208	if (handler != NULL && !(flags & INTR_MPSAFE))
4209		device_printf(dev, "[GIANT-LOCKED]\n");
4210	return (0);
4211}
4212
4213/**
4214 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4215 *
4216 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4217 * parent of @p dev.
4218 */
4219int
4220bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4221{
4222	if (dev->parent == NULL)
4223		return (EINVAL);
4224	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4225}
4226
4227/**
4228 * @brief Wrapper function for BUS_BIND_INTR().
4229 *
4230 * This function simply calls the BUS_BIND_INTR() method of the
4231 * parent of @p dev.
4232 */
4233int
4234bus_bind_intr(device_t dev, struct resource *r, int cpu)
4235{
4236	if (dev->parent == NULL)
4237		return (EINVAL);
4238	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4239}
4240
4241/**
4242 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4243 *
4244 * This function first formats the requested description into a
4245 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4246 * the parent of @p dev.
4247 */
4248int
4249bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4250    const char *fmt, ...)
4251{
4252	va_list ap;
4253	char descr[MAXCOMLEN + 1];
4254
4255	if (dev->parent == NULL)
4256		return (EINVAL);
4257	va_start(ap, fmt);
4258	vsnprintf(descr, sizeof(descr), fmt, ap);
4259	va_end(ap);
4260	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4261}
4262
4263/**
4264 * @brief Wrapper function for BUS_SET_RESOURCE().
4265 *
4266 * This function simply calls the BUS_SET_RESOURCE() method of the
4267 * parent of @p dev.
4268 */
4269int
4270bus_set_resource(device_t dev, int type, int rid,
4271    u_long start, u_long count)
4272{
4273	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4274	    start, count));
4275}
4276
4277/**
4278 * @brief Wrapper function for BUS_GET_RESOURCE().
4279 *
4280 * This function simply calls the BUS_GET_RESOURCE() method of the
4281 * parent of @p dev.
4282 */
4283int
4284bus_get_resource(device_t dev, int type, int rid,
4285    u_long *startp, u_long *countp)
4286{
4287	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4288	    startp, countp));
4289}
4290
4291/**
4292 * @brief Wrapper function for BUS_GET_RESOURCE().
4293 *
4294 * This function simply calls the BUS_GET_RESOURCE() method of the
4295 * parent of @p dev and returns the start value.
4296 */
4297u_long
4298bus_get_resource_start(device_t dev, int type, int rid)
4299{
4300	u_long start, count;
4301	int error;
4302
4303	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4304	    &start, &count);
4305	if (error)
4306		return (0);
4307	return (start);
4308}
4309
4310/**
4311 * @brief Wrapper function for BUS_GET_RESOURCE().
4312 *
4313 * This function simply calls the BUS_GET_RESOURCE() method of the
4314 * parent of @p dev and returns the count value.
4315 */
4316u_long
4317bus_get_resource_count(device_t dev, int type, int rid)
4318{
4319	u_long start, count;
4320	int error;
4321
4322	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4323	    &start, &count);
4324	if (error)
4325		return (0);
4326	return (count);
4327}
4328
4329/**
4330 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4331 *
4332 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4333 * parent of @p dev.
4334 */
4335void
4336bus_delete_resource(device_t dev, int type, int rid)
4337{
4338	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4339}
4340
4341/**
4342 * @brief Wrapper function for BUS_CHILD_PRESENT().
4343 *
4344 * This function simply calls the BUS_CHILD_PRESENT() method of the
4345 * parent of @p dev.
4346 */
4347int
4348bus_child_present(device_t child)
4349{
4350	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4351}
4352
4353/**
4354 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4355 *
4356 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4357 * parent of @p dev.
4358 */
4359int
4360bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4361{
4362	device_t parent;
4363
4364	parent = device_get_parent(child);
4365	if (parent == NULL) {
4366		*buf = '\0';
4367		return (0);
4368	}
4369	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4370}
4371
4372/**
4373 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4374 *
4375 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4376 * parent of @p dev.
4377 */
4378int
4379bus_child_location_str(device_t child, char *buf, size_t buflen)
4380{
4381	device_t parent;
4382
4383	parent = device_get_parent(child);
4384	if (parent == NULL) {
4385		*buf = '\0';
4386		return (0);
4387	}
4388	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4389}
4390
4391/**
4392 * @brief Wrapper function for BUS_GET_DMA_TAG().
4393 *
4394 * This function simply calls the BUS_GET_DMA_TAG() method of the
4395 * parent of @p dev.
4396 */
4397bus_dma_tag_t
4398bus_get_dma_tag(device_t dev)
4399{
4400	device_t parent;
4401
4402	parent = device_get_parent(dev);
4403	if (parent == NULL)
4404		return (NULL);
4405	return (BUS_GET_DMA_TAG(parent, dev));
4406}
4407
4408/* Resume all devices and then notify userland that we're up again. */
4409static int
4410root_resume(device_t dev)
4411{
4412	int error;
4413
4414	error = bus_generic_resume(dev);
4415	if (error == 0)
4416		devctl_notify("kern", "power", "resume", NULL);
4417	return (error);
4418}
4419
4420static int
4421root_print_child(device_t dev, device_t child)
4422{
4423	int	retval = 0;
4424
4425	retval += bus_print_child_header(dev, child);
4426	retval += printf("\n");
4427
4428	return (retval);
4429}
4430
4431static int
4432root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4433    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4434{
4435	/*
4436	 * If an interrupt mapping gets to here something bad has happened.
4437	 */
4438	panic("root_setup_intr");
4439}
4440
4441/*
4442 * If we get here, assume that the device is permanant and really is
4443 * present in the system.  Removable bus drivers are expected to intercept
4444 * this call long before it gets here.  We return -1 so that drivers that
4445 * really care can check vs -1 or some ERRNO returned higher in the food
4446 * chain.
4447 */
4448static int
4449root_child_present(device_t dev, device_t child)
4450{
4451	return (-1);
4452}
4453
4454static kobj_method_t root_methods[] = {
4455	/* Device interface */
4456	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4457	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4458	KOBJMETHOD(device_resume,	root_resume),
4459
4460	/* Bus interface */
4461	KOBJMETHOD(bus_print_child,	root_print_child),
4462	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4463	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4464	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4465	KOBJMETHOD(bus_child_present,	root_child_present),
4466
4467	KOBJMETHOD_END
4468};
4469
4470static driver_t root_driver = {
4471	"root",
4472	root_methods,
4473	1,			/* no softc */
4474};
4475
4476device_t	root_bus;
4477devclass_t	root_devclass;
4478
4479static int
4480root_bus_module_handler(module_t mod, int what, void* arg)
4481{
4482	switch (what) {
4483	case MOD_LOAD:
4484		TAILQ_INIT(&bus_data_devices);
4485		kobj_class_compile((kobj_class_t) &root_driver);
4486		root_bus = make_device(NULL, "root", 0);
4487		root_bus->desc = "System root bus";
4488		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4489		root_bus->driver = &root_driver;
4490		root_bus->state = DS_ATTACHED;
4491		root_devclass = devclass_find_internal("root", NULL, FALSE);
4492		devinit();
4493		return (0);
4494
4495	case MOD_SHUTDOWN:
4496		device_shutdown(root_bus);
4497		return (0);
4498	default:
4499		return (EOPNOTSUPP);
4500	}
4501
4502	return (0);
4503}
4504
4505static moduledata_t root_bus_mod = {
4506	"rootbus",
4507	root_bus_module_handler,
4508	NULL
4509};
4510DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4511
4512/**
4513 * @brief Automatically configure devices
4514 *
4515 * This function begins the autoconfiguration process by calling
4516 * device_probe_and_attach() for each child of the @c root0 device.
4517 */
4518void
4519root_bus_configure(void)
4520{
4521
4522	PDEBUG(("."));
4523
4524	/* Eventually this will be split up, but this is sufficient for now. */
4525	bus_set_pass(BUS_PASS_DEFAULT);
4526}
4527
4528/**
4529 * @brief Module handler for registering device drivers
4530 *
4531 * This module handler is used to automatically register device
4532 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4533 * devclass_add_driver() for the driver described by the
4534 * driver_module_data structure pointed to by @p arg
4535 */
4536int
4537driver_module_handler(module_t mod, int what, void *arg)
4538{
4539	struct driver_module_data *dmd;
4540	devclass_t bus_devclass;
4541	kobj_class_t driver;
4542	int error, pass;
4543
4544	dmd = (struct driver_module_data *)arg;
4545	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4546	error = 0;
4547
4548	switch (what) {
4549	case MOD_LOAD:
4550		if (dmd->dmd_chainevh)
4551			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4552
4553		pass = dmd->dmd_pass;
4554		driver = dmd->dmd_driver;
4555		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4556		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4557		error = devclass_add_driver(bus_devclass, driver, pass,
4558		    dmd->dmd_devclass);
4559		break;
4560
4561	case MOD_UNLOAD:
4562		PDEBUG(("Unloading module: driver %s from bus %s",
4563		    DRIVERNAME(dmd->dmd_driver),
4564		    dmd->dmd_busname));
4565		error = devclass_delete_driver(bus_devclass,
4566		    dmd->dmd_driver);
4567
4568		if (!error && dmd->dmd_chainevh)
4569			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4570		break;
4571	case MOD_QUIESCE:
4572		PDEBUG(("Quiesce module: driver %s from bus %s",
4573		    DRIVERNAME(dmd->dmd_driver),
4574		    dmd->dmd_busname));
4575		error = devclass_quiesce_driver(bus_devclass,
4576		    dmd->dmd_driver);
4577
4578		if (!error && dmd->dmd_chainevh)
4579			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4580		break;
4581	default:
4582		error = EOPNOTSUPP;
4583		break;
4584	}
4585
4586	return (error);
4587}
4588
4589/**
4590 * @brief Enumerate all hinted devices for this bus.
4591 *
4592 * Walks through the hints for this bus and calls the bus_hinted_child
4593 * routine for each one it fines.  It searches first for the specific
4594 * bus that's being probed for hinted children (eg isa0), and then for
4595 * generic children (eg isa).
4596 *
4597 * @param	dev	bus device to enumerate
4598 */
4599void
4600bus_enumerate_hinted_children(device_t bus)
4601{
4602	int i;
4603	const char *dname, *busname;
4604	int dunit;
4605
4606	/*
4607	 * enumerate all devices on the specific bus
4608	 */
4609	busname = device_get_nameunit(bus);
4610	i = 0;
4611	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4612		BUS_HINTED_CHILD(bus, dname, dunit);
4613
4614	/*
4615	 * and all the generic ones.
4616	 */
4617	busname = device_get_name(bus);
4618	i = 0;
4619	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4620		BUS_HINTED_CHILD(bus, dname, dunit);
4621}
4622
4623#ifdef BUS_DEBUG
4624
4625/* the _short versions avoid iteration by not calling anything that prints
4626 * more than oneliners. I love oneliners.
4627 */
4628
4629static void
4630print_device_short(device_t dev, int indent)
4631{
4632	if (!dev)
4633		return;
4634
4635	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4636	    dev->unit, dev->desc,
4637	    (dev->parent? "":"no "),
4638	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4639	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4640	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4641	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4642	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4643	    (dev->flags&DF_REBID? "rebiddable,":""),
4644	    (dev->ivars? "":"no "),
4645	    (dev->softc? "":"no "),
4646	    dev->busy));
4647}
4648
4649static void
4650print_device(device_t dev, int indent)
4651{
4652	if (!dev)
4653		return;
4654
4655	print_device_short(dev, indent);
4656
4657	indentprintf(("Parent:\n"));
4658	print_device_short(dev->parent, indent+1);
4659	indentprintf(("Driver:\n"));
4660	print_driver_short(dev->driver, indent+1);
4661	indentprintf(("Devclass:\n"));
4662	print_devclass_short(dev->devclass, indent+1);
4663}
4664
4665void
4666print_device_tree_short(device_t dev, int indent)
4667/* print the device and all its children (indented) */
4668{
4669	device_t child;
4670
4671	if (!dev)
4672		return;
4673
4674	print_device_short(dev, indent);
4675
4676	TAILQ_FOREACH(child, &dev->children, link) {
4677		print_device_tree_short(child, indent+1);
4678	}
4679}
4680
4681void
4682print_device_tree(device_t dev, int indent)
4683/* print the device and all its children (indented) */
4684{
4685	device_t child;
4686
4687	if (!dev)
4688		return;
4689
4690	print_device(dev, indent);
4691
4692	TAILQ_FOREACH(child, &dev->children, link) {
4693		print_device_tree(child, indent+1);
4694	}
4695}
4696
4697static void
4698print_driver_short(driver_t *driver, int indent)
4699{
4700	if (!driver)
4701		return;
4702
4703	indentprintf(("driver %s: softc size = %zd\n",
4704	    driver->name, driver->size));
4705}
4706
4707static void
4708print_driver(driver_t *driver, int indent)
4709{
4710	if (!driver)
4711		return;
4712
4713	print_driver_short(driver, indent);
4714}
4715
4716static void
4717print_driver_list(driver_list_t drivers, int indent)
4718{
4719	driverlink_t driver;
4720
4721	TAILQ_FOREACH(driver, &drivers, link) {
4722		print_driver(driver->driver, indent);
4723	}
4724}
4725
4726static void
4727print_devclass_short(devclass_t dc, int indent)
4728{
4729	if ( !dc )
4730		return;
4731
4732	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4733}
4734
4735static void
4736print_devclass(devclass_t dc, int indent)
4737{
4738	int i;
4739
4740	if ( !dc )
4741		return;
4742
4743	print_devclass_short(dc, indent);
4744	indentprintf(("Drivers:\n"));
4745	print_driver_list(dc->drivers, indent+1);
4746
4747	indentprintf(("Devices:\n"));
4748	for (i = 0; i < dc->maxunit; i++)
4749		if (dc->devices[i])
4750			print_device(dc->devices[i], indent+1);
4751}
4752
4753void
4754print_devclass_list_short(void)
4755{
4756	devclass_t dc;
4757
4758	printf("Short listing of devclasses, drivers & devices:\n");
4759	TAILQ_FOREACH(dc, &devclasses, link) {
4760		print_devclass_short(dc, 0);
4761	}
4762}
4763
4764void
4765print_devclass_list(void)
4766{
4767	devclass_t dc;
4768
4769	printf("Full listing of devclasses, drivers & devices:\n");
4770	TAILQ_FOREACH(dc, &devclasses, link) {
4771		print_devclass(dc, 0);
4772	}
4773}
4774
4775#endif
4776
4777/*
4778 * User-space access to the device tree.
4779 *
4780 * We implement a small set of nodes:
4781 *
4782 * hw.bus			Single integer read method to obtain the
4783 *				current generation count.
4784 * hw.bus.devices		Reads the entire device tree in flat space.
4785 * hw.bus.rman			Resource manager interface
4786 *
4787 * We might like to add the ability to scan devclasses and/or drivers to
4788 * determine what else is currently loaded/available.
4789 */
4790
4791static int
4792sysctl_bus(SYSCTL_HANDLER_ARGS)
4793{
4794	struct u_businfo	ubus;
4795
4796	ubus.ub_version = BUS_USER_VERSION;
4797	ubus.ub_generation = bus_data_generation;
4798
4799	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4800}
4801SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4802    "bus-related data");
4803
4804static int
4805sysctl_devices(SYSCTL_HANDLER_ARGS)
4806{
4807	int			*name = (int *)arg1;
4808	u_int			namelen = arg2;
4809	int			index;
4810	struct device		*dev;
4811	struct u_device		udev;	/* XXX this is a bit big */
4812	int			error;
4813
4814	if (namelen != 2)
4815		return (EINVAL);
4816
4817	if (bus_data_generation_check(name[0]))
4818		return (EINVAL);
4819
4820	index = name[1];
4821
4822	/*
4823	 * Scan the list of devices, looking for the requested index.
4824	 */
4825	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4826		if (index-- == 0)
4827			break;
4828	}
4829	if (dev == NULL)
4830		return (ENOENT);
4831
4832	/*
4833	 * Populate the return array.
4834	 */
4835	bzero(&udev, sizeof(udev));
4836	udev.dv_handle = (uintptr_t)dev;
4837	udev.dv_parent = (uintptr_t)dev->parent;
4838	if (dev->nameunit != NULL)
4839		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4840	if (dev->desc != NULL)
4841		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4842	if (dev->driver != NULL && dev->driver->name != NULL)
4843		strlcpy(udev.dv_drivername, dev->driver->name,
4844		    sizeof(udev.dv_drivername));
4845	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4846	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4847	udev.dv_devflags = dev->devflags;
4848	udev.dv_flags = dev->flags;
4849	udev.dv_state = dev->state;
4850	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4851	return (error);
4852}
4853
4854SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4855    "system device tree");
4856
4857int
4858bus_data_generation_check(int generation)
4859{
4860	if (generation != bus_data_generation)
4861		return (1);
4862
4863	/* XXX generate optimised lists here? */
4864	return (0);
4865}
4866
4867void
4868bus_data_generation_update(void)
4869{
4870	bus_data_generation++;
4871}
4872
4873int
4874bus_free_resource(device_t dev, int type, struct resource *r)
4875{
4876	if (r == NULL)
4877		return (0);
4878	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4879}
4880