subr_bus.c revision 227701
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 227701 2011-11-19 10:11:50Z hselasky $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <machine/stdarg.h>
57
58#include <vm/uma.h>
59
60SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62
63/*
64 * Used to attach drivers to devclasses.
65 */
66typedef struct driverlink *driverlink_t;
67struct driverlink {
68	kobj_class_t	driver;
69	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70	int		pass;
71	TAILQ_ENTRY(driverlink) passlink;
72};
73
74/*
75 * Forward declarations
76 */
77typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79typedef TAILQ_HEAD(device_list, device) device_list_t;
80
81struct devclass {
82	TAILQ_ENTRY(devclass) link;
83	devclass_t	parent;		/* parent in devclass hierarchy */
84	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85	char		*name;
86	device_t	*devices;	/* array of devices indexed by unit */
87	int		maxunit;	/* size of devices array */
88	int		flags;
89#define DC_HAS_CHILDREN		1
90
91	struct sysctl_ctx_list sysctl_ctx;
92	struct sysctl_oid *sysctl_tree;
93};
94
95/**
96 * @brief Implementation of device.
97 */
98struct device {
99	/*
100	 * A device is a kernel object. The first field must be the
101	 * current ops table for the object.
102	 */
103	KOBJ_FIELDS;
104
105	/*
106	 * Device hierarchy.
107	 */
108	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110	device_t	parent;		/**< parent of this device  */
111	device_list_t	children;	/**< list of child devices */
112
113	/*
114	 * Details of this device.
115	 */
116	driver_t	*driver;	/**< current driver */
117	devclass_t	devclass;	/**< current device class */
118	int		unit;		/**< current unit number */
119	char*		nameunit;	/**< name+unit e.g. foodev0 */
120	char*		desc;		/**< driver specific description */
121	int		busy;		/**< count of calls to device_busy() */
122	device_state_t	state;		/**< current device state  */
123	uint32_t	devflags;	/**< api level flags for device_get_flags() */
124	u_int		flags;		/**< internal device flags  */
125#define	DF_ENABLED	0x01		/* device should be probed/attached */
126#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
127#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
128#define	DF_DESCMALLOCED	0x08		/* description was malloced */
129#define	DF_QUIET	0x10		/* don't print verbose attach message */
130#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
131#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
132#define	DF_REBID	0x80		/* Can rebid after attach */
133	u_int	order;			/**< order from device_add_child_ordered() */
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147TUNABLE_INT("bus.debug", &bus_debug);
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149    "Debug bus code");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT(req, value, strlen(value)));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT(req, value, strlen(value));
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311}
312
313static void
314device_sysctl_update(device_t dev)
315{
316	devclass_t dc = dev->devclass;
317
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321}
322
323static void
324device_sysctl_fini(device_t dev)
325{
326	if (dev->sysctl_tree == NULL)
327		return;
328	sysctl_ctx_free(&dev->sysctl_ctx);
329	dev->sysctl_tree = NULL;
330}
331
332/*
333 * /dev/devctl implementation
334 */
335
336/*
337 * This design allows only one reader for /dev/devctl.  This is not desirable
338 * in the long run, but will get a lot of hair out of this implementation.
339 * Maybe we should make this device a clonable device.
340 *
341 * Also note: we specifically do not attach a device to the device_t tree
342 * to avoid potential chicken and egg problems.  One could argue that all
343 * of this belongs to the root node.  One could also further argue that the
344 * sysctl interface that we have not might more properly be an ioctl
345 * interface, but at this stage of the game, I'm not inclined to rock that
346 * boat.
347 *
348 * I'm also not sure that the SIGIO support is done correctly or not, as
349 * I copied it from a driver that had SIGIO support that likely hasn't been
350 * tested since 3.4 or 2.2.8!
351 */
352
353/* Deprecated way to adjust queue length */
354static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358
359#define DEVCTL_DEFAULT_QUEUE_LEN 1000
360static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364    0, sysctl_devctl_queue, "I", "devctl queue length");
365
366static d_open_t		devopen;
367static d_close_t	devclose;
368static d_read_t		devread;
369static d_ioctl_t	devioctl;
370static d_poll_t		devpoll;
371
372static struct cdevsw dev_cdevsw = {
373	.d_version =	D_VERSION,
374	.d_flags =	D_NEEDGIANT,
375	.d_open =	devopen,
376	.d_close =	devclose,
377	.d_read =	devread,
378	.d_ioctl =	devioctl,
379	.d_poll =	devpoll,
380	.d_name =	"devctl",
381};
382
383struct dev_event_info
384{
385	char *dei_data;
386	TAILQ_ENTRY(dev_event_info) dei_link;
387};
388
389TAILQ_HEAD(devq, dev_event_info);
390
391static struct dev_softc
392{
393	int	inuse;
394	int	nonblock;
395	int	queued;
396	struct mtx mtx;
397	struct cv cv;
398	struct selinfo sel;
399	struct devq devq;
400	struct proc *async_proc;
401} devsoftc;
402
403static struct cdev *devctl_dev;
404
405static void
406devinit(void)
407{
408	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
409	    UID_ROOT, GID_WHEEL, 0600, "devctl");
410	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411	cv_init(&devsoftc.cv, "dev cv");
412	TAILQ_INIT(&devsoftc.devq);
413}
414
415static int
416devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417{
418	if (devsoftc.inuse)
419		return (EBUSY);
420	/* move to init */
421	devsoftc.inuse = 1;
422	devsoftc.nonblock = 0;
423	devsoftc.async_proc = NULL;
424	return (0);
425}
426
427static int
428devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429{
430	devsoftc.inuse = 0;
431	mtx_lock(&devsoftc.mtx);
432	cv_broadcast(&devsoftc.cv);
433	mtx_unlock(&devsoftc.mtx);
434	devsoftc.async_proc = NULL;
435	return (0);
436}
437
438/*
439 * The read channel for this device is used to report changes to
440 * userland in realtime.  We are required to free the data as well as
441 * the n1 object because we allocate them separately.  Also note that
442 * we return one record at a time.  If you try to read this device a
443 * character at a time, you will lose the rest of the data.  Listening
444 * programs are expected to cope.
445 */
446static int
447devread(struct cdev *dev, struct uio *uio, int ioflag)
448{
449	struct dev_event_info *n1;
450	int rv;
451
452	mtx_lock(&devsoftc.mtx);
453	while (TAILQ_EMPTY(&devsoftc.devq)) {
454		if (devsoftc.nonblock) {
455			mtx_unlock(&devsoftc.mtx);
456			return (EAGAIN);
457		}
458		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459		if (rv) {
460			/*
461			 * Need to translate ERESTART to EINTR here? -- jake
462			 */
463			mtx_unlock(&devsoftc.mtx);
464			return (rv);
465		}
466	}
467	n1 = TAILQ_FIRST(&devsoftc.devq);
468	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469	devsoftc.queued--;
470	mtx_unlock(&devsoftc.mtx);
471	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472	free(n1->dei_data, M_BUS);
473	free(n1, M_BUS);
474	return (rv);
475}
476
477static	int
478devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479{
480	switch (cmd) {
481
482	case FIONBIO:
483		if (*(int*)data)
484			devsoftc.nonblock = 1;
485		else
486			devsoftc.nonblock = 0;
487		return (0);
488	case FIOASYNC:
489		if (*(int*)data)
490			devsoftc.async_proc = td->td_proc;
491		else
492			devsoftc.async_proc = NULL;
493		return (0);
494
495		/* (un)Support for other fcntl() calls. */
496	case FIOCLEX:
497	case FIONCLEX:
498	case FIONREAD:
499	case FIOSETOWN:
500	case FIOGETOWN:
501	default:
502		break;
503	}
504	return (ENOTTY);
505}
506
507static	int
508devpoll(struct cdev *dev, int events, struct thread *td)
509{
510	int	revents = 0;
511
512	mtx_lock(&devsoftc.mtx);
513	if (events & (POLLIN | POLLRDNORM)) {
514		if (!TAILQ_EMPTY(&devsoftc.devq))
515			revents = events & (POLLIN | POLLRDNORM);
516		else
517			selrecord(td, &devsoftc.sel);
518	}
519	mtx_unlock(&devsoftc.mtx);
520
521	return (revents);
522}
523
524/**
525 * @brief Return whether the userland process is running
526 */
527boolean_t
528devctl_process_running(void)
529{
530	return (devsoftc.inuse == 1);
531}
532
533/**
534 * @brief Queue data to be read from the devctl device
535 *
536 * Generic interface to queue data to the devctl device.  It is
537 * assumed that @p data is properly formatted.  It is further assumed
538 * that @p data is allocated using the M_BUS malloc type.
539 */
540void
541devctl_queue_data_f(char *data, int flags)
542{
543	struct dev_event_info *n1 = NULL, *n2 = NULL;
544	struct proc *p;
545
546	if (strlen(data) == 0)
547		goto out;
548	if (devctl_queue_length == 0)
549		goto out;
550	n1 = malloc(sizeof(*n1), M_BUS, flags);
551	if (n1 == NULL)
552		goto out;
553	n1->dei_data = data;
554	mtx_lock(&devsoftc.mtx);
555	if (devctl_queue_length == 0) {
556		mtx_unlock(&devsoftc.mtx);
557		free(n1->dei_data, M_BUS);
558		free(n1, M_BUS);
559		return;
560	}
561	/* Leave at least one spot in the queue... */
562	while (devsoftc.queued > devctl_queue_length - 1) {
563		n2 = TAILQ_FIRST(&devsoftc.devq);
564		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
565		free(n2->dei_data, M_BUS);
566		free(n2, M_BUS);
567		devsoftc.queued--;
568	}
569	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
570	devsoftc.queued++;
571	cv_broadcast(&devsoftc.cv);
572	mtx_unlock(&devsoftc.mtx);
573	selwakeup(&devsoftc.sel);
574	p = devsoftc.async_proc;
575	if (p != NULL) {
576		PROC_LOCK(p);
577		kern_psignal(p, SIGIO);
578		PROC_UNLOCK(p);
579	}
580	return;
581out:
582	/*
583	 * We have to free data on all error paths since the caller
584	 * assumes it will be free'd when this item is dequeued.
585	 */
586	free(data, M_BUS);
587	return;
588}
589
590void
591devctl_queue_data(char *data)
592{
593
594	devctl_queue_data_f(data, M_NOWAIT);
595}
596
597/**
598 * @brief Send a 'notification' to userland, using standard ways
599 */
600void
601devctl_notify_f(const char *system, const char *subsystem, const char *type,
602    const char *data, int flags)
603{
604	int len = 0;
605	char *msg;
606
607	if (system == NULL)
608		return;		/* BOGUS!  Must specify system. */
609	if (subsystem == NULL)
610		return;		/* BOGUS!  Must specify subsystem. */
611	if (type == NULL)
612		return;		/* BOGUS!  Must specify type. */
613	len += strlen(" system=") + strlen(system);
614	len += strlen(" subsystem=") + strlen(subsystem);
615	len += strlen(" type=") + strlen(type);
616	/* add in the data message plus newline. */
617	if (data != NULL)
618		len += strlen(data);
619	len += 3;	/* '!', '\n', and NUL */
620	msg = malloc(len, M_BUS, flags);
621	if (msg == NULL)
622		return;		/* Drop it on the floor */
623	if (data != NULL)
624		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
625		    system, subsystem, type, data);
626	else
627		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
628		    system, subsystem, type);
629	devctl_queue_data_f(msg, flags);
630}
631
632void
633devctl_notify(const char *system, const char *subsystem, const char *type,
634    const char *data)
635{
636
637	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
638}
639
640/*
641 * Common routine that tries to make sending messages as easy as possible.
642 * We allocate memory for the data, copy strings into that, but do not
643 * free it unless there's an error.  The dequeue part of the driver should
644 * free the data.  We don't send data when the device is disabled.  We do
645 * send data, even when we have no listeners, because we wish to avoid
646 * races relating to startup and restart of listening applications.
647 *
648 * devaddq is designed to string together the type of event, with the
649 * object of that event, plus the plug and play info and location info
650 * for that event.  This is likely most useful for devices, but less
651 * useful for other consumers of this interface.  Those should use
652 * the devctl_queue_data() interface instead.
653 */
654static void
655devaddq(const char *type, const char *what, device_t dev)
656{
657	char *data = NULL;
658	char *loc = NULL;
659	char *pnp = NULL;
660	const char *parstr;
661
662	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
663		return;
664	data = malloc(1024, M_BUS, M_NOWAIT);
665	if (data == NULL)
666		goto bad;
667
668	/* get the bus specific location of this device */
669	loc = malloc(1024, M_BUS, M_NOWAIT);
670	if (loc == NULL)
671		goto bad;
672	*loc = '\0';
673	bus_child_location_str(dev, loc, 1024);
674
675	/* Get the bus specific pnp info of this device */
676	pnp = malloc(1024, M_BUS, M_NOWAIT);
677	if (pnp == NULL)
678		goto bad;
679	*pnp = '\0';
680	bus_child_pnpinfo_str(dev, pnp, 1024);
681
682	/* Get the parent of this device, or / if high enough in the tree. */
683	if (device_get_parent(dev) == NULL)
684		parstr = ".";	/* Or '/' ? */
685	else
686		parstr = device_get_nameunit(device_get_parent(dev));
687	/* String it all together. */
688	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
689	  parstr);
690	free(loc, M_BUS);
691	free(pnp, M_BUS);
692	devctl_queue_data(data);
693	return;
694bad:
695	free(pnp, M_BUS);
696	free(loc, M_BUS);
697	free(data, M_BUS);
698	return;
699}
700
701/*
702 * A device was added to the tree.  We are called just after it successfully
703 * attaches (that is, probe and attach success for this device).  No call
704 * is made if a device is merely parented into the tree.  See devnomatch
705 * if probe fails.  If attach fails, no notification is sent (but maybe
706 * we should have a different message for this).
707 */
708static void
709devadded(device_t dev)
710{
711	devaddq("+", device_get_nameunit(dev), dev);
712}
713
714/*
715 * A device was removed from the tree.  We are called just before this
716 * happens.
717 */
718static void
719devremoved(device_t dev)
720{
721	devaddq("-", device_get_nameunit(dev), dev);
722}
723
724/*
725 * Called when there's no match for this device.  This is only called
726 * the first time that no match happens, so we don't keep getting this
727 * message.  Should that prove to be undesirable, we can change it.
728 * This is called when all drivers that can attach to a given bus
729 * decline to accept this device.  Other errors may not be detected.
730 */
731static void
732devnomatch(device_t dev)
733{
734	devaddq("?", "", dev);
735}
736
737static int
738sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
739{
740	struct dev_event_info *n1;
741	int dis, error;
742
743	dis = devctl_queue_length == 0;
744	error = sysctl_handle_int(oidp, &dis, 0, req);
745	if (error || !req->newptr)
746		return (error);
747	mtx_lock(&devsoftc.mtx);
748	if (dis) {
749		while (!TAILQ_EMPTY(&devsoftc.devq)) {
750			n1 = TAILQ_FIRST(&devsoftc.devq);
751			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
752			free(n1->dei_data, M_BUS);
753			free(n1, M_BUS);
754		}
755		devsoftc.queued = 0;
756		devctl_queue_length = 0;
757	} else {
758		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
759	}
760	mtx_unlock(&devsoftc.mtx);
761	return (0);
762}
763
764static int
765sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
766{
767	struct dev_event_info *n1;
768	int q, error;
769
770	q = devctl_queue_length;
771	error = sysctl_handle_int(oidp, &q, 0, req);
772	if (error || !req->newptr)
773		return (error);
774	if (q < 0)
775		return (EINVAL);
776	mtx_lock(&devsoftc.mtx);
777	devctl_queue_length = q;
778	while (devsoftc.queued > devctl_queue_length) {
779		n1 = TAILQ_FIRST(&devsoftc.devq);
780		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
781		free(n1->dei_data, M_BUS);
782		free(n1, M_BUS);
783		devsoftc.queued--;
784	}
785	mtx_unlock(&devsoftc.mtx);
786	return (0);
787}
788
789/* End of /dev/devctl code */
790
791static TAILQ_HEAD(,device)	bus_data_devices;
792static int bus_data_generation = 1;
793
794static kobj_method_t null_methods[] = {
795	KOBJMETHOD_END
796};
797
798DEFINE_CLASS(null, null_methods, 0);
799
800/*
801 * Bus pass implementation
802 */
803
804static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
805int bus_current_pass = BUS_PASS_ROOT;
806
807/**
808 * @internal
809 * @brief Register the pass level of a new driver attachment
810 *
811 * Register a new driver attachment's pass level.  If no driver
812 * attachment with the same pass level has been added, then @p new
813 * will be added to the global passes list.
814 *
815 * @param new		the new driver attachment
816 */
817static void
818driver_register_pass(struct driverlink *new)
819{
820	struct driverlink *dl;
821
822	/* We only consider pass numbers during boot. */
823	if (bus_current_pass == BUS_PASS_DEFAULT)
824		return;
825
826	/*
827	 * Walk the passes list.  If we already know about this pass
828	 * then there is nothing to do.  If we don't, then insert this
829	 * driver link into the list.
830	 */
831	TAILQ_FOREACH(dl, &passes, passlink) {
832		if (dl->pass < new->pass)
833			continue;
834		if (dl->pass == new->pass)
835			return;
836		TAILQ_INSERT_BEFORE(dl, new, passlink);
837		return;
838	}
839	TAILQ_INSERT_TAIL(&passes, new, passlink);
840}
841
842/**
843 * @brief Raise the current bus pass
844 *
845 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
846 * method on the root bus to kick off a new device tree scan for each
847 * new pass level that has at least one driver.
848 */
849void
850bus_set_pass(int pass)
851{
852	struct driverlink *dl;
853
854	if (bus_current_pass > pass)
855		panic("Attempt to lower bus pass level");
856
857	TAILQ_FOREACH(dl, &passes, passlink) {
858		/* Skip pass values below the current pass level. */
859		if (dl->pass <= bus_current_pass)
860			continue;
861
862		/*
863		 * Bail once we hit a driver with a pass level that is
864		 * too high.
865		 */
866		if (dl->pass > pass)
867			break;
868
869		/*
870		 * Raise the pass level to the next level and rescan
871		 * the tree.
872		 */
873		bus_current_pass = dl->pass;
874		BUS_NEW_PASS(root_bus);
875	}
876
877	/*
878	 * If there isn't a driver registered for the requested pass,
879	 * then bus_current_pass might still be less than 'pass'.  Set
880	 * it to 'pass' in that case.
881	 */
882	if (bus_current_pass < pass)
883		bus_current_pass = pass;
884	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
885}
886
887/*
888 * Devclass implementation
889 */
890
891static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
892
893/**
894 * @internal
895 * @brief Find or create a device class
896 *
897 * If a device class with the name @p classname exists, return it,
898 * otherwise if @p create is non-zero create and return a new device
899 * class.
900 *
901 * If @p parentname is non-NULL, the parent of the devclass is set to
902 * the devclass of that name.
903 *
904 * @param classname	the devclass name to find or create
905 * @param parentname	the parent devclass name or @c NULL
906 * @param create	non-zero to create a devclass
907 */
908static devclass_t
909devclass_find_internal(const char *classname, const char *parentname,
910		       int create)
911{
912	devclass_t dc;
913
914	PDEBUG(("looking for %s", classname));
915	if (!classname)
916		return (NULL);
917
918	TAILQ_FOREACH(dc, &devclasses, link) {
919		if (!strcmp(dc->name, classname))
920			break;
921	}
922
923	if (create && !dc) {
924		PDEBUG(("creating %s", classname));
925		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
926		    M_BUS, M_NOWAIT | M_ZERO);
927		if (!dc)
928			return (NULL);
929		dc->parent = NULL;
930		dc->name = (char*) (dc + 1);
931		strcpy(dc->name, classname);
932		TAILQ_INIT(&dc->drivers);
933		TAILQ_INSERT_TAIL(&devclasses, dc, link);
934
935		bus_data_generation_update();
936	}
937
938	/*
939	 * If a parent class is specified, then set that as our parent so
940	 * that this devclass will support drivers for the parent class as
941	 * well.  If the parent class has the same name don't do this though
942	 * as it creates a cycle that can trigger an infinite loop in
943	 * device_probe_child() if a device exists for which there is no
944	 * suitable driver.
945	 */
946	if (parentname && dc && !dc->parent &&
947	    strcmp(classname, parentname) != 0) {
948		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
949		dc->parent->flags |= DC_HAS_CHILDREN;
950	}
951
952	return (dc);
953}
954
955/**
956 * @brief Create a device class
957 *
958 * If a device class with the name @p classname exists, return it,
959 * otherwise create and return a new device class.
960 *
961 * @param classname	the devclass name to find or create
962 */
963devclass_t
964devclass_create(const char *classname)
965{
966	return (devclass_find_internal(classname, NULL, TRUE));
967}
968
969/**
970 * @brief Find a device class
971 *
972 * If a device class with the name @p classname exists, return it,
973 * otherwise return @c NULL.
974 *
975 * @param classname	the devclass name to find
976 */
977devclass_t
978devclass_find(const char *classname)
979{
980	return (devclass_find_internal(classname, NULL, FALSE));
981}
982
983/**
984 * @brief Register that a device driver has been added to a devclass
985 *
986 * Register that a device driver has been added to a devclass.  This
987 * is called by devclass_add_driver to accomplish the recursive
988 * notification of all the children classes of dc, as well as dc.
989 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
990 * the devclass.
991 *
992 * We do a full search here of the devclass list at each iteration
993 * level to save storing children-lists in the devclass structure.  If
994 * we ever move beyond a few dozen devices doing this, we may need to
995 * reevaluate...
996 *
997 * @param dc		the devclass to edit
998 * @param driver	the driver that was just added
999 */
1000static void
1001devclass_driver_added(devclass_t dc, driver_t *driver)
1002{
1003	devclass_t parent;
1004	int i;
1005
1006	/*
1007	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1008	 */
1009	for (i = 0; i < dc->maxunit; i++)
1010		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1011			BUS_DRIVER_ADDED(dc->devices[i], driver);
1012
1013	/*
1014	 * Walk through the children classes.  Since we only keep a
1015	 * single parent pointer around, we walk the entire list of
1016	 * devclasses looking for children.  We set the
1017	 * DC_HAS_CHILDREN flag when a child devclass is created on
1018	 * the parent, so we only walk the list for those devclasses
1019	 * that have children.
1020	 */
1021	if (!(dc->flags & DC_HAS_CHILDREN))
1022		return;
1023	parent = dc;
1024	TAILQ_FOREACH(dc, &devclasses, link) {
1025		if (dc->parent == parent)
1026			devclass_driver_added(dc, driver);
1027	}
1028}
1029
1030/**
1031 * @brief Add a device driver to a device class
1032 *
1033 * Add a device driver to a devclass. This is normally called
1034 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1035 * all devices in the devclass will be called to allow them to attempt
1036 * to re-probe any unmatched children.
1037 *
1038 * @param dc		the devclass to edit
1039 * @param driver	the driver to register
1040 */
1041int
1042devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1043{
1044	driverlink_t dl;
1045	const char *parentname;
1046
1047	PDEBUG(("%s", DRIVERNAME(driver)));
1048
1049	/* Don't allow invalid pass values. */
1050	if (pass <= BUS_PASS_ROOT)
1051		return (EINVAL);
1052
1053	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1054	if (!dl)
1055		return (ENOMEM);
1056
1057	/*
1058	 * Compile the driver's methods. Also increase the reference count
1059	 * so that the class doesn't get freed when the last instance
1060	 * goes. This means we can safely use static methods and avoids a
1061	 * double-free in devclass_delete_driver.
1062	 */
1063	kobj_class_compile((kobj_class_t) driver);
1064
1065	/*
1066	 * If the driver has any base classes, make the
1067	 * devclass inherit from the devclass of the driver's
1068	 * first base class. This will allow the system to
1069	 * search for drivers in both devclasses for children
1070	 * of a device using this driver.
1071	 */
1072	if (driver->baseclasses)
1073		parentname = driver->baseclasses[0]->name;
1074	else
1075		parentname = NULL;
1076	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1077
1078	dl->driver = driver;
1079	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1080	driver->refs++;		/* XXX: kobj_mtx */
1081	dl->pass = pass;
1082	driver_register_pass(dl);
1083
1084	devclass_driver_added(dc, driver);
1085	bus_data_generation_update();
1086	return (0);
1087}
1088
1089/**
1090 * @brief Register that a device driver has been deleted from a devclass
1091 *
1092 * Register that a device driver has been removed from a devclass.
1093 * This is called by devclass_delete_driver to accomplish the
1094 * recursive notification of all the children classes of busclass, as
1095 * well as busclass.  Each layer will attempt to detach the driver
1096 * from any devices that are children of the bus's devclass.  The function
1097 * will return an error if a device fails to detach.
1098 *
1099 * We do a full search here of the devclass list at each iteration
1100 * level to save storing children-lists in the devclass structure.  If
1101 * we ever move beyond a few dozen devices doing this, we may need to
1102 * reevaluate...
1103 *
1104 * @param busclass	the devclass of the parent bus
1105 * @param dc		the devclass of the driver being deleted
1106 * @param driver	the driver being deleted
1107 */
1108static int
1109devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1110{
1111	devclass_t parent;
1112	device_t dev;
1113	int error, i;
1114
1115	/*
1116	 * Disassociate from any devices.  We iterate through all the
1117	 * devices in the devclass of the driver and detach any which are
1118	 * using the driver and which have a parent in the devclass which
1119	 * we are deleting from.
1120	 *
1121	 * Note that since a driver can be in multiple devclasses, we
1122	 * should not detach devices which are not children of devices in
1123	 * the affected devclass.
1124	 */
1125	for (i = 0; i < dc->maxunit; i++) {
1126		if (dc->devices[i]) {
1127			dev = dc->devices[i];
1128			if (dev->driver == driver && dev->parent &&
1129			    dev->parent->devclass == busclass) {
1130				if ((error = device_detach(dev)) != 0)
1131					return (error);
1132				device_set_driver(dev, NULL);
1133				BUS_PROBE_NOMATCH(dev->parent, dev);
1134				devnomatch(dev);
1135				dev->flags |= DF_DONENOMATCH;
1136			}
1137		}
1138	}
1139
1140	/*
1141	 * Walk through the children classes.  Since we only keep a
1142	 * single parent pointer around, we walk the entire list of
1143	 * devclasses looking for children.  We set the
1144	 * DC_HAS_CHILDREN flag when a child devclass is created on
1145	 * the parent, so we only walk the list for those devclasses
1146	 * that have children.
1147	 */
1148	if (!(busclass->flags & DC_HAS_CHILDREN))
1149		return (0);
1150	parent = busclass;
1151	TAILQ_FOREACH(busclass, &devclasses, link) {
1152		if (busclass->parent == parent) {
1153			error = devclass_driver_deleted(busclass, dc, driver);
1154			if (error)
1155				return (error);
1156		}
1157	}
1158	return (0);
1159}
1160
1161/**
1162 * @brief Delete a device driver from a device class
1163 *
1164 * Delete a device driver from a devclass. This is normally called
1165 * automatically by DRIVER_MODULE().
1166 *
1167 * If the driver is currently attached to any devices,
1168 * devclass_delete_driver() will first attempt to detach from each
1169 * device. If one of the detach calls fails, the driver will not be
1170 * deleted.
1171 *
1172 * @param dc		the devclass to edit
1173 * @param driver	the driver to unregister
1174 */
1175int
1176devclass_delete_driver(devclass_t busclass, driver_t *driver)
1177{
1178	devclass_t dc = devclass_find(driver->name);
1179	driverlink_t dl;
1180	int error;
1181
1182	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1183
1184	if (!dc)
1185		return (0);
1186
1187	/*
1188	 * Find the link structure in the bus' list of drivers.
1189	 */
1190	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1191		if (dl->driver == driver)
1192			break;
1193	}
1194
1195	if (!dl) {
1196		PDEBUG(("%s not found in %s list", driver->name,
1197		    busclass->name));
1198		return (ENOENT);
1199	}
1200
1201	error = devclass_driver_deleted(busclass, dc, driver);
1202	if (error != 0)
1203		return (error);
1204
1205	TAILQ_REMOVE(&busclass->drivers, dl, link);
1206	free(dl, M_BUS);
1207
1208	/* XXX: kobj_mtx */
1209	driver->refs--;
1210	if (driver->refs == 0)
1211		kobj_class_free((kobj_class_t) driver);
1212
1213	bus_data_generation_update();
1214	return (0);
1215}
1216
1217/**
1218 * @brief Quiesces a set of device drivers from a device class
1219 *
1220 * Quiesce a device driver from a devclass. This is normally called
1221 * automatically by DRIVER_MODULE().
1222 *
1223 * If the driver is currently attached to any devices,
1224 * devclass_quiesece_driver() will first attempt to quiesce each
1225 * device.
1226 *
1227 * @param dc		the devclass to edit
1228 * @param driver	the driver to unregister
1229 */
1230static int
1231devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1232{
1233	devclass_t dc = devclass_find(driver->name);
1234	driverlink_t dl;
1235	device_t dev;
1236	int i;
1237	int error;
1238
1239	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1240
1241	if (!dc)
1242		return (0);
1243
1244	/*
1245	 * Find the link structure in the bus' list of drivers.
1246	 */
1247	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1248		if (dl->driver == driver)
1249			break;
1250	}
1251
1252	if (!dl) {
1253		PDEBUG(("%s not found in %s list", driver->name,
1254		    busclass->name));
1255		return (ENOENT);
1256	}
1257
1258	/*
1259	 * Quiesce all devices.  We iterate through all the devices in
1260	 * the devclass of the driver and quiesce any which are using
1261	 * the driver and which have a parent in the devclass which we
1262	 * are quiescing.
1263	 *
1264	 * Note that since a driver can be in multiple devclasses, we
1265	 * should not quiesce devices which are not children of
1266	 * devices in the affected devclass.
1267	 */
1268	for (i = 0; i < dc->maxunit; i++) {
1269		if (dc->devices[i]) {
1270			dev = dc->devices[i];
1271			if (dev->driver == driver && dev->parent &&
1272			    dev->parent->devclass == busclass) {
1273				if ((error = device_quiesce(dev)) != 0)
1274					return (error);
1275			}
1276		}
1277	}
1278
1279	return (0);
1280}
1281
1282/**
1283 * @internal
1284 */
1285static driverlink_t
1286devclass_find_driver_internal(devclass_t dc, const char *classname)
1287{
1288	driverlink_t dl;
1289
1290	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1291
1292	TAILQ_FOREACH(dl, &dc->drivers, link) {
1293		if (!strcmp(dl->driver->name, classname))
1294			return (dl);
1295	}
1296
1297	PDEBUG(("not found"));
1298	return (NULL);
1299}
1300
1301/**
1302 * @brief Return the name of the devclass
1303 */
1304const char *
1305devclass_get_name(devclass_t dc)
1306{
1307	return (dc->name);
1308}
1309
1310/**
1311 * @brief Find a device given a unit number
1312 *
1313 * @param dc		the devclass to search
1314 * @param unit		the unit number to search for
1315 *
1316 * @returns		the device with the given unit number or @c
1317 *			NULL if there is no such device
1318 */
1319device_t
1320devclass_get_device(devclass_t dc, int unit)
1321{
1322	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1323		return (NULL);
1324	return (dc->devices[unit]);
1325}
1326
1327/**
1328 * @brief Find the softc field of a device given a unit number
1329 *
1330 * @param dc		the devclass to search
1331 * @param unit		the unit number to search for
1332 *
1333 * @returns		the softc field of the device with the given
1334 *			unit number or @c NULL if there is no such
1335 *			device
1336 */
1337void *
1338devclass_get_softc(devclass_t dc, int unit)
1339{
1340	device_t dev;
1341
1342	dev = devclass_get_device(dc, unit);
1343	if (!dev)
1344		return (NULL);
1345
1346	return (device_get_softc(dev));
1347}
1348
1349/**
1350 * @brief Get a list of devices in the devclass
1351 *
1352 * An array containing a list of all the devices in the given devclass
1353 * is allocated and returned in @p *devlistp. The number of devices
1354 * in the array is returned in @p *devcountp. The caller should free
1355 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1356 *
1357 * @param dc		the devclass to examine
1358 * @param devlistp	points at location for array pointer return
1359 *			value
1360 * @param devcountp	points at location for array size return value
1361 *
1362 * @retval 0		success
1363 * @retval ENOMEM	the array allocation failed
1364 */
1365int
1366devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1367{
1368	int count, i;
1369	device_t *list;
1370
1371	count = devclass_get_count(dc);
1372	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1373	if (!list)
1374		return (ENOMEM);
1375
1376	count = 0;
1377	for (i = 0; i < dc->maxunit; i++) {
1378		if (dc->devices[i]) {
1379			list[count] = dc->devices[i];
1380			count++;
1381		}
1382	}
1383
1384	*devlistp = list;
1385	*devcountp = count;
1386
1387	return (0);
1388}
1389
1390/**
1391 * @brief Get a list of drivers in the devclass
1392 *
1393 * An array containing a list of pointers to all the drivers in the
1394 * given devclass is allocated and returned in @p *listp.  The number
1395 * of drivers in the array is returned in @p *countp. The caller should
1396 * free the array using @c free(p, M_TEMP).
1397 *
1398 * @param dc		the devclass to examine
1399 * @param listp		gives location for array pointer return value
1400 * @param countp	gives location for number of array elements
1401 *			return value
1402 *
1403 * @retval 0		success
1404 * @retval ENOMEM	the array allocation failed
1405 */
1406int
1407devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1408{
1409	driverlink_t dl;
1410	driver_t **list;
1411	int count;
1412
1413	count = 0;
1414	TAILQ_FOREACH(dl, &dc->drivers, link)
1415		count++;
1416	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1417	if (list == NULL)
1418		return (ENOMEM);
1419
1420	count = 0;
1421	TAILQ_FOREACH(dl, &dc->drivers, link) {
1422		list[count] = dl->driver;
1423		count++;
1424	}
1425	*listp = list;
1426	*countp = count;
1427
1428	return (0);
1429}
1430
1431/**
1432 * @brief Get the number of devices in a devclass
1433 *
1434 * @param dc		the devclass to examine
1435 */
1436int
1437devclass_get_count(devclass_t dc)
1438{
1439	int count, i;
1440
1441	count = 0;
1442	for (i = 0; i < dc->maxunit; i++)
1443		if (dc->devices[i])
1444			count++;
1445	return (count);
1446}
1447
1448/**
1449 * @brief Get the maximum unit number used in a devclass
1450 *
1451 * Note that this is one greater than the highest currently-allocated
1452 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1453 * that not even the devclass has been allocated yet.
1454 *
1455 * @param dc		the devclass to examine
1456 */
1457int
1458devclass_get_maxunit(devclass_t dc)
1459{
1460	if (dc == NULL)
1461		return (-1);
1462	return (dc->maxunit);
1463}
1464
1465/**
1466 * @brief Find a free unit number in a devclass
1467 *
1468 * This function searches for the first unused unit number greater
1469 * that or equal to @p unit.
1470 *
1471 * @param dc		the devclass to examine
1472 * @param unit		the first unit number to check
1473 */
1474int
1475devclass_find_free_unit(devclass_t dc, int unit)
1476{
1477	if (dc == NULL)
1478		return (unit);
1479	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1480		unit++;
1481	return (unit);
1482}
1483
1484/**
1485 * @brief Set the parent of a devclass
1486 *
1487 * The parent class is normally initialised automatically by
1488 * DRIVER_MODULE().
1489 *
1490 * @param dc		the devclass to edit
1491 * @param pdc		the new parent devclass
1492 */
1493void
1494devclass_set_parent(devclass_t dc, devclass_t pdc)
1495{
1496	dc->parent = pdc;
1497}
1498
1499/**
1500 * @brief Get the parent of a devclass
1501 *
1502 * @param dc		the devclass to examine
1503 */
1504devclass_t
1505devclass_get_parent(devclass_t dc)
1506{
1507	return (dc->parent);
1508}
1509
1510struct sysctl_ctx_list *
1511devclass_get_sysctl_ctx(devclass_t dc)
1512{
1513	return (&dc->sysctl_ctx);
1514}
1515
1516struct sysctl_oid *
1517devclass_get_sysctl_tree(devclass_t dc)
1518{
1519	return (dc->sysctl_tree);
1520}
1521
1522/**
1523 * @internal
1524 * @brief Allocate a unit number
1525 *
1526 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1527 * will do). The allocated unit number is returned in @p *unitp.
1528
1529 * @param dc		the devclass to allocate from
1530 * @param unitp		points at the location for the allocated unit
1531 *			number
1532 *
1533 * @retval 0		success
1534 * @retval EEXIST	the requested unit number is already allocated
1535 * @retval ENOMEM	memory allocation failure
1536 */
1537static int
1538devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1539{
1540	const char *s;
1541	int unit = *unitp;
1542
1543	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1544
1545	/* Ask the parent bus if it wants to wire this device. */
1546	if (unit == -1)
1547		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1548		    &unit);
1549
1550	/* If we were given a wired unit number, check for existing device */
1551	/* XXX imp XXX */
1552	if (unit != -1) {
1553		if (unit >= 0 && unit < dc->maxunit &&
1554		    dc->devices[unit] != NULL) {
1555			if (bootverbose)
1556				printf("%s: %s%d already exists; skipping it\n",
1557				    dc->name, dc->name, *unitp);
1558			return (EEXIST);
1559		}
1560	} else {
1561		/* Unwired device, find the next available slot for it */
1562		unit = 0;
1563		for (unit = 0;; unit++) {
1564			/* If there is an "at" hint for a unit then skip it. */
1565			if (resource_string_value(dc->name, unit, "at", &s) ==
1566			    0)
1567				continue;
1568
1569			/* If this device slot is already in use, skip it. */
1570			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1571				continue;
1572
1573			break;
1574		}
1575	}
1576
1577	/*
1578	 * We've selected a unit beyond the length of the table, so let's
1579	 * extend the table to make room for all units up to and including
1580	 * this one.
1581	 */
1582	if (unit >= dc->maxunit) {
1583		device_t *newlist, *oldlist;
1584		int newsize;
1585
1586		oldlist = dc->devices;
1587		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1588		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1589		if (!newlist)
1590			return (ENOMEM);
1591		if (oldlist != NULL)
1592			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1593		bzero(newlist + dc->maxunit,
1594		    sizeof(device_t) * (newsize - dc->maxunit));
1595		dc->devices = newlist;
1596		dc->maxunit = newsize;
1597		if (oldlist != NULL)
1598			free(oldlist, M_BUS);
1599	}
1600	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1601
1602	*unitp = unit;
1603	return (0);
1604}
1605
1606/**
1607 * @internal
1608 * @brief Add a device to a devclass
1609 *
1610 * A unit number is allocated for the device (using the device's
1611 * preferred unit number if any) and the device is registered in the
1612 * devclass. This allows the device to be looked up by its unit
1613 * number, e.g. by decoding a dev_t minor number.
1614 *
1615 * @param dc		the devclass to add to
1616 * @param dev		the device to add
1617 *
1618 * @retval 0		success
1619 * @retval EEXIST	the requested unit number is already allocated
1620 * @retval ENOMEM	memory allocation failure
1621 */
1622static int
1623devclass_add_device(devclass_t dc, device_t dev)
1624{
1625	int buflen, error;
1626
1627	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1628
1629	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1630	if (buflen < 0)
1631		return (ENOMEM);
1632	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1633	if (!dev->nameunit)
1634		return (ENOMEM);
1635
1636	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1637		free(dev->nameunit, M_BUS);
1638		dev->nameunit = NULL;
1639		return (error);
1640	}
1641	dc->devices[dev->unit] = dev;
1642	dev->devclass = dc;
1643	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1644
1645	return (0);
1646}
1647
1648/**
1649 * @internal
1650 * @brief Delete a device from a devclass
1651 *
1652 * The device is removed from the devclass's device list and its unit
1653 * number is freed.
1654
1655 * @param dc		the devclass to delete from
1656 * @param dev		the device to delete
1657 *
1658 * @retval 0		success
1659 */
1660static int
1661devclass_delete_device(devclass_t dc, device_t dev)
1662{
1663	if (!dc || !dev)
1664		return (0);
1665
1666	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1667
1668	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1669		panic("devclass_delete_device: inconsistent device class");
1670	dc->devices[dev->unit] = NULL;
1671	if (dev->flags & DF_WILDCARD)
1672		dev->unit = -1;
1673	dev->devclass = NULL;
1674	free(dev->nameunit, M_BUS);
1675	dev->nameunit = NULL;
1676
1677	return (0);
1678}
1679
1680/**
1681 * @internal
1682 * @brief Make a new device and add it as a child of @p parent
1683 *
1684 * @param parent	the parent of the new device
1685 * @param name		the devclass name of the new device or @c NULL
1686 *			to leave the devclass unspecified
1687 * @parem unit		the unit number of the new device of @c -1 to
1688 *			leave the unit number unspecified
1689 *
1690 * @returns the new device
1691 */
1692static device_t
1693make_device(device_t parent, const char *name, int unit)
1694{
1695	device_t dev;
1696	devclass_t dc;
1697
1698	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1699
1700	if (name) {
1701		dc = devclass_find_internal(name, NULL, TRUE);
1702		if (!dc) {
1703			printf("make_device: can't find device class %s\n",
1704			    name);
1705			return (NULL);
1706		}
1707	} else {
1708		dc = NULL;
1709	}
1710
1711	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1712	if (!dev)
1713		return (NULL);
1714
1715	dev->parent = parent;
1716	TAILQ_INIT(&dev->children);
1717	kobj_init((kobj_t) dev, &null_class);
1718	dev->driver = NULL;
1719	dev->devclass = NULL;
1720	dev->unit = unit;
1721	dev->nameunit = NULL;
1722	dev->desc = NULL;
1723	dev->busy = 0;
1724	dev->devflags = 0;
1725	dev->flags = DF_ENABLED;
1726	dev->order = 0;
1727	if (unit == -1)
1728		dev->flags |= DF_WILDCARD;
1729	if (name) {
1730		dev->flags |= DF_FIXEDCLASS;
1731		if (devclass_add_device(dc, dev)) {
1732			kobj_delete((kobj_t) dev, M_BUS);
1733			return (NULL);
1734		}
1735	}
1736	dev->ivars = NULL;
1737	dev->softc = NULL;
1738
1739	dev->state = DS_NOTPRESENT;
1740
1741	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1742	bus_data_generation_update();
1743
1744	return (dev);
1745}
1746
1747/**
1748 * @internal
1749 * @brief Print a description of a device.
1750 */
1751static int
1752device_print_child(device_t dev, device_t child)
1753{
1754	int retval = 0;
1755
1756	if (device_is_alive(child))
1757		retval += BUS_PRINT_CHILD(dev, child);
1758	else
1759		retval += device_printf(child, " not found\n");
1760
1761	return (retval);
1762}
1763
1764/**
1765 * @brief Create a new device
1766 *
1767 * This creates a new device and adds it as a child of an existing
1768 * parent device. The new device will be added after the last existing
1769 * child with order zero.
1770 *
1771 * @param dev		the device which will be the parent of the
1772 *			new child device
1773 * @param name		devclass name for new device or @c NULL if not
1774 *			specified
1775 * @param unit		unit number for new device or @c -1 if not
1776 *			specified
1777 *
1778 * @returns		the new device
1779 */
1780device_t
1781device_add_child(device_t dev, const char *name, int unit)
1782{
1783	return (device_add_child_ordered(dev, 0, name, unit));
1784}
1785
1786/**
1787 * @brief Create a new device
1788 *
1789 * This creates a new device and adds it as a child of an existing
1790 * parent device. The new device will be added after the last existing
1791 * child with the same order.
1792 *
1793 * @param dev		the device which will be the parent of the
1794 *			new child device
1795 * @param order		a value which is used to partially sort the
1796 *			children of @p dev - devices created using
1797 *			lower values of @p order appear first in @p
1798 *			dev's list of children
1799 * @param name		devclass name for new device or @c NULL if not
1800 *			specified
1801 * @param unit		unit number for new device or @c -1 if not
1802 *			specified
1803 *
1804 * @returns		the new device
1805 */
1806device_t
1807device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1808{
1809	device_t child;
1810	device_t place;
1811
1812	PDEBUG(("%s at %s with order %u as unit %d",
1813	    name, DEVICENAME(dev), order, unit));
1814
1815	child = make_device(dev, name, unit);
1816	if (child == NULL)
1817		return (child);
1818	child->order = order;
1819
1820	TAILQ_FOREACH(place, &dev->children, link) {
1821		if (place->order > order)
1822			break;
1823	}
1824
1825	if (place) {
1826		/*
1827		 * The device 'place' is the first device whose order is
1828		 * greater than the new child.
1829		 */
1830		TAILQ_INSERT_BEFORE(place, child, link);
1831	} else {
1832		/*
1833		 * The new child's order is greater or equal to the order of
1834		 * any existing device. Add the child to the tail of the list.
1835		 */
1836		TAILQ_INSERT_TAIL(&dev->children, child, link);
1837	}
1838
1839	bus_data_generation_update();
1840	return (child);
1841}
1842
1843/**
1844 * @brief Delete a device
1845 *
1846 * This function deletes a device along with all of its children. If
1847 * the device currently has a driver attached to it, the device is
1848 * detached first using device_detach().
1849 *
1850 * @param dev		the parent device
1851 * @param child		the device to delete
1852 *
1853 * @retval 0		success
1854 * @retval non-zero	a unit error code describing the error
1855 */
1856int
1857device_delete_child(device_t dev, device_t child)
1858{
1859	int error;
1860	device_t grandchild;
1861
1862	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1863
1864	/* remove children first */
1865	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1866		error = device_delete_child(child, grandchild);
1867		if (error)
1868			return (error);
1869	}
1870
1871	if ((error = device_detach(child)) != 0)
1872		return (error);
1873	if (child->devclass)
1874		devclass_delete_device(child->devclass, child);
1875	TAILQ_REMOVE(&dev->children, child, link);
1876	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1877	kobj_delete((kobj_t) child, M_BUS);
1878
1879	bus_data_generation_update();
1880	return (0);
1881}
1882
1883/**
1884 * @brief Delete all children devices of the given device, if any.
1885 *
1886 * This function deletes all children devices of the given device, if
1887 * any, using the device_delete_child() function for each device it
1888 * finds. If a child device cannot be deleted, this function will
1889 * return an error code.
1890 *
1891 * @param dev		the parent device
1892 *
1893 * @retval 0		success
1894 * @retval non-zero	a device would not detach
1895 */
1896int
1897device_delete_all_children(device_t dev)
1898{
1899	device_t child;
1900	int error;
1901
1902	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1903
1904	error = 0;
1905
1906	while ( (child = TAILQ_FIRST(&dev->children)) ) {
1907		error = device_delete_child(dev, child);
1908		if (error) {
1909			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1910			break;
1911		}
1912	}
1913	return (error);
1914}
1915
1916/**
1917 * @brief Find a device given a unit number
1918 *
1919 * This is similar to devclass_get_devices() but only searches for
1920 * devices which have @p dev as a parent.
1921 *
1922 * @param dev		the parent device to search
1923 * @param unit		the unit number to search for.  If the unit is -1,
1924 *			return the first child of @p dev which has name
1925 *			@p classname (that is, the one with the lowest unit.)
1926 *
1927 * @returns		the device with the given unit number or @c
1928 *			NULL if there is no such device
1929 */
1930device_t
1931device_find_child(device_t dev, const char *classname, int unit)
1932{
1933	devclass_t dc;
1934	device_t child;
1935
1936	dc = devclass_find(classname);
1937	if (!dc)
1938		return (NULL);
1939
1940	if (unit != -1) {
1941		child = devclass_get_device(dc, unit);
1942		if (child && child->parent == dev)
1943			return (child);
1944	} else {
1945		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1946			child = devclass_get_device(dc, unit);
1947			if (child && child->parent == dev)
1948				return (child);
1949		}
1950	}
1951	return (NULL);
1952}
1953
1954/**
1955 * @internal
1956 */
1957static driverlink_t
1958first_matching_driver(devclass_t dc, device_t dev)
1959{
1960	if (dev->devclass)
1961		return (devclass_find_driver_internal(dc, dev->devclass->name));
1962	return (TAILQ_FIRST(&dc->drivers));
1963}
1964
1965/**
1966 * @internal
1967 */
1968static driverlink_t
1969next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1970{
1971	if (dev->devclass) {
1972		driverlink_t dl;
1973		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1974			if (!strcmp(dev->devclass->name, dl->driver->name))
1975				return (dl);
1976		return (NULL);
1977	}
1978	return (TAILQ_NEXT(last, link));
1979}
1980
1981/**
1982 * @internal
1983 */
1984int
1985device_probe_child(device_t dev, device_t child)
1986{
1987	devclass_t dc;
1988	driverlink_t best = NULL;
1989	driverlink_t dl;
1990	int result, pri = 0;
1991	int hasclass = (child->devclass != NULL);
1992
1993	GIANT_REQUIRED;
1994
1995	dc = dev->devclass;
1996	if (!dc)
1997		panic("device_probe_child: parent device has no devclass");
1998
1999	/*
2000	 * If the state is already probed, then return.  However, don't
2001	 * return if we can rebid this object.
2002	 */
2003	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2004		return (0);
2005
2006	for (; dc; dc = dc->parent) {
2007		for (dl = first_matching_driver(dc, child);
2008		     dl;
2009		     dl = next_matching_driver(dc, child, dl)) {
2010
2011			/* If this driver's pass is too high, then ignore it. */
2012			if (dl->pass > bus_current_pass)
2013				continue;
2014
2015			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2016			device_set_driver(child, dl->driver);
2017			if (!hasclass) {
2018				if (device_set_devclass(child, dl->driver->name)) {
2019					printf("driver bug: Unable to set devclass (devname: %s)\n",
2020					    (child ? device_get_name(child) :
2021						"no device"));
2022					device_set_driver(child, NULL);
2023					continue;
2024				}
2025			}
2026
2027			/* Fetch any flags for the device before probing. */
2028			resource_int_value(dl->driver->name, child->unit,
2029			    "flags", &child->devflags);
2030
2031			result = DEVICE_PROBE(child);
2032
2033			/* Reset flags and devclass before the next probe. */
2034			child->devflags = 0;
2035			if (!hasclass)
2036				device_set_devclass(child, NULL);
2037
2038			/*
2039			 * If the driver returns SUCCESS, there can be
2040			 * no higher match for this device.
2041			 */
2042			if (result == 0) {
2043				best = dl;
2044				pri = 0;
2045				break;
2046			}
2047
2048			/*
2049			 * The driver returned an error so it
2050			 * certainly doesn't match.
2051			 */
2052			if (result > 0) {
2053				device_set_driver(child, NULL);
2054				continue;
2055			}
2056
2057			/*
2058			 * A priority lower than SUCCESS, remember the
2059			 * best matching driver. Initialise the value
2060			 * of pri for the first match.
2061			 */
2062			if (best == NULL || result > pri) {
2063				/*
2064				 * Probes that return BUS_PROBE_NOWILDCARD
2065				 * or lower only match when they are set
2066				 * in stone by the parent bus.
2067				 */
2068				if (result <= BUS_PROBE_NOWILDCARD &&
2069				    child->flags & DF_WILDCARD)
2070					continue;
2071				best = dl;
2072				pri = result;
2073				continue;
2074			}
2075		}
2076		/*
2077		 * If we have an unambiguous match in this devclass,
2078		 * don't look in the parent.
2079		 */
2080		if (best && pri == 0)
2081			break;
2082	}
2083
2084	/*
2085	 * If we found a driver, change state and initialise the devclass.
2086	 */
2087	/* XXX What happens if we rebid and got no best? */
2088	if (best) {
2089		/*
2090		 * If this device was atached, and we were asked to
2091		 * rescan, and it is a different driver, then we have
2092		 * to detach the old driver and reattach this new one.
2093		 * Note, we don't have to check for DF_REBID here
2094		 * because if the state is > DS_ALIVE, we know it must
2095		 * be.
2096		 *
2097		 * This assumes that all DF_REBID drivers can have
2098		 * their probe routine called at any time and that
2099		 * they are idempotent as well as completely benign in
2100		 * normal operations.
2101		 *
2102		 * We also have to make sure that the detach
2103		 * succeeded, otherwise we fail the operation (or
2104		 * maybe it should just fail silently?  I'm torn).
2105		 */
2106		if (child->state > DS_ALIVE && best->driver != child->driver)
2107			if ((result = device_detach(dev)) != 0)
2108				return (result);
2109
2110		/* Set the winning driver, devclass, and flags. */
2111		if (!child->devclass) {
2112			result = device_set_devclass(child, best->driver->name);
2113			if (result != 0)
2114				return (result);
2115		}
2116		device_set_driver(child, best->driver);
2117		resource_int_value(best->driver->name, child->unit,
2118		    "flags", &child->devflags);
2119
2120		if (pri < 0) {
2121			/*
2122			 * A bit bogus. Call the probe method again to make
2123			 * sure that we have the right description.
2124			 */
2125			DEVICE_PROBE(child);
2126#if 0
2127			child->flags |= DF_REBID;
2128#endif
2129		} else
2130			child->flags &= ~DF_REBID;
2131		child->state = DS_ALIVE;
2132
2133		bus_data_generation_update();
2134		return (0);
2135	}
2136
2137	return (ENXIO);
2138}
2139
2140/**
2141 * @brief Return the parent of a device
2142 */
2143device_t
2144device_get_parent(device_t dev)
2145{
2146	return (dev->parent);
2147}
2148
2149/**
2150 * @brief Get a list of children of a device
2151 *
2152 * An array containing a list of all the children of the given device
2153 * is allocated and returned in @p *devlistp. The number of devices
2154 * in the array is returned in @p *devcountp. The caller should free
2155 * the array using @c free(p, M_TEMP).
2156 *
2157 * @param dev		the device to examine
2158 * @param devlistp	points at location for array pointer return
2159 *			value
2160 * @param devcountp	points at location for array size return value
2161 *
2162 * @retval 0		success
2163 * @retval ENOMEM	the array allocation failed
2164 */
2165int
2166device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2167{
2168	int count;
2169	device_t child;
2170	device_t *list;
2171
2172	count = 0;
2173	TAILQ_FOREACH(child, &dev->children, link) {
2174		count++;
2175	}
2176	if (count == 0) {
2177		*devlistp = NULL;
2178		*devcountp = 0;
2179		return (0);
2180	}
2181
2182	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2183	if (!list)
2184		return (ENOMEM);
2185
2186	count = 0;
2187	TAILQ_FOREACH(child, &dev->children, link) {
2188		list[count] = child;
2189		count++;
2190	}
2191
2192	*devlistp = list;
2193	*devcountp = count;
2194
2195	return (0);
2196}
2197
2198/**
2199 * @brief Return the current driver for the device or @c NULL if there
2200 * is no driver currently attached
2201 */
2202driver_t *
2203device_get_driver(device_t dev)
2204{
2205	return (dev->driver);
2206}
2207
2208/**
2209 * @brief Return the current devclass for the device or @c NULL if
2210 * there is none.
2211 */
2212devclass_t
2213device_get_devclass(device_t dev)
2214{
2215	return (dev->devclass);
2216}
2217
2218/**
2219 * @brief Return the name of the device's devclass or @c NULL if there
2220 * is none.
2221 */
2222const char *
2223device_get_name(device_t dev)
2224{
2225	if (dev != NULL && dev->devclass)
2226		return (devclass_get_name(dev->devclass));
2227	return (NULL);
2228}
2229
2230/**
2231 * @brief Return a string containing the device's devclass name
2232 * followed by an ascii representation of the device's unit number
2233 * (e.g. @c "foo2").
2234 */
2235const char *
2236device_get_nameunit(device_t dev)
2237{
2238	return (dev->nameunit);
2239}
2240
2241/**
2242 * @brief Return the device's unit number.
2243 */
2244int
2245device_get_unit(device_t dev)
2246{
2247	return (dev->unit);
2248}
2249
2250/**
2251 * @brief Return the device's description string
2252 */
2253const char *
2254device_get_desc(device_t dev)
2255{
2256	return (dev->desc);
2257}
2258
2259/**
2260 * @brief Return the device's flags
2261 */
2262uint32_t
2263device_get_flags(device_t dev)
2264{
2265	return (dev->devflags);
2266}
2267
2268struct sysctl_ctx_list *
2269device_get_sysctl_ctx(device_t dev)
2270{
2271	return (&dev->sysctl_ctx);
2272}
2273
2274struct sysctl_oid *
2275device_get_sysctl_tree(device_t dev)
2276{
2277	return (dev->sysctl_tree);
2278}
2279
2280/**
2281 * @brief Print the name of the device followed by a colon and a space
2282 *
2283 * @returns the number of characters printed
2284 */
2285int
2286device_print_prettyname(device_t dev)
2287{
2288	const char *name = device_get_name(dev);
2289
2290	if (name == NULL)
2291		return (printf("unknown: "));
2292	return (printf("%s%d: ", name, device_get_unit(dev)));
2293}
2294
2295/**
2296 * @brief Print the name of the device followed by a colon, a space
2297 * and the result of calling vprintf() with the value of @p fmt and
2298 * the following arguments.
2299 *
2300 * @returns the number of characters printed
2301 */
2302int
2303device_printf(device_t dev, const char * fmt, ...)
2304{
2305	va_list ap;
2306	int retval;
2307
2308	retval = device_print_prettyname(dev);
2309	va_start(ap, fmt);
2310	retval += vprintf(fmt, ap);
2311	va_end(ap);
2312	return (retval);
2313}
2314
2315/**
2316 * @internal
2317 */
2318static void
2319device_set_desc_internal(device_t dev, const char* desc, int copy)
2320{
2321	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2322		free(dev->desc, M_BUS);
2323		dev->flags &= ~DF_DESCMALLOCED;
2324		dev->desc = NULL;
2325	}
2326
2327	if (copy && desc) {
2328		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2329		if (dev->desc) {
2330			strcpy(dev->desc, desc);
2331			dev->flags |= DF_DESCMALLOCED;
2332		}
2333	} else {
2334		/* Avoid a -Wcast-qual warning */
2335		dev->desc = (char *)(uintptr_t) desc;
2336	}
2337
2338	bus_data_generation_update();
2339}
2340
2341/**
2342 * @brief Set the device's description
2343 *
2344 * The value of @c desc should be a string constant that will not
2345 * change (at least until the description is changed in a subsequent
2346 * call to device_set_desc() or device_set_desc_copy()).
2347 */
2348void
2349device_set_desc(device_t dev, const char* desc)
2350{
2351	device_set_desc_internal(dev, desc, FALSE);
2352}
2353
2354/**
2355 * @brief Set the device's description
2356 *
2357 * The string pointed to by @c desc is copied. Use this function if
2358 * the device description is generated, (e.g. with sprintf()).
2359 */
2360void
2361device_set_desc_copy(device_t dev, const char* desc)
2362{
2363	device_set_desc_internal(dev, desc, TRUE);
2364}
2365
2366/**
2367 * @brief Set the device's flags
2368 */
2369void
2370device_set_flags(device_t dev, uint32_t flags)
2371{
2372	dev->devflags = flags;
2373}
2374
2375/**
2376 * @brief Return the device's softc field
2377 *
2378 * The softc is allocated and zeroed when a driver is attached, based
2379 * on the size field of the driver.
2380 */
2381void *
2382device_get_softc(device_t dev)
2383{
2384	return (dev->softc);
2385}
2386
2387/**
2388 * @brief Set the device's softc field
2389 *
2390 * Most drivers do not need to use this since the softc is allocated
2391 * automatically when the driver is attached.
2392 */
2393void
2394device_set_softc(device_t dev, void *softc)
2395{
2396	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2397		free(dev->softc, M_BUS_SC);
2398	dev->softc = softc;
2399	if (dev->softc)
2400		dev->flags |= DF_EXTERNALSOFTC;
2401	else
2402		dev->flags &= ~DF_EXTERNALSOFTC;
2403}
2404
2405/**
2406 * @brief Get the device's ivars field
2407 *
2408 * The ivars field is used by the parent device to store per-device
2409 * state (e.g. the physical location of the device or a list of
2410 * resources).
2411 */
2412void *
2413device_get_ivars(device_t dev)
2414{
2415
2416	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2417	return (dev->ivars);
2418}
2419
2420/**
2421 * @brief Set the device's ivars field
2422 */
2423void
2424device_set_ivars(device_t dev, void * ivars)
2425{
2426
2427	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2428	dev->ivars = ivars;
2429}
2430
2431/**
2432 * @brief Return the device's state
2433 */
2434device_state_t
2435device_get_state(device_t dev)
2436{
2437	return (dev->state);
2438}
2439
2440/**
2441 * @brief Set the DF_ENABLED flag for the device
2442 */
2443void
2444device_enable(device_t dev)
2445{
2446	dev->flags |= DF_ENABLED;
2447}
2448
2449/**
2450 * @brief Clear the DF_ENABLED flag for the device
2451 */
2452void
2453device_disable(device_t dev)
2454{
2455	dev->flags &= ~DF_ENABLED;
2456}
2457
2458/**
2459 * @brief Increment the busy counter for the device
2460 */
2461void
2462device_busy(device_t dev)
2463{
2464	if (dev->state < DS_ATTACHED)
2465		panic("device_busy: called for unattached device");
2466	if (dev->busy == 0 && dev->parent)
2467		device_busy(dev->parent);
2468	dev->busy++;
2469	dev->state = DS_BUSY;
2470}
2471
2472/**
2473 * @brief Decrement the busy counter for the device
2474 */
2475void
2476device_unbusy(device_t dev)
2477{
2478	if (dev->state != DS_BUSY)
2479		panic("device_unbusy: called for non-busy device %s",
2480		    device_get_nameunit(dev));
2481	dev->busy--;
2482	if (dev->busy == 0) {
2483		if (dev->parent)
2484			device_unbusy(dev->parent);
2485		dev->state = DS_ATTACHED;
2486	}
2487}
2488
2489/**
2490 * @brief Set the DF_QUIET flag for the device
2491 */
2492void
2493device_quiet(device_t dev)
2494{
2495	dev->flags |= DF_QUIET;
2496}
2497
2498/**
2499 * @brief Clear the DF_QUIET flag for the device
2500 */
2501void
2502device_verbose(device_t dev)
2503{
2504	dev->flags &= ~DF_QUIET;
2505}
2506
2507/**
2508 * @brief Return non-zero if the DF_QUIET flag is set on the device
2509 */
2510int
2511device_is_quiet(device_t dev)
2512{
2513	return ((dev->flags & DF_QUIET) != 0);
2514}
2515
2516/**
2517 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2518 */
2519int
2520device_is_enabled(device_t dev)
2521{
2522	return ((dev->flags & DF_ENABLED) != 0);
2523}
2524
2525/**
2526 * @brief Return non-zero if the device was successfully probed
2527 */
2528int
2529device_is_alive(device_t dev)
2530{
2531	return (dev->state >= DS_ALIVE);
2532}
2533
2534/**
2535 * @brief Return non-zero if the device currently has a driver
2536 * attached to it
2537 */
2538int
2539device_is_attached(device_t dev)
2540{
2541	return (dev->state >= DS_ATTACHED);
2542}
2543
2544/**
2545 * @brief Set the devclass of a device
2546 * @see devclass_add_device().
2547 */
2548int
2549device_set_devclass(device_t dev, const char *classname)
2550{
2551	devclass_t dc;
2552	int error;
2553
2554	if (!classname) {
2555		if (dev->devclass)
2556			devclass_delete_device(dev->devclass, dev);
2557		return (0);
2558	}
2559
2560	if (dev->devclass) {
2561		printf("device_set_devclass: device class already set\n");
2562		return (EINVAL);
2563	}
2564
2565	dc = devclass_find_internal(classname, NULL, TRUE);
2566	if (!dc)
2567		return (ENOMEM);
2568
2569	error = devclass_add_device(dc, dev);
2570
2571	bus_data_generation_update();
2572	return (error);
2573}
2574
2575/**
2576 * @brief Set the driver of a device
2577 *
2578 * @retval 0		success
2579 * @retval EBUSY	the device already has a driver attached
2580 * @retval ENOMEM	a memory allocation failure occurred
2581 */
2582int
2583device_set_driver(device_t dev, driver_t *driver)
2584{
2585	if (dev->state >= DS_ATTACHED)
2586		return (EBUSY);
2587
2588	if (dev->driver == driver)
2589		return (0);
2590
2591	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2592		free(dev->softc, M_BUS_SC);
2593		dev->softc = NULL;
2594	}
2595	kobj_delete((kobj_t) dev, NULL);
2596	dev->driver = driver;
2597	if (driver) {
2598		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2599		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2600			dev->softc = malloc(driver->size, M_BUS_SC,
2601			    M_NOWAIT | M_ZERO);
2602			if (!dev->softc) {
2603				kobj_delete((kobj_t) dev, NULL);
2604				kobj_init((kobj_t) dev, &null_class);
2605				dev->driver = NULL;
2606				return (ENOMEM);
2607			}
2608		}
2609	} else {
2610		kobj_init((kobj_t) dev, &null_class);
2611	}
2612
2613	bus_data_generation_update();
2614	return (0);
2615}
2616
2617/**
2618 * @brief Probe a device, and return this status.
2619 *
2620 * This function is the core of the device autoconfiguration
2621 * system. Its purpose is to select a suitable driver for a device and
2622 * then call that driver to initialise the hardware appropriately. The
2623 * driver is selected by calling the DEVICE_PROBE() method of a set of
2624 * candidate drivers and then choosing the driver which returned the
2625 * best value. This driver is then attached to the device using
2626 * device_attach().
2627 *
2628 * The set of suitable drivers is taken from the list of drivers in
2629 * the parent device's devclass. If the device was originally created
2630 * with a specific class name (see device_add_child()), only drivers
2631 * with that name are probed, otherwise all drivers in the devclass
2632 * are probed. If no drivers return successful probe values in the
2633 * parent devclass, the search continues in the parent of that
2634 * devclass (see devclass_get_parent()) if any.
2635 *
2636 * @param dev		the device to initialise
2637 *
2638 * @retval 0		success
2639 * @retval ENXIO	no driver was found
2640 * @retval ENOMEM	memory allocation failure
2641 * @retval non-zero	some other unix error code
2642 * @retval -1		Device already attached
2643 */
2644int
2645device_probe(device_t dev)
2646{
2647	int error;
2648
2649	GIANT_REQUIRED;
2650
2651	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2652		return (-1);
2653
2654	if (!(dev->flags & DF_ENABLED)) {
2655		if (bootverbose && device_get_name(dev) != NULL) {
2656			device_print_prettyname(dev);
2657			printf("not probed (disabled)\n");
2658		}
2659		return (-1);
2660	}
2661	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2662		if (bus_current_pass == BUS_PASS_DEFAULT &&
2663		    !(dev->flags & DF_DONENOMATCH)) {
2664			BUS_PROBE_NOMATCH(dev->parent, dev);
2665			devnomatch(dev);
2666			dev->flags |= DF_DONENOMATCH;
2667		}
2668		return (error);
2669	}
2670	return (0);
2671}
2672
2673/**
2674 * @brief Probe a device and attach a driver if possible
2675 *
2676 * calls device_probe() and attaches if that was successful.
2677 */
2678int
2679device_probe_and_attach(device_t dev)
2680{
2681	int error;
2682
2683	GIANT_REQUIRED;
2684
2685	error = device_probe(dev);
2686	if (error == -1)
2687		return (0);
2688	else if (error != 0)
2689		return (error);
2690	return (device_attach(dev));
2691}
2692
2693/**
2694 * @brief Attach a device driver to a device
2695 *
2696 * This function is a wrapper around the DEVICE_ATTACH() driver
2697 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2698 * device's sysctl tree, optionally prints a description of the device
2699 * and queues a notification event for user-based device management
2700 * services.
2701 *
2702 * Normally this function is only called internally from
2703 * device_probe_and_attach().
2704 *
2705 * @param dev		the device to initialise
2706 *
2707 * @retval 0		success
2708 * @retval ENXIO	no driver was found
2709 * @retval ENOMEM	memory allocation failure
2710 * @retval non-zero	some other unix error code
2711 */
2712int
2713device_attach(device_t dev)
2714{
2715	int error;
2716
2717	device_sysctl_init(dev);
2718	if (!device_is_quiet(dev))
2719		device_print_child(dev->parent, dev);
2720	if ((error = DEVICE_ATTACH(dev)) != 0) {
2721		printf("device_attach: %s%d attach returned %d\n",
2722		    dev->driver->name, dev->unit, error);
2723		/* Unset the class; set in device_probe_child */
2724		if (dev->devclass == NULL)
2725			device_set_devclass(dev, NULL);
2726		device_set_driver(dev, NULL);
2727		device_sysctl_fini(dev);
2728		dev->state = DS_NOTPRESENT;
2729		return (error);
2730	}
2731	device_sysctl_update(dev);
2732	dev->state = DS_ATTACHED;
2733	dev->flags &= ~DF_DONENOMATCH;
2734	devadded(dev);
2735	return (0);
2736}
2737
2738/**
2739 * @brief Detach a driver from a device
2740 *
2741 * This function is a wrapper around the DEVICE_DETACH() driver
2742 * method. If the call to DEVICE_DETACH() succeeds, it calls
2743 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2744 * notification event for user-based device management services and
2745 * cleans up the device's sysctl tree.
2746 *
2747 * @param dev		the device to un-initialise
2748 *
2749 * @retval 0		success
2750 * @retval ENXIO	no driver was found
2751 * @retval ENOMEM	memory allocation failure
2752 * @retval non-zero	some other unix error code
2753 */
2754int
2755device_detach(device_t dev)
2756{
2757	int error;
2758
2759	GIANT_REQUIRED;
2760
2761	PDEBUG(("%s", DEVICENAME(dev)));
2762	if (dev->state == DS_BUSY)
2763		return (EBUSY);
2764	if (dev->state != DS_ATTACHED)
2765		return (0);
2766
2767	if ((error = DEVICE_DETACH(dev)) != 0)
2768		return (error);
2769	devremoved(dev);
2770	if (!device_is_quiet(dev))
2771		device_printf(dev, "detached\n");
2772	if (dev->parent)
2773		BUS_CHILD_DETACHED(dev->parent, dev);
2774
2775	if (!(dev->flags & DF_FIXEDCLASS))
2776		devclass_delete_device(dev->devclass, dev);
2777
2778	dev->state = DS_NOTPRESENT;
2779	device_set_driver(dev, NULL);
2780	device_set_desc(dev, NULL);
2781	device_sysctl_fini(dev);
2782
2783	return (0);
2784}
2785
2786/**
2787 * @brief Tells a driver to quiesce itself.
2788 *
2789 * This function is a wrapper around the DEVICE_QUIESCE() driver
2790 * method. If the call to DEVICE_QUIESCE() succeeds.
2791 *
2792 * @param dev		the device to quiesce
2793 *
2794 * @retval 0		success
2795 * @retval ENXIO	no driver was found
2796 * @retval ENOMEM	memory allocation failure
2797 * @retval non-zero	some other unix error code
2798 */
2799int
2800device_quiesce(device_t dev)
2801{
2802
2803	PDEBUG(("%s", DEVICENAME(dev)));
2804	if (dev->state == DS_BUSY)
2805		return (EBUSY);
2806	if (dev->state != DS_ATTACHED)
2807		return (0);
2808
2809	return (DEVICE_QUIESCE(dev));
2810}
2811
2812/**
2813 * @brief Notify a device of system shutdown
2814 *
2815 * This function calls the DEVICE_SHUTDOWN() driver method if the
2816 * device currently has an attached driver.
2817 *
2818 * @returns the value returned by DEVICE_SHUTDOWN()
2819 */
2820int
2821device_shutdown(device_t dev)
2822{
2823	if (dev->state < DS_ATTACHED)
2824		return (0);
2825	return (DEVICE_SHUTDOWN(dev));
2826}
2827
2828/**
2829 * @brief Set the unit number of a device
2830 *
2831 * This function can be used to override the unit number used for a
2832 * device (e.g. to wire a device to a pre-configured unit number).
2833 */
2834int
2835device_set_unit(device_t dev, int unit)
2836{
2837	devclass_t dc;
2838	int err;
2839
2840	dc = device_get_devclass(dev);
2841	if (unit < dc->maxunit && dc->devices[unit])
2842		return (EBUSY);
2843	err = devclass_delete_device(dc, dev);
2844	if (err)
2845		return (err);
2846	dev->unit = unit;
2847	err = devclass_add_device(dc, dev);
2848	if (err)
2849		return (err);
2850
2851	bus_data_generation_update();
2852	return (0);
2853}
2854
2855/*======================================*/
2856/*
2857 * Some useful method implementations to make life easier for bus drivers.
2858 */
2859
2860/**
2861 * @brief Initialise a resource list.
2862 *
2863 * @param rl		the resource list to initialise
2864 */
2865void
2866resource_list_init(struct resource_list *rl)
2867{
2868	STAILQ_INIT(rl);
2869}
2870
2871/**
2872 * @brief Reclaim memory used by a resource list.
2873 *
2874 * This function frees the memory for all resource entries on the list
2875 * (if any).
2876 *
2877 * @param rl		the resource list to free
2878 */
2879void
2880resource_list_free(struct resource_list *rl)
2881{
2882	struct resource_list_entry *rle;
2883
2884	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2885		if (rle->res)
2886			panic("resource_list_free: resource entry is busy");
2887		STAILQ_REMOVE_HEAD(rl, link);
2888		free(rle, M_BUS);
2889	}
2890}
2891
2892/**
2893 * @brief Add a resource entry.
2894 *
2895 * This function adds a resource entry using the given @p type, @p
2896 * start, @p end and @p count values. A rid value is chosen by
2897 * searching sequentially for the first unused rid starting at zero.
2898 *
2899 * @param rl		the resource list to edit
2900 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2901 * @param start		the start address of the resource
2902 * @param end		the end address of the resource
2903 * @param count		XXX end-start+1
2904 */
2905int
2906resource_list_add_next(struct resource_list *rl, int type, u_long start,
2907    u_long end, u_long count)
2908{
2909	int rid;
2910
2911	rid = 0;
2912	while (resource_list_find(rl, type, rid) != NULL)
2913		rid++;
2914	resource_list_add(rl, type, rid, start, end, count);
2915	return (rid);
2916}
2917
2918/**
2919 * @brief Add or modify a resource entry.
2920 *
2921 * If an existing entry exists with the same type and rid, it will be
2922 * modified using the given values of @p start, @p end and @p
2923 * count. If no entry exists, a new one will be created using the
2924 * given values.  The resource list entry that matches is then returned.
2925 *
2926 * @param rl		the resource list to edit
2927 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2928 * @param rid		the resource identifier
2929 * @param start		the start address of the resource
2930 * @param end		the end address of the resource
2931 * @param count		XXX end-start+1
2932 */
2933struct resource_list_entry *
2934resource_list_add(struct resource_list *rl, int type, int rid,
2935    u_long start, u_long end, u_long count)
2936{
2937	struct resource_list_entry *rle;
2938
2939	rle = resource_list_find(rl, type, rid);
2940	if (!rle) {
2941		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2942		    M_NOWAIT);
2943		if (!rle)
2944			panic("resource_list_add: can't record entry");
2945		STAILQ_INSERT_TAIL(rl, rle, link);
2946		rle->type = type;
2947		rle->rid = rid;
2948		rle->res = NULL;
2949		rle->flags = 0;
2950	}
2951
2952	if (rle->res)
2953		panic("resource_list_add: resource entry is busy");
2954
2955	rle->start = start;
2956	rle->end = end;
2957	rle->count = count;
2958	return (rle);
2959}
2960
2961/**
2962 * @brief Determine if a resource entry is busy.
2963 *
2964 * Returns true if a resource entry is busy meaning that it has an
2965 * associated resource that is not an unallocated "reserved" resource.
2966 *
2967 * @param rl		the resource list to search
2968 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2969 * @param rid		the resource identifier
2970 *
2971 * @returns Non-zero if the entry is busy, zero otherwise.
2972 */
2973int
2974resource_list_busy(struct resource_list *rl, int type, int rid)
2975{
2976	struct resource_list_entry *rle;
2977
2978	rle = resource_list_find(rl, type, rid);
2979	if (rle == NULL || rle->res == NULL)
2980		return (0);
2981	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2982		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2983		    ("reserved resource is active"));
2984		return (0);
2985	}
2986	return (1);
2987}
2988
2989/**
2990 * @brief Determine if a resource entry is reserved.
2991 *
2992 * Returns true if a resource entry is reserved meaning that it has an
2993 * associated "reserved" resource.  The resource can either be
2994 * allocated or unallocated.
2995 *
2996 * @param rl		the resource list to search
2997 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2998 * @param rid		the resource identifier
2999 *
3000 * @returns Non-zero if the entry is reserved, zero otherwise.
3001 */
3002int
3003resource_list_reserved(struct resource_list *rl, int type, int rid)
3004{
3005	struct resource_list_entry *rle;
3006
3007	rle = resource_list_find(rl, type, rid);
3008	if (rle != NULL && rle->flags & RLE_RESERVED)
3009		return (1);
3010	return (0);
3011}
3012
3013/**
3014 * @brief Find a resource entry by type and rid.
3015 *
3016 * @param rl		the resource list to search
3017 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3018 * @param rid		the resource identifier
3019 *
3020 * @returns the resource entry pointer or NULL if there is no such
3021 * entry.
3022 */
3023struct resource_list_entry *
3024resource_list_find(struct resource_list *rl, int type, int rid)
3025{
3026	struct resource_list_entry *rle;
3027
3028	STAILQ_FOREACH(rle, rl, link) {
3029		if (rle->type == type && rle->rid == rid)
3030			return (rle);
3031	}
3032	return (NULL);
3033}
3034
3035/**
3036 * @brief Delete a resource entry.
3037 *
3038 * @param rl		the resource list to edit
3039 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3040 * @param rid		the resource identifier
3041 */
3042void
3043resource_list_delete(struct resource_list *rl, int type, int rid)
3044{
3045	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3046
3047	if (rle) {
3048		if (rle->res != NULL)
3049			panic("resource_list_delete: resource has not been released");
3050		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3051		free(rle, M_BUS);
3052	}
3053}
3054
3055/**
3056 * @brief Allocate a reserved resource
3057 *
3058 * This can be used by busses to force the allocation of resources
3059 * that are always active in the system even if they are not allocated
3060 * by a driver (e.g. PCI BARs).  This function is usually called when
3061 * adding a new child to the bus.  The resource is allocated from the
3062 * parent bus when it is reserved.  The resource list entry is marked
3063 * with RLE_RESERVED to note that it is a reserved resource.
3064 *
3065 * Subsequent attempts to allocate the resource with
3066 * resource_list_alloc() will succeed the first time and will set
3067 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3068 * resource that has been allocated is released with
3069 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3070 * the actual resource remains allocated.  The resource can be released to
3071 * the parent bus by calling resource_list_unreserve().
3072 *
3073 * @param rl		the resource list to allocate from
3074 * @param bus		the parent device of @p child
3075 * @param child		the device for which the resource is being reserved
3076 * @param type		the type of resource to allocate
3077 * @param rid		a pointer to the resource identifier
3078 * @param start		hint at the start of the resource range - pass
3079 *			@c 0UL for any start address
3080 * @param end		hint at the end of the resource range - pass
3081 *			@c ~0UL for any end address
3082 * @param count		hint at the size of range required - pass @c 1
3083 *			for any size
3084 * @param flags		any extra flags to control the resource
3085 *			allocation - see @c RF_XXX flags in
3086 *			<sys/rman.h> for details
3087 *
3088 * @returns		the resource which was allocated or @c NULL if no
3089 *			resource could be allocated
3090 */
3091struct resource *
3092resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3093    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3094{
3095	struct resource_list_entry *rle = NULL;
3096	int passthrough = (device_get_parent(child) != bus);
3097	struct resource *r;
3098
3099	if (passthrough)
3100		panic(
3101    "resource_list_reserve() should only be called for direct children");
3102	if (flags & RF_ACTIVE)
3103		panic(
3104    "resource_list_reserve() should only reserve inactive resources");
3105
3106	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3107	    flags);
3108	if (r != NULL) {
3109		rle = resource_list_find(rl, type, *rid);
3110		rle->flags |= RLE_RESERVED;
3111	}
3112	return (r);
3113}
3114
3115/**
3116 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3117 *
3118 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3119 * and passing the allocation up to the parent of @p bus. This assumes
3120 * that the first entry of @c device_get_ivars(child) is a struct
3121 * resource_list. This also handles 'passthrough' allocations where a
3122 * child is a remote descendant of bus by passing the allocation up to
3123 * the parent of bus.
3124 *
3125 * Typically, a bus driver would store a list of child resources
3126 * somewhere in the child device's ivars (see device_get_ivars()) and
3127 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3128 * then call resource_list_alloc() to perform the allocation.
3129 *
3130 * @param rl		the resource list to allocate from
3131 * @param bus		the parent device of @p child
3132 * @param child		the device which is requesting an allocation
3133 * @param type		the type of resource to allocate
3134 * @param rid		a pointer to the resource identifier
3135 * @param start		hint at the start of the resource range - pass
3136 *			@c 0UL for any start address
3137 * @param end		hint at the end of the resource range - pass
3138 *			@c ~0UL for any end address
3139 * @param count		hint at the size of range required - pass @c 1
3140 *			for any size
3141 * @param flags		any extra flags to control the resource
3142 *			allocation - see @c RF_XXX flags in
3143 *			<sys/rman.h> for details
3144 *
3145 * @returns		the resource which was allocated or @c NULL if no
3146 *			resource could be allocated
3147 */
3148struct resource *
3149resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3150    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3151{
3152	struct resource_list_entry *rle = NULL;
3153	int passthrough = (device_get_parent(child) != bus);
3154	int isdefault = (start == 0UL && end == ~0UL);
3155
3156	if (passthrough) {
3157		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3158		    type, rid, start, end, count, flags));
3159	}
3160
3161	rle = resource_list_find(rl, type, *rid);
3162
3163	if (!rle)
3164		return (NULL);		/* no resource of that type/rid */
3165
3166	if (rle->res) {
3167		if (rle->flags & RLE_RESERVED) {
3168			if (rle->flags & RLE_ALLOCATED)
3169				return (NULL);
3170			if ((flags & RF_ACTIVE) &&
3171			    bus_activate_resource(child, type, *rid,
3172			    rle->res) != 0)
3173				return (NULL);
3174			rle->flags |= RLE_ALLOCATED;
3175			return (rle->res);
3176		}
3177		panic("resource_list_alloc: resource entry is busy");
3178	}
3179
3180	if (isdefault) {
3181		start = rle->start;
3182		count = ulmax(count, rle->count);
3183		end = ulmax(rle->end, start + count - 1);
3184	}
3185
3186	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3187	    type, rid, start, end, count, flags);
3188
3189	/*
3190	 * Record the new range.
3191	 */
3192	if (rle->res) {
3193		rle->start = rman_get_start(rle->res);
3194		rle->end = rman_get_end(rle->res);
3195		rle->count = count;
3196	}
3197
3198	return (rle->res);
3199}
3200
3201/**
3202 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3203 *
3204 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3205 * used with resource_list_alloc().
3206 *
3207 * @param rl		the resource list which was allocated from
3208 * @param bus		the parent device of @p child
3209 * @param child		the device which is requesting a release
3210 * @param type		the type of resource to release
3211 * @param rid		the resource identifier
3212 * @param res		the resource to release
3213 *
3214 * @retval 0		success
3215 * @retval non-zero	a standard unix error code indicating what
3216 *			error condition prevented the operation
3217 */
3218int
3219resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3220    int type, int rid, struct resource *res)
3221{
3222	struct resource_list_entry *rle = NULL;
3223	int passthrough = (device_get_parent(child) != bus);
3224	int error;
3225
3226	if (passthrough) {
3227		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3228		    type, rid, res));
3229	}
3230
3231	rle = resource_list_find(rl, type, rid);
3232
3233	if (!rle)
3234		panic("resource_list_release: can't find resource");
3235	if (!rle->res)
3236		panic("resource_list_release: resource entry is not busy");
3237	if (rle->flags & RLE_RESERVED) {
3238		if (rle->flags & RLE_ALLOCATED) {
3239			if (rman_get_flags(res) & RF_ACTIVE) {
3240				error = bus_deactivate_resource(child, type,
3241				    rid, res);
3242				if (error)
3243					return (error);
3244			}
3245			rle->flags &= ~RLE_ALLOCATED;
3246			return (0);
3247		}
3248		return (EINVAL);
3249	}
3250
3251	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3252	    type, rid, res);
3253	if (error)
3254		return (error);
3255
3256	rle->res = NULL;
3257	return (0);
3258}
3259
3260/**
3261 * @brief Fully release a reserved resource
3262 *
3263 * Fully releases a resouce reserved via resource_list_reserve().
3264 *
3265 * @param rl		the resource list which was allocated from
3266 * @param bus		the parent device of @p child
3267 * @param child		the device whose reserved resource is being released
3268 * @param type		the type of resource to release
3269 * @param rid		the resource identifier
3270 * @param res		the resource to release
3271 *
3272 * @retval 0		success
3273 * @retval non-zero	a standard unix error code indicating what
3274 *			error condition prevented the operation
3275 */
3276int
3277resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3278    int type, int rid)
3279{
3280	struct resource_list_entry *rle = NULL;
3281	int passthrough = (device_get_parent(child) != bus);
3282
3283	if (passthrough)
3284		panic(
3285    "resource_list_unreserve() should only be called for direct children");
3286
3287	rle = resource_list_find(rl, type, rid);
3288
3289	if (!rle)
3290		panic("resource_list_unreserve: can't find resource");
3291	if (!(rle->flags & RLE_RESERVED))
3292		return (EINVAL);
3293	if (rle->flags & RLE_ALLOCATED)
3294		return (EBUSY);
3295	rle->flags &= ~RLE_RESERVED;
3296	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3297}
3298
3299/**
3300 * @brief Print a description of resources in a resource list
3301 *
3302 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3303 * The name is printed if at least one resource of the given type is available.
3304 * The format is used to print resource start and end.
3305 *
3306 * @param rl		the resource list to print
3307 * @param name		the name of @p type, e.g. @c "memory"
3308 * @param type		type type of resource entry to print
3309 * @param format	printf(9) format string to print resource
3310 *			start and end values
3311 *
3312 * @returns		the number of characters printed
3313 */
3314int
3315resource_list_print_type(struct resource_list *rl, const char *name, int type,
3316    const char *format)
3317{
3318	struct resource_list_entry *rle;
3319	int printed, retval;
3320
3321	printed = 0;
3322	retval = 0;
3323	/* Yes, this is kinda cheating */
3324	STAILQ_FOREACH(rle, rl, link) {
3325		if (rle->type == type) {
3326			if (printed == 0)
3327				retval += printf(" %s ", name);
3328			else
3329				retval += printf(",");
3330			printed++;
3331			retval += printf(format, rle->start);
3332			if (rle->count > 1) {
3333				retval += printf("-");
3334				retval += printf(format, rle->start +
3335						 rle->count - 1);
3336			}
3337		}
3338	}
3339	return (retval);
3340}
3341
3342/**
3343 * @brief Releases all the resources in a list.
3344 *
3345 * @param rl		The resource list to purge.
3346 *
3347 * @returns		nothing
3348 */
3349void
3350resource_list_purge(struct resource_list *rl)
3351{
3352	struct resource_list_entry *rle;
3353
3354	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3355		if (rle->res)
3356			bus_release_resource(rman_get_device(rle->res),
3357			    rle->type, rle->rid, rle->res);
3358		STAILQ_REMOVE_HEAD(rl, link);
3359		free(rle, M_BUS);
3360	}
3361}
3362
3363device_t
3364bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3365{
3366
3367	return (device_add_child_ordered(dev, order, name, unit));
3368}
3369
3370/**
3371 * @brief Helper function for implementing DEVICE_PROBE()
3372 *
3373 * This function can be used to help implement the DEVICE_PROBE() for
3374 * a bus (i.e. a device which has other devices attached to it). It
3375 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3376 * devclass.
3377 */
3378int
3379bus_generic_probe(device_t dev)
3380{
3381	devclass_t dc = dev->devclass;
3382	driverlink_t dl;
3383
3384	TAILQ_FOREACH(dl, &dc->drivers, link) {
3385		/*
3386		 * If this driver's pass is too high, then ignore it.
3387		 * For most drivers in the default pass, this will
3388		 * never be true.  For early-pass drivers they will
3389		 * only call the identify routines of eligible drivers
3390		 * when this routine is called.  Drivers for later
3391		 * passes should have their identify routines called
3392		 * on early-pass busses during BUS_NEW_PASS().
3393		 */
3394		if (dl->pass > bus_current_pass)
3395			continue;
3396		DEVICE_IDENTIFY(dl->driver, dev);
3397	}
3398
3399	return (0);
3400}
3401
3402/**
3403 * @brief Helper function for implementing DEVICE_ATTACH()
3404 *
3405 * This function can be used to help implement the DEVICE_ATTACH() for
3406 * a bus. It calls device_probe_and_attach() for each of the device's
3407 * children.
3408 */
3409int
3410bus_generic_attach(device_t dev)
3411{
3412	device_t child;
3413
3414	TAILQ_FOREACH(child, &dev->children, link) {
3415		device_probe_and_attach(child);
3416	}
3417
3418	return (0);
3419}
3420
3421/**
3422 * @brief Helper function for implementing DEVICE_DETACH()
3423 *
3424 * This function can be used to help implement the DEVICE_DETACH() for
3425 * a bus. It calls device_detach() for each of the device's
3426 * children.
3427 */
3428int
3429bus_generic_detach(device_t dev)
3430{
3431	device_t child;
3432	int error;
3433
3434	if (dev->state != DS_ATTACHED)
3435		return (EBUSY);
3436
3437	TAILQ_FOREACH(child, &dev->children, link) {
3438		if ((error = device_detach(child)) != 0)
3439			return (error);
3440	}
3441
3442	return (0);
3443}
3444
3445/**
3446 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3447 *
3448 * This function can be used to help implement the DEVICE_SHUTDOWN()
3449 * for a bus. It calls device_shutdown() for each of the device's
3450 * children.
3451 */
3452int
3453bus_generic_shutdown(device_t dev)
3454{
3455	device_t child;
3456
3457	TAILQ_FOREACH(child, &dev->children, link) {
3458		device_shutdown(child);
3459	}
3460
3461	return (0);
3462}
3463
3464/**
3465 * @brief Helper function for implementing DEVICE_SUSPEND()
3466 *
3467 * This function can be used to help implement the DEVICE_SUSPEND()
3468 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3469 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3470 * operation is aborted and any devices which were suspended are
3471 * resumed immediately by calling their DEVICE_RESUME() methods.
3472 */
3473int
3474bus_generic_suspend(device_t dev)
3475{
3476	int		error;
3477	device_t	child, child2;
3478
3479	TAILQ_FOREACH(child, &dev->children, link) {
3480		error = DEVICE_SUSPEND(child);
3481		if (error) {
3482			for (child2 = TAILQ_FIRST(&dev->children);
3483			     child2 && child2 != child;
3484			     child2 = TAILQ_NEXT(child2, link))
3485				DEVICE_RESUME(child2);
3486			return (error);
3487		}
3488	}
3489	return (0);
3490}
3491
3492/**
3493 * @brief Helper function for implementing DEVICE_RESUME()
3494 *
3495 * This function can be used to help implement the DEVICE_RESUME() for
3496 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3497 */
3498int
3499bus_generic_resume(device_t dev)
3500{
3501	device_t	child;
3502
3503	TAILQ_FOREACH(child, &dev->children, link) {
3504		DEVICE_RESUME(child);
3505		/* if resume fails, there's nothing we can usefully do... */
3506	}
3507	return (0);
3508}
3509
3510/**
3511 * @brief Helper function for implementing BUS_PRINT_CHILD().
3512 *
3513 * This function prints the first part of the ascii representation of
3514 * @p child, including its name, unit and description (if any - see
3515 * device_set_desc()).
3516 *
3517 * @returns the number of characters printed
3518 */
3519int
3520bus_print_child_header(device_t dev, device_t child)
3521{
3522	int	retval = 0;
3523
3524	if (device_get_desc(child)) {
3525		retval += device_printf(child, "<%s>", device_get_desc(child));
3526	} else {
3527		retval += printf("%s", device_get_nameunit(child));
3528	}
3529
3530	return (retval);
3531}
3532
3533/**
3534 * @brief Helper function for implementing BUS_PRINT_CHILD().
3535 *
3536 * This function prints the last part of the ascii representation of
3537 * @p child, which consists of the string @c " on " followed by the
3538 * name and unit of the @p dev.
3539 *
3540 * @returns the number of characters printed
3541 */
3542int
3543bus_print_child_footer(device_t dev, device_t child)
3544{
3545	return (printf(" on %s\n", device_get_nameunit(dev)));
3546}
3547
3548/**
3549 * @brief Helper function for implementing BUS_PRINT_CHILD().
3550 *
3551 * This function simply calls bus_print_child_header() followed by
3552 * bus_print_child_footer().
3553 *
3554 * @returns the number of characters printed
3555 */
3556int
3557bus_generic_print_child(device_t dev, device_t child)
3558{
3559	int	retval = 0;
3560
3561	retval += bus_print_child_header(dev, child);
3562	retval += bus_print_child_footer(dev, child);
3563
3564	return (retval);
3565}
3566
3567/**
3568 * @brief Stub function for implementing BUS_READ_IVAR().
3569 *
3570 * @returns ENOENT
3571 */
3572int
3573bus_generic_read_ivar(device_t dev, device_t child, int index,
3574    uintptr_t * result)
3575{
3576	return (ENOENT);
3577}
3578
3579/**
3580 * @brief Stub function for implementing BUS_WRITE_IVAR().
3581 *
3582 * @returns ENOENT
3583 */
3584int
3585bus_generic_write_ivar(device_t dev, device_t child, int index,
3586    uintptr_t value)
3587{
3588	return (ENOENT);
3589}
3590
3591/**
3592 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3593 *
3594 * @returns NULL
3595 */
3596struct resource_list *
3597bus_generic_get_resource_list(device_t dev, device_t child)
3598{
3599	return (NULL);
3600}
3601
3602/**
3603 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3604 *
3605 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3606 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3607 * and then calls device_probe_and_attach() for each unattached child.
3608 */
3609void
3610bus_generic_driver_added(device_t dev, driver_t *driver)
3611{
3612	device_t child;
3613
3614	DEVICE_IDENTIFY(driver, dev);
3615	TAILQ_FOREACH(child, &dev->children, link) {
3616		if (child->state == DS_NOTPRESENT ||
3617		    (child->flags & DF_REBID))
3618			device_probe_and_attach(child);
3619	}
3620}
3621
3622/**
3623 * @brief Helper function for implementing BUS_NEW_PASS().
3624 *
3625 * This implementing of BUS_NEW_PASS() first calls the identify
3626 * routines for any drivers that probe at the current pass.  Then it
3627 * walks the list of devices for this bus.  If a device is already
3628 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3629 * device is not already attached, it attempts to attach a driver to
3630 * it.
3631 */
3632void
3633bus_generic_new_pass(device_t dev)
3634{
3635	driverlink_t dl;
3636	devclass_t dc;
3637	device_t child;
3638
3639	dc = dev->devclass;
3640	TAILQ_FOREACH(dl, &dc->drivers, link) {
3641		if (dl->pass == bus_current_pass)
3642			DEVICE_IDENTIFY(dl->driver, dev);
3643	}
3644	TAILQ_FOREACH(child, &dev->children, link) {
3645		if (child->state >= DS_ATTACHED)
3646			BUS_NEW_PASS(child);
3647		else if (child->state == DS_NOTPRESENT)
3648			device_probe_and_attach(child);
3649	}
3650}
3651
3652/**
3653 * @brief Helper function for implementing BUS_SETUP_INTR().
3654 *
3655 * This simple implementation of BUS_SETUP_INTR() simply calls the
3656 * BUS_SETUP_INTR() method of the parent of @p dev.
3657 */
3658int
3659bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3660    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3661    void **cookiep)
3662{
3663	/* Propagate up the bus hierarchy until someone handles it. */
3664	if (dev->parent)
3665		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3666		    filter, intr, arg, cookiep));
3667	return (EINVAL);
3668}
3669
3670/**
3671 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3672 *
3673 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3674 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3675 */
3676int
3677bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3678    void *cookie)
3679{
3680	/* Propagate up the bus hierarchy until someone handles it. */
3681	if (dev->parent)
3682		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3683	return (EINVAL);
3684}
3685
3686/**
3687 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3688 *
3689 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3690 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3691 */
3692int
3693bus_generic_adjust_resource(device_t dev, device_t child, int type,
3694    struct resource *r, u_long start, u_long end)
3695{
3696	/* Propagate up the bus hierarchy until someone handles it. */
3697	if (dev->parent)
3698		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3699		    end));
3700	return (EINVAL);
3701}
3702
3703/**
3704 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3705 *
3706 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3707 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3708 */
3709struct resource *
3710bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3711    u_long start, u_long end, u_long count, u_int flags)
3712{
3713	/* Propagate up the bus hierarchy until someone handles it. */
3714	if (dev->parent)
3715		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3716		    start, end, count, flags));
3717	return (NULL);
3718}
3719
3720/**
3721 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3722 *
3723 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3724 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3725 */
3726int
3727bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3728    struct resource *r)
3729{
3730	/* Propagate up the bus hierarchy until someone handles it. */
3731	if (dev->parent)
3732		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3733		    r));
3734	return (EINVAL);
3735}
3736
3737/**
3738 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3739 *
3740 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3741 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3742 */
3743int
3744bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3745    struct resource *r)
3746{
3747	/* Propagate up the bus hierarchy until someone handles it. */
3748	if (dev->parent)
3749		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3750		    r));
3751	return (EINVAL);
3752}
3753
3754/**
3755 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3756 *
3757 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3758 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3759 */
3760int
3761bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3762    int rid, struct resource *r)
3763{
3764	/* Propagate up the bus hierarchy until someone handles it. */
3765	if (dev->parent)
3766		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3767		    r));
3768	return (EINVAL);
3769}
3770
3771/**
3772 * @brief Helper function for implementing BUS_BIND_INTR().
3773 *
3774 * This simple implementation of BUS_BIND_INTR() simply calls the
3775 * BUS_BIND_INTR() method of the parent of @p dev.
3776 */
3777int
3778bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3779    int cpu)
3780{
3781
3782	/* Propagate up the bus hierarchy until someone handles it. */
3783	if (dev->parent)
3784		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3785	return (EINVAL);
3786}
3787
3788/**
3789 * @brief Helper function for implementing BUS_CONFIG_INTR().
3790 *
3791 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3792 * BUS_CONFIG_INTR() method of the parent of @p dev.
3793 */
3794int
3795bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3796    enum intr_polarity pol)
3797{
3798
3799	/* Propagate up the bus hierarchy until someone handles it. */
3800	if (dev->parent)
3801		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3802	return (EINVAL);
3803}
3804
3805/**
3806 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3807 *
3808 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3809 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3810 */
3811int
3812bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3813    void *cookie, const char *descr)
3814{
3815
3816	/* Propagate up the bus hierarchy until someone handles it. */
3817	if (dev->parent)
3818		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3819		    descr));
3820	return (EINVAL);
3821}
3822
3823/**
3824 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3825 *
3826 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3827 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3828 */
3829bus_dma_tag_t
3830bus_generic_get_dma_tag(device_t dev, device_t child)
3831{
3832
3833	/* Propagate up the bus hierarchy until someone handles it. */
3834	if (dev->parent != NULL)
3835		return (BUS_GET_DMA_TAG(dev->parent, child));
3836	return (NULL);
3837}
3838
3839/**
3840 * @brief Helper function for implementing BUS_GET_RESOURCE().
3841 *
3842 * This implementation of BUS_GET_RESOURCE() uses the
3843 * resource_list_find() function to do most of the work. It calls
3844 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3845 * search.
3846 */
3847int
3848bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3849    u_long *startp, u_long *countp)
3850{
3851	struct resource_list *		rl = NULL;
3852	struct resource_list_entry *	rle = NULL;
3853
3854	rl = BUS_GET_RESOURCE_LIST(dev, child);
3855	if (!rl)
3856		return (EINVAL);
3857
3858	rle = resource_list_find(rl, type, rid);
3859	if (!rle)
3860		return (ENOENT);
3861
3862	if (startp)
3863		*startp = rle->start;
3864	if (countp)
3865		*countp = rle->count;
3866
3867	return (0);
3868}
3869
3870/**
3871 * @brief Helper function for implementing BUS_SET_RESOURCE().
3872 *
3873 * This implementation of BUS_SET_RESOURCE() uses the
3874 * resource_list_add() function to do most of the work. It calls
3875 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3876 * edit.
3877 */
3878int
3879bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3880    u_long start, u_long count)
3881{
3882	struct resource_list *		rl = NULL;
3883
3884	rl = BUS_GET_RESOURCE_LIST(dev, child);
3885	if (!rl)
3886		return (EINVAL);
3887
3888	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3889
3890	return (0);
3891}
3892
3893/**
3894 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3895 *
3896 * This implementation of BUS_DELETE_RESOURCE() uses the
3897 * resource_list_delete() function to do most of the work. It calls
3898 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3899 * edit.
3900 */
3901void
3902bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3903{
3904	struct resource_list *		rl = NULL;
3905
3906	rl = BUS_GET_RESOURCE_LIST(dev, child);
3907	if (!rl)
3908		return;
3909
3910	resource_list_delete(rl, type, rid);
3911
3912	return;
3913}
3914
3915/**
3916 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3917 *
3918 * This implementation of BUS_RELEASE_RESOURCE() uses the
3919 * resource_list_release() function to do most of the work. It calls
3920 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3921 */
3922int
3923bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3924    int rid, struct resource *r)
3925{
3926	struct resource_list *		rl = NULL;
3927
3928	if (device_get_parent(child) != dev)
3929		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3930		    type, rid, r));
3931
3932	rl = BUS_GET_RESOURCE_LIST(dev, child);
3933	if (!rl)
3934		return (EINVAL);
3935
3936	return (resource_list_release(rl, dev, child, type, rid, r));
3937}
3938
3939/**
3940 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3941 *
3942 * This implementation of BUS_ALLOC_RESOURCE() uses the
3943 * resource_list_alloc() function to do most of the work. It calls
3944 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3945 */
3946struct resource *
3947bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3948    int *rid, u_long start, u_long end, u_long count, u_int flags)
3949{
3950	struct resource_list *		rl = NULL;
3951
3952	if (device_get_parent(child) != dev)
3953		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3954		    type, rid, start, end, count, flags));
3955
3956	rl = BUS_GET_RESOURCE_LIST(dev, child);
3957	if (!rl)
3958		return (NULL);
3959
3960	return (resource_list_alloc(rl, dev, child, type, rid,
3961	    start, end, count, flags));
3962}
3963
3964/**
3965 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3966 *
3967 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3968 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3969 */
3970int
3971bus_generic_child_present(device_t dev, device_t child)
3972{
3973	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3974}
3975
3976/*
3977 * Some convenience functions to make it easier for drivers to use the
3978 * resource-management functions.  All these really do is hide the
3979 * indirection through the parent's method table, making for slightly
3980 * less-wordy code.  In the future, it might make sense for this code
3981 * to maintain some sort of a list of resources allocated by each device.
3982 */
3983
3984int
3985bus_alloc_resources(device_t dev, struct resource_spec *rs,
3986    struct resource **res)
3987{
3988	int i;
3989
3990	for (i = 0; rs[i].type != -1; i++)
3991		res[i] = NULL;
3992	for (i = 0; rs[i].type != -1; i++) {
3993		res[i] = bus_alloc_resource_any(dev,
3994		    rs[i].type, &rs[i].rid, rs[i].flags);
3995		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3996			bus_release_resources(dev, rs, res);
3997			return (ENXIO);
3998		}
3999	}
4000	return (0);
4001}
4002
4003void
4004bus_release_resources(device_t dev, const struct resource_spec *rs,
4005    struct resource **res)
4006{
4007	int i;
4008
4009	for (i = 0; rs[i].type != -1; i++)
4010		if (res[i] != NULL) {
4011			bus_release_resource(
4012			    dev, rs[i].type, rs[i].rid, res[i]);
4013			res[i] = NULL;
4014		}
4015}
4016
4017/**
4018 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4019 *
4020 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4021 * parent of @p dev.
4022 */
4023struct resource *
4024bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4025    u_long count, u_int flags)
4026{
4027	if (dev->parent == NULL)
4028		return (NULL);
4029	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4030	    count, flags));
4031}
4032
4033/**
4034 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4035 *
4036 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4037 * parent of @p dev.
4038 */
4039int
4040bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4041    u_long end)
4042{
4043	if (dev->parent == NULL)
4044		return (EINVAL);
4045	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4046}
4047
4048/**
4049 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4050 *
4051 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4052 * parent of @p dev.
4053 */
4054int
4055bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4056{
4057	if (dev->parent == NULL)
4058		return (EINVAL);
4059	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4060}
4061
4062/**
4063 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4064 *
4065 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4066 * parent of @p dev.
4067 */
4068int
4069bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4070{
4071	if (dev->parent == NULL)
4072		return (EINVAL);
4073	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4074}
4075
4076/**
4077 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4078 *
4079 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4080 * parent of @p dev.
4081 */
4082int
4083bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4084{
4085	if (dev->parent == NULL)
4086		return (EINVAL);
4087	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4088}
4089
4090/**
4091 * @brief Wrapper function for BUS_SETUP_INTR().
4092 *
4093 * This function simply calls the BUS_SETUP_INTR() method of the
4094 * parent of @p dev.
4095 */
4096int
4097bus_setup_intr(device_t dev, struct resource *r, int flags,
4098    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4099{
4100	int error;
4101
4102	if (dev->parent == NULL)
4103		return (EINVAL);
4104	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4105	    arg, cookiep);
4106	if (error != 0)
4107		return (error);
4108	if (handler != NULL && !(flags & INTR_MPSAFE))
4109		device_printf(dev, "[GIANT-LOCKED]\n");
4110	return (0);
4111}
4112
4113/**
4114 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4115 *
4116 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4117 * parent of @p dev.
4118 */
4119int
4120bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4121{
4122	if (dev->parent == NULL)
4123		return (EINVAL);
4124	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4125}
4126
4127/**
4128 * @brief Wrapper function for BUS_BIND_INTR().
4129 *
4130 * This function simply calls the BUS_BIND_INTR() method of the
4131 * parent of @p dev.
4132 */
4133int
4134bus_bind_intr(device_t dev, struct resource *r, int cpu)
4135{
4136	if (dev->parent == NULL)
4137		return (EINVAL);
4138	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4139}
4140
4141/**
4142 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4143 *
4144 * This function first formats the requested description into a
4145 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4146 * the parent of @p dev.
4147 */
4148int
4149bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4150    const char *fmt, ...)
4151{
4152	va_list ap;
4153	char descr[MAXCOMLEN + 1];
4154
4155	if (dev->parent == NULL)
4156		return (EINVAL);
4157	va_start(ap, fmt);
4158	vsnprintf(descr, sizeof(descr), fmt, ap);
4159	va_end(ap);
4160	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4161}
4162
4163/**
4164 * @brief Wrapper function for BUS_SET_RESOURCE().
4165 *
4166 * This function simply calls the BUS_SET_RESOURCE() method of the
4167 * parent of @p dev.
4168 */
4169int
4170bus_set_resource(device_t dev, int type, int rid,
4171    u_long start, u_long count)
4172{
4173	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4174	    start, count));
4175}
4176
4177/**
4178 * @brief Wrapper function for BUS_GET_RESOURCE().
4179 *
4180 * This function simply calls the BUS_GET_RESOURCE() method of the
4181 * parent of @p dev.
4182 */
4183int
4184bus_get_resource(device_t dev, int type, int rid,
4185    u_long *startp, u_long *countp)
4186{
4187	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4188	    startp, countp));
4189}
4190
4191/**
4192 * @brief Wrapper function for BUS_GET_RESOURCE().
4193 *
4194 * This function simply calls the BUS_GET_RESOURCE() method of the
4195 * parent of @p dev and returns the start value.
4196 */
4197u_long
4198bus_get_resource_start(device_t dev, int type, int rid)
4199{
4200	u_long start, count;
4201	int error;
4202
4203	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4204	    &start, &count);
4205	if (error)
4206		return (0);
4207	return (start);
4208}
4209
4210/**
4211 * @brief Wrapper function for BUS_GET_RESOURCE().
4212 *
4213 * This function simply calls the BUS_GET_RESOURCE() method of the
4214 * parent of @p dev and returns the count value.
4215 */
4216u_long
4217bus_get_resource_count(device_t dev, int type, int rid)
4218{
4219	u_long start, count;
4220	int error;
4221
4222	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4223	    &start, &count);
4224	if (error)
4225		return (0);
4226	return (count);
4227}
4228
4229/**
4230 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4231 *
4232 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4233 * parent of @p dev.
4234 */
4235void
4236bus_delete_resource(device_t dev, int type, int rid)
4237{
4238	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4239}
4240
4241/**
4242 * @brief Wrapper function for BUS_CHILD_PRESENT().
4243 *
4244 * This function simply calls the BUS_CHILD_PRESENT() method of the
4245 * parent of @p dev.
4246 */
4247int
4248bus_child_present(device_t child)
4249{
4250	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4251}
4252
4253/**
4254 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4255 *
4256 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4257 * parent of @p dev.
4258 */
4259int
4260bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4261{
4262	device_t parent;
4263
4264	parent = device_get_parent(child);
4265	if (parent == NULL) {
4266		*buf = '\0';
4267		return (0);
4268	}
4269	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4270}
4271
4272/**
4273 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4274 *
4275 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4276 * parent of @p dev.
4277 */
4278int
4279bus_child_location_str(device_t child, char *buf, size_t buflen)
4280{
4281	device_t parent;
4282
4283	parent = device_get_parent(child);
4284	if (parent == NULL) {
4285		*buf = '\0';
4286		return (0);
4287	}
4288	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4289}
4290
4291/**
4292 * @brief Wrapper function for BUS_GET_DMA_TAG().
4293 *
4294 * This function simply calls the BUS_GET_DMA_TAG() method of the
4295 * parent of @p dev.
4296 */
4297bus_dma_tag_t
4298bus_get_dma_tag(device_t dev)
4299{
4300	device_t parent;
4301
4302	parent = device_get_parent(dev);
4303	if (parent == NULL)
4304		return (NULL);
4305	return (BUS_GET_DMA_TAG(parent, dev));
4306}
4307
4308/* Resume all devices and then notify userland that we're up again. */
4309static int
4310root_resume(device_t dev)
4311{
4312	int error;
4313
4314	error = bus_generic_resume(dev);
4315	if (error == 0)
4316		devctl_notify("kern", "power", "resume", NULL);
4317	return (error);
4318}
4319
4320static int
4321root_print_child(device_t dev, device_t child)
4322{
4323	int	retval = 0;
4324
4325	retval += bus_print_child_header(dev, child);
4326	retval += printf("\n");
4327
4328	return (retval);
4329}
4330
4331static int
4332root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4333    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4334{
4335	/*
4336	 * If an interrupt mapping gets to here something bad has happened.
4337	 */
4338	panic("root_setup_intr");
4339}
4340
4341/*
4342 * If we get here, assume that the device is permanant and really is
4343 * present in the system.  Removable bus drivers are expected to intercept
4344 * this call long before it gets here.  We return -1 so that drivers that
4345 * really care can check vs -1 or some ERRNO returned higher in the food
4346 * chain.
4347 */
4348static int
4349root_child_present(device_t dev, device_t child)
4350{
4351	return (-1);
4352}
4353
4354static kobj_method_t root_methods[] = {
4355	/* Device interface */
4356	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4357	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4358	KOBJMETHOD(device_resume,	root_resume),
4359
4360	/* Bus interface */
4361	KOBJMETHOD(bus_print_child,	root_print_child),
4362	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4363	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4364	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4365	KOBJMETHOD(bus_child_present,	root_child_present),
4366
4367	KOBJMETHOD_END
4368};
4369
4370static driver_t root_driver = {
4371	"root",
4372	root_methods,
4373	1,			/* no softc */
4374};
4375
4376device_t	root_bus;
4377devclass_t	root_devclass;
4378
4379static int
4380root_bus_module_handler(module_t mod, int what, void* arg)
4381{
4382	switch (what) {
4383	case MOD_LOAD:
4384		TAILQ_INIT(&bus_data_devices);
4385		kobj_class_compile((kobj_class_t) &root_driver);
4386		root_bus = make_device(NULL, "root", 0);
4387		root_bus->desc = "System root bus";
4388		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4389		root_bus->driver = &root_driver;
4390		root_bus->state = DS_ATTACHED;
4391		root_devclass = devclass_find_internal("root", NULL, FALSE);
4392		devinit();
4393		return (0);
4394
4395	case MOD_SHUTDOWN:
4396		device_shutdown(root_bus);
4397		return (0);
4398	default:
4399		return (EOPNOTSUPP);
4400	}
4401
4402	return (0);
4403}
4404
4405static moduledata_t root_bus_mod = {
4406	"rootbus",
4407	root_bus_module_handler,
4408	NULL
4409};
4410DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4411
4412/**
4413 * @brief Automatically configure devices
4414 *
4415 * This function begins the autoconfiguration process by calling
4416 * device_probe_and_attach() for each child of the @c root0 device.
4417 */
4418void
4419root_bus_configure(void)
4420{
4421
4422	PDEBUG(("."));
4423
4424	/* Eventually this will be split up, but this is sufficient for now. */
4425	bus_set_pass(BUS_PASS_DEFAULT);
4426}
4427
4428/**
4429 * @brief Module handler for registering device drivers
4430 *
4431 * This module handler is used to automatically register device
4432 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4433 * devclass_add_driver() for the driver described by the
4434 * driver_module_data structure pointed to by @p arg
4435 */
4436int
4437driver_module_handler(module_t mod, int what, void *arg)
4438{
4439	struct driver_module_data *dmd;
4440	devclass_t bus_devclass;
4441	kobj_class_t driver;
4442	int error, pass;
4443
4444	dmd = (struct driver_module_data *)arg;
4445	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4446	error = 0;
4447
4448	switch (what) {
4449	case MOD_LOAD:
4450		if (dmd->dmd_chainevh)
4451			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4452
4453		pass = dmd->dmd_pass;
4454		driver = dmd->dmd_driver;
4455		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4456		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4457		error = devclass_add_driver(bus_devclass, driver, pass,
4458		    dmd->dmd_devclass);
4459		break;
4460
4461	case MOD_UNLOAD:
4462		PDEBUG(("Unloading module: driver %s from bus %s",
4463		    DRIVERNAME(dmd->dmd_driver),
4464		    dmd->dmd_busname));
4465		error = devclass_delete_driver(bus_devclass,
4466		    dmd->dmd_driver);
4467
4468		if (!error && dmd->dmd_chainevh)
4469			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4470		break;
4471	case MOD_QUIESCE:
4472		PDEBUG(("Quiesce module: driver %s from bus %s",
4473		    DRIVERNAME(dmd->dmd_driver),
4474		    dmd->dmd_busname));
4475		error = devclass_quiesce_driver(bus_devclass,
4476		    dmd->dmd_driver);
4477
4478		if (!error && dmd->dmd_chainevh)
4479			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4480		break;
4481	default:
4482		error = EOPNOTSUPP;
4483		break;
4484	}
4485
4486	return (error);
4487}
4488
4489/**
4490 * @brief Enumerate all hinted devices for this bus.
4491 *
4492 * Walks through the hints for this bus and calls the bus_hinted_child
4493 * routine for each one it fines.  It searches first for the specific
4494 * bus that's being probed for hinted children (eg isa0), and then for
4495 * generic children (eg isa).
4496 *
4497 * @param	dev	bus device to enumerate
4498 */
4499void
4500bus_enumerate_hinted_children(device_t bus)
4501{
4502	int i;
4503	const char *dname, *busname;
4504	int dunit;
4505
4506	/*
4507	 * enumerate all devices on the specific bus
4508	 */
4509	busname = device_get_nameunit(bus);
4510	i = 0;
4511	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4512		BUS_HINTED_CHILD(bus, dname, dunit);
4513
4514	/*
4515	 * and all the generic ones.
4516	 */
4517	busname = device_get_name(bus);
4518	i = 0;
4519	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4520		BUS_HINTED_CHILD(bus, dname, dunit);
4521}
4522
4523#ifdef BUS_DEBUG
4524
4525/* the _short versions avoid iteration by not calling anything that prints
4526 * more than oneliners. I love oneliners.
4527 */
4528
4529static void
4530print_device_short(device_t dev, int indent)
4531{
4532	if (!dev)
4533		return;
4534
4535	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4536	    dev->unit, dev->desc,
4537	    (dev->parent? "":"no "),
4538	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4539	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4540	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4541	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4542	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4543	    (dev->flags&DF_REBID? "rebiddable,":""),
4544	    (dev->ivars? "":"no "),
4545	    (dev->softc? "":"no "),
4546	    dev->busy));
4547}
4548
4549static void
4550print_device(device_t dev, int indent)
4551{
4552	if (!dev)
4553		return;
4554
4555	print_device_short(dev, indent);
4556
4557	indentprintf(("Parent:\n"));
4558	print_device_short(dev->parent, indent+1);
4559	indentprintf(("Driver:\n"));
4560	print_driver_short(dev->driver, indent+1);
4561	indentprintf(("Devclass:\n"));
4562	print_devclass_short(dev->devclass, indent+1);
4563}
4564
4565void
4566print_device_tree_short(device_t dev, int indent)
4567/* print the device and all its children (indented) */
4568{
4569	device_t child;
4570
4571	if (!dev)
4572		return;
4573
4574	print_device_short(dev, indent);
4575
4576	TAILQ_FOREACH(child, &dev->children, link) {
4577		print_device_tree_short(child, indent+1);
4578	}
4579}
4580
4581void
4582print_device_tree(device_t dev, int indent)
4583/* print the device and all its children (indented) */
4584{
4585	device_t child;
4586
4587	if (!dev)
4588		return;
4589
4590	print_device(dev, indent);
4591
4592	TAILQ_FOREACH(child, &dev->children, link) {
4593		print_device_tree(child, indent+1);
4594	}
4595}
4596
4597static void
4598print_driver_short(driver_t *driver, int indent)
4599{
4600	if (!driver)
4601		return;
4602
4603	indentprintf(("driver %s: softc size = %zd\n",
4604	    driver->name, driver->size));
4605}
4606
4607static void
4608print_driver(driver_t *driver, int indent)
4609{
4610	if (!driver)
4611		return;
4612
4613	print_driver_short(driver, indent);
4614}
4615
4616
4617static void
4618print_driver_list(driver_list_t drivers, int indent)
4619{
4620	driverlink_t driver;
4621
4622	TAILQ_FOREACH(driver, &drivers, link) {
4623		print_driver(driver->driver, indent);
4624	}
4625}
4626
4627static void
4628print_devclass_short(devclass_t dc, int indent)
4629{
4630	if ( !dc )
4631		return;
4632
4633	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4634}
4635
4636static void
4637print_devclass(devclass_t dc, int indent)
4638{
4639	int i;
4640
4641	if ( !dc )
4642		return;
4643
4644	print_devclass_short(dc, indent);
4645	indentprintf(("Drivers:\n"));
4646	print_driver_list(dc->drivers, indent+1);
4647
4648	indentprintf(("Devices:\n"));
4649	for (i = 0; i < dc->maxunit; i++)
4650		if (dc->devices[i])
4651			print_device(dc->devices[i], indent+1);
4652}
4653
4654void
4655print_devclass_list_short(void)
4656{
4657	devclass_t dc;
4658
4659	printf("Short listing of devclasses, drivers & devices:\n");
4660	TAILQ_FOREACH(dc, &devclasses, link) {
4661		print_devclass_short(dc, 0);
4662	}
4663}
4664
4665void
4666print_devclass_list(void)
4667{
4668	devclass_t dc;
4669
4670	printf("Full listing of devclasses, drivers & devices:\n");
4671	TAILQ_FOREACH(dc, &devclasses, link) {
4672		print_devclass(dc, 0);
4673	}
4674}
4675
4676#endif
4677
4678/*
4679 * User-space access to the device tree.
4680 *
4681 * We implement a small set of nodes:
4682 *
4683 * hw.bus			Single integer read method to obtain the
4684 *				current generation count.
4685 * hw.bus.devices		Reads the entire device tree in flat space.
4686 * hw.bus.rman			Resource manager interface
4687 *
4688 * We might like to add the ability to scan devclasses and/or drivers to
4689 * determine what else is currently loaded/available.
4690 */
4691
4692static int
4693sysctl_bus(SYSCTL_HANDLER_ARGS)
4694{
4695	struct u_businfo	ubus;
4696
4697	ubus.ub_version = BUS_USER_VERSION;
4698	ubus.ub_generation = bus_data_generation;
4699
4700	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4701}
4702SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4703    "bus-related data");
4704
4705static int
4706sysctl_devices(SYSCTL_HANDLER_ARGS)
4707{
4708	int			*name = (int *)arg1;
4709	u_int			namelen = arg2;
4710	int			index;
4711	struct device		*dev;
4712	struct u_device		udev;	/* XXX this is a bit big */
4713	int			error;
4714
4715	if (namelen != 2)
4716		return (EINVAL);
4717
4718	if (bus_data_generation_check(name[0]))
4719		return (EINVAL);
4720
4721	index = name[1];
4722
4723	/*
4724	 * Scan the list of devices, looking for the requested index.
4725	 */
4726	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4727		if (index-- == 0)
4728			break;
4729	}
4730	if (dev == NULL)
4731		return (ENOENT);
4732
4733	/*
4734	 * Populate the return array.
4735	 */
4736	bzero(&udev, sizeof(udev));
4737	udev.dv_handle = (uintptr_t)dev;
4738	udev.dv_parent = (uintptr_t)dev->parent;
4739	if (dev->nameunit != NULL)
4740		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4741	if (dev->desc != NULL)
4742		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4743	if (dev->driver != NULL && dev->driver->name != NULL)
4744		strlcpy(udev.dv_drivername, dev->driver->name,
4745		    sizeof(udev.dv_drivername));
4746	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4747	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4748	udev.dv_devflags = dev->devflags;
4749	udev.dv_flags = dev->flags;
4750	udev.dv_state = dev->state;
4751	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4752	return (error);
4753}
4754
4755SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4756    "system device tree");
4757
4758int
4759bus_data_generation_check(int generation)
4760{
4761	if (generation != bus_data_generation)
4762		return (1);
4763
4764	/* XXX generate optimised lists here? */
4765	return (0);
4766}
4767
4768void
4769bus_data_generation_update(void)
4770{
4771	bus_data_generation++;
4772}
4773
4774int
4775bus_free_resource(device_t dev, int type, struct resource *r)
4776{
4777	if (r == NULL)
4778		return (0);
4779	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4780}
4781