subr_bus.c revision 239299
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 239299 2012-08-15 15:42:57Z hselasky $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <machine/stdarg.h>
57
58#include <vm/uma.h>
59
60SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62
63/*
64 * Used to attach drivers to devclasses.
65 */
66typedef struct driverlink *driverlink_t;
67struct driverlink {
68	kobj_class_t	driver;
69	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70	int		pass;
71	TAILQ_ENTRY(driverlink) passlink;
72};
73
74/*
75 * Forward declarations
76 */
77typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79typedef TAILQ_HEAD(device_list, device) device_list_t;
80
81struct devclass {
82	TAILQ_ENTRY(devclass) link;
83	devclass_t	parent;		/* parent in devclass hierarchy */
84	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85	char		*name;
86	device_t	*devices;	/* array of devices indexed by unit */
87	int		maxunit;	/* size of devices array */
88	int		flags;
89#define DC_HAS_CHILDREN		1
90
91	struct sysctl_ctx_list sysctl_ctx;
92	struct sysctl_oid *sysctl_tree;
93};
94
95/**
96 * @brief Implementation of device.
97 */
98struct device {
99	/*
100	 * A device is a kernel object. The first field must be the
101	 * current ops table for the object.
102	 */
103	KOBJ_FIELDS;
104
105	/*
106	 * Device hierarchy.
107	 */
108	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110	device_t	parent;		/**< parent of this device  */
111	device_list_t	children;	/**< list of child devices */
112
113	/*
114	 * Details of this device.
115	 */
116	driver_t	*driver;	/**< current driver */
117	devclass_t	devclass;	/**< current device class */
118	int		unit;		/**< current unit number */
119	char*		nameunit;	/**< name+unit e.g. foodev0 */
120	char*		desc;		/**< driver specific description */
121	int		busy;		/**< count of calls to device_busy() */
122	device_state_t	state;		/**< current device state  */
123	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124	u_int		flags;		/**< internal device flags  */
125#define	DF_ENABLED	0x01		/* device should be probed/attached */
126#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128#define	DF_DESCMALLOCED	0x08		/* description was malloced */
129#define	DF_QUIET	0x10		/* don't print verbose attach message */
130#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132#define	DF_REBID	0x80		/* Can rebid after attach */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147TUNABLE_INT("bus.debug", &bus_debug);
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149    "Debug bus code");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT(req, value, strlen(value)));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT(req, value, strlen(value));
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311}
312
313static void
314device_sysctl_update(device_t dev)
315{
316	devclass_t dc = dev->devclass;
317
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321}
322
323static void
324device_sysctl_fini(device_t dev)
325{
326	if (dev->sysctl_tree == NULL)
327		return;
328	sysctl_ctx_free(&dev->sysctl_ctx);
329	dev->sysctl_tree = NULL;
330}
331
332/*
333 * /dev/devctl implementation
334 */
335
336/*
337 * This design allows only one reader for /dev/devctl.  This is not desirable
338 * in the long run, but will get a lot of hair out of this implementation.
339 * Maybe we should make this device a clonable device.
340 *
341 * Also note: we specifically do not attach a device to the device_t tree
342 * to avoid potential chicken and egg problems.  One could argue that all
343 * of this belongs to the root node.  One could also further argue that the
344 * sysctl interface that we have not might more properly be an ioctl
345 * interface, but at this stage of the game, I'm not inclined to rock that
346 * boat.
347 *
348 * I'm also not sure that the SIGIO support is done correctly or not, as
349 * I copied it from a driver that had SIGIO support that likely hasn't been
350 * tested since 3.4 or 2.2.8!
351 */
352
353/* Deprecated way to adjust queue length */
354static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358
359#define DEVCTL_DEFAULT_QUEUE_LEN 1000
360static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364    0, sysctl_devctl_queue, "I", "devctl queue length");
365
366static d_open_t		devopen;
367static d_close_t	devclose;
368static d_read_t		devread;
369static d_ioctl_t	devioctl;
370static d_poll_t		devpoll;
371
372static struct cdevsw dev_cdevsw = {
373	.d_version =	D_VERSION,
374	.d_flags =	D_NEEDGIANT,
375	.d_open =	devopen,
376	.d_close =	devclose,
377	.d_read =	devread,
378	.d_ioctl =	devioctl,
379	.d_poll =	devpoll,
380	.d_name =	"devctl",
381};
382
383struct dev_event_info
384{
385	char *dei_data;
386	TAILQ_ENTRY(dev_event_info) dei_link;
387};
388
389TAILQ_HEAD(devq, dev_event_info);
390
391static struct dev_softc
392{
393	int	inuse;
394	int	nonblock;
395	int	queued;
396	struct mtx mtx;
397	struct cv cv;
398	struct selinfo sel;
399	struct devq devq;
400	struct proc *async_proc;
401} devsoftc;
402
403static struct cdev *devctl_dev;
404
405static void
406devinit(void)
407{
408	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411	cv_init(&devsoftc.cv, "dev cv");
412	TAILQ_INIT(&devsoftc.devq);
413}
414
415static int
416devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417{
418	if (devsoftc.inuse)
419		return (EBUSY);
420	/* move to init */
421	devsoftc.inuse = 1;
422	devsoftc.nonblock = 0;
423	devsoftc.async_proc = NULL;
424	return (0);
425}
426
427static int
428devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429{
430	devsoftc.inuse = 0;
431	mtx_lock(&devsoftc.mtx);
432	cv_broadcast(&devsoftc.cv);
433	mtx_unlock(&devsoftc.mtx);
434	devsoftc.async_proc = NULL;
435	return (0);
436}
437
438/*
439 * The read channel for this device is used to report changes to
440 * userland in realtime.  We are required to free the data as well as
441 * the n1 object because we allocate them separately.  Also note that
442 * we return one record at a time.  If you try to read this device a
443 * character at a time, you will lose the rest of the data.  Listening
444 * programs are expected to cope.
445 */
446static int
447devread(struct cdev *dev, struct uio *uio, int ioflag)
448{
449	struct dev_event_info *n1;
450	int rv;
451
452	mtx_lock(&devsoftc.mtx);
453	while (TAILQ_EMPTY(&devsoftc.devq)) {
454		if (devsoftc.nonblock) {
455			mtx_unlock(&devsoftc.mtx);
456			return (EAGAIN);
457		}
458		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459		if (rv) {
460			/*
461			 * Need to translate ERESTART to EINTR here? -- jake
462			 */
463			mtx_unlock(&devsoftc.mtx);
464			return (rv);
465		}
466	}
467	n1 = TAILQ_FIRST(&devsoftc.devq);
468	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469	devsoftc.queued--;
470	mtx_unlock(&devsoftc.mtx);
471	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472	free(n1->dei_data, M_BUS);
473	free(n1, M_BUS);
474	return (rv);
475}
476
477static	int
478devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479{
480	switch (cmd) {
481
482	case FIONBIO:
483		if (*(int*)data)
484			devsoftc.nonblock = 1;
485		else
486			devsoftc.nonblock = 0;
487		return (0);
488	case FIOASYNC:
489		if (*(int*)data)
490			devsoftc.async_proc = td->td_proc;
491		else
492			devsoftc.async_proc = NULL;
493		return (0);
494
495		/* (un)Support for other fcntl() calls. */
496	case FIOCLEX:
497	case FIONCLEX:
498	case FIONREAD:
499	case FIOSETOWN:
500	case FIOGETOWN:
501	default:
502		break;
503	}
504	return (ENOTTY);
505}
506
507static	int
508devpoll(struct cdev *dev, int events, struct thread *td)
509{
510	int	revents = 0;
511
512	mtx_lock(&devsoftc.mtx);
513	if (events & (POLLIN | POLLRDNORM)) {
514		if (!TAILQ_EMPTY(&devsoftc.devq))
515			revents = events & (POLLIN | POLLRDNORM);
516		else
517			selrecord(td, &devsoftc.sel);
518	}
519	mtx_unlock(&devsoftc.mtx);
520
521	return (revents);
522}
523
524/**
525 * @brief Return whether the userland process is running
526 */
527boolean_t
528devctl_process_running(void)
529{
530	return (devsoftc.inuse == 1);
531}
532
533/**
534 * @brief Queue data to be read from the devctl device
535 *
536 * Generic interface to queue data to the devctl device.  It is
537 * assumed that @p data is properly formatted.  It is further assumed
538 * that @p data is allocated using the M_BUS malloc type.
539 */
540void
541devctl_queue_data_f(char *data, int flags)
542{
543	struct dev_event_info *n1 = NULL, *n2 = NULL;
544	struct proc *p;
545
546	if (strlen(data) == 0)
547		goto out;
548	if (devctl_queue_length == 0)
549		goto out;
550	n1 = malloc(sizeof(*n1), M_BUS, flags);
551	if (n1 == NULL)
552		goto out;
553	n1->dei_data = data;
554	mtx_lock(&devsoftc.mtx);
555	if (devctl_queue_length == 0) {
556		mtx_unlock(&devsoftc.mtx);
557		free(n1->dei_data, M_BUS);
558		free(n1, M_BUS);
559		return;
560	}
561	/* Leave at least one spot in the queue... */
562	while (devsoftc.queued > devctl_queue_length - 1) {
563		n2 = TAILQ_FIRST(&devsoftc.devq);
564		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565		free(n2->dei_data, M_BUS);
566		free(n2, M_BUS);
567		devsoftc.queued--;
568	}
569	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570	devsoftc.queued++;
571	cv_broadcast(&devsoftc.cv);
572	mtx_unlock(&devsoftc.mtx);
573	selwakeup(&devsoftc.sel);
574	p = devsoftc.async_proc;
575	if (p != NULL) {
576		PROC_LOCK(p);
577		kern_psignal(p, SIGIO);
578		PROC_UNLOCK(p);
579	}
580	return;
581out:
582	/*
583	 * We have to free data on all error paths since the caller
584	 * assumes it will be free'd when this item is dequeued.
585	 */
586	free(data, M_BUS);
587	return;
588}
589
590void
591devctl_queue_data(char *data)
592{
593
594	devctl_queue_data_f(data, M_NOWAIT);
595}
596
597/**
598 * @brief Send a 'notification' to userland, using standard ways
599 */
600void
601devctl_notify_f(const char *system, const char *subsystem, const char *type,
602    const char *data, int flags)
603{
604	int len = 0;
605	char *msg;
606
607	if (system == NULL)
608		return;		/* BOGUS!  Must specify system. */
609	if (subsystem == NULL)
610		return;		/* BOGUS!  Must specify subsystem. */
611	if (type == NULL)
612		return;		/* BOGUS!  Must specify type. */
613	len += strlen(" system=") + strlen(system);
614	len += strlen(" subsystem=") + strlen(subsystem);
615	len += strlen(" type=") + strlen(type);
616	/* add in the data message plus newline. */
617	if (data != NULL)
618		len += strlen(data);
619	len += 3;	/* '!', '\n', and NUL */
620	msg = malloc(len, M_BUS, flags);
621	if (msg == NULL)
622		return;		/* Drop it on the floor */
623	if (data != NULL)
624		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625		    system, subsystem, type, data);
626	else
627		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628		    system, subsystem, type);
629	devctl_queue_data_f(msg, flags);
630}
631
632void
633devctl_notify(const char *system, const char *subsystem, const char *type,
634    const char *data)
635{
636
637	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638}
639
640/*
641 * Common routine that tries to make sending messages as easy as possible.
642 * We allocate memory for the data, copy strings into that, but do not
643 * free it unless there's an error.  The dequeue part of the driver should
644 * free the data.  We don't send data when the device is disabled.  We do
645 * send data, even when we have no listeners, because we wish to avoid
646 * races relating to startup and restart of listening applications.
647 *
648 * devaddq is designed to string together the type of event, with the
649 * object of that event, plus the plug and play info and location info
650 * for that event.  This is likely most useful for devices, but less
651 * useful for other consumers of this interface.  Those should use
652 * the devctl_queue_data() interface instead.
653 */
654static void
655devaddq(const char *type, const char *what, device_t dev)
656{
657	char *data = NULL;
658	char *loc = NULL;
659	char *pnp = NULL;
660	const char *parstr;
661
662	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663		return;
664	data = malloc(1024, M_BUS, M_NOWAIT);
665	if (data == NULL)
666		goto bad;
667
668	/* get the bus specific location of this device */
669	loc = malloc(1024, M_BUS, M_NOWAIT);
670	if (loc == NULL)
671		goto bad;
672	*loc = '\0';
673	bus_child_location_str(dev, loc, 1024);
674
675	/* Get the bus specific pnp info of this device */
676	pnp = malloc(1024, M_BUS, M_NOWAIT);
677	if (pnp == NULL)
678		goto bad;
679	*pnp = '\0';
680	bus_child_pnpinfo_str(dev, pnp, 1024);
681
682	/* Get the parent of this device, or / if high enough in the tree. */
683	if (device_get_parent(dev) == NULL)
684		parstr = ".";	/* Or '/' ? */
685	else
686		parstr = device_get_nameunit(device_get_parent(dev));
687	/* String it all together. */
688	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689	  parstr);
690	free(loc, M_BUS);
691	free(pnp, M_BUS);
692	devctl_queue_data(data);
693	return;
694bad:
695	free(pnp, M_BUS);
696	free(loc, M_BUS);
697	free(data, M_BUS);
698	return;
699}
700
701/*
702 * A device was added to the tree.  We are called just after it successfully
703 * attaches (that is, probe and attach success for this device).  No call
704 * is made if a device is merely parented into the tree.  See devnomatch
705 * if probe fails.  If attach fails, no notification is sent (but maybe
706 * we should have a different message for this).
707 */
708static void
709devadded(device_t dev)
710{
711	devaddq("+", device_get_nameunit(dev), dev);
712}
713
714/*
715 * A device was removed from the tree.  We are called just before this
716 * happens.
717 */
718static void
719devremoved(device_t dev)
720{
721	devaddq("-", device_get_nameunit(dev), dev);
722}
723
724/*
725 * Called when there's no match for this device.  This is only called
726 * the first time that no match happens, so we don't keep getting this
727 * message.  Should that prove to be undesirable, we can change it.
728 * This is called when all drivers that can attach to a given bus
729 * decline to accept this device.  Other errors may not be detected.
730 */
731static void
732devnomatch(device_t dev)
733{
734	devaddq("?", "", dev);
735}
736
737static int
738sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739{
740	struct dev_event_info *n1;
741	int dis, error;
742
743	dis = devctl_queue_length == 0;
744	error = sysctl_handle_int(oidp, &dis, 0, req);
745	if (error || !req->newptr)
746		return (error);
747	mtx_lock(&devsoftc.mtx);
748	if (dis) {
749		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750			n1 = TAILQ_FIRST(&devsoftc.devq);
751			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752			free(n1->dei_data, M_BUS);
753			free(n1, M_BUS);
754		}
755		devsoftc.queued = 0;
756		devctl_queue_length = 0;
757	} else {
758		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759	}
760	mtx_unlock(&devsoftc.mtx);
761	return (0);
762}
763
764static int
765sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766{
767	struct dev_event_info *n1;
768	int q, error;
769
770	q = devctl_queue_length;
771	error = sysctl_handle_int(oidp, &q, 0, req);
772	if (error || !req->newptr)
773		return (error);
774	if (q < 0)
775		return (EINVAL);
776	mtx_lock(&devsoftc.mtx);
777	devctl_queue_length = q;
778	while (devsoftc.queued > devctl_queue_length) {
779		n1 = TAILQ_FIRST(&devsoftc.devq);
780		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781		free(n1->dei_data, M_BUS);
782		free(n1, M_BUS);
783		devsoftc.queued--;
784	}
785	mtx_unlock(&devsoftc.mtx);
786	return (0);
787}
788
789/* End of /dev/devctl code */
790
791static TAILQ_HEAD(,device)	bus_data_devices;
792static int bus_data_generation = 1;
793
794static kobj_method_t null_methods[] = {
795	KOBJMETHOD_END
796};
797
798DEFINE_CLASS(null, null_methods, 0);
799
800/*
801 * Bus pass implementation
802 */
803
804static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805int bus_current_pass = BUS_PASS_ROOT;
806
807/**
808 * @internal
809 * @brief Register the pass level of a new driver attachment
810 *
811 * Register a new driver attachment's pass level.  If no driver
812 * attachment with the same pass level has been added, then @p new
813 * will be added to the global passes list.
814 *
815 * @param new		the new driver attachment
816 */
817static void
818driver_register_pass(struct driverlink *new)
819{
820	struct driverlink *dl;
821
822	/* We only consider pass numbers during boot. */
823	if (bus_current_pass == BUS_PASS_DEFAULT)
824		return;
825
826	/*
827	 * Walk the passes list.  If we already know about this pass
828	 * then there is nothing to do.  If we don't, then insert this
829	 * driver link into the list.
830	 */
831	TAILQ_FOREACH(dl, &passes, passlink) {
832		if (dl->pass < new->pass)
833			continue;
834		if (dl->pass == new->pass)
835			return;
836		TAILQ_INSERT_BEFORE(dl, new, passlink);
837		return;
838	}
839	TAILQ_INSERT_TAIL(&passes, new, passlink);
840}
841
842/**
843 * @brief Raise the current bus pass
844 *
845 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846 * method on the root bus to kick off a new device tree scan for each
847 * new pass level that has at least one driver.
848 */
849void
850bus_set_pass(int pass)
851{
852	struct driverlink *dl;
853
854	if (bus_current_pass > pass)
855		panic("Attempt to lower bus pass level");
856
857	TAILQ_FOREACH(dl, &passes, passlink) {
858		/* Skip pass values below the current pass level. */
859		if (dl->pass <= bus_current_pass)
860			continue;
861
862		/*
863		 * Bail once we hit a driver with a pass level that is
864		 * too high.
865		 */
866		if (dl->pass > pass)
867			break;
868
869		/*
870		 * Raise the pass level to the next level and rescan
871		 * the tree.
872		 */
873		bus_current_pass = dl->pass;
874		BUS_NEW_PASS(root_bus);
875	}
876
877	/*
878	 * If there isn't a driver registered for the requested pass,
879	 * then bus_current_pass might still be less than 'pass'.  Set
880	 * it to 'pass' in that case.
881	 */
882	if (bus_current_pass < pass)
883		bus_current_pass = pass;
884	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885}
886
887/*
888 * Devclass implementation
889 */
890
891static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892
893/**
894 * @internal
895 * @brief Find or create a device class
896 *
897 * If a device class with the name @p classname exists, return it,
898 * otherwise if @p create is non-zero create and return a new device
899 * class.
900 *
901 * If @p parentname is non-NULL, the parent of the devclass is set to
902 * the devclass of that name.
903 *
904 * @param classname	the devclass name to find or create
905 * @param parentname	the parent devclass name or @c NULL
906 * @param create	non-zero to create a devclass
907 */
908static devclass_t
909devclass_find_internal(const char *classname, const char *parentname,
910		       int create)
911{
912	devclass_t dc;
913
914	PDEBUG(("looking for %s", classname));
915	if (!classname)
916		return (NULL);
917
918	TAILQ_FOREACH(dc, &devclasses, link) {
919		if (!strcmp(dc->name, classname))
920			break;
921	}
922
923	if (create && !dc) {
924		PDEBUG(("creating %s", classname));
925		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926		    M_BUS, M_NOWAIT | M_ZERO);
927		if (!dc)
928			return (NULL);
929		dc->parent = NULL;
930		dc->name = (char*) (dc + 1);
931		strcpy(dc->name, classname);
932		TAILQ_INIT(&dc->drivers);
933		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934
935		bus_data_generation_update();
936	}
937
938	/*
939	 * If a parent class is specified, then set that as our parent so
940	 * that this devclass will support drivers for the parent class as
941	 * well.  If the parent class has the same name don't do this though
942	 * as it creates a cycle that can trigger an infinite loop in
943	 * device_probe_child() if a device exists for which there is no
944	 * suitable driver.
945	 */
946	if (parentname && dc && !dc->parent &&
947	    strcmp(classname, parentname) != 0) {
948		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949		dc->parent->flags |= DC_HAS_CHILDREN;
950	}
951
952	return (dc);
953}
954
955/**
956 * @brief Create a device class
957 *
958 * If a device class with the name @p classname exists, return it,
959 * otherwise create and return a new device class.
960 *
961 * @param classname	the devclass name to find or create
962 */
963devclass_t
964devclass_create(const char *classname)
965{
966	return (devclass_find_internal(classname, NULL, TRUE));
967}
968
969/**
970 * @brief Find a device class
971 *
972 * If a device class with the name @p classname exists, return it,
973 * otherwise return @c NULL.
974 *
975 * @param classname	the devclass name to find
976 */
977devclass_t
978devclass_find(const char *classname)
979{
980	return (devclass_find_internal(classname, NULL, FALSE));
981}
982
983/**
984 * @brief Register that a device driver has been added to a devclass
985 *
986 * Register that a device driver has been added to a devclass.  This
987 * is called by devclass_add_driver to accomplish the recursive
988 * notification of all the children classes of dc, as well as dc.
989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990 * the devclass.
991 *
992 * We do a full search here of the devclass list at each iteration
993 * level to save storing children-lists in the devclass structure.  If
994 * we ever move beyond a few dozen devices doing this, we may need to
995 * reevaluate...
996 *
997 * @param dc		the devclass to edit
998 * @param driver	the driver that was just added
999 */
1000static void
1001devclass_driver_added(devclass_t dc, driver_t *driver)
1002{
1003	devclass_t parent;
1004	int i;
1005
1006	/*
1007	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008	 */
1009	for (i = 0; i < dc->maxunit; i++)
1010		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012
1013	/*
1014	 * Walk through the children classes.  Since we only keep a
1015	 * single parent pointer around, we walk the entire list of
1016	 * devclasses looking for children.  We set the
1017	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018	 * the parent, so we only walk the list for those devclasses
1019	 * that have children.
1020	 */
1021	if (!(dc->flags & DC_HAS_CHILDREN))
1022		return;
1023	parent = dc;
1024	TAILQ_FOREACH(dc, &devclasses, link) {
1025		if (dc->parent == parent)
1026			devclass_driver_added(dc, driver);
1027	}
1028}
1029
1030/**
1031 * @brief Add a device driver to a device class
1032 *
1033 * Add a device driver to a devclass. This is normally called
1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035 * all devices in the devclass will be called to allow them to attempt
1036 * to re-probe any unmatched children.
1037 *
1038 * @param dc		the devclass to edit
1039 * @param driver	the driver to register
1040 */
1041int
1042devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043{
1044	driverlink_t dl;
1045	const char *parentname;
1046
1047	PDEBUG(("%s", DRIVERNAME(driver)));
1048
1049	/* Don't allow invalid pass values. */
1050	if (pass <= BUS_PASS_ROOT)
1051		return (EINVAL);
1052
1053	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054	if (!dl)
1055		return (ENOMEM);
1056
1057	/*
1058	 * Compile the driver's methods. Also increase the reference count
1059	 * so that the class doesn't get freed when the last instance
1060	 * goes. This means we can safely use static methods and avoids a
1061	 * double-free in devclass_delete_driver.
1062	 */
1063	kobj_class_compile((kobj_class_t) driver);
1064
1065	/*
1066	 * If the driver has any base classes, make the
1067	 * devclass inherit from the devclass of the driver's
1068	 * first base class. This will allow the system to
1069	 * search for drivers in both devclasses for children
1070	 * of a device using this driver.
1071	 */
1072	if (driver->baseclasses)
1073		parentname = driver->baseclasses[0]->name;
1074	else
1075		parentname = NULL;
1076	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077
1078	dl->driver = driver;
1079	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080	driver->refs++;		/* XXX: kobj_mtx */
1081	dl->pass = pass;
1082	driver_register_pass(dl);
1083
1084	devclass_driver_added(dc, driver);
1085	bus_data_generation_update();
1086	return (0);
1087}
1088
1089/**
1090 * @brief Register that a device driver has been deleted from a devclass
1091 *
1092 * Register that a device driver has been removed from a devclass.
1093 * This is called by devclass_delete_driver to accomplish the
1094 * recursive notification of all the children classes of busclass, as
1095 * well as busclass.  Each layer will attempt to detach the driver
1096 * from any devices that are children of the bus's devclass.  The function
1097 * will return an error if a device fails to detach.
1098 *
1099 * We do a full search here of the devclass list at each iteration
1100 * level to save storing children-lists in the devclass structure.  If
1101 * we ever move beyond a few dozen devices doing this, we may need to
1102 * reevaluate...
1103 *
1104 * @param busclass	the devclass of the parent bus
1105 * @param dc		the devclass of the driver being deleted
1106 * @param driver	the driver being deleted
1107 */
1108static int
1109devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110{
1111	devclass_t parent;
1112	device_t dev;
1113	int error, i;
1114
1115	/*
1116	 * Disassociate from any devices.  We iterate through all the
1117	 * devices in the devclass of the driver and detach any which are
1118	 * using the driver and which have a parent in the devclass which
1119	 * we are deleting from.
1120	 *
1121	 * Note that since a driver can be in multiple devclasses, we
1122	 * should not detach devices which are not children of devices in
1123	 * the affected devclass.
1124	 */
1125	for (i = 0; i < dc->maxunit; i++) {
1126		if (dc->devices[i]) {
1127			dev = dc->devices[i];
1128			if (dev->driver == driver && dev->parent &&
1129			    dev->parent->devclass == busclass) {
1130				if ((error = device_detach(dev)) != 0)
1131					return (error);
1132				BUS_PROBE_NOMATCH(dev->parent, dev);
1133				devnomatch(dev);
1134				dev->flags |= DF_DONENOMATCH;
1135			}
1136		}
1137	}
1138
1139	/*
1140	 * Walk through the children classes.  Since we only keep a
1141	 * single parent pointer around, we walk the entire list of
1142	 * devclasses looking for children.  We set the
1143	 * DC_HAS_CHILDREN flag when a child devclass is created on
1144	 * the parent, so we only walk the list for those devclasses
1145	 * that have children.
1146	 */
1147	if (!(busclass->flags & DC_HAS_CHILDREN))
1148		return (0);
1149	parent = busclass;
1150	TAILQ_FOREACH(busclass, &devclasses, link) {
1151		if (busclass->parent == parent) {
1152			error = devclass_driver_deleted(busclass, dc, driver);
1153			if (error)
1154				return (error);
1155		}
1156	}
1157	return (0);
1158}
1159
1160/**
1161 * @brief Delete a device driver from a device class
1162 *
1163 * Delete a device driver from a devclass. This is normally called
1164 * automatically by DRIVER_MODULE().
1165 *
1166 * If the driver is currently attached to any devices,
1167 * devclass_delete_driver() will first attempt to detach from each
1168 * device. If one of the detach calls fails, the driver will not be
1169 * deleted.
1170 *
1171 * @param dc		the devclass to edit
1172 * @param driver	the driver to unregister
1173 */
1174int
1175devclass_delete_driver(devclass_t busclass, driver_t *driver)
1176{
1177	devclass_t dc = devclass_find(driver->name);
1178	driverlink_t dl;
1179	int error;
1180
1181	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1182
1183	if (!dc)
1184		return (0);
1185
1186	/*
1187	 * Find the link structure in the bus' list of drivers.
1188	 */
1189	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1190		if (dl->driver == driver)
1191			break;
1192	}
1193
1194	if (!dl) {
1195		PDEBUG(("%s not found in %s list", driver->name,
1196		    busclass->name));
1197		return (ENOENT);
1198	}
1199
1200	error = devclass_driver_deleted(busclass, dc, driver);
1201	if (error != 0)
1202		return (error);
1203
1204	TAILQ_REMOVE(&busclass->drivers, dl, link);
1205	free(dl, M_BUS);
1206
1207	/* XXX: kobj_mtx */
1208	driver->refs--;
1209	if (driver->refs == 0)
1210		kobj_class_free((kobj_class_t) driver);
1211
1212	bus_data_generation_update();
1213	return (0);
1214}
1215
1216/**
1217 * @brief Quiesces a set of device drivers from a device class
1218 *
1219 * Quiesce a device driver from a devclass. This is normally called
1220 * automatically by DRIVER_MODULE().
1221 *
1222 * If the driver is currently attached to any devices,
1223 * devclass_quiesece_driver() will first attempt to quiesce each
1224 * device.
1225 *
1226 * @param dc		the devclass to edit
1227 * @param driver	the driver to unregister
1228 */
1229static int
1230devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1231{
1232	devclass_t dc = devclass_find(driver->name);
1233	driverlink_t dl;
1234	device_t dev;
1235	int i;
1236	int error;
1237
1238	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1239
1240	if (!dc)
1241		return (0);
1242
1243	/*
1244	 * Find the link structure in the bus' list of drivers.
1245	 */
1246	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1247		if (dl->driver == driver)
1248			break;
1249	}
1250
1251	if (!dl) {
1252		PDEBUG(("%s not found in %s list", driver->name,
1253		    busclass->name));
1254		return (ENOENT);
1255	}
1256
1257	/*
1258	 * Quiesce all devices.  We iterate through all the devices in
1259	 * the devclass of the driver and quiesce any which are using
1260	 * the driver and which have a parent in the devclass which we
1261	 * are quiescing.
1262	 *
1263	 * Note that since a driver can be in multiple devclasses, we
1264	 * should not quiesce devices which are not children of
1265	 * devices in the affected devclass.
1266	 */
1267	for (i = 0; i < dc->maxunit; i++) {
1268		if (dc->devices[i]) {
1269			dev = dc->devices[i];
1270			if (dev->driver == driver && dev->parent &&
1271			    dev->parent->devclass == busclass) {
1272				if ((error = device_quiesce(dev)) != 0)
1273					return (error);
1274			}
1275		}
1276	}
1277
1278	return (0);
1279}
1280
1281/**
1282 * @internal
1283 */
1284static driverlink_t
1285devclass_find_driver_internal(devclass_t dc, const char *classname)
1286{
1287	driverlink_t dl;
1288
1289	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1290
1291	TAILQ_FOREACH(dl, &dc->drivers, link) {
1292		if (!strcmp(dl->driver->name, classname))
1293			return (dl);
1294	}
1295
1296	PDEBUG(("not found"));
1297	return (NULL);
1298}
1299
1300/**
1301 * @brief Return the name of the devclass
1302 */
1303const char *
1304devclass_get_name(devclass_t dc)
1305{
1306	return (dc->name);
1307}
1308
1309/**
1310 * @brief Find a device given a unit number
1311 *
1312 * @param dc		the devclass to search
1313 * @param unit		the unit number to search for
1314 *
1315 * @returns		the device with the given unit number or @c
1316 *			NULL if there is no such device
1317 */
1318device_t
1319devclass_get_device(devclass_t dc, int unit)
1320{
1321	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1322		return (NULL);
1323	return (dc->devices[unit]);
1324}
1325
1326/**
1327 * @brief Find the softc field of a device given a unit number
1328 *
1329 * @param dc		the devclass to search
1330 * @param unit		the unit number to search for
1331 *
1332 * @returns		the softc field of the device with the given
1333 *			unit number or @c NULL if there is no such
1334 *			device
1335 */
1336void *
1337devclass_get_softc(devclass_t dc, int unit)
1338{
1339	device_t dev;
1340
1341	dev = devclass_get_device(dc, unit);
1342	if (!dev)
1343		return (NULL);
1344
1345	return (device_get_softc(dev));
1346}
1347
1348/**
1349 * @brief Get a list of devices in the devclass
1350 *
1351 * An array containing a list of all the devices in the given devclass
1352 * is allocated and returned in @p *devlistp. The number of devices
1353 * in the array is returned in @p *devcountp. The caller should free
1354 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1355 *
1356 * @param dc		the devclass to examine
1357 * @param devlistp	points at location for array pointer return
1358 *			value
1359 * @param devcountp	points at location for array size return value
1360 *
1361 * @retval 0		success
1362 * @retval ENOMEM	the array allocation failed
1363 */
1364int
1365devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1366{
1367	int count, i;
1368	device_t *list;
1369
1370	count = devclass_get_count(dc);
1371	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1372	if (!list)
1373		return (ENOMEM);
1374
1375	count = 0;
1376	for (i = 0; i < dc->maxunit; i++) {
1377		if (dc->devices[i]) {
1378			list[count] = dc->devices[i];
1379			count++;
1380		}
1381	}
1382
1383	*devlistp = list;
1384	*devcountp = count;
1385
1386	return (0);
1387}
1388
1389/**
1390 * @brief Get a list of drivers in the devclass
1391 *
1392 * An array containing a list of pointers to all the drivers in the
1393 * given devclass is allocated and returned in @p *listp.  The number
1394 * of drivers in the array is returned in @p *countp. The caller should
1395 * free the array using @c free(p, M_TEMP).
1396 *
1397 * @param dc		the devclass to examine
1398 * @param listp		gives location for array pointer return value
1399 * @param countp	gives location for number of array elements
1400 *			return value
1401 *
1402 * @retval 0		success
1403 * @retval ENOMEM	the array allocation failed
1404 */
1405int
1406devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1407{
1408	driverlink_t dl;
1409	driver_t **list;
1410	int count;
1411
1412	count = 0;
1413	TAILQ_FOREACH(dl, &dc->drivers, link)
1414		count++;
1415	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1416	if (list == NULL)
1417		return (ENOMEM);
1418
1419	count = 0;
1420	TAILQ_FOREACH(dl, &dc->drivers, link) {
1421		list[count] = dl->driver;
1422		count++;
1423	}
1424	*listp = list;
1425	*countp = count;
1426
1427	return (0);
1428}
1429
1430/**
1431 * @brief Get the number of devices in a devclass
1432 *
1433 * @param dc		the devclass to examine
1434 */
1435int
1436devclass_get_count(devclass_t dc)
1437{
1438	int count, i;
1439
1440	count = 0;
1441	for (i = 0; i < dc->maxunit; i++)
1442		if (dc->devices[i])
1443			count++;
1444	return (count);
1445}
1446
1447/**
1448 * @brief Get the maximum unit number used in a devclass
1449 *
1450 * Note that this is one greater than the highest currently-allocated
1451 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1452 * that not even the devclass has been allocated yet.
1453 *
1454 * @param dc		the devclass to examine
1455 */
1456int
1457devclass_get_maxunit(devclass_t dc)
1458{
1459	if (dc == NULL)
1460		return (-1);
1461	return (dc->maxunit);
1462}
1463
1464/**
1465 * @brief Find a free unit number in a devclass
1466 *
1467 * This function searches for the first unused unit number greater
1468 * that or equal to @p unit.
1469 *
1470 * @param dc		the devclass to examine
1471 * @param unit		the first unit number to check
1472 */
1473int
1474devclass_find_free_unit(devclass_t dc, int unit)
1475{
1476	if (dc == NULL)
1477		return (unit);
1478	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1479		unit++;
1480	return (unit);
1481}
1482
1483/**
1484 * @brief Set the parent of a devclass
1485 *
1486 * The parent class is normally initialised automatically by
1487 * DRIVER_MODULE().
1488 *
1489 * @param dc		the devclass to edit
1490 * @param pdc		the new parent devclass
1491 */
1492void
1493devclass_set_parent(devclass_t dc, devclass_t pdc)
1494{
1495	dc->parent = pdc;
1496}
1497
1498/**
1499 * @brief Get the parent of a devclass
1500 *
1501 * @param dc		the devclass to examine
1502 */
1503devclass_t
1504devclass_get_parent(devclass_t dc)
1505{
1506	return (dc->parent);
1507}
1508
1509struct sysctl_ctx_list *
1510devclass_get_sysctl_ctx(devclass_t dc)
1511{
1512	return (&dc->sysctl_ctx);
1513}
1514
1515struct sysctl_oid *
1516devclass_get_sysctl_tree(devclass_t dc)
1517{
1518	return (dc->sysctl_tree);
1519}
1520
1521/**
1522 * @internal
1523 * @brief Allocate a unit number
1524 *
1525 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1526 * will do). The allocated unit number is returned in @p *unitp.
1527
1528 * @param dc		the devclass to allocate from
1529 * @param unitp		points at the location for the allocated unit
1530 *			number
1531 *
1532 * @retval 0		success
1533 * @retval EEXIST	the requested unit number is already allocated
1534 * @retval ENOMEM	memory allocation failure
1535 */
1536static int
1537devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1538{
1539	const char *s;
1540	int unit = *unitp;
1541
1542	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1543
1544	/* Ask the parent bus if it wants to wire this device. */
1545	if (unit == -1)
1546		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1547		    &unit);
1548
1549	/* If we were given a wired unit number, check for existing device */
1550	/* XXX imp XXX */
1551	if (unit != -1) {
1552		if (unit >= 0 && unit < dc->maxunit &&
1553		    dc->devices[unit] != NULL) {
1554			if (bootverbose)
1555				printf("%s: %s%d already exists; skipping it\n",
1556				    dc->name, dc->name, *unitp);
1557			return (EEXIST);
1558		}
1559	} else {
1560		/* Unwired device, find the next available slot for it */
1561		unit = 0;
1562		for (unit = 0;; unit++) {
1563			/* If there is an "at" hint for a unit then skip it. */
1564			if (resource_string_value(dc->name, unit, "at", &s) ==
1565			    0)
1566				continue;
1567
1568			/* If this device slot is already in use, skip it. */
1569			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1570				continue;
1571
1572			break;
1573		}
1574	}
1575
1576	/*
1577	 * We've selected a unit beyond the length of the table, so let's
1578	 * extend the table to make room for all units up to and including
1579	 * this one.
1580	 */
1581	if (unit >= dc->maxunit) {
1582		device_t *newlist, *oldlist;
1583		int newsize;
1584
1585		oldlist = dc->devices;
1586		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1587		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1588		if (!newlist)
1589			return (ENOMEM);
1590		if (oldlist != NULL)
1591			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1592		bzero(newlist + dc->maxunit,
1593		    sizeof(device_t) * (newsize - dc->maxunit));
1594		dc->devices = newlist;
1595		dc->maxunit = newsize;
1596		if (oldlist != NULL)
1597			free(oldlist, M_BUS);
1598	}
1599	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1600
1601	*unitp = unit;
1602	return (0);
1603}
1604
1605/**
1606 * @internal
1607 * @brief Add a device to a devclass
1608 *
1609 * A unit number is allocated for the device (using the device's
1610 * preferred unit number if any) and the device is registered in the
1611 * devclass. This allows the device to be looked up by its unit
1612 * number, e.g. by decoding a dev_t minor number.
1613 *
1614 * @param dc		the devclass to add to
1615 * @param dev		the device to add
1616 *
1617 * @retval 0		success
1618 * @retval EEXIST	the requested unit number is already allocated
1619 * @retval ENOMEM	memory allocation failure
1620 */
1621static int
1622devclass_add_device(devclass_t dc, device_t dev)
1623{
1624	int buflen, error;
1625
1626	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1627
1628	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1629	if (buflen < 0)
1630		return (ENOMEM);
1631	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1632	if (!dev->nameunit)
1633		return (ENOMEM);
1634
1635	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1636		free(dev->nameunit, M_BUS);
1637		dev->nameunit = NULL;
1638		return (error);
1639	}
1640	dc->devices[dev->unit] = dev;
1641	dev->devclass = dc;
1642	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1643
1644	return (0);
1645}
1646
1647/**
1648 * @internal
1649 * @brief Delete a device from a devclass
1650 *
1651 * The device is removed from the devclass's device list and its unit
1652 * number is freed.
1653
1654 * @param dc		the devclass to delete from
1655 * @param dev		the device to delete
1656 *
1657 * @retval 0		success
1658 */
1659static int
1660devclass_delete_device(devclass_t dc, device_t dev)
1661{
1662	if (!dc || !dev)
1663		return (0);
1664
1665	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1666
1667	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1668		panic("devclass_delete_device: inconsistent device class");
1669	dc->devices[dev->unit] = NULL;
1670	if (dev->flags & DF_WILDCARD)
1671		dev->unit = -1;
1672	dev->devclass = NULL;
1673	free(dev->nameunit, M_BUS);
1674	dev->nameunit = NULL;
1675
1676	return (0);
1677}
1678
1679/**
1680 * @internal
1681 * @brief Make a new device and add it as a child of @p parent
1682 *
1683 * @param parent	the parent of the new device
1684 * @param name		the devclass name of the new device or @c NULL
1685 *			to leave the devclass unspecified
1686 * @parem unit		the unit number of the new device of @c -1 to
1687 *			leave the unit number unspecified
1688 *
1689 * @returns the new device
1690 */
1691static device_t
1692make_device(device_t parent, const char *name, int unit)
1693{
1694	device_t dev;
1695	devclass_t dc;
1696
1697	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1698
1699	if (name) {
1700		dc = devclass_find_internal(name, NULL, TRUE);
1701		if (!dc) {
1702			printf("make_device: can't find device class %s\n",
1703			    name);
1704			return (NULL);
1705		}
1706	} else {
1707		dc = NULL;
1708	}
1709
1710	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1711	if (!dev)
1712		return (NULL);
1713
1714	dev->parent = parent;
1715	TAILQ_INIT(&dev->children);
1716	kobj_init((kobj_t) dev, &null_class);
1717	dev->driver = NULL;
1718	dev->devclass = NULL;
1719	dev->unit = unit;
1720	dev->nameunit = NULL;
1721	dev->desc = NULL;
1722	dev->busy = 0;
1723	dev->devflags = 0;
1724	dev->flags = DF_ENABLED;
1725	dev->order = 0;
1726	if (unit == -1)
1727		dev->flags |= DF_WILDCARD;
1728	if (name) {
1729		dev->flags |= DF_FIXEDCLASS;
1730		if (devclass_add_device(dc, dev)) {
1731			kobj_delete((kobj_t) dev, M_BUS);
1732			return (NULL);
1733		}
1734	}
1735	dev->ivars = NULL;
1736	dev->softc = NULL;
1737
1738	dev->state = DS_NOTPRESENT;
1739
1740	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1741	bus_data_generation_update();
1742
1743	return (dev);
1744}
1745
1746/**
1747 * @internal
1748 * @brief Print a description of a device.
1749 */
1750static int
1751device_print_child(device_t dev, device_t child)
1752{
1753	int retval = 0;
1754
1755	if (device_is_alive(child))
1756		retval += BUS_PRINT_CHILD(dev, child);
1757	else
1758		retval += device_printf(child, " not found\n");
1759
1760	return (retval);
1761}
1762
1763/**
1764 * @brief Create a new device
1765 *
1766 * This creates a new device and adds it as a child of an existing
1767 * parent device. The new device will be added after the last existing
1768 * child with order zero.
1769 *
1770 * @param dev		the device which will be the parent of the
1771 *			new child device
1772 * @param name		devclass name for new device or @c NULL if not
1773 *			specified
1774 * @param unit		unit number for new device or @c -1 if not
1775 *			specified
1776 *
1777 * @returns		the new device
1778 */
1779device_t
1780device_add_child(device_t dev, const char *name, int unit)
1781{
1782	return (device_add_child_ordered(dev, 0, name, unit));
1783}
1784
1785/**
1786 * @brief Create a new device
1787 *
1788 * This creates a new device and adds it as a child of an existing
1789 * parent device. The new device will be added after the last existing
1790 * child with the same order.
1791 *
1792 * @param dev		the device which will be the parent of the
1793 *			new child device
1794 * @param order		a value which is used to partially sort the
1795 *			children of @p dev - devices created using
1796 *			lower values of @p order appear first in @p
1797 *			dev's list of children
1798 * @param name		devclass name for new device or @c NULL if not
1799 *			specified
1800 * @param unit		unit number for new device or @c -1 if not
1801 *			specified
1802 *
1803 * @returns		the new device
1804 */
1805device_t
1806device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1807{
1808	device_t child;
1809	device_t place;
1810
1811	PDEBUG(("%s at %s with order %u as unit %d",
1812	    name, DEVICENAME(dev), order, unit));
1813	KASSERT(name != NULL || unit == -1,
1814	    ("child device with wildcard name and specific unit number"));
1815
1816	child = make_device(dev, name, unit);
1817	if (child == NULL)
1818		return (child);
1819	child->order = order;
1820
1821	TAILQ_FOREACH(place, &dev->children, link) {
1822		if (place->order > order)
1823			break;
1824	}
1825
1826	if (place) {
1827		/*
1828		 * The device 'place' is the first device whose order is
1829		 * greater than the new child.
1830		 */
1831		TAILQ_INSERT_BEFORE(place, child, link);
1832	} else {
1833		/*
1834		 * The new child's order is greater or equal to the order of
1835		 * any existing device. Add the child to the tail of the list.
1836		 */
1837		TAILQ_INSERT_TAIL(&dev->children, child, link);
1838	}
1839
1840	bus_data_generation_update();
1841	return (child);
1842}
1843
1844/**
1845 * @brief Delete a device
1846 *
1847 * This function deletes a device along with all of its children. If
1848 * the device currently has a driver attached to it, the device is
1849 * detached first using device_detach().
1850 *
1851 * @param dev		the parent device
1852 * @param child		the device to delete
1853 *
1854 * @retval 0		success
1855 * @retval non-zero	a unit error code describing the error
1856 */
1857int
1858device_delete_child(device_t dev, device_t child)
1859{
1860	int error;
1861	device_t grandchild;
1862
1863	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1864
1865	/* remove children first */
1866	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1867		error = device_delete_child(child, grandchild);
1868		if (error)
1869			return (error);
1870	}
1871
1872	if ((error = device_detach(child)) != 0)
1873		return (error);
1874	if (child->devclass)
1875		devclass_delete_device(child->devclass, child);
1876	TAILQ_REMOVE(&dev->children, child, link);
1877	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1878	kobj_delete((kobj_t) child, M_BUS);
1879
1880	bus_data_generation_update();
1881	return (0);
1882}
1883
1884/**
1885 * @brief Delete all children devices of the given device, if any.
1886 *
1887 * This function deletes all children devices of the given device, if
1888 * any, using the device_delete_child() function for each device it
1889 * finds. If a child device cannot be deleted, this function will
1890 * return an error code.
1891 *
1892 * @param dev		the parent device
1893 *
1894 * @retval 0		success
1895 * @retval non-zero	a device would not detach
1896 */
1897int
1898device_delete_children(device_t dev)
1899{
1900	device_t child;
1901	int error;
1902
1903	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1904
1905	error = 0;
1906
1907	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1908		error = device_delete_child(dev, child);
1909		if (error) {
1910			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1911			break;
1912		}
1913	}
1914	return (error);
1915}
1916
1917/**
1918 * @brief Find a device given a unit number
1919 *
1920 * This is similar to devclass_get_devices() but only searches for
1921 * devices which have @p dev as a parent.
1922 *
1923 * @param dev		the parent device to search
1924 * @param unit		the unit number to search for.  If the unit is -1,
1925 *			return the first child of @p dev which has name
1926 *			@p classname (that is, the one with the lowest unit.)
1927 *
1928 * @returns		the device with the given unit number or @c
1929 *			NULL if there is no such device
1930 */
1931device_t
1932device_find_child(device_t dev, const char *classname, int unit)
1933{
1934	devclass_t dc;
1935	device_t child;
1936
1937	dc = devclass_find(classname);
1938	if (!dc)
1939		return (NULL);
1940
1941	if (unit != -1) {
1942		child = devclass_get_device(dc, unit);
1943		if (child && child->parent == dev)
1944			return (child);
1945	} else {
1946		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1947			child = devclass_get_device(dc, unit);
1948			if (child && child->parent == dev)
1949				return (child);
1950		}
1951	}
1952	return (NULL);
1953}
1954
1955/**
1956 * @internal
1957 */
1958static driverlink_t
1959first_matching_driver(devclass_t dc, device_t dev)
1960{
1961	if (dev->devclass)
1962		return (devclass_find_driver_internal(dc, dev->devclass->name));
1963	return (TAILQ_FIRST(&dc->drivers));
1964}
1965
1966/**
1967 * @internal
1968 */
1969static driverlink_t
1970next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1971{
1972	if (dev->devclass) {
1973		driverlink_t dl;
1974		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1975			if (!strcmp(dev->devclass->name, dl->driver->name))
1976				return (dl);
1977		return (NULL);
1978	}
1979	return (TAILQ_NEXT(last, link));
1980}
1981
1982/**
1983 * @internal
1984 */
1985int
1986device_probe_child(device_t dev, device_t child)
1987{
1988	devclass_t dc;
1989	driverlink_t best = NULL;
1990	driverlink_t dl;
1991	int result, pri = 0;
1992	int hasclass = (child->devclass != NULL);
1993
1994	GIANT_REQUIRED;
1995
1996	dc = dev->devclass;
1997	if (!dc)
1998		panic("device_probe_child: parent device has no devclass");
1999
2000	/*
2001	 * If the state is already probed, then return.  However, don't
2002	 * return if we can rebid this object.
2003	 */
2004	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2005		return (0);
2006
2007	for (; dc; dc = dc->parent) {
2008		for (dl = first_matching_driver(dc, child);
2009		     dl;
2010		     dl = next_matching_driver(dc, child, dl)) {
2011			/* If this driver's pass is too high, then ignore it. */
2012			if (dl->pass > bus_current_pass)
2013				continue;
2014
2015			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2016			result = device_set_driver(child, dl->driver);
2017			if (result == ENOMEM)
2018				return (result);
2019			else if (result != 0)
2020				continue;
2021			if (!hasclass) {
2022				if (device_set_devclass(child,
2023				    dl->driver->name) != 0) {
2024					char const * devname =
2025					    device_get_name(child);
2026					if (devname == NULL)
2027						devname = "(unknown)";
2028					printf("driver bug: Unable to set "
2029					    "devclass (class: %s "
2030					    "devname: %s)\n",
2031					    dl->driver->name,
2032					    devname);
2033					(void)device_set_driver(child, NULL);
2034					continue;
2035				}
2036			}
2037
2038			/* Fetch any flags for the device before probing. */
2039			resource_int_value(dl->driver->name, child->unit,
2040			    "flags", &child->devflags);
2041
2042			result = DEVICE_PROBE(child);
2043
2044			/* Reset flags and devclass before the next probe. */
2045			child->devflags = 0;
2046			if (!hasclass)
2047				(void)device_set_devclass(child, NULL);
2048
2049			/*
2050			 * If the driver returns SUCCESS, there can be
2051			 * no higher match for this device.
2052			 */
2053			if (result == 0) {
2054				best = dl;
2055				pri = 0;
2056				break;
2057			}
2058
2059			/*
2060			 * The driver returned an error so it
2061			 * certainly doesn't match.
2062			 */
2063			if (result > 0) {
2064				(void)device_set_driver(child, NULL);
2065				continue;
2066			}
2067
2068			/*
2069			 * A priority lower than SUCCESS, remember the
2070			 * best matching driver. Initialise the value
2071			 * of pri for the first match.
2072			 */
2073			if (best == NULL || result > pri) {
2074				/*
2075				 * Probes that return BUS_PROBE_NOWILDCARD
2076				 * or lower only match when they are set
2077				 * in stone by the parent bus.
2078				 */
2079				if (result <= BUS_PROBE_NOWILDCARD &&
2080				    child->flags & DF_WILDCARD)
2081					continue;
2082				best = dl;
2083				pri = result;
2084				continue;
2085			}
2086		}
2087		/*
2088		 * If we have an unambiguous match in this devclass,
2089		 * don't look in the parent.
2090		 */
2091		if (best && pri == 0)
2092			break;
2093	}
2094
2095	/*
2096	 * If we found a driver, change state and initialise the devclass.
2097	 */
2098	/* XXX What happens if we rebid and got no best? */
2099	if (best) {
2100		/*
2101		 * If this device was attached, and we were asked to
2102		 * rescan, and it is a different driver, then we have
2103		 * to detach the old driver and reattach this new one.
2104		 * Note, we don't have to check for DF_REBID here
2105		 * because if the state is > DS_ALIVE, we know it must
2106		 * be.
2107		 *
2108		 * This assumes that all DF_REBID drivers can have
2109		 * their probe routine called at any time and that
2110		 * they are idempotent as well as completely benign in
2111		 * normal operations.
2112		 *
2113		 * We also have to make sure that the detach
2114		 * succeeded, otherwise we fail the operation (or
2115		 * maybe it should just fail silently?  I'm torn).
2116		 */
2117		if (child->state > DS_ALIVE && best->driver != child->driver)
2118			if ((result = device_detach(dev)) != 0)
2119				return (result);
2120
2121		/* Set the winning driver, devclass, and flags. */
2122		if (!child->devclass) {
2123			result = device_set_devclass(child, best->driver->name);
2124			if (result != 0)
2125				return (result);
2126		}
2127		result = device_set_driver(child, best->driver);
2128		if (result != 0)
2129			return (result);
2130		resource_int_value(best->driver->name, child->unit,
2131		    "flags", &child->devflags);
2132
2133		if (pri < 0) {
2134			/*
2135			 * A bit bogus. Call the probe method again to make
2136			 * sure that we have the right description.
2137			 */
2138			DEVICE_PROBE(child);
2139#if 0
2140			child->flags |= DF_REBID;
2141#endif
2142		} else
2143			child->flags &= ~DF_REBID;
2144		child->state = DS_ALIVE;
2145
2146		bus_data_generation_update();
2147		return (0);
2148	}
2149
2150	return (ENXIO);
2151}
2152
2153/**
2154 * @brief Return the parent of a device
2155 */
2156device_t
2157device_get_parent(device_t dev)
2158{
2159	return (dev->parent);
2160}
2161
2162/**
2163 * @brief Get a list of children of a device
2164 *
2165 * An array containing a list of all the children of the given device
2166 * is allocated and returned in @p *devlistp. The number of devices
2167 * in the array is returned in @p *devcountp. The caller should free
2168 * the array using @c free(p, M_TEMP).
2169 *
2170 * @param dev		the device to examine
2171 * @param devlistp	points at location for array pointer return
2172 *			value
2173 * @param devcountp	points at location for array size return value
2174 *
2175 * @retval 0		success
2176 * @retval ENOMEM	the array allocation failed
2177 */
2178int
2179device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2180{
2181	int count;
2182	device_t child;
2183	device_t *list;
2184
2185	count = 0;
2186	TAILQ_FOREACH(child, &dev->children, link) {
2187		count++;
2188	}
2189	if (count == 0) {
2190		*devlistp = NULL;
2191		*devcountp = 0;
2192		return (0);
2193	}
2194
2195	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2196	if (!list)
2197		return (ENOMEM);
2198
2199	count = 0;
2200	TAILQ_FOREACH(child, &dev->children, link) {
2201		list[count] = child;
2202		count++;
2203	}
2204
2205	*devlistp = list;
2206	*devcountp = count;
2207
2208	return (0);
2209}
2210
2211/**
2212 * @brief Return the current driver for the device or @c NULL if there
2213 * is no driver currently attached
2214 */
2215driver_t *
2216device_get_driver(device_t dev)
2217{
2218	return (dev->driver);
2219}
2220
2221/**
2222 * @brief Return the current devclass for the device or @c NULL if
2223 * there is none.
2224 */
2225devclass_t
2226device_get_devclass(device_t dev)
2227{
2228	return (dev->devclass);
2229}
2230
2231/**
2232 * @brief Return the name of the device's devclass or @c NULL if there
2233 * is none.
2234 */
2235const char *
2236device_get_name(device_t dev)
2237{
2238	if (dev != NULL && dev->devclass)
2239		return (devclass_get_name(dev->devclass));
2240	return (NULL);
2241}
2242
2243/**
2244 * @brief Return a string containing the device's devclass name
2245 * followed by an ascii representation of the device's unit number
2246 * (e.g. @c "foo2").
2247 */
2248const char *
2249device_get_nameunit(device_t dev)
2250{
2251	return (dev->nameunit);
2252}
2253
2254/**
2255 * @brief Return the device's unit number.
2256 */
2257int
2258device_get_unit(device_t dev)
2259{
2260	return (dev->unit);
2261}
2262
2263/**
2264 * @brief Return the device's description string
2265 */
2266const char *
2267device_get_desc(device_t dev)
2268{
2269	return (dev->desc);
2270}
2271
2272/**
2273 * @brief Return the device's flags
2274 */
2275uint32_t
2276device_get_flags(device_t dev)
2277{
2278	return (dev->devflags);
2279}
2280
2281struct sysctl_ctx_list *
2282device_get_sysctl_ctx(device_t dev)
2283{
2284	return (&dev->sysctl_ctx);
2285}
2286
2287struct sysctl_oid *
2288device_get_sysctl_tree(device_t dev)
2289{
2290	return (dev->sysctl_tree);
2291}
2292
2293/**
2294 * @brief Print the name of the device followed by a colon and a space
2295 *
2296 * @returns the number of characters printed
2297 */
2298int
2299device_print_prettyname(device_t dev)
2300{
2301	const char *name = device_get_name(dev);
2302
2303	if (name == NULL)
2304		return (printf("unknown: "));
2305	return (printf("%s%d: ", name, device_get_unit(dev)));
2306}
2307
2308/**
2309 * @brief Print the name of the device followed by a colon, a space
2310 * and the result of calling vprintf() with the value of @p fmt and
2311 * the following arguments.
2312 *
2313 * @returns the number of characters printed
2314 */
2315int
2316device_printf(device_t dev, const char * fmt, ...)
2317{
2318	va_list ap;
2319	int retval;
2320
2321	retval = device_print_prettyname(dev);
2322	va_start(ap, fmt);
2323	retval += vprintf(fmt, ap);
2324	va_end(ap);
2325	return (retval);
2326}
2327
2328/**
2329 * @internal
2330 */
2331static void
2332device_set_desc_internal(device_t dev, const char* desc, int copy)
2333{
2334	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2335		free(dev->desc, M_BUS);
2336		dev->flags &= ~DF_DESCMALLOCED;
2337		dev->desc = NULL;
2338	}
2339
2340	if (copy && desc) {
2341		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2342		if (dev->desc) {
2343			strcpy(dev->desc, desc);
2344			dev->flags |= DF_DESCMALLOCED;
2345		}
2346	} else {
2347		/* Avoid a -Wcast-qual warning */
2348		dev->desc = (char *)(uintptr_t) desc;
2349	}
2350
2351	bus_data_generation_update();
2352}
2353
2354/**
2355 * @brief Set the device's description
2356 *
2357 * The value of @c desc should be a string constant that will not
2358 * change (at least until the description is changed in a subsequent
2359 * call to device_set_desc() or device_set_desc_copy()).
2360 */
2361void
2362device_set_desc(device_t dev, const char* desc)
2363{
2364	device_set_desc_internal(dev, desc, FALSE);
2365}
2366
2367/**
2368 * @brief Set the device's description
2369 *
2370 * The string pointed to by @c desc is copied. Use this function if
2371 * the device description is generated, (e.g. with sprintf()).
2372 */
2373void
2374device_set_desc_copy(device_t dev, const char* desc)
2375{
2376	device_set_desc_internal(dev, desc, TRUE);
2377}
2378
2379/**
2380 * @brief Set the device's flags
2381 */
2382void
2383device_set_flags(device_t dev, uint32_t flags)
2384{
2385	dev->devflags = flags;
2386}
2387
2388/**
2389 * @brief Return the device's softc field
2390 *
2391 * The softc is allocated and zeroed when a driver is attached, based
2392 * on the size field of the driver.
2393 */
2394void *
2395device_get_softc(device_t dev)
2396{
2397	return (dev->softc);
2398}
2399
2400/**
2401 * @brief Set the device's softc field
2402 *
2403 * Most drivers do not need to use this since the softc is allocated
2404 * automatically when the driver is attached.
2405 */
2406void
2407device_set_softc(device_t dev, void *softc)
2408{
2409	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2410		free(dev->softc, M_BUS_SC);
2411	dev->softc = softc;
2412	if (dev->softc)
2413		dev->flags |= DF_EXTERNALSOFTC;
2414	else
2415		dev->flags &= ~DF_EXTERNALSOFTC;
2416}
2417
2418/**
2419 * @brief Free claimed softc
2420 *
2421 * Most drivers do not need to use this since the softc is freed
2422 * automatically when the driver is detached.
2423 */
2424void
2425device_free_softc(void *softc)
2426{
2427	free(softc, M_BUS_SC);
2428}
2429
2430/**
2431 * @brief Claim softc
2432 *
2433 * This function can be used to let the driver free the automatically
2434 * allocated softc using "device_free_softc()". This function is
2435 * useful when the driver is refcounting the softc and the softc
2436 * cannot be freed when the "device_detach" method is called.
2437 */
2438void
2439device_claim_softc(device_t dev)
2440{
2441	if (dev->softc)
2442		dev->flags |= DF_EXTERNALSOFTC;
2443	else
2444		dev->flags &= ~DF_EXTERNALSOFTC;
2445}
2446
2447/**
2448 * @brief Get the device's ivars field
2449 *
2450 * The ivars field is used by the parent device to store per-device
2451 * state (e.g. the physical location of the device or a list of
2452 * resources).
2453 */
2454void *
2455device_get_ivars(device_t dev)
2456{
2457
2458	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2459	return (dev->ivars);
2460}
2461
2462/**
2463 * @brief Set the device's ivars field
2464 */
2465void
2466device_set_ivars(device_t dev, void * ivars)
2467{
2468
2469	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2470	dev->ivars = ivars;
2471}
2472
2473/**
2474 * @brief Return the device's state
2475 */
2476device_state_t
2477device_get_state(device_t dev)
2478{
2479	return (dev->state);
2480}
2481
2482/**
2483 * @brief Set the DF_ENABLED flag for the device
2484 */
2485void
2486device_enable(device_t dev)
2487{
2488	dev->flags |= DF_ENABLED;
2489}
2490
2491/**
2492 * @brief Clear the DF_ENABLED flag for the device
2493 */
2494void
2495device_disable(device_t dev)
2496{
2497	dev->flags &= ~DF_ENABLED;
2498}
2499
2500/**
2501 * @brief Increment the busy counter for the device
2502 */
2503void
2504device_busy(device_t dev)
2505{
2506	if (dev->state < DS_ATTACHING)
2507		panic("device_busy: called for unattached device");
2508	if (dev->busy == 0 && dev->parent)
2509		device_busy(dev->parent);
2510	dev->busy++;
2511	if (dev->state == DS_ATTACHED)
2512		dev->state = DS_BUSY;
2513}
2514
2515/**
2516 * @brief Decrement the busy counter for the device
2517 */
2518void
2519device_unbusy(device_t dev)
2520{
2521	if (dev->busy != 0 && dev->state != DS_BUSY &&
2522	    dev->state != DS_ATTACHING)
2523		panic("device_unbusy: called for non-busy device %s",
2524		    device_get_nameunit(dev));
2525	dev->busy--;
2526	if (dev->busy == 0) {
2527		if (dev->parent)
2528			device_unbusy(dev->parent);
2529		if (dev->state == DS_BUSY)
2530			dev->state = DS_ATTACHED;
2531	}
2532}
2533
2534/**
2535 * @brief Set the DF_QUIET flag for the device
2536 */
2537void
2538device_quiet(device_t dev)
2539{
2540	dev->flags |= DF_QUIET;
2541}
2542
2543/**
2544 * @brief Clear the DF_QUIET flag for the device
2545 */
2546void
2547device_verbose(device_t dev)
2548{
2549	dev->flags &= ~DF_QUIET;
2550}
2551
2552/**
2553 * @brief Return non-zero if the DF_QUIET flag is set on the device
2554 */
2555int
2556device_is_quiet(device_t dev)
2557{
2558	return ((dev->flags & DF_QUIET) != 0);
2559}
2560
2561/**
2562 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2563 */
2564int
2565device_is_enabled(device_t dev)
2566{
2567	return ((dev->flags & DF_ENABLED) != 0);
2568}
2569
2570/**
2571 * @brief Return non-zero if the device was successfully probed
2572 */
2573int
2574device_is_alive(device_t dev)
2575{
2576	return (dev->state >= DS_ALIVE);
2577}
2578
2579/**
2580 * @brief Return non-zero if the device currently has a driver
2581 * attached to it
2582 */
2583int
2584device_is_attached(device_t dev)
2585{
2586	return (dev->state >= DS_ATTACHED);
2587}
2588
2589/**
2590 * @brief Set the devclass of a device
2591 * @see devclass_add_device().
2592 */
2593int
2594device_set_devclass(device_t dev, const char *classname)
2595{
2596	devclass_t dc;
2597	int error;
2598
2599	if (!classname) {
2600		if (dev->devclass)
2601			devclass_delete_device(dev->devclass, dev);
2602		return (0);
2603	}
2604
2605	if (dev->devclass) {
2606		printf("device_set_devclass: device class already set\n");
2607		return (EINVAL);
2608	}
2609
2610	dc = devclass_find_internal(classname, NULL, TRUE);
2611	if (!dc)
2612		return (ENOMEM);
2613
2614	error = devclass_add_device(dc, dev);
2615
2616	bus_data_generation_update();
2617	return (error);
2618}
2619
2620/**
2621 * @brief Set the driver of a device
2622 *
2623 * @retval 0		success
2624 * @retval EBUSY	the device already has a driver attached
2625 * @retval ENOMEM	a memory allocation failure occurred
2626 */
2627int
2628device_set_driver(device_t dev, driver_t *driver)
2629{
2630	if (dev->state >= DS_ATTACHED)
2631		return (EBUSY);
2632
2633	if (dev->driver == driver)
2634		return (0);
2635
2636	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2637		free(dev->softc, M_BUS_SC);
2638		dev->softc = NULL;
2639	}
2640	device_set_desc(dev, NULL);
2641	kobj_delete((kobj_t) dev, NULL);
2642	dev->driver = driver;
2643	if (driver) {
2644		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2645		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2646			dev->softc = malloc(driver->size, M_BUS_SC,
2647			    M_NOWAIT | M_ZERO);
2648			if (!dev->softc) {
2649				kobj_delete((kobj_t) dev, NULL);
2650				kobj_init((kobj_t) dev, &null_class);
2651				dev->driver = NULL;
2652				return (ENOMEM);
2653			}
2654		}
2655	} else {
2656		kobj_init((kobj_t) dev, &null_class);
2657	}
2658
2659	bus_data_generation_update();
2660	return (0);
2661}
2662
2663/**
2664 * @brief Probe a device, and return this status.
2665 *
2666 * This function is the core of the device autoconfiguration
2667 * system. Its purpose is to select a suitable driver for a device and
2668 * then call that driver to initialise the hardware appropriately. The
2669 * driver is selected by calling the DEVICE_PROBE() method of a set of
2670 * candidate drivers and then choosing the driver which returned the
2671 * best value. This driver is then attached to the device using
2672 * device_attach().
2673 *
2674 * The set of suitable drivers is taken from the list of drivers in
2675 * the parent device's devclass. If the device was originally created
2676 * with a specific class name (see device_add_child()), only drivers
2677 * with that name are probed, otherwise all drivers in the devclass
2678 * are probed. If no drivers return successful probe values in the
2679 * parent devclass, the search continues in the parent of that
2680 * devclass (see devclass_get_parent()) if any.
2681 *
2682 * @param dev		the device to initialise
2683 *
2684 * @retval 0		success
2685 * @retval ENXIO	no driver was found
2686 * @retval ENOMEM	memory allocation failure
2687 * @retval non-zero	some other unix error code
2688 * @retval -1		Device already attached
2689 */
2690int
2691device_probe(device_t dev)
2692{
2693	int error;
2694
2695	GIANT_REQUIRED;
2696
2697	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2698		return (-1);
2699
2700	if (!(dev->flags & DF_ENABLED)) {
2701		if (bootverbose && device_get_name(dev) != NULL) {
2702			device_print_prettyname(dev);
2703			printf("not probed (disabled)\n");
2704		}
2705		return (-1);
2706	}
2707	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2708		if (bus_current_pass == BUS_PASS_DEFAULT &&
2709		    !(dev->flags & DF_DONENOMATCH)) {
2710			BUS_PROBE_NOMATCH(dev->parent, dev);
2711			devnomatch(dev);
2712			dev->flags |= DF_DONENOMATCH;
2713		}
2714		return (error);
2715	}
2716	return (0);
2717}
2718
2719/**
2720 * @brief Probe a device and attach a driver if possible
2721 *
2722 * calls device_probe() and attaches if that was successful.
2723 */
2724int
2725device_probe_and_attach(device_t dev)
2726{
2727	int error;
2728
2729	GIANT_REQUIRED;
2730
2731	error = device_probe(dev);
2732	if (error == -1)
2733		return (0);
2734	else if (error != 0)
2735		return (error);
2736	return (device_attach(dev));
2737}
2738
2739/**
2740 * @brief Attach a device driver to a device
2741 *
2742 * This function is a wrapper around the DEVICE_ATTACH() driver
2743 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2744 * device's sysctl tree, optionally prints a description of the device
2745 * and queues a notification event for user-based device management
2746 * services.
2747 *
2748 * Normally this function is only called internally from
2749 * device_probe_and_attach().
2750 *
2751 * @param dev		the device to initialise
2752 *
2753 * @retval 0		success
2754 * @retval ENXIO	no driver was found
2755 * @retval ENOMEM	memory allocation failure
2756 * @retval non-zero	some other unix error code
2757 */
2758int
2759device_attach(device_t dev)
2760{
2761	int error;
2762
2763	device_sysctl_init(dev);
2764	if (!device_is_quiet(dev))
2765		device_print_child(dev->parent, dev);
2766	dev->state = DS_ATTACHING;
2767	if ((error = DEVICE_ATTACH(dev)) != 0) {
2768		printf("device_attach: %s%d attach returned %d\n",
2769		    dev->driver->name, dev->unit, error);
2770		if (!(dev->flags & DF_FIXEDCLASS))
2771			devclass_delete_device(dev->devclass, dev);
2772		(void)device_set_driver(dev, NULL);
2773		device_sysctl_fini(dev);
2774		KASSERT(dev->busy == 0, ("attach failed but busy"));
2775		dev->state = DS_NOTPRESENT;
2776		return (error);
2777	}
2778	device_sysctl_update(dev);
2779	if (dev->busy)
2780		dev->state = DS_BUSY;
2781	else
2782		dev->state = DS_ATTACHED;
2783	dev->flags &= ~DF_DONENOMATCH;
2784	devadded(dev);
2785	return (0);
2786}
2787
2788/**
2789 * @brief Detach a driver from a device
2790 *
2791 * This function is a wrapper around the DEVICE_DETACH() driver
2792 * method. If the call to DEVICE_DETACH() succeeds, it calls
2793 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2794 * notification event for user-based device management services and
2795 * cleans up the device's sysctl tree.
2796 *
2797 * @param dev		the device to un-initialise
2798 *
2799 * @retval 0		success
2800 * @retval ENXIO	no driver was found
2801 * @retval ENOMEM	memory allocation failure
2802 * @retval non-zero	some other unix error code
2803 */
2804int
2805device_detach(device_t dev)
2806{
2807	int error;
2808
2809	GIANT_REQUIRED;
2810
2811	PDEBUG(("%s", DEVICENAME(dev)));
2812	if (dev->state == DS_BUSY)
2813		return (EBUSY);
2814	if (dev->state != DS_ATTACHED)
2815		return (0);
2816
2817	if ((error = DEVICE_DETACH(dev)) != 0)
2818		return (error);
2819	devremoved(dev);
2820	if (!device_is_quiet(dev))
2821		device_printf(dev, "detached\n");
2822	if (dev->parent)
2823		BUS_CHILD_DETACHED(dev->parent, dev);
2824
2825	if (!(dev->flags & DF_FIXEDCLASS))
2826		devclass_delete_device(dev->devclass, dev);
2827
2828	dev->state = DS_NOTPRESENT;
2829	(void)device_set_driver(dev, NULL);
2830	device_sysctl_fini(dev);
2831
2832	return (0);
2833}
2834
2835/**
2836 * @brief Tells a driver to quiesce itself.
2837 *
2838 * This function is a wrapper around the DEVICE_QUIESCE() driver
2839 * method. If the call to DEVICE_QUIESCE() succeeds.
2840 *
2841 * @param dev		the device to quiesce
2842 *
2843 * @retval 0		success
2844 * @retval ENXIO	no driver was found
2845 * @retval ENOMEM	memory allocation failure
2846 * @retval non-zero	some other unix error code
2847 */
2848int
2849device_quiesce(device_t dev)
2850{
2851
2852	PDEBUG(("%s", DEVICENAME(dev)));
2853	if (dev->state == DS_BUSY)
2854		return (EBUSY);
2855	if (dev->state != DS_ATTACHED)
2856		return (0);
2857
2858	return (DEVICE_QUIESCE(dev));
2859}
2860
2861/**
2862 * @brief Notify a device of system shutdown
2863 *
2864 * This function calls the DEVICE_SHUTDOWN() driver method if the
2865 * device currently has an attached driver.
2866 *
2867 * @returns the value returned by DEVICE_SHUTDOWN()
2868 */
2869int
2870device_shutdown(device_t dev)
2871{
2872	if (dev->state < DS_ATTACHED)
2873		return (0);
2874	return (DEVICE_SHUTDOWN(dev));
2875}
2876
2877/**
2878 * @brief Set the unit number of a device
2879 *
2880 * This function can be used to override the unit number used for a
2881 * device (e.g. to wire a device to a pre-configured unit number).
2882 */
2883int
2884device_set_unit(device_t dev, int unit)
2885{
2886	devclass_t dc;
2887	int err;
2888
2889	dc = device_get_devclass(dev);
2890	if (unit < dc->maxunit && dc->devices[unit])
2891		return (EBUSY);
2892	err = devclass_delete_device(dc, dev);
2893	if (err)
2894		return (err);
2895	dev->unit = unit;
2896	err = devclass_add_device(dc, dev);
2897	if (err)
2898		return (err);
2899
2900	bus_data_generation_update();
2901	return (0);
2902}
2903
2904/*======================================*/
2905/*
2906 * Some useful method implementations to make life easier for bus drivers.
2907 */
2908
2909/**
2910 * @brief Initialise a resource list.
2911 *
2912 * @param rl		the resource list to initialise
2913 */
2914void
2915resource_list_init(struct resource_list *rl)
2916{
2917	STAILQ_INIT(rl);
2918}
2919
2920/**
2921 * @brief Reclaim memory used by a resource list.
2922 *
2923 * This function frees the memory for all resource entries on the list
2924 * (if any).
2925 *
2926 * @param rl		the resource list to free
2927 */
2928void
2929resource_list_free(struct resource_list *rl)
2930{
2931	struct resource_list_entry *rle;
2932
2933	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2934		if (rle->res)
2935			panic("resource_list_free: resource entry is busy");
2936		STAILQ_REMOVE_HEAD(rl, link);
2937		free(rle, M_BUS);
2938	}
2939}
2940
2941/**
2942 * @brief Add a resource entry.
2943 *
2944 * This function adds a resource entry using the given @p type, @p
2945 * start, @p end and @p count values. A rid value is chosen by
2946 * searching sequentially for the first unused rid starting at zero.
2947 *
2948 * @param rl		the resource list to edit
2949 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2950 * @param start		the start address of the resource
2951 * @param end		the end address of the resource
2952 * @param count		XXX end-start+1
2953 */
2954int
2955resource_list_add_next(struct resource_list *rl, int type, u_long start,
2956    u_long end, u_long count)
2957{
2958	int rid;
2959
2960	rid = 0;
2961	while (resource_list_find(rl, type, rid) != NULL)
2962		rid++;
2963	resource_list_add(rl, type, rid, start, end, count);
2964	return (rid);
2965}
2966
2967/**
2968 * @brief Add or modify a resource entry.
2969 *
2970 * If an existing entry exists with the same type and rid, it will be
2971 * modified using the given values of @p start, @p end and @p
2972 * count. If no entry exists, a new one will be created using the
2973 * given values.  The resource list entry that matches is then returned.
2974 *
2975 * @param rl		the resource list to edit
2976 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2977 * @param rid		the resource identifier
2978 * @param start		the start address of the resource
2979 * @param end		the end address of the resource
2980 * @param count		XXX end-start+1
2981 */
2982struct resource_list_entry *
2983resource_list_add(struct resource_list *rl, int type, int rid,
2984    u_long start, u_long end, u_long count)
2985{
2986	struct resource_list_entry *rle;
2987
2988	rle = resource_list_find(rl, type, rid);
2989	if (!rle) {
2990		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2991		    M_NOWAIT);
2992		if (!rle)
2993			panic("resource_list_add: can't record entry");
2994		STAILQ_INSERT_TAIL(rl, rle, link);
2995		rle->type = type;
2996		rle->rid = rid;
2997		rle->res = NULL;
2998		rle->flags = 0;
2999	}
3000
3001	if (rle->res)
3002		panic("resource_list_add: resource entry is busy");
3003
3004	rle->start = start;
3005	rle->end = end;
3006	rle->count = count;
3007	return (rle);
3008}
3009
3010/**
3011 * @brief Determine if a resource entry is busy.
3012 *
3013 * Returns true if a resource entry is busy meaning that it has an
3014 * associated resource that is not an unallocated "reserved" resource.
3015 *
3016 * @param rl		the resource list to search
3017 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3018 * @param rid		the resource identifier
3019 *
3020 * @returns Non-zero if the entry is busy, zero otherwise.
3021 */
3022int
3023resource_list_busy(struct resource_list *rl, int type, int rid)
3024{
3025	struct resource_list_entry *rle;
3026
3027	rle = resource_list_find(rl, type, rid);
3028	if (rle == NULL || rle->res == NULL)
3029		return (0);
3030	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3031		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3032		    ("reserved resource is active"));
3033		return (0);
3034	}
3035	return (1);
3036}
3037
3038/**
3039 * @brief Determine if a resource entry is reserved.
3040 *
3041 * Returns true if a resource entry is reserved meaning that it has an
3042 * associated "reserved" resource.  The resource can either be
3043 * allocated or unallocated.
3044 *
3045 * @param rl		the resource list to search
3046 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3047 * @param rid		the resource identifier
3048 *
3049 * @returns Non-zero if the entry is reserved, zero otherwise.
3050 */
3051int
3052resource_list_reserved(struct resource_list *rl, int type, int rid)
3053{
3054	struct resource_list_entry *rle;
3055
3056	rle = resource_list_find(rl, type, rid);
3057	if (rle != NULL && rle->flags & RLE_RESERVED)
3058		return (1);
3059	return (0);
3060}
3061
3062/**
3063 * @brief Find a resource entry by type and rid.
3064 *
3065 * @param rl		the resource list to search
3066 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3067 * @param rid		the resource identifier
3068 *
3069 * @returns the resource entry pointer or NULL if there is no such
3070 * entry.
3071 */
3072struct resource_list_entry *
3073resource_list_find(struct resource_list *rl, int type, int rid)
3074{
3075	struct resource_list_entry *rle;
3076
3077	STAILQ_FOREACH(rle, rl, link) {
3078		if (rle->type == type && rle->rid == rid)
3079			return (rle);
3080	}
3081	return (NULL);
3082}
3083
3084/**
3085 * @brief Delete a resource entry.
3086 *
3087 * @param rl		the resource list to edit
3088 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3089 * @param rid		the resource identifier
3090 */
3091void
3092resource_list_delete(struct resource_list *rl, int type, int rid)
3093{
3094	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3095
3096	if (rle) {
3097		if (rle->res != NULL)
3098			panic("resource_list_delete: resource has not been released");
3099		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3100		free(rle, M_BUS);
3101	}
3102}
3103
3104/**
3105 * @brief Allocate a reserved resource
3106 *
3107 * This can be used by busses to force the allocation of resources
3108 * that are always active in the system even if they are not allocated
3109 * by a driver (e.g. PCI BARs).  This function is usually called when
3110 * adding a new child to the bus.  The resource is allocated from the
3111 * parent bus when it is reserved.  The resource list entry is marked
3112 * with RLE_RESERVED to note that it is a reserved resource.
3113 *
3114 * Subsequent attempts to allocate the resource with
3115 * resource_list_alloc() will succeed the first time and will set
3116 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3117 * resource that has been allocated is released with
3118 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3119 * the actual resource remains allocated.  The resource can be released to
3120 * the parent bus by calling resource_list_unreserve().
3121 *
3122 * @param rl		the resource list to allocate from
3123 * @param bus		the parent device of @p child
3124 * @param child		the device for which the resource is being reserved
3125 * @param type		the type of resource to allocate
3126 * @param rid		a pointer to the resource identifier
3127 * @param start		hint at the start of the resource range - pass
3128 *			@c 0UL for any start address
3129 * @param end		hint at the end of the resource range - pass
3130 *			@c ~0UL for any end address
3131 * @param count		hint at the size of range required - pass @c 1
3132 *			for any size
3133 * @param flags		any extra flags to control the resource
3134 *			allocation - see @c RF_XXX flags in
3135 *			<sys/rman.h> for details
3136 *
3137 * @returns		the resource which was allocated or @c NULL if no
3138 *			resource could be allocated
3139 */
3140struct resource *
3141resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3142    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3143{
3144	struct resource_list_entry *rle = NULL;
3145	int passthrough = (device_get_parent(child) != bus);
3146	struct resource *r;
3147
3148	if (passthrough)
3149		panic(
3150    "resource_list_reserve() should only be called for direct children");
3151	if (flags & RF_ACTIVE)
3152		panic(
3153    "resource_list_reserve() should only reserve inactive resources");
3154
3155	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3156	    flags);
3157	if (r != NULL) {
3158		rle = resource_list_find(rl, type, *rid);
3159		rle->flags |= RLE_RESERVED;
3160	}
3161	return (r);
3162}
3163
3164/**
3165 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3166 *
3167 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3168 * and passing the allocation up to the parent of @p bus. This assumes
3169 * that the first entry of @c device_get_ivars(child) is a struct
3170 * resource_list. This also handles 'passthrough' allocations where a
3171 * child is a remote descendant of bus by passing the allocation up to
3172 * the parent of bus.
3173 *
3174 * Typically, a bus driver would store a list of child resources
3175 * somewhere in the child device's ivars (see device_get_ivars()) and
3176 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3177 * then call resource_list_alloc() to perform the allocation.
3178 *
3179 * @param rl		the resource list to allocate from
3180 * @param bus		the parent device of @p child
3181 * @param child		the device which is requesting an allocation
3182 * @param type		the type of resource to allocate
3183 * @param rid		a pointer to the resource identifier
3184 * @param start		hint at the start of the resource range - pass
3185 *			@c 0UL for any start address
3186 * @param end		hint at the end of the resource range - pass
3187 *			@c ~0UL for any end address
3188 * @param count		hint at the size of range required - pass @c 1
3189 *			for any size
3190 * @param flags		any extra flags to control the resource
3191 *			allocation - see @c RF_XXX flags in
3192 *			<sys/rman.h> for details
3193 *
3194 * @returns		the resource which was allocated or @c NULL if no
3195 *			resource could be allocated
3196 */
3197struct resource *
3198resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3199    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3200{
3201	struct resource_list_entry *rle = NULL;
3202	int passthrough = (device_get_parent(child) != bus);
3203	int isdefault = (start == 0UL && end == ~0UL);
3204
3205	if (passthrough) {
3206		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3207		    type, rid, start, end, count, flags));
3208	}
3209
3210	rle = resource_list_find(rl, type, *rid);
3211
3212	if (!rle)
3213		return (NULL);		/* no resource of that type/rid */
3214
3215	if (rle->res) {
3216		if (rle->flags & RLE_RESERVED) {
3217			if (rle->flags & RLE_ALLOCATED)
3218				return (NULL);
3219			if ((flags & RF_ACTIVE) &&
3220			    bus_activate_resource(child, type, *rid,
3221			    rle->res) != 0)
3222				return (NULL);
3223			rle->flags |= RLE_ALLOCATED;
3224			return (rle->res);
3225		}
3226		panic("resource_list_alloc: resource entry is busy");
3227	}
3228
3229	if (isdefault) {
3230		start = rle->start;
3231		count = ulmax(count, rle->count);
3232		end = ulmax(rle->end, start + count - 1);
3233	}
3234
3235	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3236	    type, rid, start, end, count, flags);
3237
3238	/*
3239	 * Record the new range.
3240	 */
3241	if (rle->res) {
3242		rle->start = rman_get_start(rle->res);
3243		rle->end = rman_get_end(rle->res);
3244		rle->count = count;
3245	}
3246
3247	return (rle->res);
3248}
3249
3250/**
3251 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3252 *
3253 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3254 * used with resource_list_alloc().
3255 *
3256 * @param rl		the resource list which was allocated from
3257 * @param bus		the parent device of @p child
3258 * @param child		the device which is requesting a release
3259 * @param type		the type of resource to release
3260 * @param rid		the resource identifier
3261 * @param res		the resource to release
3262 *
3263 * @retval 0		success
3264 * @retval non-zero	a standard unix error code indicating what
3265 *			error condition prevented the operation
3266 */
3267int
3268resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3269    int type, int rid, struct resource *res)
3270{
3271	struct resource_list_entry *rle = NULL;
3272	int passthrough = (device_get_parent(child) != bus);
3273	int error;
3274
3275	if (passthrough) {
3276		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3277		    type, rid, res));
3278	}
3279
3280	rle = resource_list_find(rl, type, rid);
3281
3282	if (!rle)
3283		panic("resource_list_release: can't find resource");
3284	if (!rle->res)
3285		panic("resource_list_release: resource entry is not busy");
3286	if (rle->flags & RLE_RESERVED) {
3287		if (rle->flags & RLE_ALLOCATED) {
3288			if (rman_get_flags(res) & RF_ACTIVE) {
3289				error = bus_deactivate_resource(child, type,
3290				    rid, res);
3291				if (error)
3292					return (error);
3293			}
3294			rle->flags &= ~RLE_ALLOCATED;
3295			return (0);
3296		}
3297		return (EINVAL);
3298	}
3299
3300	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3301	    type, rid, res);
3302	if (error)
3303		return (error);
3304
3305	rle->res = NULL;
3306	return (0);
3307}
3308
3309/**
3310 * @brief Fully release a reserved resource
3311 *
3312 * Fully releases a resouce reserved via resource_list_reserve().
3313 *
3314 * @param rl		the resource list which was allocated from
3315 * @param bus		the parent device of @p child
3316 * @param child		the device whose reserved resource is being released
3317 * @param type		the type of resource to release
3318 * @param rid		the resource identifier
3319 * @param res		the resource to release
3320 *
3321 * @retval 0		success
3322 * @retval non-zero	a standard unix error code indicating what
3323 *			error condition prevented the operation
3324 */
3325int
3326resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3327    int type, int rid)
3328{
3329	struct resource_list_entry *rle = NULL;
3330	int passthrough = (device_get_parent(child) != bus);
3331
3332	if (passthrough)
3333		panic(
3334    "resource_list_unreserve() should only be called for direct children");
3335
3336	rle = resource_list_find(rl, type, rid);
3337
3338	if (!rle)
3339		panic("resource_list_unreserve: can't find resource");
3340	if (!(rle->flags & RLE_RESERVED))
3341		return (EINVAL);
3342	if (rle->flags & RLE_ALLOCATED)
3343		return (EBUSY);
3344	rle->flags &= ~RLE_RESERVED;
3345	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3346}
3347
3348/**
3349 * @brief Print a description of resources in a resource list
3350 *
3351 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3352 * The name is printed if at least one resource of the given type is available.
3353 * The format is used to print resource start and end.
3354 *
3355 * @param rl		the resource list to print
3356 * @param name		the name of @p type, e.g. @c "memory"
3357 * @param type		type type of resource entry to print
3358 * @param format	printf(9) format string to print resource
3359 *			start and end values
3360 *
3361 * @returns		the number of characters printed
3362 */
3363int
3364resource_list_print_type(struct resource_list *rl, const char *name, int type,
3365    const char *format)
3366{
3367	struct resource_list_entry *rle;
3368	int printed, retval;
3369
3370	printed = 0;
3371	retval = 0;
3372	/* Yes, this is kinda cheating */
3373	STAILQ_FOREACH(rle, rl, link) {
3374		if (rle->type == type) {
3375			if (printed == 0)
3376				retval += printf(" %s ", name);
3377			else
3378				retval += printf(",");
3379			printed++;
3380			retval += printf(format, rle->start);
3381			if (rle->count > 1) {
3382				retval += printf("-");
3383				retval += printf(format, rle->start +
3384						 rle->count - 1);
3385			}
3386		}
3387	}
3388	return (retval);
3389}
3390
3391/**
3392 * @brief Releases all the resources in a list.
3393 *
3394 * @param rl		The resource list to purge.
3395 *
3396 * @returns		nothing
3397 */
3398void
3399resource_list_purge(struct resource_list *rl)
3400{
3401	struct resource_list_entry *rle;
3402
3403	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3404		if (rle->res)
3405			bus_release_resource(rman_get_device(rle->res),
3406			    rle->type, rle->rid, rle->res);
3407		STAILQ_REMOVE_HEAD(rl, link);
3408		free(rle, M_BUS);
3409	}
3410}
3411
3412device_t
3413bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3414{
3415
3416	return (device_add_child_ordered(dev, order, name, unit));
3417}
3418
3419/**
3420 * @brief Helper function for implementing DEVICE_PROBE()
3421 *
3422 * This function can be used to help implement the DEVICE_PROBE() for
3423 * a bus (i.e. a device which has other devices attached to it). It
3424 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3425 * devclass.
3426 */
3427int
3428bus_generic_probe(device_t dev)
3429{
3430	devclass_t dc = dev->devclass;
3431	driverlink_t dl;
3432
3433	TAILQ_FOREACH(dl, &dc->drivers, link) {
3434		/*
3435		 * If this driver's pass is too high, then ignore it.
3436		 * For most drivers in the default pass, this will
3437		 * never be true.  For early-pass drivers they will
3438		 * only call the identify routines of eligible drivers
3439		 * when this routine is called.  Drivers for later
3440		 * passes should have their identify routines called
3441		 * on early-pass busses during BUS_NEW_PASS().
3442		 */
3443		if (dl->pass > bus_current_pass)
3444			continue;
3445		DEVICE_IDENTIFY(dl->driver, dev);
3446	}
3447
3448	return (0);
3449}
3450
3451/**
3452 * @brief Helper function for implementing DEVICE_ATTACH()
3453 *
3454 * This function can be used to help implement the DEVICE_ATTACH() for
3455 * a bus. It calls device_probe_and_attach() for each of the device's
3456 * children.
3457 */
3458int
3459bus_generic_attach(device_t dev)
3460{
3461	device_t child;
3462
3463	TAILQ_FOREACH(child, &dev->children, link) {
3464		device_probe_and_attach(child);
3465	}
3466
3467	return (0);
3468}
3469
3470/**
3471 * @brief Helper function for implementing DEVICE_DETACH()
3472 *
3473 * This function can be used to help implement the DEVICE_DETACH() for
3474 * a bus. It calls device_detach() for each of the device's
3475 * children.
3476 */
3477int
3478bus_generic_detach(device_t dev)
3479{
3480	device_t child;
3481	int error;
3482
3483	if (dev->state != DS_ATTACHED)
3484		return (EBUSY);
3485
3486	TAILQ_FOREACH(child, &dev->children, link) {
3487		if ((error = device_detach(child)) != 0)
3488			return (error);
3489	}
3490
3491	return (0);
3492}
3493
3494/**
3495 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3496 *
3497 * This function can be used to help implement the DEVICE_SHUTDOWN()
3498 * for a bus. It calls device_shutdown() for each of the device's
3499 * children.
3500 */
3501int
3502bus_generic_shutdown(device_t dev)
3503{
3504	device_t child;
3505
3506	TAILQ_FOREACH(child, &dev->children, link) {
3507		device_shutdown(child);
3508	}
3509
3510	return (0);
3511}
3512
3513/**
3514 * @brief Helper function for implementing DEVICE_SUSPEND()
3515 *
3516 * This function can be used to help implement the DEVICE_SUSPEND()
3517 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3518 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3519 * operation is aborted and any devices which were suspended are
3520 * resumed immediately by calling their DEVICE_RESUME() methods.
3521 */
3522int
3523bus_generic_suspend(device_t dev)
3524{
3525	int		error;
3526	device_t	child, child2;
3527
3528	TAILQ_FOREACH(child, &dev->children, link) {
3529		error = DEVICE_SUSPEND(child);
3530		if (error) {
3531			for (child2 = TAILQ_FIRST(&dev->children);
3532			     child2 && child2 != child;
3533			     child2 = TAILQ_NEXT(child2, link))
3534				DEVICE_RESUME(child2);
3535			return (error);
3536		}
3537	}
3538	return (0);
3539}
3540
3541/**
3542 * @brief Helper function for implementing DEVICE_RESUME()
3543 *
3544 * This function can be used to help implement the DEVICE_RESUME() for
3545 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3546 */
3547int
3548bus_generic_resume(device_t dev)
3549{
3550	device_t	child;
3551
3552	TAILQ_FOREACH(child, &dev->children, link) {
3553		DEVICE_RESUME(child);
3554		/* if resume fails, there's nothing we can usefully do... */
3555	}
3556	return (0);
3557}
3558
3559/**
3560 * @brief Helper function for implementing BUS_PRINT_CHILD().
3561 *
3562 * This function prints the first part of the ascii representation of
3563 * @p child, including its name, unit and description (if any - see
3564 * device_set_desc()).
3565 *
3566 * @returns the number of characters printed
3567 */
3568int
3569bus_print_child_header(device_t dev, device_t child)
3570{
3571	int	retval = 0;
3572
3573	if (device_get_desc(child)) {
3574		retval += device_printf(child, "<%s>", device_get_desc(child));
3575	} else {
3576		retval += printf("%s", device_get_nameunit(child));
3577	}
3578
3579	return (retval);
3580}
3581
3582/**
3583 * @brief Helper function for implementing BUS_PRINT_CHILD().
3584 *
3585 * This function prints the last part of the ascii representation of
3586 * @p child, which consists of the string @c " on " followed by the
3587 * name and unit of the @p dev.
3588 *
3589 * @returns the number of characters printed
3590 */
3591int
3592bus_print_child_footer(device_t dev, device_t child)
3593{
3594	return (printf(" on %s\n", device_get_nameunit(dev)));
3595}
3596
3597/**
3598 * @brief Helper function for implementing BUS_PRINT_CHILD().
3599 *
3600 * This function simply calls bus_print_child_header() followed by
3601 * bus_print_child_footer().
3602 *
3603 * @returns the number of characters printed
3604 */
3605int
3606bus_generic_print_child(device_t dev, device_t child)
3607{
3608	int	retval = 0;
3609
3610	retval += bus_print_child_header(dev, child);
3611	retval += bus_print_child_footer(dev, child);
3612
3613	return (retval);
3614}
3615
3616/**
3617 * @brief Stub function for implementing BUS_READ_IVAR().
3618 *
3619 * @returns ENOENT
3620 */
3621int
3622bus_generic_read_ivar(device_t dev, device_t child, int index,
3623    uintptr_t * result)
3624{
3625	return (ENOENT);
3626}
3627
3628/**
3629 * @brief Stub function for implementing BUS_WRITE_IVAR().
3630 *
3631 * @returns ENOENT
3632 */
3633int
3634bus_generic_write_ivar(device_t dev, device_t child, int index,
3635    uintptr_t value)
3636{
3637	return (ENOENT);
3638}
3639
3640/**
3641 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3642 *
3643 * @returns NULL
3644 */
3645struct resource_list *
3646bus_generic_get_resource_list(device_t dev, device_t child)
3647{
3648	return (NULL);
3649}
3650
3651/**
3652 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3653 *
3654 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3655 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3656 * and then calls device_probe_and_attach() for each unattached child.
3657 */
3658void
3659bus_generic_driver_added(device_t dev, driver_t *driver)
3660{
3661	device_t child;
3662
3663	DEVICE_IDENTIFY(driver, dev);
3664	TAILQ_FOREACH(child, &dev->children, link) {
3665		if (child->state == DS_NOTPRESENT ||
3666		    (child->flags & DF_REBID))
3667			device_probe_and_attach(child);
3668	}
3669}
3670
3671/**
3672 * @brief Helper function for implementing BUS_NEW_PASS().
3673 *
3674 * This implementing of BUS_NEW_PASS() first calls the identify
3675 * routines for any drivers that probe at the current pass.  Then it
3676 * walks the list of devices for this bus.  If a device is already
3677 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3678 * device is not already attached, it attempts to attach a driver to
3679 * it.
3680 */
3681void
3682bus_generic_new_pass(device_t dev)
3683{
3684	driverlink_t dl;
3685	devclass_t dc;
3686	device_t child;
3687
3688	dc = dev->devclass;
3689	TAILQ_FOREACH(dl, &dc->drivers, link) {
3690		if (dl->pass == bus_current_pass)
3691			DEVICE_IDENTIFY(dl->driver, dev);
3692	}
3693	TAILQ_FOREACH(child, &dev->children, link) {
3694		if (child->state >= DS_ATTACHED)
3695			BUS_NEW_PASS(child);
3696		else if (child->state == DS_NOTPRESENT)
3697			device_probe_and_attach(child);
3698	}
3699}
3700
3701/**
3702 * @brief Helper function for implementing BUS_SETUP_INTR().
3703 *
3704 * This simple implementation of BUS_SETUP_INTR() simply calls the
3705 * BUS_SETUP_INTR() method of the parent of @p dev.
3706 */
3707int
3708bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3709    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3710    void **cookiep)
3711{
3712	/* Propagate up the bus hierarchy until someone handles it. */
3713	if (dev->parent)
3714		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3715		    filter, intr, arg, cookiep));
3716	return (EINVAL);
3717}
3718
3719/**
3720 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3721 *
3722 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3723 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3724 */
3725int
3726bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3727    void *cookie)
3728{
3729	/* Propagate up the bus hierarchy until someone handles it. */
3730	if (dev->parent)
3731		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3732	return (EINVAL);
3733}
3734
3735/**
3736 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3737 *
3738 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3739 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3740 */
3741int
3742bus_generic_adjust_resource(device_t dev, device_t child, int type,
3743    struct resource *r, u_long start, u_long end)
3744{
3745	/* Propagate up the bus hierarchy until someone handles it. */
3746	if (dev->parent)
3747		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3748		    end));
3749	return (EINVAL);
3750}
3751
3752/**
3753 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3754 *
3755 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3756 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3757 */
3758struct resource *
3759bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3760    u_long start, u_long end, u_long count, u_int flags)
3761{
3762	/* Propagate up the bus hierarchy until someone handles it. */
3763	if (dev->parent)
3764		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3765		    start, end, count, flags));
3766	return (NULL);
3767}
3768
3769/**
3770 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3771 *
3772 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3773 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3774 */
3775int
3776bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3777    struct resource *r)
3778{
3779	/* Propagate up the bus hierarchy until someone handles it. */
3780	if (dev->parent)
3781		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3782		    r));
3783	return (EINVAL);
3784}
3785
3786/**
3787 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3788 *
3789 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3790 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3791 */
3792int
3793bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3794    struct resource *r)
3795{
3796	/* Propagate up the bus hierarchy until someone handles it. */
3797	if (dev->parent)
3798		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3799		    r));
3800	return (EINVAL);
3801}
3802
3803/**
3804 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3805 *
3806 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3807 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3808 */
3809int
3810bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3811    int rid, struct resource *r)
3812{
3813	/* Propagate up the bus hierarchy until someone handles it. */
3814	if (dev->parent)
3815		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3816		    r));
3817	return (EINVAL);
3818}
3819
3820/**
3821 * @brief Helper function for implementing BUS_BIND_INTR().
3822 *
3823 * This simple implementation of BUS_BIND_INTR() simply calls the
3824 * BUS_BIND_INTR() method of the parent of @p dev.
3825 */
3826int
3827bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3828    int cpu)
3829{
3830
3831	/* Propagate up the bus hierarchy until someone handles it. */
3832	if (dev->parent)
3833		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3834	return (EINVAL);
3835}
3836
3837/**
3838 * @brief Helper function for implementing BUS_CONFIG_INTR().
3839 *
3840 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3841 * BUS_CONFIG_INTR() method of the parent of @p dev.
3842 */
3843int
3844bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3845    enum intr_polarity pol)
3846{
3847
3848	/* Propagate up the bus hierarchy until someone handles it. */
3849	if (dev->parent)
3850		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3851	return (EINVAL);
3852}
3853
3854/**
3855 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3856 *
3857 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3858 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3859 */
3860int
3861bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3862    void *cookie, const char *descr)
3863{
3864
3865	/* Propagate up the bus hierarchy until someone handles it. */
3866	if (dev->parent)
3867		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3868		    descr));
3869	return (EINVAL);
3870}
3871
3872/**
3873 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3874 *
3875 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3876 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3877 */
3878bus_dma_tag_t
3879bus_generic_get_dma_tag(device_t dev, device_t child)
3880{
3881
3882	/* Propagate up the bus hierarchy until someone handles it. */
3883	if (dev->parent != NULL)
3884		return (BUS_GET_DMA_TAG(dev->parent, child));
3885	return (NULL);
3886}
3887
3888/**
3889 * @brief Helper function for implementing BUS_GET_RESOURCE().
3890 *
3891 * This implementation of BUS_GET_RESOURCE() uses the
3892 * resource_list_find() function to do most of the work. It calls
3893 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3894 * search.
3895 */
3896int
3897bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3898    u_long *startp, u_long *countp)
3899{
3900	struct resource_list *		rl = NULL;
3901	struct resource_list_entry *	rle = NULL;
3902
3903	rl = BUS_GET_RESOURCE_LIST(dev, child);
3904	if (!rl)
3905		return (EINVAL);
3906
3907	rle = resource_list_find(rl, type, rid);
3908	if (!rle)
3909		return (ENOENT);
3910
3911	if (startp)
3912		*startp = rle->start;
3913	if (countp)
3914		*countp = rle->count;
3915
3916	return (0);
3917}
3918
3919/**
3920 * @brief Helper function for implementing BUS_SET_RESOURCE().
3921 *
3922 * This implementation of BUS_SET_RESOURCE() uses the
3923 * resource_list_add() function to do most of the work. It calls
3924 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3925 * edit.
3926 */
3927int
3928bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3929    u_long start, u_long count)
3930{
3931	struct resource_list *		rl = NULL;
3932
3933	rl = BUS_GET_RESOURCE_LIST(dev, child);
3934	if (!rl)
3935		return (EINVAL);
3936
3937	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3938
3939	return (0);
3940}
3941
3942/**
3943 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3944 *
3945 * This implementation of BUS_DELETE_RESOURCE() uses the
3946 * resource_list_delete() function to do most of the work. It calls
3947 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3948 * edit.
3949 */
3950void
3951bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3952{
3953	struct resource_list *		rl = NULL;
3954
3955	rl = BUS_GET_RESOURCE_LIST(dev, child);
3956	if (!rl)
3957		return;
3958
3959	resource_list_delete(rl, type, rid);
3960
3961	return;
3962}
3963
3964/**
3965 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3966 *
3967 * This implementation of BUS_RELEASE_RESOURCE() uses the
3968 * resource_list_release() function to do most of the work. It calls
3969 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3970 */
3971int
3972bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3973    int rid, struct resource *r)
3974{
3975	struct resource_list *		rl = NULL;
3976
3977	if (device_get_parent(child) != dev)
3978		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3979		    type, rid, r));
3980
3981	rl = BUS_GET_RESOURCE_LIST(dev, child);
3982	if (!rl)
3983		return (EINVAL);
3984
3985	return (resource_list_release(rl, dev, child, type, rid, r));
3986}
3987
3988/**
3989 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3990 *
3991 * This implementation of BUS_ALLOC_RESOURCE() uses the
3992 * resource_list_alloc() function to do most of the work. It calls
3993 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3994 */
3995struct resource *
3996bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3997    int *rid, u_long start, u_long end, u_long count, u_int flags)
3998{
3999	struct resource_list *		rl = NULL;
4000
4001	if (device_get_parent(child) != dev)
4002		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4003		    type, rid, start, end, count, flags));
4004
4005	rl = BUS_GET_RESOURCE_LIST(dev, child);
4006	if (!rl)
4007		return (NULL);
4008
4009	return (resource_list_alloc(rl, dev, child, type, rid,
4010	    start, end, count, flags));
4011}
4012
4013/**
4014 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4015 *
4016 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4017 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4018 */
4019int
4020bus_generic_child_present(device_t dev, device_t child)
4021{
4022	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4023}
4024
4025/*
4026 * Some convenience functions to make it easier for drivers to use the
4027 * resource-management functions.  All these really do is hide the
4028 * indirection through the parent's method table, making for slightly
4029 * less-wordy code.  In the future, it might make sense for this code
4030 * to maintain some sort of a list of resources allocated by each device.
4031 */
4032
4033int
4034bus_alloc_resources(device_t dev, struct resource_spec *rs,
4035    struct resource **res)
4036{
4037	int i;
4038
4039	for (i = 0; rs[i].type != -1; i++)
4040		res[i] = NULL;
4041	for (i = 0; rs[i].type != -1; i++) {
4042		res[i] = bus_alloc_resource_any(dev,
4043		    rs[i].type, &rs[i].rid, rs[i].flags);
4044		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4045			bus_release_resources(dev, rs, res);
4046			return (ENXIO);
4047		}
4048	}
4049	return (0);
4050}
4051
4052void
4053bus_release_resources(device_t dev, const struct resource_spec *rs,
4054    struct resource **res)
4055{
4056	int i;
4057
4058	for (i = 0; rs[i].type != -1; i++)
4059		if (res[i] != NULL) {
4060			bus_release_resource(
4061			    dev, rs[i].type, rs[i].rid, res[i]);
4062			res[i] = NULL;
4063		}
4064}
4065
4066/**
4067 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4068 *
4069 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4070 * parent of @p dev.
4071 */
4072struct resource *
4073bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4074    u_long count, u_int flags)
4075{
4076	if (dev->parent == NULL)
4077		return (NULL);
4078	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4079	    count, flags));
4080}
4081
4082/**
4083 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4084 *
4085 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4086 * parent of @p dev.
4087 */
4088int
4089bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4090    u_long end)
4091{
4092	if (dev->parent == NULL)
4093		return (EINVAL);
4094	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4095}
4096
4097/**
4098 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4099 *
4100 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4101 * parent of @p dev.
4102 */
4103int
4104bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4105{
4106	if (dev->parent == NULL)
4107		return (EINVAL);
4108	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4109}
4110
4111/**
4112 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4113 *
4114 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4115 * parent of @p dev.
4116 */
4117int
4118bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4119{
4120	if (dev->parent == NULL)
4121		return (EINVAL);
4122	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4123}
4124
4125/**
4126 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4127 *
4128 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4129 * parent of @p dev.
4130 */
4131int
4132bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4133{
4134	if (dev->parent == NULL)
4135		return (EINVAL);
4136	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4137}
4138
4139/**
4140 * @brief Wrapper function for BUS_SETUP_INTR().
4141 *
4142 * This function simply calls the BUS_SETUP_INTR() method of the
4143 * parent of @p dev.
4144 */
4145int
4146bus_setup_intr(device_t dev, struct resource *r, int flags,
4147    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4148{
4149	int error;
4150
4151	if (dev->parent == NULL)
4152		return (EINVAL);
4153	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4154	    arg, cookiep);
4155	if (error != 0)
4156		return (error);
4157	if (handler != NULL && !(flags & INTR_MPSAFE))
4158		device_printf(dev, "[GIANT-LOCKED]\n");
4159	return (0);
4160}
4161
4162/**
4163 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4164 *
4165 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4166 * parent of @p dev.
4167 */
4168int
4169bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4170{
4171	if (dev->parent == NULL)
4172		return (EINVAL);
4173	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4174}
4175
4176/**
4177 * @brief Wrapper function for BUS_BIND_INTR().
4178 *
4179 * This function simply calls the BUS_BIND_INTR() method of the
4180 * parent of @p dev.
4181 */
4182int
4183bus_bind_intr(device_t dev, struct resource *r, int cpu)
4184{
4185	if (dev->parent == NULL)
4186		return (EINVAL);
4187	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4188}
4189
4190/**
4191 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4192 *
4193 * This function first formats the requested description into a
4194 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4195 * the parent of @p dev.
4196 */
4197int
4198bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4199    const char *fmt, ...)
4200{
4201	va_list ap;
4202	char descr[MAXCOMLEN + 1];
4203
4204	if (dev->parent == NULL)
4205		return (EINVAL);
4206	va_start(ap, fmt);
4207	vsnprintf(descr, sizeof(descr), fmt, ap);
4208	va_end(ap);
4209	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4210}
4211
4212/**
4213 * @brief Wrapper function for BUS_SET_RESOURCE().
4214 *
4215 * This function simply calls the BUS_SET_RESOURCE() method of the
4216 * parent of @p dev.
4217 */
4218int
4219bus_set_resource(device_t dev, int type, int rid,
4220    u_long start, u_long count)
4221{
4222	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4223	    start, count));
4224}
4225
4226/**
4227 * @brief Wrapper function for BUS_GET_RESOURCE().
4228 *
4229 * This function simply calls the BUS_GET_RESOURCE() method of the
4230 * parent of @p dev.
4231 */
4232int
4233bus_get_resource(device_t dev, int type, int rid,
4234    u_long *startp, u_long *countp)
4235{
4236	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4237	    startp, countp));
4238}
4239
4240/**
4241 * @brief Wrapper function for BUS_GET_RESOURCE().
4242 *
4243 * This function simply calls the BUS_GET_RESOURCE() method of the
4244 * parent of @p dev and returns the start value.
4245 */
4246u_long
4247bus_get_resource_start(device_t dev, int type, int rid)
4248{
4249	u_long start, count;
4250	int error;
4251
4252	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4253	    &start, &count);
4254	if (error)
4255		return (0);
4256	return (start);
4257}
4258
4259/**
4260 * @brief Wrapper function for BUS_GET_RESOURCE().
4261 *
4262 * This function simply calls the BUS_GET_RESOURCE() method of the
4263 * parent of @p dev and returns the count value.
4264 */
4265u_long
4266bus_get_resource_count(device_t dev, int type, int rid)
4267{
4268	u_long start, count;
4269	int error;
4270
4271	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4272	    &start, &count);
4273	if (error)
4274		return (0);
4275	return (count);
4276}
4277
4278/**
4279 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4280 *
4281 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4282 * parent of @p dev.
4283 */
4284void
4285bus_delete_resource(device_t dev, int type, int rid)
4286{
4287	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4288}
4289
4290/**
4291 * @brief Wrapper function for BUS_CHILD_PRESENT().
4292 *
4293 * This function simply calls the BUS_CHILD_PRESENT() method of the
4294 * parent of @p dev.
4295 */
4296int
4297bus_child_present(device_t child)
4298{
4299	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4300}
4301
4302/**
4303 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4304 *
4305 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4306 * parent of @p dev.
4307 */
4308int
4309bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4310{
4311	device_t parent;
4312
4313	parent = device_get_parent(child);
4314	if (parent == NULL) {
4315		*buf = '\0';
4316		return (0);
4317	}
4318	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4319}
4320
4321/**
4322 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4323 *
4324 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4325 * parent of @p dev.
4326 */
4327int
4328bus_child_location_str(device_t child, char *buf, size_t buflen)
4329{
4330	device_t parent;
4331
4332	parent = device_get_parent(child);
4333	if (parent == NULL) {
4334		*buf = '\0';
4335		return (0);
4336	}
4337	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4338}
4339
4340/**
4341 * @brief Wrapper function for BUS_GET_DMA_TAG().
4342 *
4343 * This function simply calls the BUS_GET_DMA_TAG() method of the
4344 * parent of @p dev.
4345 */
4346bus_dma_tag_t
4347bus_get_dma_tag(device_t dev)
4348{
4349	device_t parent;
4350
4351	parent = device_get_parent(dev);
4352	if (parent == NULL)
4353		return (NULL);
4354	return (BUS_GET_DMA_TAG(parent, dev));
4355}
4356
4357/* Resume all devices and then notify userland that we're up again. */
4358static int
4359root_resume(device_t dev)
4360{
4361	int error;
4362
4363	error = bus_generic_resume(dev);
4364	if (error == 0)
4365		devctl_notify("kern", "power", "resume", NULL);
4366	return (error);
4367}
4368
4369static int
4370root_print_child(device_t dev, device_t child)
4371{
4372	int	retval = 0;
4373
4374	retval += bus_print_child_header(dev, child);
4375	retval += printf("\n");
4376
4377	return (retval);
4378}
4379
4380static int
4381root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4382    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4383{
4384	/*
4385	 * If an interrupt mapping gets to here something bad has happened.
4386	 */
4387	panic("root_setup_intr");
4388}
4389
4390/*
4391 * If we get here, assume that the device is permanant and really is
4392 * present in the system.  Removable bus drivers are expected to intercept
4393 * this call long before it gets here.  We return -1 so that drivers that
4394 * really care can check vs -1 or some ERRNO returned higher in the food
4395 * chain.
4396 */
4397static int
4398root_child_present(device_t dev, device_t child)
4399{
4400	return (-1);
4401}
4402
4403static kobj_method_t root_methods[] = {
4404	/* Device interface */
4405	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4406	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4407	KOBJMETHOD(device_resume,	root_resume),
4408
4409	/* Bus interface */
4410	KOBJMETHOD(bus_print_child,	root_print_child),
4411	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4412	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4413	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4414	KOBJMETHOD(bus_child_present,	root_child_present),
4415
4416	KOBJMETHOD_END
4417};
4418
4419static driver_t root_driver = {
4420	"root",
4421	root_methods,
4422	1,			/* no softc */
4423};
4424
4425device_t	root_bus;
4426devclass_t	root_devclass;
4427
4428static int
4429root_bus_module_handler(module_t mod, int what, void* arg)
4430{
4431	switch (what) {
4432	case MOD_LOAD:
4433		TAILQ_INIT(&bus_data_devices);
4434		kobj_class_compile((kobj_class_t) &root_driver);
4435		root_bus = make_device(NULL, "root", 0);
4436		root_bus->desc = "System root bus";
4437		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4438		root_bus->driver = &root_driver;
4439		root_bus->state = DS_ATTACHED;
4440		root_devclass = devclass_find_internal("root", NULL, FALSE);
4441		devinit();
4442		return (0);
4443
4444	case MOD_SHUTDOWN:
4445		device_shutdown(root_bus);
4446		return (0);
4447	default:
4448		return (EOPNOTSUPP);
4449	}
4450
4451	return (0);
4452}
4453
4454static moduledata_t root_bus_mod = {
4455	"rootbus",
4456	root_bus_module_handler,
4457	NULL
4458};
4459DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4460
4461/**
4462 * @brief Automatically configure devices
4463 *
4464 * This function begins the autoconfiguration process by calling
4465 * device_probe_and_attach() for each child of the @c root0 device.
4466 */
4467void
4468root_bus_configure(void)
4469{
4470
4471	PDEBUG(("."));
4472
4473	/* Eventually this will be split up, but this is sufficient for now. */
4474	bus_set_pass(BUS_PASS_DEFAULT);
4475}
4476
4477/**
4478 * @brief Module handler for registering device drivers
4479 *
4480 * This module handler is used to automatically register device
4481 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4482 * devclass_add_driver() for the driver described by the
4483 * driver_module_data structure pointed to by @p arg
4484 */
4485int
4486driver_module_handler(module_t mod, int what, void *arg)
4487{
4488	struct driver_module_data *dmd;
4489	devclass_t bus_devclass;
4490	kobj_class_t driver;
4491	int error, pass;
4492
4493	dmd = (struct driver_module_data *)arg;
4494	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4495	error = 0;
4496
4497	switch (what) {
4498	case MOD_LOAD:
4499		if (dmd->dmd_chainevh)
4500			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4501
4502		pass = dmd->dmd_pass;
4503		driver = dmd->dmd_driver;
4504		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4505		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4506		error = devclass_add_driver(bus_devclass, driver, pass,
4507		    dmd->dmd_devclass);
4508		break;
4509
4510	case MOD_UNLOAD:
4511		PDEBUG(("Unloading module: driver %s from bus %s",
4512		    DRIVERNAME(dmd->dmd_driver),
4513		    dmd->dmd_busname));
4514		error = devclass_delete_driver(bus_devclass,
4515		    dmd->dmd_driver);
4516
4517		if (!error && dmd->dmd_chainevh)
4518			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4519		break;
4520	case MOD_QUIESCE:
4521		PDEBUG(("Quiesce module: driver %s from bus %s",
4522		    DRIVERNAME(dmd->dmd_driver),
4523		    dmd->dmd_busname));
4524		error = devclass_quiesce_driver(bus_devclass,
4525		    dmd->dmd_driver);
4526
4527		if (!error && dmd->dmd_chainevh)
4528			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4529		break;
4530	default:
4531		error = EOPNOTSUPP;
4532		break;
4533	}
4534
4535	return (error);
4536}
4537
4538/**
4539 * @brief Enumerate all hinted devices for this bus.
4540 *
4541 * Walks through the hints for this bus and calls the bus_hinted_child
4542 * routine for each one it fines.  It searches first for the specific
4543 * bus that's being probed for hinted children (eg isa0), and then for
4544 * generic children (eg isa).
4545 *
4546 * @param	dev	bus device to enumerate
4547 */
4548void
4549bus_enumerate_hinted_children(device_t bus)
4550{
4551	int i;
4552	const char *dname, *busname;
4553	int dunit;
4554
4555	/*
4556	 * enumerate all devices on the specific bus
4557	 */
4558	busname = device_get_nameunit(bus);
4559	i = 0;
4560	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4561		BUS_HINTED_CHILD(bus, dname, dunit);
4562
4563	/*
4564	 * and all the generic ones.
4565	 */
4566	busname = device_get_name(bus);
4567	i = 0;
4568	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4569		BUS_HINTED_CHILD(bus, dname, dunit);
4570}
4571
4572#ifdef BUS_DEBUG
4573
4574/* the _short versions avoid iteration by not calling anything that prints
4575 * more than oneliners. I love oneliners.
4576 */
4577
4578static void
4579print_device_short(device_t dev, int indent)
4580{
4581	if (!dev)
4582		return;
4583
4584	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4585	    dev->unit, dev->desc,
4586	    (dev->parent? "":"no "),
4587	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4588	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4589	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4590	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4591	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4592	    (dev->flags&DF_REBID? "rebiddable,":""),
4593	    (dev->ivars? "":"no "),
4594	    (dev->softc? "":"no "),
4595	    dev->busy));
4596}
4597
4598static void
4599print_device(device_t dev, int indent)
4600{
4601	if (!dev)
4602		return;
4603
4604	print_device_short(dev, indent);
4605
4606	indentprintf(("Parent:\n"));
4607	print_device_short(dev->parent, indent+1);
4608	indentprintf(("Driver:\n"));
4609	print_driver_short(dev->driver, indent+1);
4610	indentprintf(("Devclass:\n"));
4611	print_devclass_short(dev->devclass, indent+1);
4612}
4613
4614void
4615print_device_tree_short(device_t dev, int indent)
4616/* print the device and all its children (indented) */
4617{
4618	device_t child;
4619
4620	if (!dev)
4621		return;
4622
4623	print_device_short(dev, indent);
4624
4625	TAILQ_FOREACH(child, &dev->children, link) {
4626		print_device_tree_short(child, indent+1);
4627	}
4628}
4629
4630void
4631print_device_tree(device_t dev, int indent)
4632/* print the device and all its children (indented) */
4633{
4634	device_t child;
4635
4636	if (!dev)
4637		return;
4638
4639	print_device(dev, indent);
4640
4641	TAILQ_FOREACH(child, &dev->children, link) {
4642		print_device_tree(child, indent+1);
4643	}
4644}
4645
4646static void
4647print_driver_short(driver_t *driver, int indent)
4648{
4649	if (!driver)
4650		return;
4651
4652	indentprintf(("driver %s: softc size = %zd\n",
4653	    driver->name, driver->size));
4654}
4655
4656static void
4657print_driver(driver_t *driver, int indent)
4658{
4659	if (!driver)
4660		return;
4661
4662	print_driver_short(driver, indent);
4663}
4664
4665static void
4666print_driver_list(driver_list_t drivers, int indent)
4667{
4668	driverlink_t driver;
4669
4670	TAILQ_FOREACH(driver, &drivers, link) {
4671		print_driver(driver->driver, indent);
4672	}
4673}
4674
4675static void
4676print_devclass_short(devclass_t dc, int indent)
4677{
4678	if ( !dc )
4679		return;
4680
4681	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4682}
4683
4684static void
4685print_devclass(devclass_t dc, int indent)
4686{
4687	int i;
4688
4689	if ( !dc )
4690		return;
4691
4692	print_devclass_short(dc, indent);
4693	indentprintf(("Drivers:\n"));
4694	print_driver_list(dc->drivers, indent+1);
4695
4696	indentprintf(("Devices:\n"));
4697	for (i = 0; i < dc->maxunit; i++)
4698		if (dc->devices[i])
4699			print_device(dc->devices[i], indent+1);
4700}
4701
4702void
4703print_devclass_list_short(void)
4704{
4705	devclass_t dc;
4706
4707	printf("Short listing of devclasses, drivers & devices:\n");
4708	TAILQ_FOREACH(dc, &devclasses, link) {
4709		print_devclass_short(dc, 0);
4710	}
4711}
4712
4713void
4714print_devclass_list(void)
4715{
4716	devclass_t dc;
4717
4718	printf("Full listing of devclasses, drivers & devices:\n");
4719	TAILQ_FOREACH(dc, &devclasses, link) {
4720		print_devclass(dc, 0);
4721	}
4722}
4723
4724#endif
4725
4726/*
4727 * User-space access to the device tree.
4728 *
4729 * We implement a small set of nodes:
4730 *
4731 * hw.bus			Single integer read method to obtain the
4732 *				current generation count.
4733 * hw.bus.devices		Reads the entire device tree in flat space.
4734 * hw.bus.rman			Resource manager interface
4735 *
4736 * We might like to add the ability to scan devclasses and/or drivers to
4737 * determine what else is currently loaded/available.
4738 */
4739
4740static int
4741sysctl_bus(SYSCTL_HANDLER_ARGS)
4742{
4743	struct u_businfo	ubus;
4744
4745	ubus.ub_version = BUS_USER_VERSION;
4746	ubus.ub_generation = bus_data_generation;
4747
4748	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4749}
4750SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4751    "bus-related data");
4752
4753static int
4754sysctl_devices(SYSCTL_HANDLER_ARGS)
4755{
4756	int			*name = (int *)arg1;
4757	u_int			namelen = arg2;
4758	int			index;
4759	struct device		*dev;
4760	struct u_device		udev;	/* XXX this is a bit big */
4761	int			error;
4762
4763	if (namelen != 2)
4764		return (EINVAL);
4765
4766	if (bus_data_generation_check(name[0]))
4767		return (EINVAL);
4768
4769	index = name[1];
4770
4771	/*
4772	 * Scan the list of devices, looking for the requested index.
4773	 */
4774	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4775		if (index-- == 0)
4776			break;
4777	}
4778	if (dev == NULL)
4779		return (ENOENT);
4780
4781	/*
4782	 * Populate the return array.
4783	 */
4784	bzero(&udev, sizeof(udev));
4785	udev.dv_handle = (uintptr_t)dev;
4786	udev.dv_parent = (uintptr_t)dev->parent;
4787	if (dev->nameunit != NULL)
4788		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4789	if (dev->desc != NULL)
4790		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4791	if (dev->driver != NULL && dev->driver->name != NULL)
4792		strlcpy(udev.dv_drivername, dev->driver->name,
4793		    sizeof(udev.dv_drivername));
4794	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4795	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4796	udev.dv_devflags = dev->devflags;
4797	udev.dv_flags = dev->flags;
4798	udev.dv_state = dev->state;
4799	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4800	return (error);
4801}
4802
4803SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4804    "system device tree");
4805
4806int
4807bus_data_generation_check(int generation)
4808{
4809	if (generation != bus_data_generation)
4810		return (1);
4811
4812	/* XXX generate optimised lists here? */
4813	return (0);
4814}
4815
4816void
4817bus_data_generation_update(void)
4818{
4819	bus_data_generation++;
4820}
4821
4822int
4823bus_free_resource(device_t dev, int type, struct resource *r)
4824{
4825	if (r == NULL)
4826		return (0);
4827	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4828}
4829