subr_bus.c revision 239178
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 239178 2012-08-10 15:02:49Z hselasky $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <machine/stdarg.h>
57
58#include <vm/uma.h>
59
60SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62
63/*
64 * Used to attach drivers to devclasses.
65 */
66typedef struct driverlink *driverlink_t;
67struct driverlink {
68	kobj_class_t	driver;
69	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70	int		pass;
71	TAILQ_ENTRY(driverlink) passlink;
72};
73
74/*
75 * Forward declarations
76 */
77typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79typedef TAILQ_HEAD(device_list, device) device_list_t;
80
81struct devclass {
82	TAILQ_ENTRY(devclass) link;
83	devclass_t	parent;		/* parent in devclass hierarchy */
84	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85	char		*name;
86	device_t	*devices;	/* array of devices indexed by unit */
87	int		maxunit;	/* size of devices array */
88	int		flags;
89#define DC_HAS_CHILDREN		1
90
91	struct sysctl_ctx_list sysctl_ctx;
92	struct sysctl_oid *sysctl_tree;
93};
94
95/**
96 * @brief Implementation of device.
97 */
98struct device {
99	/*
100	 * A device is a kernel object. The first field must be the
101	 * current ops table for the object.
102	 */
103	KOBJ_FIELDS;
104
105	/*
106	 * Device hierarchy.
107	 */
108	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110	device_t	parent;		/**< parent of this device  */
111	device_list_t	children;	/**< list of child devices */
112
113	/*
114	 * Details of this device.
115	 */
116	driver_t	*driver;	/**< current driver */
117	devclass_t	devclass;	/**< current device class */
118	int		unit;		/**< current unit number */
119	char*		nameunit;	/**< name+unit e.g. foodev0 */
120	char*		desc;		/**< driver specific description */
121	int		busy;		/**< count of calls to device_busy() */
122	device_state_t	state;		/**< current device state  */
123	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124	u_int		flags;		/**< internal device flags  */
125#define	DF_ENABLED	0x01		/* device should be probed/attached */
126#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128#define	DF_DESCMALLOCED	0x08		/* description was malloced */
129#define	DF_QUIET	0x10		/* don't print verbose attach message */
130#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132#define	DF_REBID	0x80		/* Can rebid after attach */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147TUNABLE_INT("bus.debug", &bus_debug);
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149    "Debug bus code");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT(req, value, strlen(value)));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT(req, value, strlen(value));
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311}
312
313static void
314device_sysctl_update(device_t dev)
315{
316	devclass_t dc = dev->devclass;
317
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321}
322
323static void
324device_sysctl_fini(device_t dev)
325{
326	if (dev->sysctl_tree == NULL)
327		return;
328	sysctl_ctx_free(&dev->sysctl_ctx);
329	dev->sysctl_tree = NULL;
330}
331
332/*
333 * /dev/devctl implementation
334 */
335
336/*
337 * This design allows only one reader for /dev/devctl.  This is not desirable
338 * in the long run, but will get a lot of hair out of this implementation.
339 * Maybe we should make this device a clonable device.
340 *
341 * Also note: we specifically do not attach a device to the device_t tree
342 * to avoid potential chicken and egg problems.  One could argue that all
343 * of this belongs to the root node.  One could also further argue that the
344 * sysctl interface that we have not might more properly be an ioctl
345 * interface, but at this stage of the game, I'm not inclined to rock that
346 * boat.
347 *
348 * I'm also not sure that the SIGIO support is done correctly or not, as
349 * I copied it from a driver that had SIGIO support that likely hasn't been
350 * tested since 3.4 or 2.2.8!
351 */
352
353/* Deprecated way to adjust queue length */
354static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358
359#define DEVCTL_DEFAULT_QUEUE_LEN 1000
360static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364    0, sysctl_devctl_queue, "I", "devctl queue length");
365
366static d_open_t		devopen;
367static d_close_t	devclose;
368static d_read_t		devread;
369static d_ioctl_t	devioctl;
370static d_poll_t		devpoll;
371
372static struct cdevsw dev_cdevsw = {
373	.d_version =	D_VERSION,
374	.d_flags =	D_NEEDGIANT,
375	.d_open =	devopen,
376	.d_close =	devclose,
377	.d_read =	devread,
378	.d_ioctl =	devioctl,
379	.d_poll =	devpoll,
380	.d_name =	"devctl",
381};
382
383struct dev_event_info
384{
385	char *dei_data;
386	TAILQ_ENTRY(dev_event_info) dei_link;
387};
388
389TAILQ_HEAD(devq, dev_event_info);
390
391static struct dev_softc
392{
393	int	inuse;
394	int	nonblock;
395	int	queued;
396	struct mtx mtx;
397	struct cv cv;
398	struct selinfo sel;
399	struct devq devq;
400	struct proc *async_proc;
401} devsoftc;
402
403static struct cdev *devctl_dev;
404
405static void
406devinit(void)
407{
408	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411	cv_init(&devsoftc.cv, "dev cv");
412	TAILQ_INIT(&devsoftc.devq);
413}
414
415static int
416devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417{
418	if (devsoftc.inuse)
419		return (EBUSY);
420	/* move to init */
421	devsoftc.inuse = 1;
422	devsoftc.nonblock = 0;
423	devsoftc.async_proc = NULL;
424	return (0);
425}
426
427static int
428devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429{
430	devsoftc.inuse = 0;
431	mtx_lock(&devsoftc.mtx);
432	cv_broadcast(&devsoftc.cv);
433	mtx_unlock(&devsoftc.mtx);
434	devsoftc.async_proc = NULL;
435	return (0);
436}
437
438/*
439 * The read channel for this device is used to report changes to
440 * userland in realtime.  We are required to free the data as well as
441 * the n1 object because we allocate them separately.  Also note that
442 * we return one record at a time.  If you try to read this device a
443 * character at a time, you will lose the rest of the data.  Listening
444 * programs are expected to cope.
445 */
446static int
447devread(struct cdev *dev, struct uio *uio, int ioflag)
448{
449	struct dev_event_info *n1;
450	int rv;
451
452	mtx_lock(&devsoftc.mtx);
453	while (TAILQ_EMPTY(&devsoftc.devq)) {
454		if (devsoftc.nonblock) {
455			mtx_unlock(&devsoftc.mtx);
456			return (EAGAIN);
457		}
458		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459		if (rv) {
460			/*
461			 * Need to translate ERESTART to EINTR here? -- jake
462			 */
463			mtx_unlock(&devsoftc.mtx);
464			return (rv);
465		}
466	}
467	n1 = TAILQ_FIRST(&devsoftc.devq);
468	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469	devsoftc.queued--;
470	mtx_unlock(&devsoftc.mtx);
471	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472	free(n1->dei_data, M_BUS);
473	free(n1, M_BUS);
474	return (rv);
475}
476
477static	int
478devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479{
480	switch (cmd) {
481
482	case FIONBIO:
483		if (*(int*)data)
484			devsoftc.nonblock = 1;
485		else
486			devsoftc.nonblock = 0;
487		return (0);
488	case FIOASYNC:
489		if (*(int*)data)
490			devsoftc.async_proc = td->td_proc;
491		else
492			devsoftc.async_proc = NULL;
493		return (0);
494
495		/* (un)Support for other fcntl() calls. */
496	case FIOCLEX:
497	case FIONCLEX:
498	case FIONREAD:
499	case FIOSETOWN:
500	case FIOGETOWN:
501	default:
502		break;
503	}
504	return (ENOTTY);
505}
506
507static	int
508devpoll(struct cdev *dev, int events, struct thread *td)
509{
510	int	revents = 0;
511
512	mtx_lock(&devsoftc.mtx);
513	if (events & (POLLIN | POLLRDNORM)) {
514		if (!TAILQ_EMPTY(&devsoftc.devq))
515			revents = events & (POLLIN | POLLRDNORM);
516		else
517			selrecord(td, &devsoftc.sel);
518	}
519	mtx_unlock(&devsoftc.mtx);
520
521	return (revents);
522}
523
524/**
525 * @brief Return whether the userland process is running
526 */
527boolean_t
528devctl_process_running(void)
529{
530	return (devsoftc.inuse == 1);
531}
532
533/**
534 * @brief Queue data to be read from the devctl device
535 *
536 * Generic interface to queue data to the devctl device.  It is
537 * assumed that @p data is properly formatted.  It is further assumed
538 * that @p data is allocated using the M_BUS malloc type.
539 */
540void
541devctl_queue_data_f(char *data, int flags)
542{
543	struct dev_event_info *n1 = NULL, *n2 = NULL;
544	struct proc *p;
545
546	if (strlen(data) == 0)
547		goto out;
548	if (devctl_queue_length == 0)
549		goto out;
550	n1 = malloc(sizeof(*n1), M_BUS, flags);
551	if (n1 == NULL)
552		goto out;
553	n1->dei_data = data;
554	mtx_lock(&devsoftc.mtx);
555	if (devctl_queue_length == 0) {
556		mtx_unlock(&devsoftc.mtx);
557		free(n1->dei_data, M_BUS);
558		free(n1, M_BUS);
559		return;
560	}
561	/* Leave at least one spot in the queue... */
562	while (devsoftc.queued > devctl_queue_length - 1) {
563		n2 = TAILQ_FIRST(&devsoftc.devq);
564		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565		free(n2->dei_data, M_BUS);
566		free(n2, M_BUS);
567		devsoftc.queued--;
568	}
569	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570	devsoftc.queued++;
571	cv_broadcast(&devsoftc.cv);
572	mtx_unlock(&devsoftc.mtx);
573	selwakeup(&devsoftc.sel);
574	p = devsoftc.async_proc;
575	if (p != NULL) {
576		PROC_LOCK(p);
577		kern_psignal(p, SIGIO);
578		PROC_UNLOCK(p);
579	}
580	return;
581out:
582	/*
583	 * We have to free data on all error paths since the caller
584	 * assumes it will be free'd when this item is dequeued.
585	 */
586	free(data, M_BUS);
587	return;
588}
589
590void
591devctl_queue_data(char *data)
592{
593
594	devctl_queue_data_f(data, M_NOWAIT);
595}
596
597/**
598 * @brief Send a 'notification' to userland, using standard ways
599 */
600void
601devctl_notify_f(const char *system, const char *subsystem, const char *type,
602    const char *data, int flags)
603{
604	int len = 0;
605	char *msg;
606
607	if (system == NULL)
608		return;		/* BOGUS!  Must specify system. */
609	if (subsystem == NULL)
610		return;		/* BOGUS!  Must specify subsystem. */
611	if (type == NULL)
612		return;		/* BOGUS!  Must specify type. */
613	len += strlen(" system=") + strlen(system);
614	len += strlen(" subsystem=") + strlen(subsystem);
615	len += strlen(" type=") + strlen(type);
616	/* add in the data message plus newline. */
617	if (data != NULL)
618		len += strlen(data);
619	len += 3;	/* '!', '\n', and NUL */
620	msg = malloc(len, M_BUS, flags);
621	if (msg == NULL)
622		return;		/* Drop it on the floor */
623	if (data != NULL)
624		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625		    system, subsystem, type, data);
626	else
627		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628		    system, subsystem, type);
629	devctl_queue_data_f(msg, flags);
630}
631
632void
633devctl_notify(const char *system, const char *subsystem, const char *type,
634    const char *data)
635{
636
637	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638}
639
640/*
641 * Common routine that tries to make sending messages as easy as possible.
642 * We allocate memory for the data, copy strings into that, but do not
643 * free it unless there's an error.  The dequeue part of the driver should
644 * free the data.  We don't send data when the device is disabled.  We do
645 * send data, even when we have no listeners, because we wish to avoid
646 * races relating to startup and restart of listening applications.
647 *
648 * devaddq is designed to string together the type of event, with the
649 * object of that event, plus the plug and play info and location info
650 * for that event.  This is likely most useful for devices, but less
651 * useful for other consumers of this interface.  Those should use
652 * the devctl_queue_data() interface instead.
653 */
654static void
655devaddq(const char *type, const char *what, device_t dev)
656{
657	char *data = NULL;
658	char *loc = NULL;
659	char *pnp = NULL;
660	const char *parstr;
661
662	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663		return;
664	data = malloc(1024, M_BUS, M_NOWAIT);
665	if (data == NULL)
666		goto bad;
667
668	/* get the bus specific location of this device */
669	loc = malloc(1024, M_BUS, M_NOWAIT);
670	if (loc == NULL)
671		goto bad;
672	*loc = '\0';
673	bus_child_location_str(dev, loc, 1024);
674
675	/* Get the bus specific pnp info of this device */
676	pnp = malloc(1024, M_BUS, M_NOWAIT);
677	if (pnp == NULL)
678		goto bad;
679	*pnp = '\0';
680	bus_child_pnpinfo_str(dev, pnp, 1024);
681
682	/* Get the parent of this device, or / if high enough in the tree. */
683	if (device_get_parent(dev) == NULL)
684		parstr = ".";	/* Or '/' ? */
685	else
686		parstr = device_get_nameunit(device_get_parent(dev));
687	/* String it all together. */
688	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689	  parstr);
690	free(loc, M_BUS);
691	free(pnp, M_BUS);
692	devctl_queue_data(data);
693	return;
694bad:
695	free(pnp, M_BUS);
696	free(loc, M_BUS);
697	free(data, M_BUS);
698	return;
699}
700
701/*
702 * A device was added to the tree.  We are called just after it successfully
703 * attaches (that is, probe and attach success for this device).  No call
704 * is made if a device is merely parented into the tree.  See devnomatch
705 * if probe fails.  If attach fails, no notification is sent (but maybe
706 * we should have a different message for this).
707 */
708static void
709devadded(device_t dev)
710{
711	devaddq("+", device_get_nameunit(dev), dev);
712}
713
714/*
715 * A device was removed from the tree.  We are called just before this
716 * happens.
717 */
718static void
719devremoved(device_t dev)
720{
721	devaddq("-", device_get_nameunit(dev), dev);
722}
723
724/*
725 * Called when there's no match for this device.  This is only called
726 * the first time that no match happens, so we don't keep getting this
727 * message.  Should that prove to be undesirable, we can change it.
728 * This is called when all drivers that can attach to a given bus
729 * decline to accept this device.  Other errors may not be detected.
730 */
731static void
732devnomatch(device_t dev)
733{
734	devaddq("?", "", dev);
735}
736
737static int
738sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739{
740	struct dev_event_info *n1;
741	int dis, error;
742
743	dis = devctl_queue_length == 0;
744	error = sysctl_handle_int(oidp, &dis, 0, req);
745	if (error || !req->newptr)
746		return (error);
747	mtx_lock(&devsoftc.mtx);
748	if (dis) {
749		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750			n1 = TAILQ_FIRST(&devsoftc.devq);
751			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752			free(n1->dei_data, M_BUS);
753			free(n1, M_BUS);
754		}
755		devsoftc.queued = 0;
756		devctl_queue_length = 0;
757	} else {
758		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759	}
760	mtx_unlock(&devsoftc.mtx);
761	return (0);
762}
763
764static int
765sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766{
767	struct dev_event_info *n1;
768	int q, error;
769
770	q = devctl_queue_length;
771	error = sysctl_handle_int(oidp, &q, 0, req);
772	if (error || !req->newptr)
773		return (error);
774	if (q < 0)
775		return (EINVAL);
776	mtx_lock(&devsoftc.mtx);
777	devctl_queue_length = q;
778	while (devsoftc.queued > devctl_queue_length) {
779		n1 = TAILQ_FIRST(&devsoftc.devq);
780		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781		free(n1->dei_data, M_BUS);
782		free(n1, M_BUS);
783		devsoftc.queued--;
784	}
785	mtx_unlock(&devsoftc.mtx);
786	return (0);
787}
788
789/* End of /dev/devctl code */
790
791static TAILQ_HEAD(,device)	bus_data_devices;
792static int bus_data_generation = 1;
793
794static kobj_method_t null_methods[] = {
795	KOBJMETHOD_END
796};
797
798DEFINE_CLASS(null, null_methods, 0);
799
800/*
801 * Bus pass implementation
802 */
803
804static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805int bus_current_pass = BUS_PASS_ROOT;
806
807/**
808 * @internal
809 * @brief Register the pass level of a new driver attachment
810 *
811 * Register a new driver attachment's pass level.  If no driver
812 * attachment with the same pass level has been added, then @p new
813 * will be added to the global passes list.
814 *
815 * @param new		the new driver attachment
816 */
817static void
818driver_register_pass(struct driverlink *new)
819{
820	struct driverlink *dl;
821
822	/* We only consider pass numbers during boot. */
823	if (bus_current_pass == BUS_PASS_DEFAULT)
824		return;
825
826	/*
827	 * Walk the passes list.  If we already know about this pass
828	 * then there is nothing to do.  If we don't, then insert this
829	 * driver link into the list.
830	 */
831	TAILQ_FOREACH(dl, &passes, passlink) {
832		if (dl->pass < new->pass)
833			continue;
834		if (dl->pass == new->pass)
835			return;
836		TAILQ_INSERT_BEFORE(dl, new, passlink);
837		return;
838	}
839	TAILQ_INSERT_TAIL(&passes, new, passlink);
840}
841
842/**
843 * @brief Raise the current bus pass
844 *
845 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846 * method on the root bus to kick off a new device tree scan for each
847 * new pass level that has at least one driver.
848 */
849void
850bus_set_pass(int pass)
851{
852	struct driverlink *dl;
853
854	if (bus_current_pass > pass)
855		panic("Attempt to lower bus pass level");
856
857	TAILQ_FOREACH(dl, &passes, passlink) {
858		/* Skip pass values below the current pass level. */
859		if (dl->pass <= bus_current_pass)
860			continue;
861
862		/*
863		 * Bail once we hit a driver with a pass level that is
864		 * too high.
865		 */
866		if (dl->pass > pass)
867			break;
868
869		/*
870		 * Raise the pass level to the next level and rescan
871		 * the tree.
872		 */
873		bus_current_pass = dl->pass;
874		BUS_NEW_PASS(root_bus);
875	}
876
877	/*
878	 * If there isn't a driver registered for the requested pass,
879	 * then bus_current_pass might still be less than 'pass'.  Set
880	 * it to 'pass' in that case.
881	 */
882	if (bus_current_pass < pass)
883		bus_current_pass = pass;
884	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885}
886
887/*
888 * Devclass implementation
889 */
890
891static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892
893/**
894 * @internal
895 * @brief Find or create a device class
896 *
897 * If a device class with the name @p classname exists, return it,
898 * otherwise if @p create is non-zero create and return a new device
899 * class.
900 *
901 * If @p parentname is non-NULL, the parent of the devclass is set to
902 * the devclass of that name.
903 *
904 * @param classname	the devclass name to find or create
905 * @param parentname	the parent devclass name or @c NULL
906 * @param create	non-zero to create a devclass
907 */
908static devclass_t
909devclass_find_internal(const char *classname, const char *parentname,
910		       int create)
911{
912	devclass_t dc;
913
914	PDEBUG(("looking for %s", classname));
915	if (!classname)
916		return (NULL);
917
918	TAILQ_FOREACH(dc, &devclasses, link) {
919		if (!strcmp(dc->name, classname))
920			break;
921	}
922
923	if (create && !dc) {
924		PDEBUG(("creating %s", classname));
925		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926		    M_BUS, M_NOWAIT | M_ZERO);
927		if (!dc)
928			return (NULL);
929		dc->parent = NULL;
930		dc->name = (char*) (dc + 1);
931		strcpy(dc->name, classname);
932		TAILQ_INIT(&dc->drivers);
933		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934
935		bus_data_generation_update();
936	}
937
938	/*
939	 * If a parent class is specified, then set that as our parent so
940	 * that this devclass will support drivers for the parent class as
941	 * well.  If the parent class has the same name don't do this though
942	 * as it creates a cycle that can trigger an infinite loop in
943	 * device_probe_child() if a device exists for which there is no
944	 * suitable driver.
945	 */
946	if (parentname && dc && !dc->parent &&
947	    strcmp(classname, parentname) != 0) {
948		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949		dc->parent->flags |= DC_HAS_CHILDREN;
950	}
951
952	return (dc);
953}
954
955/**
956 * @brief Create a device class
957 *
958 * If a device class with the name @p classname exists, return it,
959 * otherwise create and return a new device class.
960 *
961 * @param classname	the devclass name to find or create
962 */
963devclass_t
964devclass_create(const char *classname)
965{
966	return (devclass_find_internal(classname, NULL, TRUE));
967}
968
969/**
970 * @brief Find a device class
971 *
972 * If a device class with the name @p classname exists, return it,
973 * otherwise return @c NULL.
974 *
975 * @param classname	the devclass name to find
976 */
977devclass_t
978devclass_find(const char *classname)
979{
980	return (devclass_find_internal(classname, NULL, FALSE));
981}
982
983/**
984 * @brief Register that a device driver has been added to a devclass
985 *
986 * Register that a device driver has been added to a devclass.  This
987 * is called by devclass_add_driver to accomplish the recursive
988 * notification of all the children classes of dc, as well as dc.
989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990 * the devclass.
991 *
992 * We do a full search here of the devclass list at each iteration
993 * level to save storing children-lists in the devclass structure.  If
994 * we ever move beyond a few dozen devices doing this, we may need to
995 * reevaluate...
996 *
997 * @param dc		the devclass to edit
998 * @param driver	the driver that was just added
999 */
1000static void
1001devclass_driver_added(devclass_t dc, driver_t *driver)
1002{
1003	devclass_t parent;
1004	int i;
1005
1006	/*
1007	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008	 */
1009	for (i = 0; i < dc->maxunit; i++)
1010		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012
1013	/*
1014	 * Walk through the children classes.  Since we only keep a
1015	 * single parent pointer around, we walk the entire list of
1016	 * devclasses looking for children.  We set the
1017	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018	 * the parent, so we only walk the list for those devclasses
1019	 * that have children.
1020	 */
1021	if (!(dc->flags & DC_HAS_CHILDREN))
1022		return;
1023	parent = dc;
1024	TAILQ_FOREACH(dc, &devclasses, link) {
1025		if (dc->parent == parent)
1026			devclass_driver_added(dc, driver);
1027	}
1028}
1029
1030/**
1031 * @brief Add a device driver to a device class
1032 *
1033 * Add a device driver to a devclass. This is normally called
1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035 * all devices in the devclass will be called to allow them to attempt
1036 * to re-probe any unmatched children.
1037 *
1038 * @param dc		the devclass to edit
1039 * @param driver	the driver to register
1040 */
1041int
1042devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043{
1044	driverlink_t dl;
1045	const char *parentname;
1046
1047	PDEBUG(("%s", DRIVERNAME(driver)));
1048
1049	/* Don't allow invalid pass values. */
1050	if (pass <= BUS_PASS_ROOT)
1051		return (EINVAL);
1052
1053	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054	if (!dl)
1055		return (ENOMEM);
1056
1057	/*
1058	 * Compile the driver's methods. Also increase the reference count
1059	 * so that the class doesn't get freed when the last instance
1060	 * goes. This means we can safely use static methods and avoids a
1061	 * double-free in devclass_delete_driver.
1062	 */
1063	kobj_class_compile((kobj_class_t) driver);
1064
1065	/*
1066	 * If the driver has any base classes, make the
1067	 * devclass inherit from the devclass of the driver's
1068	 * first base class. This will allow the system to
1069	 * search for drivers in both devclasses for children
1070	 * of a device using this driver.
1071	 */
1072	if (driver->baseclasses)
1073		parentname = driver->baseclasses[0]->name;
1074	else
1075		parentname = NULL;
1076	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077
1078	dl->driver = driver;
1079	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080	driver->refs++;		/* XXX: kobj_mtx */
1081	dl->pass = pass;
1082	driver_register_pass(dl);
1083
1084	devclass_driver_added(dc, driver);
1085	bus_data_generation_update();
1086	return (0);
1087}
1088
1089/**
1090 * @brief Register that a device driver has been deleted from a devclass
1091 *
1092 * Register that a device driver has been removed from a devclass.
1093 * This is called by devclass_delete_driver to accomplish the
1094 * recursive notification of all the children classes of busclass, as
1095 * well as busclass.  Each layer will attempt to detach the driver
1096 * from any devices that are children of the bus's devclass.  The function
1097 * will return an error if a device fails to detach.
1098 *
1099 * We do a full search here of the devclass list at each iteration
1100 * level to save storing children-lists in the devclass structure.  If
1101 * we ever move beyond a few dozen devices doing this, we may need to
1102 * reevaluate...
1103 *
1104 * @param busclass	the devclass of the parent bus
1105 * @param dc		the devclass of the driver being deleted
1106 * @param driver	the driver being deleted
1107 */
1108static int
1109devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110{
1111	devclass_t parent;
1112	device_t dev;
1113	int error, i;
1114
1115	/*
1116	 * Disassociate from any devices.  We iterate through all the
1117	 * devices in the devclass of the driver and detach any which are
1118	 * using the driver and which have a parent in the devclass which
1119	 * we are deleting from.
1120	 *
1121	 * Note that since a driver can be in multiple devclasses, we
1122	 * should not detach devices which are not children of devices in
1123	 * the affected devclass.
1124	 */
1125	for (i = 0; i < dc->maxunit; i++) {
1126		if (dc->devices[i]) {
1127			dev = dc->devices[i];
1128			if (dev->driver == driver && dev->parent &&
1129			    dev->parent->devclass == busclass) {
1130				if ((error = device_detach(dev)) != 0)
1131					return (error);
1132				BUS_PROBE_NOMATCH(dev->parent, dev);
1133				devnomatch(dev);
1134				dev->flags |= DF_DONENOMATCH;
1135			}
1136		}
1137	}
1138
1139	/*
1140	 * Walk through the children classes.  Since we only keep a
1141	 * single parent pointer around, we walk the entire list of
1142	 * devclasses looking for children.  We set the
1143	 * DC_HAS_CHILDREN flag when a child devclass is created on
1144	 * the parent, so we only walk the list for those devclasses
1145	 * that have children.
1146	 */
1147	if (!(busclass->flags & DC_HAS_CHILDREN))
1148		return (0);
1149	parent = busclass;
1150	TAILQ_FOREACH(busclass, &devclasses, link) {
1151		if (busclass->parent == parent) {
1152			error = devclass_driver_deleted(busclass, dc, driver);
1153			if (error)
1154				return (error);
1155		}
1156	}
1157	return (0);
1158}
1159
1160/**
1161 * @brief Delete a device driver from a device class
1162 *
1163 * Delete a device driver from a devclass. This is normally called
1164 * automatically by DRIVER_MODULE().
1165 *
1166 * If the driver is currently attached to any devices,
1167 * devclass_delete_driver() will first attempt to detach from each
1168 * device. If one of the detach calls fails, the driver will not be
1169 * deleted.
1170 *
1171 * @param dc		the devclass to edit
1172 * @param driver	the driver to unregister
1173 */
1174int
1175devclass_delete_driver(devclass_t busclass, driver_t *driver)
1176{
1177	devclass_t dc = devclass_find(driver->name);
1178	driverlink_t dl;
1179	int error;
1180
1181	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1182
1183	if (!dc)
1184		return (0);
1185
1186	/*
1187	 * Find the link structure in the bus' list of drivers.
1188	 */
1189	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1190		if (dl->driver == driver)
1191			break;
1192	}
1193
1194	if (!dl) {
1195		PDEBUG(("%s not found in %s list", driver->name,
1196		    busclass->name));
1197		return (ENOENT);
1198	}
1199
1200	error = devclass_driver_deleted(busclass, dc, driver);
1201	if (error != 0)
1202		return (error);
1203
1204	TAILQ_REMOVE(&busclass->drivers, dl, link);
1205	free(dl, M_BUS);
1206
1207	/* XXX: kobj_mtx */
1208	driver->refs--;
1209	if (driver->refs == 0)
1210		kobj_class_free((kobj_class_t) driver);
1211
1212	bus_data_generation_update();
1213	return (0);
1214}
1215
1216/**
1217 * @brief Quiesces a set of device drivers from a device class
1218 *
1219 * Quiesce a device driver from a devclass. This is normally called
1220 * automatically by DRIVER_MODULE().
1221 *
1222 * If the driver is currently attached to any devices,
1223 * devclass_quiesece_driver() will first attempt to quiesce each
1224 * device.
1225 *
1226 * @param dc		the devclass to edit
1227 * @param driver	the driver to unregister
1228 */
1229static int
1230devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1231{
1232	devclass_t dc = devclass_find(driver->name);
1233	driverlink_t dl;
1234	device_t dev;
1235	int i;
1236	int error;
1237
1238	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1239
1240	if (!dc)
1241		return (0);
1242
1243	/*
1244	 * Find the link structure in the bus' list of drivers.
1245	 */
1246	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1247		if (dl->driver == driver)
1248			break;
1249	}
1250
1251	if (!dl) {
1252		PDEBUG(("%s not found in %s list", driver->name,
1253		    busclass->name));
1254		return (ENOENT);
1255	}
1256
1257	/*
1258	 * Quiesce all devices.  We iterate through all the devices in
1259	 * the devclass of the driver and quiesce any which are using
1260	 * the driver and which have a parent in the devclass which we
1261	 * are quiescing.
1262	 *
1263	 * Note that since a driver can be in multiple devclasses, we
1264	 * should not quiesce devices which are not children of
1265	 * devices in the affected devclass.
1266	 */
1267	for (i = 0; i < dc->maxunit; i++) {
1268		if (dc->devices[i]) {
1269			dev = dc->devices[i];
1270			if (dev->driver == driver && dev->parent &&
1271			    dev->parent->devclass == busclass) {
1272				if ((error = device_quiesce(dev)) != 0)
1273					return (error);
1274			}
1275		}
1276	}
1277
1278	return (0);
1279}
1280
1281/**
1282 * @internal
1283 */
1284static driverlink_t
1285devclass_find_driver_internal(devclass_t dc, const char *classname)
1286{
1287	driverlink_t dl;
1288
1289	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1290
1291	TAILQ_FOREACH(dl, &dc->drivers, link) {
1292		if (!strcmp(dl->driver->name, classname))
1293			return (dl);
1294	}
1295
1296	PDEBUG(("not found"));
1297	return (NULL);
1298}
1299
1300/**
1301 * @brief Return the name of the devclass
1302 */
1303const char *
1304devclass_get_name(devclass_t dc)
1305{
1306	return (dc->name);
1307}
1308
1309/**
1310 * @brief Find a device given a unit number
1311 *
1312 * @param dc		the devclass to search
1313 * @param unit		the unit number to search for
1314 *
1315 * @returns		the device with the given unit number or @c
1316 *			NULL if there is no such device
1317 */
1318device_t
1319devclass_get_device(devclass_t dc, int unit)
1320{
1321	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1322		return (NULL);
1323	return (dc->devices[unit]);
1324}
1325
1326/**
1327 * @brief Find the softc field of a device given a unit number
1328 *
1329 * @param dc		the devclass to search
1330 * @param unit		the unit number to search for
1331 *
1332 * @returns		the softc field of the device with the given
1333 *			unit number or @c NULL if there is no such
1334 *			device
1335 */
1336void *
1337devclass_get_softc(devclass_t dc, int unit)
1338{
1339	device_t dev;
1340
1341	dev = devclass_get_device(dc, unit);
1342	if (!dev)
1343		return (NULL);
1344
1345	return (device_get_softc(dev));
1346}
1347
1348/**
1349 * @brief Get a list of devices in the devclass
1350 *
1351 * An array containing a list of all the devices in the given devclass
1352 * is allocated and returned in @p *devlistp. The number of devices
1353 * in the array is returned in @p *devcountp. The caller should free
1354 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1355 *
1356 * @param dc		the devclass to examine
1357 * @param devlistp	points at location for array pointer return
1358 *			value
1359 * @param devcountp	points at location for array size return value
1360 *
1361 * @retval 0		success
1362 * @retval ENOMEM	the array allocation failed
1363 */
1364int
1365devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1366{
1367	int count, i;
1368	device_t *list;
1369
1370	count = devclass_get_count(dc);
1371	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1372	if (!list)
1373		return (ENOMEM);
1374
1375	count = 0;
1376	for (i = 0; i < dc->maxunit; i++) {
1377		if (dc->devices[i]) {
1378			list[count] = dc->devices[i];
1379			count++;
1380		}
1381	}
1382
1383	*devlistp = list;
1384	*devcountp = count;
1385
1386	return (0);
1387}
1388
1389/**
1390 * @brief Get a list of drivers in the devclass
1391 *
1392 * An array containing a list of pointers to all the drivers in the
1393 * given devclass is allocated and returned in @p *listp.  The number
1394 * of drivers in the array is returned in @p *countp. The caller should
1395 * free the array using @c free(p, M_TEMP).
1396 *
1397 * @param dc		the devclass to examine
1398 * @param listp		gives location for array pointer return value
1399 * @param countp	gives location for number of array elements
1400 *			return value
1401 *
1402 * @retval 0		success
1403 * @retval ENOMEM	the array allocation failed
1404 */
1405int
1406devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1407{
1408	driverlink_t dl;
1409	driver_t **list;
1410	int count;
1411
1412	count = 0;
1413	TAILQ_FOREACH(dl, &dc->drivers, link)
1414		count++;
1415	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1416	if (list == NULL)
1417		return (ENOMEM);
1418
1419	count = 0;
1420	TAILQ_FOREACH(dl, &dc->drivers, link) {
1421		list[count] = dl->driver;
1422		count++;
1423	}
1424	*listp = list;
1425	*countp = count;
1426
1427	return (0);
1428}
1429
1430/**
1431 * @brief Get the number of devices in a devclass
1432 *
1433 * @param dc		the devclass to examine
1434 */
1435int
1436devclass_get_count(devclass_t dc)
1437{
1438	int count, i;
1439
1440	count = 0;
1441	for (i = 0; i < dc->maxunit; i++)
1442		if (dc->devices[i])
1443			count++;
1444	return (count);
1445}
1446
1447/**
1448 * @brief Get the maximum unit number used in a devclass
1449 *
1450 * Note that this is one greater than the highest currently-allocated
1451 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1452 * that not even the devclass has been allocated yet.
1453 *
1454 * @param dc		the devclass to examine
1455 */
1456int
1457devclass_get_maxunit(devclass_t dc)
1458{
1459	if (dc == NULL)
1460		return (-1);
1461	return (dc->maxunit);
1462}
1463
1464/**
1465 * @brief Find a free unit number in a devclass
1466 *
1467 * This function searches for the first unused unit number greater
1468 * that or equal to @p unit.
1469 *
1470 * @param dc		the devclass to examine
1471 * @param unit		the first unit number to check
1472 */
1473int
1474devclass_find_free_unit(devclass_t dc, int unit)
1475{
1476	if (dc == NULL)
1477		return (unit);
1478	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1479		unit++;
1480	return (unit);
1481}
1482
1483/**
1484 * @brief Set the parent of a devclass
1485 *
1486 * The parent class is normally initialised automatically by
1487 * DRIVER_MODULE().
1488 *
1489 * @param dc		the devclass to edit
1490 * @param pdc		the new parent devclass
1491 */
1492void
1493devclass_set_parent(devclass_t dc, devclass_t pdc)
1494{
1495	dc->parent = pdc;
1496}
1497
1498/**
1499 * @brief Get the parent of a devclass
1500 *
1501 * @param dc		the devclass to examine
1502 */
1503devclass_t
1504devclass_get_parent(devclass_t dc)
1505{
1506	return (dc->parent);
1507}
1508
1509struct sysctl_ctx_list *
1510devclass_get_sysctl_ctx(devclass_t dc)
1511{
1512	return (&dc->sysctl_ctx);
1513}
1514
1515struct sysctl_oid *
1516devclass_get_sysctl_tree(devclass_t dc)
1517{
1518	return (dc->sysctl_tree);
1519}
1520
1521/**
1522 * @internal
1523 * @brief Allocate a unit number
1524 *
1525 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1526 * will do). The allocated unit number is returned in @p *unitp.
1527
1528 * @param dc		the devclass to allocate from
1529 * @param unitp		points at the location for the allocated unit
1530 *			number
1531 *
1532 * @retval 0		success
1533 * @retval EEXIST	the requested unit number is already allocated
1534 * @retval ENOMEM	memory allocation failure
1535 */
1536static int
1537devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1538{
1539	const char *s;
1540	int unit = *unitp;
1541
1542	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1543
1544	/* Ask the parent bus if it wants to wire this device. */
1545	if (unit == -1)
1546		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1547		    &unit);
1548
1549	/* If we were given a wired unit number, check for existing device */
1550	/* XXX imp XXX */
1551	if (unit != -1) {
1552		if (unit >= 0 && unit < dc->maxunit &&
1553		    dc->devices[unit] != NULL) {
1554			if (bootverbose)
1555				printf("%s: %s%d already exists; skipping it\n",
1556				    dc->name, dc->name, *unitp);
1557			return (EEXIST);
1558		}
1559	} else {
1560		/* Unwired device, find the next available slot for it */
1561		unit = 0;
1562		for (unit = 0;; unit++) {
1563			/* If there is an "at" hint for a unit then skip it. */
1564			if (resource_string_value(dc->name, unit, "at", &s) ==
1565			    0)
1566				continue;
1567
1568			/* If this device slot is already in use, skip it. */
1569			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1570				continue;
1571
1572			break;
1573		}
1574	}
1575
1576	/*
1577	 * We've selected a unit beyond the length of the table, so let's
1578	 * extend the table to make room for all units up to and including
1579	 * this one.
1580	 */
1581	if (unit >= dc->maxunit) {
1582		device_t *newlist, *oldlist;
1583		int newsize;
1584
1585		oldlist = dc->devices;
1586		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1587		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1588		if (!newlist)
1589			return (ENOMEM);
1590		if (oldlist != NULL)
1591			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1592		bzero(newlist + dc->maxunit,
1593		    sizeof(device_t) * (newsize - dc->maxunit));
1594		dc->devices = newlist;
1595		dc->maxunit = newsize;
1596		if (oldlist != NULL)
1597			free(oldlist, M_BUS);
1598	}
1599	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1600
1601	*unitp = unit;
1602	return (0);
1603}
1604
1605/**
1606 * @internal
1607 * @brief Add a device to a devclass
1608 *
1609 * A unit number is allocated for the device (using the device's
1610 * preferred unit number if any) and the device is registered in the
1611 * devclass. This allows the device to be looked up by its unit
1612 * number, e.g. by decoding a dev_t minor number.
1613 *
1614 * @param dc		the devclass to add to
1615 * @param dev		the device to add
1616 *
1617 * @retval 0		success
1618 * @retval EEXIST	the requested unit number is already allocated
1619 * @retval ENOMEM	memory allocation failure
1620 */
1621static int
1622devclass_add_device(devclass_t dc, device_t dev)
1623{
1624	int buflen, error;
1625
1626	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1627
1628	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1629	if (buflen < 0)
1630		return (ENOMEM);
1631	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1632	if (!dev->nameunit)
1633		return (ENOMEM);
1634
1635	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1636		free(dev->nameunit, M_BUS);
1637		dev->nameunit = NULL;
1638		return (error);
1639	}
1640	dc->devices[dev->unit] = dev;
1641	dev->devclass = dc;
1642	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1643
1644	return (0);
1645}
1646
1647/**
1648 * @internal
1649 * @brief Delete a device from a devclass
1650 *
1651 * The device is removed from the devclass's device list and its unit
1652 * number is freed.
1653
1654 * @param dc		the devclass to delete from
1655 * @param dev		the device to delete
1656 *
1657 * @retval 0		success
1658 */
1659static int
1660devclass_delete_device(devclass_t dc, device_t dev)
1661{
1662	if (!dc || !dev)
1663		return (0);
1664
1665	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1666
1667	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1668		panic("devclass_delete_device: inconsistent device class");
1669	dc->devices[dev->unit] = NULL;
1670	if (dev->flags & DF_WILDCARD)
1671		dev->unit = -1;
1672	dev->devclass = NULL;
1673	free(dev->nameunit, M_BUS);
1674	dev->nameunit = NULL;
1675
1676	return (0);
1677}
1678
1679/**
1680 * @internal
1681 * @brief Make a new device and add it as a child of @p parent
1682 *
1683 * @param parent	the parent of the new device
1684 * @param name		the devclass name of the new device or @c NULL
1685 *			to leave the devclass unspecified
1686 * @parem unit		the unit number of the new device of @c -1 to
1687 *			leave the unit number unspecified
1688 *
1689 * @returns the new device
1690 */
1691static device_t
1692make_device(device_t parent, const char *name, int unit)
1693{
1694	device_t dev;
1695	devclass_t dc;
1696
1697	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1698
1699	if (name) {
1700		dc = devclass_find_internal(name, NULL, TRUE);
1701		if (!dc) {
1702			printf("make_device: can't find device class %s\n",
1703			    name);
1704			return (NULL);
1705		}
1706	} else {
1707		dc = NULL;
1708	}
1709
1710	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1711	if (!dev)
1712		return (NULL);
1713
1714	dev->parent = parent;
1715	TAILQ_INIT(&dev->children);
1716	kobj_init((kobj_t) dev, &null_class);
1717	dev->driver = NULL;
1718	dev->devclass = NULL;
1719	dev->unit = unit;
1720	dev->nameunit = NULL;
1721	dev->desc = NULL;
1722	dev->busy = 0;
1723	dev->devflags = 0;
1724	dev->flags = DF_ENABLED;
1725	dev->order = 0;
1726	if (unit == -1)
1727		dev->flags |= DF_WILDCARD;
1728	if (name) {
1729		dev->flags |= DF_FIXEDCLASS;
1730		if (devclass_add_device(dc, dev)) {
1731			kobj_delete((kobj_t) dev, M_BUS);
1732			return (NULL);
1733		}
1734	}
1735	dev->ivars = NULL;
1736	dev->softc = NULL;
1737
1738	dev->state = DS_NOTPRESENT;
1739
1740	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1741	bus_data_generation_update();
1742
1743	return (dev);
1744}
1745
1746/**
1747 * @internal
1748 * @brief Print a description of a device.
1749 */
1750static int
1751device_print_child(device_t dev, device_t child)
1752{
1753	int retval = 0;
1754
1755	if (device_is_alive(child))
1756		retval += BUS_PRINT_CHILD(dev, child);
1757	else
1758		retval += device_printf(child, " not found\n");
1759
1760	return (retval);
1761}
1762
1763/**
1764 * @brief Create a new device
1765 *
1766 * This creates a new device and adds it as a child of an existing
1767 * parent device. The new device will be added after the last existing
1768 * child with order zero.
1769 *
1770 * @param dev		the device which will be the parent of the
1771 *			new child device
1772 * @param name		devclass name for new device or @c NULL if not
1773 *			specified
1774 * @param unit		unit number for new device or @c -1 if not
1775 *			specified
1776 *
1777 * @returns		the new device
1778 */
1779device_t
1780device_add_child(device_t dev, const char *name, int unit)
1781{
1782	return (device_add_child_ordered(dev, 0, name, unit));
1783}
1784
1785/**
1786 * @brief Create a new device
1787 *
1788 * This creates a new device and adds it as a child of an existing
1789 * parent device. The new device will be added after the last existing
1790 * child with the same order.
1791 *
1792 * @param dev		the device which will be the parent of the
1793 *			new child device
1794 * @param order		a value which is used to partially sort the
1795 *			children of @p dev - devices created using
1796 *			lower values of @p order appear first in @p
1797 *			dev's list of children
1798 * @param name		devclass name for new device or @c NULL if not
1799 *			specified
1800 * @param unit		unit number for new device or @c -1 if not
1801 *			specified
1802 *
1803 * @returns		the new device
1804 */
1805device_t
1806device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1807{
1808	device_t child;
1809	device_t place;
1810
1811	PDEBUG(("%s at %s with order %u as unit %d",
1812	    name, DEVICENAME(dev), order, unit));
1813	KASSERT(name != NULL || unit == -1,
1814	    ("child device with wildcard name and specific unit number"));
1815
1816	child = make_device(dev, name, unit);
1817	if (child == NULL)
1818		return (child);
1819	child->order = order;
1820
1821	TAILQ_FOREACH(place, &dev->children, link) {
1822		if (place->order > order)
1823			break;
1824	}
1825
1826	if (place) {
1827		/*
1828		 * The device 'place' is the first device whose order is
1829		 * greater than the new child.
1830		 */
1831		TAILQ_INSERT_BEFORE(place, child, link);
1832	} else {
1833		/*
1834		 * The new child's order is greater or equal to the order of
1835		 * any existing device. Add the child to the tail of the list.
1836		 */
1837		TAILQ_INSERT_TAIL(&dev->children, child, link);
1838	}
1839
1840	bus_data_generation_update();
1841	return (child);
1842}
1843
1844/**
1845 * @brief Delete a device
1846 *
1847 * This function deletes a device along with all of its children. If
1848 * the device currently has a driver attached to it, the device is
1849 * detached first using device_detach().
1850 *
1851 * @param dev		the parent device
1852 * @param child		the device to delete
1853 *
1854 * @retval 0		success
1855 * @retval non-zero	a unit error code describing the error
1856 */
1857int
1858device_delete_child(device_t dev, device_t child)
1859{
1860	int error;
1861	device_t grandchild;
1862
1863	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1864
1865	/* remove children first */
1866	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1867		error = device_delete_child(child, grandchild);
1868		if (error)
1869			return (error);
1870	}
1871
1872	if ((error = device_detach(child)) != 0)
1873		return (error);
1874	if (child->devclass)
1875		devclass_delete_device(child->devclass, child);
1876	TAILQ_REMOVE(&dev->children, child, link);
1877	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1878	kobj_delete((kobj_t) child, M_BUS);
1879
1880	bus_data_generation_update();
1881	return (0);
1882}
1883
1884/**
1885 * @brief Delete all children devices of the given device, if any.
1886 *
1887 * This function deletes all children devices of the given device, if
1888 * any, using the device_delete_child() function for each device it
1889 * finds. If a child device cannot be deleted, this function will
1890 * return an error code.
1891 *
1892 * @param dev		the parent device
1893 *
1894 * @retval 0		success
1895 * @retval non-zero	a device would not detach
1896 */
1897int
1898device_delete_children(device_t dev)
1899{
1900	device_t child;
1901	int error;
1902
1903	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1904
1905	error = 0;
1906
1907	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1908		error = device_delete_child(dev, child);
1909		if (error) {
1910			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1911			break;
1912		}
1913	}
1914	return (error);
1915}
1916
1917/**
1918 * @brief Find a device given a unit number
1919 *
1920 * This is similar to devclass_get_devices() but only searches for
1921 * devices which have @p dev as a parent.
1922 *
1923 * @param dev		the parent device to search
1924 * @param unit		the unit number to search for.  If the unit is -1,
1925 *			return the first child of @p dev which has name
1926 *			@p classname (that is, the one with the lowest unit.)
1927 *
1928 * @returns		the device with the given unit number or @c
1929 *			NULL if there is no such device
1930 */
1931device_t
1932device_find_child(device_t dev, const char *classname, int unit)
1933{
1934	devclass_t dc;
1935	device_t child;
1936
1937	dc = devclass_find(classname);
1938	if (!dc)
1939		return (NULL);
1940
1941	if (unit != -1) {
1942		child = devclass_get_device(dc, unit);
1943		if (child && child->parent == dev)
1944			return (child);
1945	} else {
1946		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1947			child = devclass_get_device(dc, unit);
1948			if (child && child->parent == dev)
1949				return (child);
1950		}
1951	}
1952	return (NULL);
1953}
1954
1955/**
1956 * @internal
1957 */
1958static driverlink_t
1959first_matching_driver(devclass_t dc, device_t dev)
1960{
1961	if (dev->devclass)
1962		return (devclass_find_driver_internal(dc, dev->devclass->name));
1963	return (TAILQ_FIRST(&dc->drivers));
1964}
1965
1966/**
1967 * @internal
1968 */
1969static driverlink_t
1970next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1971{
1972	if (dev->devclass) {
1973		driverlink_t dl;
1974		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1975			if (!strcmp(dev->devclass->name, dl->driver->name))
1976				return (dl);
1977		return (NULL);
1978	}
1979	return (TAILQ_NEXT(last, link));
1980}
1981
1982/**
1983 * @internal
1984 */
1985int
1986device_probe_child(device_t dev, device_t child)
1987{
1988	devclass_t dc;
1989	driverlink_t best = NULL;
1990	driverlink_t dl;
1991	int result, pri = 0;
1992	int hasclass = (child->devclass != NULL);
1993
1994	GIANT_REQUIRED;
1995
1996	dc = dev->devclass;
1997	if (!dc)
1998		panic("device_probe_child: parent device has no devclass");
1999
2000	/*
2001	 * If the state is already probed, then return.  However, don't
2002	 * return if we can rebid this object.
2003	 */
2004	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2005		return (0);
2006
2007	for (; dc; dc = dc->parent) {
2008		for (dl = first_matching_driver(dc, child);
2009		     dl;
2010		     dl = next_matching_driver(dc, child, dl)) {
2011			/* If this driver's pass is too high, then ignore it. */
2012			if (dl->pass > bus_current_pass)
2013				continue;
2014
2015			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2016			result = device_set_driver(child, dl->driver);
2017			if (result == ENOMEM)
2018				return (result);
2019			else if (result != 0)
2020				continue;
2021			if (!hasclass) {
2022				if (device_set_devclass(child,
2023				    dl->driver->name) != 0) {
2024					char const * devname =
2025					    device_get_name(child);
2026					if (devname == NULL)
2027						devname = "(unknown)";
2028					printf("driver bug: Unable to set "
2029					    "devclass (class: %s "
2030					    "devname: %s)\n",
2031					    dl->driver->name,
2032					    devname);
2033					(void)device_set_driver(child, NULL);
2034					continue;
2035				}
2036			}
2037
2038			/* Fetch any flags for the device before probing. */
2039			resource_int_value(dl->driver->name, child->unit,
2040			    "flags", &child->devflags);
2041
2042			result = DEVICE_PROBE(child);
2043
2044			/* Reset flags and devclass before the next probe. */
2045			child->devflags = 0;
2046			if (!hasclass)
2047				(void)device_set_devclass(child, NULL);
2048
2049			/*
2050			 * If the driver returns SUCCESS, there can be
2051			 * no higher match for this device.
2052			 */
2053			if (result == 0) {
2054				best = dl;
2055				pri = 0;
2056				break;
2057			}
2058
2059			/*
2060			 * The driver returned an error so it
2061			 * certainly doesn't match.
2062			 */
2063			if (result > 0) {
2064				(void)device_set_driver(child, NULL);
2065				continue;
2066			}
2067
2068			/*
2069			 * A priority lower than SUCCESS, remember the
2070			 * best matching driver. Initialise the value
2071			 * of pri for the first match.
2072			 */
2073			if (best == NULL || result > pri) {
2074				/*
2075				 * Probes that return BUS_PROBE_NOWILDCARD
2076				 * or lower only match when they are set
2077				 * in stone by the parent bus.
2078				 */
2079				if (result <= BUS_PROBE_NOWILDCARD &&
2080				    child->flags & DF_WILDCARD)
2081					continue;
2082				best = dl;
2083				pri = result;
2084				continue;
2085			}
2086		}
2087		/*
2088		 * If we have an unambiguous match in this devclass,
2089		 * don't look in the parent.
2090		 */
2091		if (best && pri == 0)
2092			break;
2093	}
2094
2095	/*
2096	 * If we found a driver, change state and initialise the devclass.
2097	 */
2098	/* XXX What happens if we rebid and got no best? */
2099	if (best) {
2100		/*
2101		 * If this device was attached, and we were asked to
2102		 * rescan, and it is a different driver, then we have
2103		 * to detach the old driver and reattach this new one.
2104		 * Note, we don't have to check for DF_REBID here
2105		 * because if the state is > DS_ALIVE, we know it must
2106		 * be.
2107		 *
2108		 * This assumes that all DF_REBID drivers can have
2109		 * their probe routine called at any time and that
2110		 * they are idempotent as well as completely benign in
2111		 * normal operations.
2112		 *
2113		 * We also have to make sure that the detach
2114		 * succeeded, otherwise we fail the operation (or
2115		 * maybe it should just fail silently?  I'm torn).
2116		 */
2117		if (child->state > DS_ALIVE && best->driver != child->driver)
2118			if ((result = device_detach(dev)) != 0)
2119				return (result);
2120
2121		/* Set the winning driver, devclass, and flags. */
2122		if (!child->devclass) {
2123			result = device_set_devclass(child, best->driver->name);
2124			if (result != 0)
2125				return (result);
2126		}
2127		result = device_set_driver(child, best->driver);
2128		if (result != 0)
2129			return (result);
2130		resource_int_value(best->driver->name, child->unit,
2131		    "flags", &child->devflags);
2132
2133		if (pri < 0) {
2134			/*
2135			 * A bit bogus. Call the probe method again to make
2136			 * sure that we have the right description.
2137			 */
2138			DEVICE_PROBE(child);
2139#if 0
2140			child->flags |= DF_REBID;
2141#endif
2142		} else
2143			child->flags &= ~DF_REBID;
2144		child->state = DS_ALIVE;
2145
2146		bus_data_generation_update();
2147		return (0);
2148	}
2149
2150	return (ENXIO);
2151}
2152
2153/**
2154 * @brief Return the parent of a device
2155 */
2156device_t
2157device_get_parent(device_t dev)
2158{
2159	return (dev->parent);
2160}
2161
2162/**
2163 * @brief Get a list of children of a device
2164 *
2165 * An array containing a list of all the children of the given device
2166 * is allocated and returned in @p *devlistp. The number of devices
2167 * in the array is returned in @p *devcountp. The caller should free
2168 * the array using @c free(p, M_TEMP).
2169 *
2170 * @param dev		the device to examine
2171 * @param devlistp	points at location for array pointer return
2172 *			value
2173 * @param devcountp	points at location for array size return value
2174 *
2175 * @retval 0		success
2176 * @retval ENOMEM	the array allocation failed
2177 */
2178int
2179device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2180{
2181	int count;
2182	device_t child;
2183	device_t *list;
2184
2185	count = 0;
2186	TAILQ_FOREACH(child, &dev->children, link) {
2187		count++;
2188	}
2189	if (count == 0) {
2190		*devlistp = NULL;
2191		*devcountp = 0;
2192		return (0);
2193	}
2194
2195	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2196	if (!list)
2197		return (ENOMEM);
2198
2199	count = 0;
2200	TAILQ_FOREACH(child, &dev->children, link) {
2201		list[count] = child;
2202		count++;
2203	}
2204
2205	*devlistp = list;
2206	*devcountp = count;
2207
2208	return (0);
2209}
2210
2211/**
2212 * @brief Return the current driver for the device or @c NULL if there
2213 * is no driver currently attached
2214 */
2215driver_t *
2216device_get_driver(device_t dev)
2217{
2218	return (dev->driver);
2219}
2220
2221/**
2222 * @brief Return the current devclass for the device or @c NULL if
2223 * there is none.
2224 */
2225devclass_t
2226device_get_devclass(device_t dev)
2227{
2228	return (dev->devclass);
2229}
2230
2231/**
2232 * @brief Return the name of the device's devclass or @c NULL if there
2233 * is none.
2234 */
2235const char *
2236device_get_name(device_t dev)
2237{
2238	if (dev != NULL && dev->devclass)
2239		return (devclass_get_name(dev->devclass));
2240	return (NULL);
2241}
2242
2243/**
2244 * @brief Return a string containing the device's devclass name
2245 * followed by an ascii representation of the device's unit number
2246 * (e.g. @c "foo2").
2247 */
2248const char *
2249device_get_nameunit(device_t dev)
2250{
2251	return (dev->nameunit);
2252}
2253
2254/**
2255 * @brief Return the device's unit number.
2256 */
2257int
2258device_get_unit(device_t dev)
2259{
2260	return (dev->unit);
2261}
2262
2263/**
2264 * @brief Return the device's description string
2265 */
2266const char *
2267device_get_desc(device_t dev)
2268{
2269	return (dev->desc);
2270}
2271
2272/**
2273 * @brief Return the device's flags
2274 */
2275uint32_t
2276device_get_flags(device_t dev)
2277{
2278	return (dev->devflags);
2279}
2280
2281struct sysctl_ctx_list *
2282device_get_sysctl_ctx(device_t dev)
2283{
2284	return (&dev->sysctl_ctx);
2285}
2286
2287struct sysctl_oid *
2288device_get_sysctl_tree(device_t dev)
2289{
2290	return (dev->sysctl_tree);
2291}
2292
2293/**
2294 * @brief Print the name of the device followed by a colon and a space
2295 *
2296 * @returns the number of characters printed
2297 */
2298int
2299device_print_prettyname(device_t dev)
2300{
2301	const char *name = device_get_name(dev);
2302
2303	if (name == NULL)
2304		return (printf("unknown: "));
2305	return (printf("%s%d: ", name, device_get_unit(dev)));
2306}
2307
2308/**
2309 * @brief Print the name of the device followed by a colon, a space
2310 * and the result of calling vprintf() with the value of @p fmt and
2311 * the following arguments.
2312 *
2313 * @returns the number of characters printed
2314 */
2315int
2316device_printf(device_t dev, const char * fmt, ...)
2317{
2318	va_list ap;
2319	int retval;
2320
2321	retval = device_print_prettyname(dev);
2322	va_start(ap, fmt);
2323	retval += vprintf(fmt, ap);
2324	va_end(ap);
2325	return (retval);
2326}
2327
2328/**
2329 * @internal
2330 */
2331static void
2332device_set_desc_internal(device_t dev, const char* desc, int copy)
2333{
2334	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2335		free(dev->desc, M_BUS);
2336		dev->flags &= ~DF_DESCMALLOCED;
2337		dev->desc = NULL;
2338	}
2339
2340	if (copy && desc) {
2341		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2342		if (dev->desc) {
2343			strcpy(dev->desc, desc);
2344			dev->flags |= DF_DESCMALLOCED;
2345		}
2346	} else {
2347		/* Avoid a -Wcast-qual warning */
2348		dev->desc = (char *)(uintptr_t) desc;
2349	}
2350
2351	bus_data_generation_update();
2352}
2353
2354/**
2355 * @brief Set the device's description
2356 *
2357 * The value of @c desc should be a string constant that will not
2358 * change (at least until the description is changed in a subsequent
2359 * call to device_set_desc() or device_set_desc_copy()).
2360 */
2361void
2362device_set_desc(device_t dev, const char* desc)
2363{
2364	device_set_desc_internal(dev, desc, FALSE);
2365}
2366
2367/**
2368 * @brief Set the device's description
2369 *
2370 * The string pointed to by @c desc is copied. Use this function if
2371 * the device description is generated, (e.g. with sprintf()).
2372 */
2373void
2374device_set_desc_copy(device_t dev, const char* desc)
2375{
2376	device_set_desc_internal(dev, desc, TRUE);
2377}
2378
2379/**
2380 * @brief Set the device's flags
2381 */
2382void
2383device_set_flags(device_t dev, uint32_t flags)
2384{
2385	dev->devflags = flags;
2386}
2387
2388/**
2389 * @brief Return the device's softc field
2390 *
2391 * The softc is allocated and zeroed when a driver is attached, based
2392 * on the size field of the driver.
2393 */
2394void *
2395device_get_softc(device_t dev)
2396{
2397	return (dev->softc);
2398}
2399
2400/**
2401 * @brief Set the device's softc field
2402 *
2403 * Most drivers do not need to use this since the softc is allocated
2404 * automatically when the driver is attached.
2405 */
2406void
2407device_set_softc(device_t dev, void *softc)
2408{
2409	if (dev->softc != NULL && !(dev->flags & DF_EXTERNALSOFTC))
2410		DEVICE_FREE_SOFTC(dev, dev->softc);
2411	dev->softc = softc;
2412	if (dev->softc)
2413		dev->flags |= DF_EXTERNALSOFTC;
2414	else
2415		dev->flags &= ~DF_EXTERNALSOFTC;
2416}
2417
2418/**
2419 * @brief Get the device's ivars field
2420 *
2421 * The ivars field is used by the parent device to store per-device
2422 * state (e.g. the physical location of the device or a list of
2423 * resources).
2424 */
2425void *
2426device_get_ivars(device_t dev)
2427{
2428
2429	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2430	return (dev->ivars);
2431}
2432
2433/**
2434 * @brief Set the device's ivars field
2435 */
2436void
2437device_set_ivars(device_t dev, void * ivars)
2438{
2439
2440	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2441	dev->ivars = ivars;
2442}
2443
2444/**
2445 * @brief Return the device's state
2446 */
2447device_state_t
2448device_get_state(device_t dev)
2449{
2450	return (dev->state);
2451}
2452
2453/**
2454 * @brief Set the DF_ENABLED flag for the device
2455 */
2456void
2457device_enable(device_t dev)
2458{
2459	dev->flags |= DF_ENABLED;
2460}
2461
2462/**
2463 * @brief Clear the DF_ENABLED flag for the device
2464 */
2465void
2466device_disable(device_t dev)
2467{
2468	dev->flags &= ~DF_ENABLED;
2469}
2470
2471/**
2472 * @brief Increment the busy counter for the device
2473 */
2474void
2475device_busy(device_t dev)
2476{
2477	if (dev->state < DS_ATTACHING)
2478		panic("device_busy: called for unattached device");
2479	if (dev->busy == 0 && dev->parent)
2480		device_busy(dev->parent);
2481	dev->busy++;
2482	if (dev->state == DS_ATTACHED)
2483		dev->state = DS_BUSY;
2484}
2485
2486/**
2487 * @brief Decrement the busy counter for the device
2488 */
2489void
2490device_unbusy(device_t dev)
2491{
2492	if (dev->busy != 0 && dev->state != DS_BUSY &&
2493	    dev->state != DS_ATTACHING)
2494		panic("device_unbusy: called for non-busy device %s",
2495		    device_get_nameunit(dev));
2496	dev->busy--;
2497	if (dev->busy == 0) {
2498		if (dev->parent)
2499			device_unbusy(dev->parent);
2500		if (dev->state == DS_BUSY)
2501			dev->state = DS_ATTACHED;
2502	}
2503}
2504
2505/**
2506 * @brief Set the DF_QUIET flag for the device
2507 */
2508void
2509device_quiet(device_t dev)
2510{
2511	dev->flags |= DF_QUIET;
2512}
2513
2514/**
2515 * @brief Clear the DF_QUIET flag for the device
2516 */
2517void
2518device_verbose(device_t dev)
2519{
2520	dev->flags &= ~DF_QUIET;
2521}
2522
2523/**
2524 * @brief Return non-zero if the DF_QUIET flag is set on the device
2525 */
2526int
2527device_is_quiet(device_t dev)
2528{
2529	return ((dev->flags & DF_QUIET) != 0);
2530}
2531
2532/**
2533 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2534 */
2535int
2536device_is_enabled(device_t dev)
2537{
2538	return ((dev->flags & DF_ENABLED) != 0);
2539}
2540
2541/**
2542 * @brief Return non-zero if the device was successfully probed
2543 */
2544int
2545device_is_alive(device_t dev)
2546{
2547	return (dev->state >= DS_ALIVE);
2548}
2549
2550/**
2551 * @brief Return non-zero if the device currently has a driver
2552 * attached to it
2553 */
2554int
2555device_is_attached(device_t dev)
2556{
2557	return (dev->state >= DS_ATTACHED);
2558}
2559
2560/**
2561 * @brief Set the devclass of a device
2562 * @see devclass_add_device().
2563 */
2564int
2565device_set_devclass(device_t dev, const char *classname)
2566{
2567	devclass_t dc;
2568	int error;
2569
2570	if (!classname) {
2571		if (dev->devclass)
2572			devclass_delete_device(dev->devclass, dev);
2573		return (0);
2574	}
2575
2576	if (dev->devclass) {
2577		printf("device_set_devclass: device class already set\n");
2578		return (EINVAL);
2579	}
2580
2581	dc = devclass_find_internal(classname, NULL, TRUE);
2582	if (!dc)
2583		return (ENOMEM);
2584
2585	error = devclass_add_device(dc, dev);
2586
2587	bus_data_generation_update();
2588	return (error);
2589}
2590
2591/**
2592 * @brief Set the driver of a device
2593 *
2594 * @retval 0		success
2595 * @retval EBUSY	the device already has a driver attached
2596 * @retval ENOMEM	a memory allocation failure occurred
2597 */
2598int
2599device_set_driver(device_t dev, driver_t *driver)
2600{
2601	if (dev->state >= DS_ATTACHED)
2602		return (EBUSY);
2603
2604	if (dev->driver == driver)
2605		return (0);
2606
2607	if (dev->softc != NULL && !(dev->flags & DF_EXTERNALSOFTC)) {
2608		DEVICE_FREE_SOFTC(dev, dev->softc);
2609		dev->softc = NULL;
2610	}
2611	device_set_desc(dev, NULL);
2612	kobj_delete((kobj_t) dev, NULL);
2613	dev->driver = driver;
2614	if (driver) {
2615		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2616		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2617			dev->softc = malloc(driver->size, M_BUS_SC,
2618			    M_NOWAIT | M_ZERO);
2619			if (!dev->softc) {
2620				kobj_delete((kobj_t) dev, NULL);
2621				kobj_init((kobj_t) dev, &null_class);
2622				dev->driver = NULL;
2623				return (ENOMEM);
2624			}
2625		}
2626	} else {
2627		kobj_init((kobj_t) dev, &null_class);
2628	}
2629
2630	bus_data_generation_update();
2631	return (0);
2632}
2633
2634/**
2635 * @brief Probe a device, and return this status.
2636 *
2637 * This function is the core of the device autoconfiguration
2638 * system. Its purpose is to select a suitable driver for a device and
2639 * then call that driver to initialise the hardware appropriately. The
2640 * driver is selected by calling the DEVICE_PROBE() method of a set of
2641 * candidate drivers and then choosing the driver which returned the
2642 * best value. This driver is then attached to the device using
2643 * device_attach().
2644 *
2645 * The set of suitable drivers is taken from the list of drivers in
2646 * the parent device's devclass. If the device was originally created
2647 * with a specific class name (see device_add_child()), only drivers
2648 * with that name are probed, otherwise all drivers in the devclass
2649 * are probed. If no drivers return successful probe values in the
2650 * parent devclass, the search continues in the parent of that
2651 * devclass (see devclass_get_parent()) if any.
2652 *
2653 * @param dev		the device to initialise
2654 *
2655 * @retval 0		success
2656 * @retval ENXIO	no driver was found
2657 * @retval ENOMEM	memory allocation failure
2658 * @retval non-zero	some other unix error code
2659 * @retval -1		Device already attached
2660 */
2661int
2662device_probe(device_t dev)
2663{
2664	int error;
2665
2666	GIANT_REQUIRED;
2667
2668	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2669		return (-1);
2670
2671	if (!(dev->flags & DF_ENABLED)) {
2672		if (bootverbose && device_get_name(dev) != NULL) {
2673			device_print_prettyname(dev);
2674			printf("not probed (disabled)\n");
2675		}
2676		return (-1);
2677	}
2678	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2679		if (bus_current_pass == BUS_PASS_DEFAULT &&
2680		    !(dev->flags & DF_DONENOMATCH)) {
2681			BUS_PROBE_NOMATCH(dev->parent, dev);
2682			devnomatch(dev);
2683			dev->flags |= DF_DONENOMATCH;
2684		}
2685		return (error);
2686	}
2687	return (0);
2688}
2689
2690/**
2691 * @brief Probe a device and attach a driver if possible
2692 *
2693 * calls device_probe() and attaches if that was successful.
2694 */
2695int
2696device_probe_and_attach(device_t dev)
2697{
2698	int error;
2699
2700	GIANT_REQUIRED;
2701
2702	error = device_probe(dev);
2703	if (error == -1)
2704		return (0);
2705	else if (error != 0)
2706		return (error);
2707	return (device_attach(dev));
2708}
2709
2710/**
2711 * @brief Attach a device driver to a device
2712 *
2713 * This function is a wrapper around the DEVICE_ATTACH() driver
2714 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2715 * device's sysctl tree, optionally prints a description of the device
2716 * and queues a notification event for user-based device management
2717 * services.
2718 *
2719 * Normally this function is only called internally from
2720 * device_probe_and_attach().
2721 *
2722 * @param dev		the device to initialise
2723 *
2724 * @retval 0		success
2725 * @retval ENXIO	no driver was found
2726 * @retval ENOMEM	memory allocation failure
2727 * @retval non-zero	some other unix error code
2728 */
2729int
2730device_attach(device_t dev)
2731{
2732	int error;
2733
2734	device_sysctl_init(dev);
2735	if (!device_is_quiet(dev))
2736		device_print_child(dev->parent, dev);
2737	dev->state = DS_ATTACHING;
2738	if ((error = DEVICE_ATTACH(dev)) != 0) {
2739		printf("device_attach: %s%d attach returned %d\n",
2740		    dev->driver->name, dev->unit, error);
2741		if (!(dev->flags & DF_FIXEDCLASS))
2742			devclass_delete_device(dev->devclass, dev);
2743		(void)device_set_driver(dev, NULL);
2744		device_sysctl_fini(dev);
2745		KASSERT(dev->busy == 0, ("attach failed but busy"));
2746		dev->state = DS_NOTPRESENT;
2747		return (error);
2748	}
2749	device_sysctl_update(dev);
2750	if (dev->busy)
2751		dev->state = DS_BUSY;
2752	else
2753		dev->state = DS_ATTACHED;
2754	dev->flags &= ~DF_DONENOMATCH;
2755	devadded(dev);
2756	return (0);
2757}
2758
2759/**
2760 * @brief Detach a driver from a device
2761 *
2762 * This function is a wrapper around the DEVICE_DETACH() driver
2763 * method. If the call to DEVICE_DETACH() succeeds, it calls
2764 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2765 * notification event for user-based device management services and
2766 * cleans up the device's sysctl tree.
2767 *
2768 * @param dev		the device to un-initialise
2769 *
2770 * @retval 0		success
2771 * @retval ENXIO	no driver was found
2772 * @retval ENOMEM	memory allocation failure
2773 * @retval non-zero	some other unix error code
2774 */
2775int
2776device_detach(device_t dev)
2777{
2778	int error;
2779
2780	GIANT_REQUIRED;
2781
2782	PDEBUG(("%s", DEVICENAME(dev)));
2783	if (dev->state == DS_BUSY)
2784		return (EBUSY);
2785	if (dev->state != DS_ATTACHED)
2786		return (0);
2787
2788	if ((error = DEVICE_DETACH(dev)) != 0)
2789		return (error);
2790	devremoved(dev);
2791	if (!device_is_quiet(dev))
2792		device_printf(dev, "detached\n");
2793	if (dev->parent)
2794		BUS_CHILD_DETACHED(dev->parent, dev);
2795
2796	if (!(dev->flags & DF_FIXEDCLASS))
2797		devclass_delete_device(dev->devclass, dev);
2798
2799	dev->state = DS_NOTPRESENT;
2800	(void)device_set_driver(dev, NULL);
2801	device_sysctl_fini(dev);
2802
2803	return (0);
2804}
2805
2806/**
2807 * @brief Tells a driver to quiesce itself.
2808 *
2809 * This function is a wrapper around the DEVICE_QUIESCE() driver
2810 * method. If the call to DEVICE_QUIESCE() succeeds.
2811 *
2812 * @param dev		the device to quiesce
2813 *
2814 * @retval 0		success
2815 * @retval ENXIO	no driver was found
2816 * @retval ENOMEM	memory allocation failure
2817 * @retval non-zero	some other unix error code
2818 */
2819int
2820device_quiesce(device_t dev)
2821{
2822
2823	PDEBUG(("%s", DEVICENAME(dev)));
2824	if (dev->state == DS_BUSY)
2825		return (EBUSY);
2826	if (dev->state != DS_ATTACHED)
2827		return (0);
2828
2829	return (DEVICE_QUIESCE(dev));
2830}
2831
2832/**
2833 * @brief Notify a device of system shutdown
2834 *
2835 * This function calls the DEVICE_SHUTDOWN() driver method if the
2836 * device currently has an attached driver.
2837 *
2838 * @returns the value returned by DEVICE_SHUTDOWN()
2839 */
2840int
2841device_shutdown(device_t dev)
2842{
2843	if (dev->state < DS_ATTACHED)
2844		return (0);
2845	return (DEVICE_SHUTDOWN(dev));
2846}
2847
2848/**
2849 * @brief Set the unit number of a device
2850 *
2851 * This function can be used to override the unit number used for a
2852 * device (e.g. to wire a device to a pre-configured unit number).
2853 */
2854int
2855device_set_unit(device_t dev, int unit)
2856{
2857	devclass_t dc;
2858	int err;
2859
2860	dc = device_get_devclass(dev);
2861	if (unit < dc->maxunit && dc->devices[unit])
2862		return (EBUSY);
2863	err = devclass_delete_device(dc, dev);
2864	if (err)
2865		return (err);
2866	dev->unit = unit;
2867	err = devclass_add_device(dc, dev);
2868	if (err)
2869		return (err);
2870
2871	bus_data_generation_update();
2872	return (0);
2873}
2874
2875/*======================================*/
2876/*
2877 * Some useful method implementations to make life easier for bus drivers.
2878 */
2879
2880/**
2881 * @brief Initialise a resource list.
2882 *
2883 * @param rl		the resource list to initialise
2884 */
2885void
2886resource_list_init(struct resource_list *rl)
2887{
2888	STAILQ_INIT(rl);
2889}
2890
2891/**
2892 * @brief Reclaim memory used by a resource list.
2893 *
2894 * This function frees the memory for all resource entries on the list
2895 * (if any).
2896 *
2897 * @param rl		the resource list to free
2898 */
2899void
2900resource_list_free(struct resource_list *rl)
2901{
2902	struct resource_list_entry *rle;
2903
2904	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2905		if (rle->res)
2906			panic("resource_list_free: resource entry is busy");
2907		STAILQ_REMOVE_HEAD(rl, link);
2908		free(rle, M_BUS);
2909	}
2910}
2911
2912/**
2913 * @brief Add a resource entry.
2914 *
2915 * This function adds a resource entry using the given @p type, @p
2916 * start, @p end and @p count values. A rid value is chosen by
2917 * searching sequentially for the first unused rid starting at zero.
2918 *
2919 * @param rl		the resource list to edit
2920 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2921 * @param start		the start address of the resource
2922 * @param end		the end address of the resource
2923 * @param count		XXX end-start+1
2924 */
2925int
2926resource_list_add_next(struct resource_list *rl, int type, u_long start,
2927    u_long end, u_long count)
2928{
2929	int rid;
2930
2931	rid = 0;
2932	while (resource_list_find(rl, type, rid) != NULL)
2933		rid++;
2934	resource_list_add(rl, type, rid, start, end, count);
2935	return (rid);
2936}
2937
2938/**
2939 * @brief Add or modify a resource entry.
2940 *
2941 * If an existing entry exists with the same type and rid, it will be
2942 * modified using the given values of @p start, @p end and @p
2943 * count. If no entry exists, a new one will be created using the
2944 * given values.  The resource list entry that matches is then returned.
2945 *
2946 * @param rl		the resource list to edit
2947 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2948 * @param rid		the resource identifier
2949 * @param start		the start address of the resource
2950 * @param end		the end address of the resource
2951 * @param count		XXX end-start+1
2952 */
2953struct resource_list_entry *
2954resource_list_add(struct resource_list *rl, int type, int rid,
2955    u_long start, u_long end, u_long count)
2956{
2957	struct resource_list_entry *rle;
2958
2959	rle = resource_list_find(rl, type, rid);
2960	if (!rle) {
2961		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2962		    M_NOWAIT);
2963		if (!rle)
2964			panic("resource_list_add: can't record entry");
2965		STAILQ_INSERT_TAIL(rl, rle, link);
2966		rle->type = type;
2967		rle->rid = rid;
2968		rle->res = NULL;
2969		rle->flags = 0;
2970	}
2971
2972	if (rle->res)
2973		panic("resource_list_add: resource entry is busy");
2974
2975	rle->start = start;
2976	rle->end = end;
2977	rle->count = count;
2978	return (rle);
2979}
2980
2981/**
2982 * @brief Determine if a resource entry is busy.
2983 *
2984 * Returns true if a resource entry is busy meaning that it has an
2985 * associated resource that is not an unallocated "reserved" resource.
2986 *
2987 * @param rl		the resource list to search
2988 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2989 * @param rid		the resource identifier
2990 *
2991 * @returns Non-zero if the entry is busy, zero otherwise.
2992 */
2993int
2994resource_list_busy(struct resource_list *rl, int type, int rid)
2995{
2996	struct resource_list_entry *rle;
2997
2998	rle = resource_list_find(rl, type, rid);
2999	if (rle == NULL || rle->res == NULL)
3000		return (0);
3001	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3002		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3003		    ("reserved resource is active"));
3004		return (0);
3005	}
3006	return (1);
3007}
3008
3009/**
3010 * @brief Determine if a resource entry is reserved.
3011 *
3012 * Returns true if a resource entry is reserved meaning that it has an
3013 * associated "reserved" resource.  The resource can either be
3014 * allocated or unallocated.
3015 *
3016 * @param rl		the resource list to search
3017 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3018 * @param rid		the resource identifier
3019 *
3020 * @returns Non-zero if the entry is reserved, zero otherwise.
3021 */
3022int
3023resource_list_reserved(struct resource_list *rl, int type, int rid)
3024{
3025	struct resource_list_entry *rle;
3026
3027	rle = resource_list_find(rl, type, rid);
3028	if (rle != NULL && rle->flags & RLE_RESERVED)
3029		return (1);
3030	return (0);
3031}
3032
3033/**
3034 * @brief Find a resource entry by type and rid.
3035 *
3036 * @param rl		the resource list to search
3037 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3038 * @param rid		the resource identifier
3039 *
3040 * @returns the resource entry pointer or NULL if there is no such
3041 * entry.
3042 */
3043struct resource_list_entry *
3044resource_list_find(struct resource_list *rl, int type, int rid)
3045{
3046	struct resource_list_entry *rle;
3047
3048	STAILQ_FOREACH(rle, rl, link) {
3049		if (rle->type == type && rle->rid == rid)
3050			return (rle);
3051	}
3052	return (NULL);
3053}
3054
3055/**
3056 * @brief Delete a resource entry.
3057 *
3058 * @param rl		the resource list to edit
3059 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3060 * @param rid		the resource identifier
3061 */
3062void
3063resource_list_delete(struct resource_list *rl, int type, int rid)
3064{
3065	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3066
3067	if (rle) {
3068		if (rle->res != NULL)
3069			panic("resource_list_delete: resource has not been released");
3070		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3071		free(rle, M_BUS);
3072	}
3073}
3074
3075/**
3076 * @brief Allocate a reserved resource
3077 *
3078 * This can be used by busses to force the allocation of resources
3079 * that are always active in the system even if they are not allocated
3080 * by a driver (e.g. PCI BARs).  This function is usually called when
3081 * adding a new child to the bus.  The resource is allocated from the
3082 * parent bus when it is reserved.  The resource list entry is marked
3083 * with RLE_RESERVED to note that it is a reserved resource.
3084 *
3085 * Subsequent attempts to allocate the resource with
3086 * resource_list_alloc() will succeed the first time and will set
3087 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3088 * resource that has been allocated is released with
3089 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3090 * the actual resource remains allocated.  The resource can be released to
3091 * the parent bus by calling resource_list_unreserve().
3092 *
3093 * @param rl		the resource list to allocate from
3094 * @param bus		the parent device of @p child
3095 * @param child		the device for which the resource is being reserved
3096 * @param type		the type of resource to allocate
3097 * @param rid		a pointer to the resource identifier
3098 * @param start		hint at the start of the resource range - pass
3099 *			@c 0UL for any start address
3100 * @param end		hint at the end of the resource range - pass
3101 *			@c ~0UL for any end address
3102 * @param count		hint at the size of range required - pass @c 1
3103 *			for any size
3104 * @param flags		any extra flags to control the resource
3105 *			allocation - see @c RF_XXX flags in
3106 *			<sys/rman.h> for details
3107 *
3108 * @returns		the resource which was allocated or @c NULL if no
3109 *			resource could be allocated
3110 */
3111struct resource *
3112resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3113    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3114{
3115	struct resource_list_entry *rle = NULL;
3116	int passthrough = (device_get_parent(child) != bus);
3117	struct resource *r;
3118
3119	if (passthrough)
3120		panic(
3121    "resource_list_reserve() should only be called for direct children");
3122	if (flags & RF_ACTIVE)
3123		panic(
3124    "resource_list_reserve() should only reserve inactive resources");
3125
3126	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3127	    flags);
3128	if (r != NULL) {
3129		rle = resource_list_find(rl, type, *rid);
3130		rle->flags |= RLE_RESERVED;
3131	}
3132	return (r);
3133}
3134
3135/**
3136 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3137 *
3138 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3139 * and passing the allocation up to the parent of @p bus. This assumes
3140 * that the first entry of @c device_get_ivars(child) is a struct
3141 * resource_list. This also handles 'passthrough' allocations where a
3142 * child is a remote descendant of bus by passing the allocation up to
3143 * the parent of bus.
3144 *
3145 * Typically, a bus driver would store a list of child resources
3146 * somewhere in the child device's ivars (see device_get_ivars()) and
3147 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3148 * then call resource_list_alloc() to perform the allocation.
3149 *
3150 * @param rl		the resource list to allocate from
3151 * @param bus		the parent device of @p child
3152 * @param child		the device which is requesting an allocation
3153 * @param type		the type of resource to allocate
3154 * @param rid		a pointer to the resource identifier
3155 * @param start		hint at the start of the resource range - pass
3156 *			@c 0UL for any start address
3157 * @param end		hint at the end of the resource range - pass
3158 *			@c ~0UL for any end address
3159 * @param count		hint at the size of range required - pass @c 1
3160 *			for any size
3161 * @param flags		any extra flags to control the resource
3162 *			allocation - see @c RF_XXX flags in
3163 *			<sys/rman.h> for details
3164 *
3165 * @returns		the resource which was allocated or @c NULL if no
3166 *			resource could be allocated
3167 */
3168struct resource *
3169resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3170    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3171{
3172	struct resource_list_entry *rle = NULL;
3173	int passthrough = (device_get_parent(child) != bus);
3174	int isdefault = (start == 0UL && end == ~0UL);
3175
3176	if (passthrough) {
3177		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3178		    type, rid, start, end, count, flags));
3179	}
3180
3181	rle = resource_list_find(rl, type, *rid);
3182
3183	if (!rle)
3184		return (NULL);		/* no resource of that type/rid */
3185
3186	if (rle->res) {
3187		if (rle->flags & RLE_RESERVED) {
3188			if (rle->flags & RLE_ALLOCATED)
3189				return (NULL);
3190			if ((flags & RF_ACTIVE) &&
3191			    bus_activate_resource(child, type, *rid,
3192			    rle->res) != 0)
3193				return (NULL);
3194			rle->flags |= RLE_ALLOCATED;
3195			return (rle->res);
3196		}
3197		panic("resource_list_alloc: resource entry is busy");
3198	}
3199
3200	if (isdefault) {
3201		start = rle->start;
3202		count = ulmax(count, rle->count);
3203		end = ulmax(rle->end, start + count - 1);
3204	}
3205
3206	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3207	    type, rid, start, end, count, flags);
3208
3209	/*
3210	 * Record the new range.
3211	 */
3212	if (rle->res) {
3213		rle->start = rman_get_start(rle->res);
3214		rle->end = rman_get_end(rle->res);
3215		rle->count = count;
3216	}
3217
3218	return (rle->res);
3219}
3220
3221/**
3222 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3223 *
3224 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3225 * used with resource_list_alloc().
3226 *
3227 * @param rl		the resource list which was allocated from
3228 * @param bus		the parent device of @p child
3229 * @param child		the device which is requesting a release
3230 * @param type		the type of resource to release
3231 * @param rid		the resource identifier
3232 * @param res		the resource to release
3233 *
3234 * @retval 0		success
3235 * @retval non-zero	a standard unix error code indicating what
3236 *			error condition prevented the operation
3237 */
3238int
3239resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3240    int type, int rid, struct resource *res)
3241{
3242	struct resource_list_entry *rle = NULL;
3243	int passthrough = (device_get_parent(child) != bus);
3244	int error;
3245
3246	if (passthrough) {
3247		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3248		    type, rid, res));
3249	}
3250
3251	rle = resource_list_find(rl, type, rid);
3252
3253	if (!rle)
3254		panic("resource_list_release: can't find resource");
3255	if (!rle->res)
3256		panic("resource_list_release: resource entry is not busy");
3257	if (rle->flags & RLE_RESERVED) {
3258		if (rle->flags & RLE_ALLOCATED) {
3259			if (rman_get_flags(res) & RF_ACTIVE) {
3260				error = bus_deactivate_resource(child, type,
3261				    rid, res);
3262				if (error)
3263					return (error);
3264			}
3265			rle->flags &= ~RLE_ALLOCATED;
3266			return (0);
3267		}
3268		return (EINVAL);
3269	}
3270
3271	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3272	    type, rid, res);
3273	if (error)
3274		return (error);
3275
3276	rle->res = NULL;
3277	return (0);
3278}
3279
3280/**
3281 * @brief Fully release a reserved resource
3282 *
3283 * Fully releases a resouce reserved via resource_list_reserve().
3284 *
3285 * @param rl		the resource list which was allocated from
3286 * @param bus		the parent device of @p child
3287 * @param child		the device whose reserved resource is being released
3288 * @param type		the type of resource to release
3289 * @param rid		the resource identifier
3290 * @param res		the resource to release
3291 *
3292 * @retval 0		success
3293 * @retval non-zero	a standard unix error code indicating what
3294 *			error condition prevented the operation
3295 */
3296int
3297resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3298    int type, int rid)
3299{
3300	struct resource_list_entry *rle = NULL;
3301	int passthrough = (device_get_parent(child) != bus);
3302
3303	if (passthrough)
3304		panic(
3305    "resource_list_unreserve() should only be called for direct children");
3306
3307	rle = resource_list_find(rl, type, rid);
3308
3309	if (!rle)
3310		panic("resource_list_unreserve: can't find resource");
3311	if (!(rle->flags & RLE_RESERVED))
3312		return (EINVAL);
3313	if (rle->flags & RLE_ALLOCATED)
3314		return (EBUSY);
3315	rle->flags &= ~RLE_RESERVED;
3316	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3317}
3318
3319/**
3320 * @brief Print a description of resources in a resource list
3321 *
3322 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3323 * The name is printed if at least one resource of the given type is available.
3324 * The format is used to print resource start and end.
3325 *
3326 * @param rl		the resource list to print
3327 * @param name		the name of @p type, e.g. @c "memory"
3328 * @param type		type type of resource entry to print
3329 * @param format	printf(9) format string to print resource
3330 *			start and end values
3331 *
3332 * @returns		the number of characters printed
3333 */
3334int
3335resource_list_print_type(struct resource_list *rl, const char *name, int type,
3336    const char *format)
3337{
3338	struct resource_list_entry *rle;
3339	int printed, retval;
3340
3341	printed = 0;
3342	retval = 0;
3343	/* Yes, this is kinda cheating */
3344	STAILQ_FOREACH(rle, rl, link) {
3345		if (rle->type == type) {
3346			if (printed == 0)
3347				retval += printf(" %s ", name);
3348			else
3349				retval += printf(",");
3350			printed++;
3351			retval += printf(format, rle->start);
3352			if (rle->count > 1) {
3353				retval += printf("-");
3354				retval += printf(format, rle->start +
3355						 rle->count - 1);
3356			}
3357		}
3358	}
3359	return (retval);
3360}
3361
3362/**
3363 * @brief Releases all the resources in a list.
3364 *
3365 * @param rl		The resource list to purge.
3366 *
3367 * @returns		nothing
3368 */
3369void
3370resource_list_purge(struct resource_list *rl)
3371{
3372	struct resource_list_entry *rle;
3373
3374	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3375		if (rle->res)
3376			bus_release_resource(rman_get_device(rle->res),
3377			    rle->type, rle->rid, rle->res);
3378		STAILQ_REMOVE_HEAD(rl, link);
3379		free(rle, M_BUS);
3380	}
3381}
3382
3383device_t
3384bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3385{
3386
3387	return (device_add_child_ordered(dev, order, name, unit));
3388}
3389
3390/**
3391 * @brief Helper function for implementing DEVICE_PROBE()
3392 *
3393 * This function can be used to help implement the DEVICE_PROBE() for
3394 * a bus (i.e. a device which has other devices attached to it). It
3395 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3396 * devclass.
3397 */
3398int
3399bus_generic_probe(device_t dev)
3400{
3401	devclass_t dc = dev->devclass;
3402	driverlink_t dl;
3403
3404	TAILQ_FOREACH(dl, &dc->drivers, link) {
3405		/*
3406		 * If this driver's pass is too high, then ignore it.
3407		 * For most drivers in the default pass, this will
3408		 * never be true.  For early-pass drivers they will
3409		 * only call the identify routines of eligible drivers
3410		 * when this routine is called.  Drivers for later
3411		 * passes should have their identify routines called
3412		 * on early-pass busses during BUS_NEW_PASS().
3413		 */
3414		if (dl->pass > bus_current_pass)
3415			continue;
3416		DEVICE_IDENTIFY(dl->driver, dev);
3417	}
3418
3419	return (0);
3420}
3421
3422/**
3423 * @brief Helper function for implementing DEVICE_ATTACH()
3424 *
3425 * This function can be used to help implement the DEVICE_ATTACH() for
3426 * a bus. It calls device_probe_and_attach() for each of the device's
3427 * children.
3428 */
3429int
3430bus_generic_attach(device_t dev)
3431{
3432	device_t child;
3433
3434	TAILQ_FOREACH(child, &dev->children, link) {
3435		device_probe_and_attach(child);
3436	}
3437
3438	return (0);
3439}
3440
3441/**
3442 * @brief Helper function for implementing DEVICE_DETACH()
3443 *
3444 * This function can be used to help implement the DEVICE_DETACH() for
3445 * a bus. It calls device_detach() for each of the device's
3446 * children.
3447 */
3448int
3449bus_generic_detach(device_t dev)
3450{
3451	device_t child;
3452	int error;
3453
3454	if (dev->state != DS_ATTACHED)
3455		return (EBUSY);
3456
3457	TAILQ_FOREACH(child, &dev->children, link) {
3458		if ((error = device_detach(child)) != 0)
3459			return (error);
3460	}
3461
3462	return (0);
3463}
3464
3465/**
3466 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3467 *
3468 * This function can be used to help implement the DEVICE_SHUTDOWN()
3469 * for a bus. It calls device_shutdown() for each of the device's
3470 * children.
3471 */
3472int
3473bus_generic_shutdown(device_t dev)
3474{
3475	device_t child;
3476
3477	TAILQ_FOREACH(child, &dev->children, link) {
3478		device_shutdown(child);
3479	}
3480
3481	return (0);
3482}
3483
3484/**
3485 * @brief Helper function for implementing DEVICE_SUSPEND()
3486 *
3487 * This function can be used to help implement the DEVICE_SUSPEND()
3488 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3489 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3490 * operation is aborted and any devices which were suspended are
3491 * resumed immediately by calling their DEVICE_RESUME() methods.
3492 */
3493int
3494bus_generic_suspend(device_t dev)
3495{
3496	int		error;
3497	device_t	child, child2;
3498
3499	TAILQ_FOREACH(child, &dev->children, link) {
3500		error = DEVICE_SUSPEND(child);
3501		if (error) {
3502			for (child2 = TAILQ_FIRST(&dev->children);
3503			     child2 && child2 != child;
3504			     child2 = TAILQ_NEXT(child2, link))
3505				DEVICE_RESUME(child2);
3506			return (error);
3507		}
3508	}
3509	return (0);
3510}
3511
3512/**
3513 * @brief Helper function for implementing DEVICE_RESUME()
3514 *
3515 * This function can be used to help implement the DEVICE_RESUME() for
3516 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3517 */
3518int
3519bus_generic_resume(device_t dev)
3520{
3521	device_t	child;
3522
3523	TAILQ_FOREACH(child, &dev->children, link) {
3524		DEVICE_RESUME(child);
3525		/* if resume fails, there's nothing we can usefully do... */
3526	}
3527	return (0);
3528}
3529
3530/**
3531 * @brief Helper function for implementing BUS_PRINT_CHILD().
3532 *
3533 * This function prints the first part of the ascii representation of
3534 * @p child, including its name, unit and description (if any - see
3535 * device_set_desc()).
3536 *
3537 * @returns the number of characters printed
3538 */
3539int
3540bus_print_child_header(device_t dev, device_t child)
3541{
3542	int	retval = 0;
3543
3544	if (device_get_desc(child)) {
3545		retval += device_printf(child, "<%s>", device_get_desc(child));
3546	} else {
3547		retval += printf("%s", device_get_nameunit(child));
3548	}
3549
3550	return (retval);
3551}
3552
3553/**
3554 * @brief Helper function for implementing BUS_PRINT_CHILD().
3555 *
3556 * This function prints the last part of the ascii representation of
3557 * @p child, which consists of the string @c " on " followed by the
3558 * name and unit of the @p dev.
3559 *
3560 * @returns the number of characters printed
3561 */
3562int
3563bus_print_child_footer(device_t dev, device_t child)
3564{
3565	return (printf(" on %s\n", device_get_nameunit(dev)));
3566}
3567
3568/**
3569 * @brief Helper function for implementing BUS_PRINT_CHILD().
3570 *
3571 * This function simply calls bus_print_child_header() followed by
3572 * bus_print_child_footer().
3573 *
3574 * @returns the number of characters printed
3575 */
3576int
3577bus_generic_print_child(device_t dev, device_t child)
3578{
3579	int	retval = 0;
3580
3581	retval += bus_print_child_header(dev, child);
3582	retval += bus_print_child_footer(dev, child);
3583
3584	return (retval);
3585}
3586
3587/**
3588 * @brief Stub function for implementing BUS_READ_IVAR().
3589 *
3590 * @returns ENOENT
3591 */
3592int
3593bus_generic_read_ivar(device_t dev, device_t child, int index,
3594    uintptr_t * result)
3595{
3596	return (ENOENT);
3597}
3598
3599/**
3600 * @brief Stub function for implementing BUS_WRITE_IVAR().
3601 *
3602 * @returns ENOENT
3603 */
3604int
3605bus_generic_write_ivar(device_t dev, device_t child, int index,
3606    uintptr_t value)
3607{
3608	return (ENOENT);
3609}
3610
3611/**
3612 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3613 *
3614 * @returns NULL
3615 */
3616struct resource_list *
3617bus_generic_get_resource_list(device_t dev, device_t child)
3618{
3619	return (NULL);
3620}
3621
3622/**
3623 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3624 *
3625 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3626 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3627 * and then calls device_probe_and_attach() for each unattached child.
3628 */
3629void
3630bus_generic_driver_added(device_t dev, driver_t *driver)
3631{
3632	device_t child;
3633
3634	DEVICE_IDENTIFY(driver, dev);
3635	TAILQ_FOREACH(child, &dev->children, link) {
3636		if (child->state == DS_NOTPRESENT ||
3637		    (child->flags & DF_REBID))
3638			device_probe_and_attach(child);
3639	}
3640}
3641
3642/**
3643 * @brief Helper function for implementing BUS_NEW_PASS().
3644 *
3645 * This implementing of BUS_NEW_PASS() first calls the identify
3646 * routines for any drivers that probe at the current pass.  Then it
3647 * walks the list of devices for this bus.  If a device is already
3648 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3649 * device is not already attached, it attempts to attach a driver to
3650 * it.
3651 */
3652void
3653bus_generic_new_pass(device_t dev)
3654{
3655	driverlink_t dl;
3656	devclass_t dc;
3657	device_t child;
3658
3659	dc = dev->devclass;
3660	TAILQ_FOREACH(dl, &dc->drivers, link) {
3661		if (dl->pass == bus_current_pass)
3662			DEVICE_IDENTIFY(dl->driver, dev);
3663	}
3664	TAILQ_FOREACH(child, &dev->children, link) {
3665		if (child->state >= DS_ATTACHED)
3666			BUS_NEW_PASS(child);
3667		else if (child->state == DS_NOTPRESENT)
3668			device_probe_and_attach(child);
3669	}
3670}
3671
3672/**
3673 * @brief Helper function for implementing BUS_SETUP_INTR().
3674 *
3675 * This simple implementation of BUS_SETUP_INTR() simply calls the
3676 * BUS_SETUP_INTR() method of the parent of @p dev.
3677 */
3678int
3679bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3680    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3681    void **cookiep)
3682{
3683	/* Propagate up the bus hierarchy until someone handles it. */
3684	if (dev->parent)
3685		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3686		    filter, intr, arg, cookiep));
3687	return (EINVAL);
3688}
3689
3690/**
3691 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3692 *
3693 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3694 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3695 */
3696int
3697bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3698    void *cookie)
3699{
3700	/* Propagate up the bus hierarchy until someone handles it. */
3701	if (dev->parent)
3702		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3703	return (EINVAL);
3704}
3705
3706/**
3707 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3708 *
3709 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3710 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3711 */
3712int
3713bus_generic_adjust_resource(device_t dev, device_t child, int type,
3714    struct resource *r, u_long start, u_long end)
3715{
3716	/* Propagate up the bus hierarchy until someone handles it. */
3717	if (dev->parent)
3718		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3719		    end));
3720	return (EINVAL);
3721}
3722
3723/**
3724 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3725 *
3726 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3727 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3728 */
3729struct resource *
3730bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3731    u_long start, u_long end, u_long count, u_int flags)
3732{
3733	/* Propagate up the bus hierarchy until someone handles it. */
3734	if (dev->parent)
3735		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3736		    start, end, count, flags));
3737	return (NULL);
3738}
3739
3740/**
3741 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3742 *
3743 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3744 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3745 */
3746int
3747bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3748    struct resource *r)
3749{
3750	/* Propagate up the bus hierarchy until someone handles it. */
3751	if (dev->parent)
3752		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3753		    r));
3754	return (EINVAL);
3755}
3756
3757/**
3758 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3759 *
3760 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3761 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3762 */
3763int
3764bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3765    struct resource *r)
3766{
3767	/* Propagate up the bus hierarchy until someone handles it. */
3768	if (dev->parent)
3769		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3770		    r));
3771	return (EINVAL);
3772}
3773
3774/**
3775 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3776 *
3777 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3778 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3779 */
3780int
3781bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3782    int rid, struct resource *r)
3783{
3784	/* Propagate up the bus hierarchy until someone handles it. */
3785	if (dev->parent)
3786		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3787		    r));
3788	return (EINVAL);
3789}
3790
3791/**
3792 * @brief Helper function for implementing BUS_BIND_INTR().
3793 *
3794 * This simple implementation of BUS_BIND_INTR() simply calls the
3795 * BUS_BIND_INTR() method of the parent of @p dev.
3796 */
3797int
3798bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3799    int cpu)
3800{
3801
3802	/* Propagate up the bus hierarchy until someone handles it. */
3803	if (dev->parent)
3804		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3805	return (EINVAL);
3806}
3807
3808/**
3809 * @brief Helper function for implementing BUS_CONFIG_INTR().
3810 *
3811 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3812 * BUS_CONFIG_INTR() method of the parent of @p dev.
3813 */
3814int
3815bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3816    enum intr_polarity pol)
3817{
3818
3819	/* Propagate up the bus hierarchy until someone handles it. */
3820	if (dev->parent)
3821		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3822	return (EINVAL);
3823}
3824
3825/**
3826 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3827 *
3828 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3829 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3830 */
3831int
3832bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3833    void *cookie, const char *descr)
3834{
3835
3836	/* Propagate up the bus hierarchy until someone handles it. */
3837	if (dev->parent)
3838		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3839		    descr));
3840	return (EINVAL);
3841}
3842
3843/**
3844 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3845 *
3846 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3847 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3848 */
3849bus_dma_tag_t
3850bus_generic_get_dma_tag(device_t dev, device_t child)
3851{
3852
3853	/* Propagate up the bus hierarchy until someone handles it. */
3854	if (dev->parent != NULL)
3855		return (BUS_GET_DMA_TAG(dev->parent, child));
3856	return (NULL);
3857}
3858
3859/**
3860 * @brief Helper function for implementing BUS_GET_RESOURCE().
3861 *
3862 * This implementation of BUS_GET_RESOURCE() uses the
3863 * resource_list_find() function to do most of the work. It calls
3864 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3865 * search.
3866 */
3867int
3868bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3869    u_long *startp, u_long *countp)
3870{
3871	struct resource_list *		rl = NULL;
3872	struct resource_list_entry *	rle = NULL;
3873
3874	rl = BUS_GET_RESOURCE_LIST(dev, child);
3875	if (!rl)
3876		return (EINVAL);
3877
3878	rle = resource_list_find(rl, type, rid);
3879	if (!rle)
3880		return (ENOENT);
3881
3882	if (startp)
3883		*startp = rle->start;
3884	if (countp)
3885		*countp = rle->count;
3886
3887	return (0);
3888}
3889
3890/**
3891 * @brief Helper function for implementing BUS_SET_RESOURCE().
3892 *
3893 * This implementation of BUS_SET_RESOURCE() uses the
3894 * resource_list_add() function to do most of the work. It calls
3895 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3896 * edit.
3897 */
3898int
3899bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3900    u_long start, u_long count)
3901{
3902	struct resource_list *		rl = NULL;
3903
3904	rl = BUS_GET_RESOURCE_LIST(dev, child);
3905	if (!rl)
3906		return (EINVAL);
3907
3908	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3909
3910	return (0);
3911}
3912
3913/**
3914 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3915 *
3916 * This implementation of BUS_DELETE_RESOURCE() uses the
3917 * resource_list_delete() function to do most of the work. It calls
3918 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3919 * edit.
3920 */
3921void
3922bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3923{
3924	struct resource_list *		rl = NULL;
3925
3926	rl = BUS_GET_RESOURCE_LIST(dev, child);
3927	if (!rl)
3928		return;
3929
3930	resource_list_delete(rl, type, rid);
3931
3932	return;
3933}
3934
3935/**
3936 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3937 *
3938 * This implementation of BUS_RELEASE_RESOURCE() uses the
3939 * resource_list_release() function to do most of the work. It calls
3940 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3941 */
3942int
3943bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3944    int rid, struct resource *r)
3945{
3946	struct resource_list *		rl = NULL;
3947
3948	if (device_get_parent(child) != dev)
3949		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3950		    type, rid, r));
3951
3952	rl = BUS_GET_RESOURCE_LIST(dev, child);
3953	if (!rl)
3954		return (EINVAL);
3955
3956	return (resource_list_release(rl, dev, child, type, rid, r));
3957}
3958
3959/**
3960 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3961 *
3962 * This implementation of BUS_ALLOC_RESOURCE() uses the
3963 * resource_list_alloc() function to do most of the work. It calls
3964 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3965 */
3966struct resource *
3967bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3968    int *rid, u_long start, u_long end, u_long count, u_int flags)
3969{
3970	struct resource_list *		rl = NULL;
3971
3972	if (device_get_parent(child) != dev)
3973		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3974		    type, rid, start, end, count, flags));
3975
3976	rl = BUS_GET_RESOURCE_LIST(dev, child);
3977	if (!rl)
3978		return (NULL);
3979
3980	return (resource_list_alloc(rl, dev, child, type, rid,
3981	    start, end, count, flags));
3982}
3983
3984/**
3985 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3986 *
3987 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3988 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3989 */
3990int
3991bus_generic_child_present(device_t dev, device_t child)
3992{
3993	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3994}
3995
3996/*
3997 * Some convenience functions to make it easier for drivers to use the
3998 * resource-management functions.  All these really do is hide the
3999 * indirection through the parent's method table, making for slightly
4000 * less-wordy code.  In the future, it might make sense for this code
4001 * to maintain some sort of a list of resources allocated by each device.
4002 */
4003
4004int
4005bus_alloc_resources(device_t dev, struct resource_spec *rs,
4006    struct resource **res)
4007{
4008	int i;
4009
4010	for (i = 0; rs[i].type != -1; i++)
4011		res[i] = NULL;
4012	for (i = 0; rs[i].type != -1; i++) {
4013		res[i] = bus_alloc_resource_any(dev,
4014		    rs[i].type, &rs[i].rid, rs[i].flags);
4015		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4016			bus_release_resources(dev, rs, res);
4017			return (ENXIO);
4018		}
4019	}
4020	return (0);
4021}
4022
4023void
4024bus_release_resources(device_t dev, const struct resource_spec *rs,
4025    struct resource **res)
4026{
4027	int i;
4028
4029	for (i = 0; rs[i].type != -1; i++)
4030		if (res[i] != NULL) {
4031			bus_release_resource(
4032			    dev, rs[i].type, rs[i].rid, res[i]);
4033			res[i] = NULL;
4034		}
4035}
4036
4037/**
4038 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4039 *
4040 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4041 * parent of @p dev.
4042 */
4043struct resource *
4044bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4045    u_long count, u_int flags)
4046{
4047	if (dev->parent == NULL)
4048		return (NULL);
4049	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4050	    count, flags));
4051}
4052
4053/**
4054 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4055 *
4056 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4057 * parent of @p dev.
4058 */
4059int
4060bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4061    u_long end)
4062{
4063	if (dev->parent == NULL)
4064		return (EINVAL);
4065	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4066}
4067
4068/**
4069 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4070 *
4071 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4072 * parent of @p dev.
4073 */
4074int
4075bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4076{
4077	if (dev->parent == NULL)
4078		return (EINVAL);
4079	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4080}
4081
4082/**
4083 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4084 *
4085 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4086 * parent of @p dev.
4087 */
4088int
4089bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4090{
4091	if (dev->parent == NULL)
4092		return (EINVAL);
4093	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4094}
4095
4096/**
4097 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4098 *
4099 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4100 * parent of @p dev.
4101 */
4102int
4103bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4104{
4105	if (dev->parent == NULL)
4106		return (EINVAL);
4107	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4108}
4109
4110/**
4111 * @brief Wrapper function for BUS_SETUP_INTR().
4112 *
4113 * This function simply calls the BUS_SETUP_INTR() method of the
4114 * parent of @p dev.
4115 */
4116int
4117bus_setup_intr(device_t dev, struct resource *r, int flags,
4118    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4119{
4120	int error;
4121
4122	if (dev->parent == NULL)
4123		return (EINVAL);
4124	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4125	    arg, cookiep);
4126	if (error != 0)
4127		return (error);
4128	if (handler != NULL && !(flags & INTR_MPSAFE))
4129		device_printf(dev, "[GIANT-LOCKED]\n");
4130	return (0);
4131}
4132
4133/**
4134 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4135 *
4136 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4137 * parent of @p dev.
4138 */
4139int
4140bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4141{
4142	if (dev->parent == NULL)
4143		return (EINVAL);
4144	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4145}
4146
4147/**
4148 * @brief Wrapper function for BUS_BIND_INTR().
4149 *
4150 * This function simply calls the BUS_BIND_INTR() method of the
4151 * parent of @p dev.
4152 */
4153int
4154bus_bind_intr(device_t dev, struct resource *r, int cpu)
4155{
4156	if (dev->parent == NULL)
4157		return (EINVAL);
4158	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4159}
4160
4161/**
4162 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4163 *
4164 * This function first formats the requested description into a
4165 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4166 * the parent of @p dev.
4167 */
4168int
4169bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4170    const char *fmt, ...)
4171{
4172	va_list ap;
4173	char descr[MAXCOMLEN + 1];
4174
4175	if (dev->parent == NULL)
4176		return (EINVAL);
4177	va_start(ap, fmt);
4178	vsnprintf(descr, sizeof(descr), fmt, ap);
4179	va_end(ap);
4180	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4181}
4182
4183/**
4184 * @brief Wrapper function for BUS_SET_RESOURCE().
4185 *
4186 * This function simply calls the BUS_SET_RESOURCE() method of the
4187 * parent of @p dev.
4188 */
4189int
4190bus_set_resource(device_t dev, int type, int rid,
4191    u_long start, u_long count)
4192{
4193	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4194	    start, count));
4195}
4196
4197/**
4198 * @brief Wrapper function for BUS_GET_RESOURCE().
4199 *
4200 * This function simply calls the BUS_GET_RESOURCE() method of the
4201 * parent of @p dev.
4202 */
4203int
4204bus_get_resource(device_t dev, int type, int rid,
4205    u_long *startp, u_long *countp)
4206{
4207	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4208	    startp, countp));
4209}
4210
4211/**
4212 * @brief Wrapper function for BUS_GET_RESOURCE().
4213 *
4214 * This function simply calls the BUS_GET_RESOURCE() method of the
4215 * parent of @p dev and returns the start value.
4216 */
4217u_long
4218bus_get_resource_start(device_t dev, int type, int rid)
4219{
4220	u_long start, count;
4221	int error;
4222
4223	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4224	    &start, &count);
4225	if (error)
4226		return (0);
4227	return (start);
4228}
4229
4230/**
4231 * @brief Wrapper function for BUS_GET_RESOURCE().
4232 *
4233 * This function simply calls the BUS_GET_RESOURCE() method of the
4234 * parent of @p dev and returns the count value.
4235 */
4236u_long
4237bus_get_resource_count(device_t dev, int type, int rid)
4238{
4239	u_long start, count;
4240	int error;
4241
4242	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4243	    &start, &count);
4244	if (error)
4245		return (0);
4246	return (count);
4247}
4248
4249/**
4250 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4251 *
4252 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4253 * parent of @p dev.
4254 */
4255void
4256bus_delete_resource(device_t dev, int type, int rid)
4257{
4258	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4259}
4260
4261/**
4262 * @brief Wrapper function for BUS_CHILD_PRESENT().
4263 *
4264 * This function simply calls the BUS_CHILD_PRESENT() method of the
4265 * parent of @p dev.
4266 */
4267int
4268bus_child_present(device_t child)
4269{
4270	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4271}
4272
4273/**
4274 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4275 *
4276 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4277 * parent of @p dev.
4278 */
4279int
4280bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4281{
4282	device_t parent;
4283
4284	parent = device_get_parent(child);
4285	if (parent == NULL) {
4286		*buf = '\0';
4287		return (0);
4288	}
4289	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4290}
4291
4292/**
4293 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4294 *
4295 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4296 * parent of @p dev.
4297 */
4298int
4299bus_child_location_str(device_t child, char *buf, size_t buflen)
4300{
4301	device_t parent;
4302
4303	parent = device_get_parent(child);
4304	if (parent == NULL) {
4305		*buf = '\0';
4306		return (0);
4307	}
4308	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4309}
4310
4311/**
4312 * @brief Wrapper function for BUS_GET_DMA_TAG().
4313 *
4314 * This function simply calls the BUS_GET_DMA_TAG() method of the
4315 * parent of @p dev.
4316 */
4317bus_dma_tag_t
4318bus_get_dma_tag(device_t dev)
4319{
4320	device_t parent;
4321
4322	parent = device_get_parent(dev);
4323	if (parent == NULL)
4324		return (NULL);
4325	return (BUS_GET_DMA_TAG(parent, dev));
4326}
4327
4328/* Resume all devices and then notify userland that we're up again. */
4329static int
4330root_resume(device_t dev)
4331{
4332	int error;
4333
4334	error = bus_generic_resume(dev);
4335	if (error == 0)
4336		devctl_notify("kern", "power", "resume", NULL);
4337	return (error);
4338}
4339
4340static int
4341root_print_child(device_t dev, device_t child)
4342{
4343	int	retval = 0;
4344
4345	retval += bus_print_child_header(dev, child);
4346	retval += printf("\n");
4347
4348	return (retval);
4349}
4350
4351static int
4352root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4353    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4354{
4355	/*
4356	 * If an interrupt mapping gets to here something bad has happened.
4357	 */
4358	panic("root_setup_intr");
4359}
4360
4361/*
4362 * If we get here, assume that the device is permanant and really is
4363 * present in the system.  Removable bus drivers are expected to intercept
4364 * this call long before it gets here.  We return -1 so that drivers that
4365 * really care can check vs -1 or some ERRNO returned higher in the food
4366 * chain.
4367 */
4368static int
4369root_child_present(device_t dev, device_t child)
4370{
4371	return (-1);
4372}
4373
4374static kobj_method_t root_methods[] = {
4375	/* Device interface */
4376	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4377	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4378	KOBJMETHOD(device_resume,	root_resume),
4379
4380	/* Bus interface */
4381	KOBJMETHOD(bus_print_child,	root_print_child),
4382	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4383	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4384	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4385	KOBJMETHOD(bus_child_present,	root_child_present),
4386
4387	KOBJMETHOD_END
4388};
4389
4390static driver_t root_driver = {
4391	"root",
4392	root_methods,
4393	1,			/* no softc */
4394};
4395
4396device_t	root_bus;
4397devclass_t	root_devclass;
4398
4399static int
4400root_bus_module_handler(module_t mod, int what, void* arg)
4401{
4402	switch (what) {
4403	case MOD_LOAD:
4404		TAILQ_INIT(&bus_data_devices);
4405		kobj_class_compile((kobj_class_t) &root_driver);
4406		root_bus = make_device(NULL, "root", 0);
4407		root_bus->desc = "System root bus";
4408		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4409		root_bus->driver = &root_driver;
4410		root_bus->state = DS_ATTACHED;
4411		root_devclass = devclass_find_internal("root", NULL, FALSE);
4412		devinit();
4413		return (0);
4414
4415	case MOD_SHUTDOWN:
4416		device_shutdown(root_bus);
4417		return (0);
4418	default:
4419		return (EOPNOTSUPP);
4420	}
4421
4422	return (0);
4423}
4424
4425static moduledata_t root_bus_mod = {
4426	"rootbus",
4427	root_bus_module_handler,
4428	NULL
4429};
4430DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4431
4432/**
4433 * @brief Automatically configure devices
4434 *
4435 * This function begins the autoconfiguration process by calling
4436 * device_probe_and_attach() for each child of the @c root0 device.
4437 */
4438void
4439root_bus_configure(void)
4440{
4441
4442	PDEBUG(("."));
4443
4444	/* Eventually this will be split up, but this is sufficient for now. */
4445	bus_set_pass(BUS_PASS_DEFAULT);
4446}
4447
4448/**
4449 * @brief Module handler for registering device drivers
4450 *
4451 * This module handler is used to automatically register device
4452 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4453 * devclass_add_driver() for the driver described by the
4454 * driver_module_data structure pointed to by @p arg
4455 */
4456int
4457driver_module_handler(module_t mod, int what, void *arg)
4458{
4459	struct driver_module_data *dmd;
4460	devclass_t bus_devclass;
4461	kobj_class_t driver;
4462	int error, pass;
4463
4464	dmd = (struct driver_module_data *)arg;
4465	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4466	error = 0;
4467
4468	switch (what) {
4469	case MOD_LOAD:
4470		if (dmd->dmd_chainevh)
4471			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4472
4473		pass = dmd->dmd_pass;
4474		driver = dmd->dmd_driver;
4475		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4476		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4477		error = devclass_add_driver(bus_devclass, driver, pass,
4478		    dmd->dmd_devclass);
4479		break;
4480
4481	case MOD_UNLOAD:
4482		PDEBUG(("Unloading module: driver %s from bus %s",
4483		    DRIVERNAME(dmd->dmd_driver),
4484		    dmd->dmd_busname));
4485		error = devclass_delete_driver(bus_devclass,
4486		    dmd->dmd_driver);
4487
4488		if (!error && dmd->dmd_chainevh)
4489			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4490		break;
4491	case MOD_QUIESCE:
4492		PDEBUG(("Quiesce module: driver %s from bus %s",
4493		    DRIVERNAME(dmd->dmd_driver),
4494		    dmd->dmd_busname));
4495		error = devclass_quiesce_driver(bus_devclass,
4496		    dmd->dmd_driver);
4497
4498		if (!error && dmd->dmd_chainevh)
4499			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4500		break;
4501	default:
4502		error = EOPNOTSUPP;
4503		break;
4504	}
4505
4506	return (error);
4507}
4508
4509/**
4510 * @brief Enumerate all hinted devices for this bus.
4511 *
4512 * Walks through the hints for this bus and calls the bus_hinted_child
4513 * routine for each one it fines.  It searches first for the specific
4514 * bus that's being probed for hinted children (eg isa0), and then for
4515 * generic children (eg isa).
4516 *
4517 * @param	dev	bus device to enumerate
4518 */
4519void
4520bus_enumerate_hinted_children(device_t bus)
4521{
4522	int i;
4523	const char *dname, *busname;
4524	int dunit;
4525
4526	/*
4527	 * enumerate all devices on the specific bus
4528	 */
4529	busname = device_get_nameunit(bus);
4530	i = 0;
4531	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4532		BUS_HINTED_CHILD(bus, dname, dunit);
4533
4534	/*
4535	 * and all the generic ones.
4536	 */
4537	busname = device_get_name(bus);
4538	i = 0;
4539	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4540		BUS_HINTED_CHILD(bus, dname, dunit);
4541}
4542
4543#ifdef BUS_DEBUG
4544
4545/* the _short versions avoid iteration by not calling anything that prints
4546 * more than oneliners. I love oneliners.
4547 */
4548
4549static void
4550print_device_short(device_t dev, int indent)
4551{
4552	if (!dev)
4553		return;
4554
4555	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4556	    dev->unit, dev->desc,
4557	    (dev->parent? "":"no "),
4558	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4559	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4560	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4561	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4562	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4563	    (dev->flags&DF_REBID? "rebiddable,":""),
4564	    (dev->ivars? "":"no "),
4565	    (dev->softc? "":"no "),
4566	    dev->busy));
4567}
4568
4569static void
4570print_device(device_t dev, int indent)
4571{
4572	if (!dev)
4573		return;
4574
4575	print_device_short(dev, indent);
4576
4577	indentprintf(("Parent:\n"));
4578	print_device_short(dev->parent, indent+1);
4579	indentprintf(("Driver:\n"));
4580	print_driver_short(dev->driver, indent+1);
4581	indentprintf(("Devclass:\n"));
4582	print_devclass_short(dev->devclass, indent+1);
4583}
4584
4585void
4586print_device_tree_short(device_t dev, int indent)
4587/* print the device and all its children (indented) */
4588{
4589	device_t child;
4590
4591	if (!dev)
4592		return;
4593
4594	print_device_short(dev, indent);
4595
4596	TAILQ_FOREACH(child, &dev->children, link) {
4597		print_device_tree_short(child, indent+1);
4598	}
4599}
4600
4601void
4602print_device_tree(device_t dev, int indent)
4603/* print the device and all its children (indented) */
4604{
4605	device_t child;
4606
4607	if (!dev)
4608		return;
4609
4610	print_device(dev, indent);
4611
4612	TAILQ_FOREACH(child, &dev->children, link) {
4613		print_device_tree(child, indent+1);
4614	}
4615}
4616
4617static void
4618print_driver_short(driver_t *driver, int indent)
4619{
4620	if (!driver)
4621		return;
4622
4623	indentprintf(("driver %s: softc size = %zd\n",
4624	    driver->name, driver->size));
4625}
4626
4627static void
4628print_driver(driver_t *driver, int indent)
4629{
4630	if (!driver)
4631		return;
4632
4633	print_driver_short(driver, indent);
4634}
4635
4636static void
4637print_driver_list(driver_list_t drivers, int indent)
4638{
4639	driverlink_t driver;
4640
4641	TAILQ_FOREACH(driver, &drivers, link) {
4642		print_driver(driver->driver, indent);
4643	}
4644}
4645
4646static void
4647print_devclass_short(devclass_t dc, int indent)
4648{
4649	if ( !dc )
4650		return;
4651
4652	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4653}
4654
4655static void
4656print_devclass(devclass_t dc, int indent)
4657{
4658	int i;
4659
4660	if ( !dc )
4661		return;
4662
4663	print_devclass_short(dc, indent);
4664	indentprintf(("Drivers:\n"));
4665	print_driver_list(dc->drivers, indent+1);
4666
4667	indentprintf(("Devices:\n"));
4668	for (i = 0; i < dc->maxunit; i++)
4669		if (dc->devices[i])
4670			print_device(dc->devices[i], indent+1);
4671}
4672
4673void
4674print_devclass_list_short(void)
4675{
4676	devclass_t dc;
4677
4678	printf("Short listing of devclasses, drivers & devices:\n");
4679	TAILQ_FOREACH(dc, &devclasses, link) {
4680		print_devclass_short(dc, 0);
4681	}
4682}
4683
4684void
4685print_devclass_list(void)
4686{
4687	devclass_t dc;
4688
4689	printf("Full listing of devclasses, drivers & devices:\n");
4690	TAILQ_FOREACH(dc, &devclasses, link) {
4691		print_devclass(dc, 0);
4692	}
4693}
4694
4695#endif
4696
4697/*
4698 * User-space access to the device tree.
4699 *
4700 * We implement a small set of nodes:
4701 *
4702 * hw.bus			Single integer read method to obtain the
4703 *				current generation count.
4704 * hw.bus.devices		Reads the entire device tree in flat space.
4705 * hw.bus.rman			Resource manager interface
4706 *
4707 * We might like to add the ability to scan devclasses and/or drivers to
4708 * determine what else is currently loaded/available.
4709 */
4710
4711static int
4712sysctl_bus(SYSCTL_HANDLER_ARGS)
4713{
4714	struct u_businfo	ubus;
4715
4716	ubus.ub_version = BUS_USER_VERSION;
4717	ubus.ub_generation = bus_data_generation;
4718
4719	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4720}
4721SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4722    "bus-related data");
4723
4724static int
4725sysctl_devices(SYSCTL_HANDLER_ARGS)
4726{
4727	int			*name = (int *)arg1;
4728	u_int			namelen = arg2;
4729	int			index;
4730	struct device		*dev;
4731	struct u_device		udev;	/* XXX this is a bit big */
4732	int			error;
4733
4734	if (namelen != 2)
4735		return (EINVAL);
4736
4737	if (bus_data_generation_check(name[0]))
4738		return (EINVAL);
4739
4740	index = name[1];
4741
4742	/*
4743	 * Scan the list of devices, looking for the requested index.
4744	 */
4745	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4746		if (index-- == 0)
4747			break;
4748	}
4749	if (dev == NULL)
4750		return (ENOENT);
4751
4752	/*
4753	 * Populate the return array.
4754	 */
4755	bzero(&udev, sizeof(udev));
4756	udev.dv_handle = (uintptr_t)dev;
4757	udev.dv_parent = (uintptr_t)dev->parent;
4758	if (dev->nameunit != NULL)
4759		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4760	if (dev->desc != NULL)
4761		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4762	if (dev->driver != NULL && dev->driver->name != NULL)
4763		strlcpy(udev.dv_drivername, dev->driver->name,
4764		    sizeof(udev.dv_drivername));
4765	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4766	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4767	udev.dv_devflags = dev->devflags;
4768	udev.dv_flags = dev->flags;
4769	udev.dv_state = dev->state;
4770	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4771	return (error);
4772}
4773
4774SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4775    "system device tree");
4776
4777int
4778bus_data_generation_check(int generation)
4779{
4780	if (generation != bus_data_generation)
4781		return (1);
4782
4783	/* XXX generate optimised lists here? */
4784	return (0);
4785}
4786
4787void
4788bus_data_generation_update(void)
4789{
4790	bus_data_generation++;
4791}
4792
4793int
4794bus_free_resource(device_t dev, int type, struct resource *r)
4795{
4796	if (r == NULL)
4797		return (0);
4798	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4799}
4800
4801/*
4802 * The "dev" argument passed to "device_free_softc()" is allowed to be
4803 * NULL, if the device freeing the soft is not available.
4804 */
4805void
4806device_free_softc(device_t dev, void *softc)
4807{
4808	free(softc, M_BUS_SC);
4809}
4810