subr_bus.c revision 209104
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 209104 2010-06-12 13:20:38Z kib $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <machine/stdarg.h>
57
58#include <vm/uma.h>
59
60SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62
63/*
64 * Used to attach drivers to devclasses.
65 */
66typedef struct driverlink *driverlink_t;
67struct driverlink {
68	kobj_class_t	driver;
69	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70	int		pass;
71	TAILQ_ENTRY(driverlink) passlink;
72};
73
74/*
75 * Forward declarations
76 */
77typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79typedef TAILQ_HEAD(device_list, device) device_list_t;
80
81struct devclass {
82	TAILQ_ENTRY(devclass) link;
83	devclass_t	parent;		/* parent in devclass hierarchy */
84	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85	char		*name;
86	device_t	*devices;	/* array of devices indexed by unit */
87	int		maxunit;	/* size of devices array */
88	int		flags;
89#define DC_HAS_CHILDREN		1
90
91	struct sysctl_ctx_list sysctl_ctx;
92	struct sysctl_oid *sysctl_tree;
93};
94
95/**
96 * @brief Implementation of device.
97 */
98struct device {
99	/*
100	 * A device is a kernel object. The first field must be the
101	 * current ops table for the object.
102	 */
103	KOBJ_FIELDS;
104
105	/*
106	 * Device hierarchy.
107	 */
108	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110	device_t	parent;		/**< parent of this device  */
111	device_list_t	children;	/**< list of child devices */
112
113	/*
114	 * Details of this device.
115	 */
116	driver_t	*driver;	/**< current driver */
117	devclass_t	devclass;	/**< current device class */
118	int		unit;		/**< current unit number */
119	char*		nameunit;	/**< name+unit e.g. foodev0 */
120	char*		desc;		/**< driver specific description */
121	int		busy;		/**< count of calls to device_busy() */
122	device_state_t	state;		/**< current device state  */
123	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
124	u_short		flags;		/**< internal device flags  */
125#define	DF_ENABLED	1		/* device should be probed/attached */
126#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
127#define	DF_WILDCARD	4		/* unit was originally wildcard */
128#define	DF_DESCMALLOCED	8		/* description was malloced */
129#define	DF_QUIET	16		/* don't print verbose attach message */
130#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
131#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
132#define	DF_REBID	128		/* Can rebid after attach */
133	u_char	order;			/**< order from device_add_child_ordered() */
134	u_char	pad;
135	void	*ivars;			/**< instance variables  */
136	void	*softc;			/**< current driver's variables  */
137
138	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
139	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
140};
141
142static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
143static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
144
145#ifdef BUS_DEBUG
146
147static int bus_debug = 1;
148TUNABLE_INT("bus.debug", &bus_debug);
149SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
150    "Debug bus code");
151
152#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154#define DRIVERNAME(d)	((d)? d->name : "no driver")
155#define DEVCLANAME(d)	((d)? d->name : "no devclass")
156
157/**
158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159 * prevent syslog from deleting initial spaces
160 */
161#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162
163static void print_device_short(device_t dev, int indent);
164static void print_device(device_t dev, int indent);
165void print_device_tree_short(device_t dev, int indent);
166void print_device_tree(device_t dev, int indent);
167static void print_driver_short(driver_t *driver, int indent);
168static void print_driver(driver_t *driver, int indent);
169static void print_driver_list(driver_list_t drivers, int indent);
170static void print_devclass_short(devclass_t dc, int indent);
171static void print_devclass(devclass_t dc, int indent);
172void print_devclass_list_short(void);
173void print_devclass_list(void);
174
175#else
176/* Make the compiler ignore the function calls */
177#define PDEBUG(a)			/* nop */
178#define DEVICENAME(d)			/* nop */
179#define DRIVERNAME(d)			/* nop */
180#define DEVCLANAME(d)			/* nop */
181
182#define print_device_short(d,i)		/* nop */
183#define print_device(d,i)		/* nop */
184#define print_device_tree_short(d,i)	/* nop */
185#define print_device_tree(d,i)		/* nop */
186#define print_driver_short(d,i)		/* nop */
187#define print_driver(d,i)		/* nop */
188#define print_driver_list(d,i)		/* nop */
189#define print_devclass_short(d,i)	/* nop */
190#define print_devclass(d,i)		/* nop */
191#define print_devclass_list_short()	/* nop */
192#define print_devclass_list()		/* nop */
193#endif
194
195/*
196 * dev sysctl tree
197 */
198
199enum {
200	DEVCLASS_SYSCTL_PARENT,
201};
202
203static int
204devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205{
206	devclass_t dc = (devclass_t)arg1;
207	const char *value;
208
209	switch (arg2) {
210	case DEVCLASS_SYSCTL_PARENT:
211		value = dc->parent ? dc->parent->name : "";
212		break;
213	default:
214		return (EINVAL);
215	}
216	return (SYSCTL_OUT(req, value, strlen(value)));
217}
218
219static void
220devclass_sysctl_init(devclass_t dc)
221{
222
223	if (dc->sysctl_tree != NULL)
224		return;
225	sysctl_ctx_init(&dc->sysctl_ctx);
226	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228	    CTLFLAG_RD, NULL, "");
229	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230	    OID_AUTO, "%parent", CTLFLAG_RD,
231	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232	    "parent class");
233}
234
235enum {
236	DEVICE_SYSCTL_DESC,
237	DEVICE_SYSCTL_DRIVER,
238	DEVICE_SYSCTL_LOCATION,
239	DEVICE_SYSCTL_PNPINFO,
240	DEVICE_SYSCTL_PARENT,
241};
242
243static int
244device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245{
246	device_t dev = (device_t)arg1;
247	const char *value;
248	char *buf;
249	int error;
250
251	buf = NULL;
252	switch (arg2) {
253	case DEVICE_SYSCTL_DESC:
254		value = dev->desc ? dev->desc : "";
255		break;
256	case DEVICE_SYSCTL_DRIVER:
257		value = dev->driver ? dev->driver->name : "";
258		break;
259	case DEVICE_SYSCTL_LOCATION:
260		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261		bus_child_location_str(dev, buf, 1024);
262		break;
263	case DEVICE_SYSCTL_PNPINFO:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_pnpinfo_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PARENT:
268		value = dev->parent ? dev->parent->nameunit : "";
269		break;
270	default:
271		return (EINVAL);
272	}
273	error = SYSCTL_OUT(req, value, strlen(value));
274	if (buf != NULL)
275		free(buf, M_BUS);
276	return (error);
277}
278
279static void
280device_sysctl_init(device_t dev)
281{
282	devclass_t dc = dev->devclass;
283
284	if (dev->sysctl_tree != NULL)
285		return;
286	devclass_sysctl_init(dc);
287	sysctl_ctx_init(&dev->sysctl_ctx);
288	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
289	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
290	    dev->nameunit + strlen(dc->name),
291	    CTLFLAG_RD, NULL, "");
292	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
293	    OID_AUTO, "%desc", CTLFLAG_RD,
294	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
295	    "device description");
296	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297	    OID_AUTO, "%driver", CTLFLAG_RD,
298	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
299	    "device driver name");
300	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301	    OID_AUTO, "%location", CTLFLAG_RD,
302	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
303	    "device location relative to parent");
304	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
306	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
307	    "device identification");
308	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309	    OID_AUTO, "%parent", CTLFLAG_RD,
310	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
311	    "parent device");
312}
313
314static void
315device_sysctl_update(device_t dev)
316{
317	devclass_t dc = dev->devclass;
318
319	if (dev->sysctl_tree == NULL)
320		return;
321	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
322}
323
324static void
325device_sysctl_fini(device_t dev)
326{
327	if (dev->sysctl_tree == NULL)
328		return;
329	sysctl_ctx_free(&dev->sysctl_ctx);
330	dev->sysctl_tree = NULL;
331}
332
333/*
334 * /dev/devctl implementation
335 */
336
337/*
338 * This design allows only one reader for /dev/devctl.  This is not desirable
339 * in the long run, but will get a lot of hair out of this implementation.
340 * Maybe we should make this device a clonable device.
341 *
342 * Also note: we specifically do not attach a device to the device_t tree
343 * to avoid potential chicken and egg problems.  One could argue that all
344 * of this belongs to the root node.  One could also further argue that the
345 * sysctl interface that we have not might more properly be an ioctl
346 * interface, but at this stage of the game, I'm not inclined to rock that
347 * boat.
348 *
349 * I'm also not sure that the SIGIO support is done correctly or not, as
350 * I copied it from a driver that had SIGIO support that likely hasn't been
351 * tested since 3.4 or 2.2.8!
352 */
353
354/* Deprecated way to adjust queue length */
355static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
356/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
357SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
358    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
359
360#define DEVCTL_DEFAULT_QUEUE_LEN 1000
361static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
362static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
363TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
364SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
365    0, sysctl_devctl_queue, "I", "devctl queue length");
366
367static d_open_t		devopen;
368static d_close_t	devclose;
369static d_read_t		devread;
370static d_ioctl_t	devioctl;
371static d_poll_t		devpoll;
372
373static struct cdevsw dev_cdevsw = {
374	.d_version =	D_VERSION,
375	.d_flags =	D_NEEDGIANT,
376	.d_open =	devopen,
377	.d_close =	devclose,
378	.d_read =	devread,
379	.d_ioctl =	devioctl,
380	.d_poll =	devpoll,
381	.d_name =	"devctl",
382};
383
384struct dev_event_info
385{
386	char *dei_data;
387	TAILQ_ENTRY(dev_event_info) dei_link;
388};
389
390TAILQ_HEAD(devq, dev_event_info);
391
392static struct dev_softc
393{
394	int	inuse;
395	int	nonblock;
396	int	queued;
397	struct mtx mtx;
398	struct cv cv;
399	struct selinfo sel;
400	struct devq devq;
401	struct proc *async_proc;
402} devsoftc;
403
404static struct cdev *devctl_dev;
405
406static void
407devinit(void)
408{
409	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
410	    "devctl");
411	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
412	cv_init(&devsoftc.cv, "dev cv");
413	TAILQ_INIT(&devsoftc.devq);
414}
415
416static int
417devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
418{
419	if (devsoftc.inuse)
420		return (EBUSY);
421	/* move to init */
422	devsoftc.inuse = 1;
423	devsoftc.nonblock = 0;
424	devsoftc.async_proc = NULL;
425	return (0);
426}
427
428static int
429devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
430{
431	devsoftc.inuse = 0;
432	mtx_lock(&devsoftc.mtx);
433	cv_broadcast(&devsoftc.cv);
434	mtx_unlock(&devsoftc.mtx);
435	devsoftc.async_proc = NULL;
436	return (0);
437}
438
439/*
440 * The read channel for this device is used to report changes to
441 * userland in realtime.  We are required to free the data as well as
442 * the n1 object because we allocate them separately.  Also note that
443 * we return one record at a time.  If you try to read this device a
444 * character at a time, you will lose the rest of the data.  Listening
445 * programs are expected to cope.
446 */
447static int
448devread(struct cdev *dev, struct uio *uio, int ioflag)
449{
450	struct dev_event_info *n1;
451	int rv;
452
453	mtx_lock(&devsoftc.mtx);
454	while (TAILQ_EMPTY(&devsoftc.devq)) {
455		if (devsoftc.nonblock) {
456			mtx_unlock(&devsoftc.mtx);
457			return (EAGAIN);
458		}
459		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
460		if (rv) {
461			/*
462			 * Need to translate ERESTART to EINTR here? -- jake
463			 */
464			mtx_unlock(&devsoftc.mtx);
465			return (rv);
466		}
467	}
468	n1 = TAILQ_FIRST(&devsoftc.devq);
469	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
470	devsoftc.queued--;
471	mtx_unlock(&devsoftc.mtx);
472	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
473	free(n1->dei_data, M_BUS);
474	free(n1, M_BUS);
475	return (rv);
476}
477
478static	int
479devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
480{
481	switch (cmd) {
482
483	case FIONBIO:
484		if (*(int*)data)
485			devsoftc.nonblock = 1;
486		else
487			devsoftc.nonblock = 0;
488		return (0);
489	case FIOASYNC:
490		if (*(int*)data)
491			devsoftc.async_proc = td->td_proc;
492		else
493			devsoftc.async_proc = NULL;
494		return (0);
495
496		/* (un)Support for other fcntl() calls. */
497	case FIOCLEX:
498	case FIONCLEX:
499	case FIONREAD:
500	case FIOSETOWN:
501	case FIOGETOWN:
502	default:
503		break;
504	}
505	return (ENOTTY);
506}
507
508static	int
509devpoll(struct cdev *dev, int events, struct thread *td)
510{
511	int	revents = 0;
512
513	mtx_lock(&devsoftc.mtx);
514	if (events & (POLLIN | POLLRDNORM)) {
515		if (!TAILQ_EMPTY(&devsoftc.devq))
516			revents = events & (POLLIN | POLLRDNORM);
517		else
518			selrecord(td, &devsoftc.sel);
519	}
520	mtx_unlock(&devsoftc.mtx);
521
522	return (revents);
523}
524
525/**
526 * @brief Return whether the userland process is running
527 */
528boolean_t
529devctl_process_running(void)
530{
531	return (devsoftc.inuse == 1);
532}
533
534/**
535 * @brief Queue data to be read from the devctl device
536 *
537 * Generic interface to queue data to the devctl device.  It is
538 * assumed that @p data is properly formatted.  It is further assumed
539 * that @p data is allocated using the M_BUS malloc type.
540 */
541void
542devctl_queue_data_f(char *data, int flags)
543{
544	struct dev_event_info *n1 = NULL, *n2 = NULL;
545	struct proc *p;
546
547	if (strlen(data) == 0)
548		goto out;
549	if (devctl_queue_length == 0)
550		goto out;
551	n1 = malloc(sizeof(*n1), M_BUS, flags);
552	if (n1 == NULL)
553		goto out;
554	n1->dei_data = data;
555	mtx_lock(&devsoftc.mtx);
556	if (devctl_queue_length == 0) {
557		mtx_unlock(&devsoftc.mtx);
558		free(n1->dei_data, M_BUS);
559		free(n1, M_BUS);
560		return;
561	}
562	/* Leave at least one spot in the queue... */
563	while (devsoftc.queued > devctl_queue_length - 1) {
564		n2 = TAILQ_FIRST(&devsoftc.devq);
565		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
566		free(n2->dei_data, M_BUS);
567		free(n2, M_BUS);
568		devsoftc.queued--;
569	}
570	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
571	devsoftc.queued++;
572	cv_broadcast(&devsoftc.cv);
573	mtx_unlock(&devsoftc.mtx);
574	selwakeup(&devsoftc.sel);
575	p = devsoftc.async_proc;
576	if (p != NULL) {
577		PROC_LOCK(p);
578		psignal(p, SIGIO);
579		PROC_UNLOCK(p);
580	}
581	return;
582out:
583	/*
584	 * We have to free data on all error paths since the caller
585	 * assumes it will be free'd when this item is dequeued.
586	 */
587	free(data, M_BUS);
588	return;
589}
590
591void
592devctl_queue_data(char *data)
593{
594
595	devctl_queue_data_f(data, M_NOWAIT);
596}
597
598/**
599 * @brief Send a 'notification' to userland, using standard ways
600 */
601void
602devctl_notify_f(const char *system, const char *subsystem, const char *type,
603    const char *data, int flags)
604{
605	int len = 0;
606	char *msg;
607
608	if (system == NULL)
609		return;		/* BOGUS!  Must specify system. */
610	if (subsystem == NULL)
611		return;		/* BOGUS!  Must specify subsystem. */
612	if (type == NULL)
613		return;		/* BOGUS!  Must specify type. */
614	len += strlen(" system=") + strlen(system);
615	len += strlen(" subsystem=") + strlen(subsystem);
616	len += strlen(" type=") + strlen(type);
617	/* add in the data message plus newline. */
618	if (data != NULL)
619		len += strlen(data);
620	len += 3;	/* '!', '\n', and NUL */
621	msg = malloc(len, M_BUS, flags);
622	if (msg == NULL)
623		return;		/* Drop it on the floor */
624	if (data != NULL)
625		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
626		    system, subsystem, type, data);
627	else
628		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
629		    system, subsystem, type);
630	devctl_queue_data_f(msg, flags);
631}
632
633void
634devctl_notify(const char *system, const char *subsystem, const char *type,
635    const char *data)
636{
637
638	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
639}
640
641/*
642 * Common routine that tries to make sending messages as easy as possible.
643 * We allocate memory for the data, copy strings into that, but do not
644 * free it unless there's an error.  The dequeue part of the driver should
645 * free the data.  We don't send data when the device is disabled.  We do
646 * send data, even when we have no listeners, because we wish to avoid
647 * races relating to startup and restart of listening applications.
648 *
649 * devaddq is designed to string together the type of event, with the
650 * object of that event, plus the plug and play info and location info
651 * for that event.  This is likely most useful for devices, but less
652 * useful for other consumers of this interface.  Those should use
653 * the devctl_queue_data() interface instead.
654 */
655static void
656devaddq(const char *type, const char *what, device_t dev)
657{
658	char *data = NULL;
659	char *loc = NULL;
660	char *pnp = NULL;
661	const char *parstr;
662
663	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
664		return;
665	data = malloc(1024, M_BUS, M_NOWAIT);
666	if (data == NULL)
667		goto bad;
668
669	/* get the bus specific location of this device */
670	loc = malloc(1024, M_BUS, M_NOWAIT);
671	if (loc == NULL)
672		goto bad;
673	*loc = '\0';
674	bus_child_location_str(dev, loc, 1024);
675
676	/* Get the bus specific pnp info of this device */
677	pnp = malloc(1024, M_BUS, M_NOWAIT);
678	if (pnp == NULL)
679		goto bad;
680	*pnp = '\0';
681	bus_child_pnpinfo_str(dev, pnp, 1024);
682
683	/* Get the parent of this device, or / if high enough in the tree. */
684	if (device_get_parent(dev) == NULL)
685		parstr = ".";	/* Or '/' ? */
686	else
687		parstr = device_get_nameunit(device_get_parent(dev));
688	/* String it all together. */
689	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
690	  parstr);
691	free(loc, M_BUS);
692	free(pnp, M_BUS);
693	devctl_queue_data(data);
694	return;
695bad:
696	free(pnp, M_BUS);
697	free(loc, M_BUS);
698	free(data, M_BUS);
699	return;
700}
701
702/*
703 * A device was added to the tree.  We are called just after it successfully
704 * attaches (that is, probe and attach success for this device).  No call
705 * is made if a device is merely parented into the tree.  See devnomatch
706 * if probe fails.  If attach fails, no notification is sent (but maybe
707 * we should have a different message for this).
708 */
709static void
710devadded(device_t dev)
711{
712	char *pnp = NULL;
713	char *tmp = NULL;
714
715	pnp = malloc(1024, M_BUS, M_NOWAIT);
716	if (pnp == NULL)
717		goto fail;
718	tmp = malloc(1024, M_BUS, M_NOWAIT);
719	if (tmp == NULL)
720		goto fail;
721	*pnp = '\0';
722	bus_child_pnpinfo_str(dev, pnp, 1024);
723	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
724	devaddq("+", tmp, dev);
725fail:
726	if (pnp != NULL)
727		free(pnp, M_BUS);
728	if (tmp != NULL)
729		free(tmp, M_BUS);
730	return;
731}
732
733/*
734 * A device was removed from the tree.  We are called just before this
735 * happens.
736 */
737static void
738devremoved(device_t dev)
739{
740	char *pnp = NULL;
741	char *tmp = NULL;
742
743	pnp = malloc(1024, M_BUS, M_NOWAIT);
744	if (pnp == NULL)
745		goto fail;
746	tmp = malloc(1024, M_BUS, M_NOWAIT);
747	if (tmp == NULL)
748		goto fail;
749	*pnp = '\0';
750	bus_child_pnpinfo_str(dev, pnp, 1024);
751	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
752	devaddq("-", tmp, dev);
753fail:
754	if (pnp != NULL)
755		free(pnp, M_BUS);
756	if (tmp != NULL)
757		free(tmp, M_BUS);
758	return;
759}
760
761/*
762 * Called when there's no match for this device.  This is only called
763 * the first time that no match happens, so we don't keep getting this
764 * message.  Should that prove to be undesirable, we can change it.
765 * This is called when all drivers that can attach to a given bus
766 * decline to accept this device.  Other errors may not be detected.
767 */
768static void
769devnomatch(device_t dev)
770{
771	devaddq("?", "", dev);
772}
773
774static int
775sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
776{
777	struct dev_event_info *n1;
778	int dis, error;
779
780	dis = devctl_queue_length == 0;
781	error = sysctl_handle_int(oidp, &dis, 0, req);
782	if (error || !req->newptr)
783		return (error);
784	mtx_lock(&devsoftc.mtx);
785	if (dis) {
786		while (!TAILQ_EMPTY(&devsoftc.devq)) {
787			n1 = TAILQ_FIRST(&devsoftc.devq);
788			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
789			free(n1->dei_data, M_BUS);
790			free(n1, M_BUS);
791		}
792		devsoftc.queued = 0;
793		devctl_queue_length = 0;
794	} else {
795		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
796	}
797	mtx_unlock(&devsoftc.mtx);
798	return (0);
799}
800
801static int
802sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
803{
804	struct dev_event_info *n1;
805	int q, error;
806
807	q = devctl_queue_length;
808	error = sysctl_handle_int(oidp, &q, 0, req);
809	if (error || !req->newptr)
810		return (error);
811	if (q < 0)
812		return (EINVAL);
813	mtx_lock(&devsoftc.mtx);
814	devctl_queue_length = q;
815	while (devsoftc.queued > devctl_queue_length) {
816		n1 = TAILQ_FIRST(&devsoftc.devq);
817		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
818		free(n1->dei_data, M_BUS);
819		free(n1, M_BUS);
820		devsoftc.queued--;
821	}
822	mtx_unlock(&devsoftc.mtx);
823	return (0);
824}
825
826/* End of /dev/devctl code */
827
828static TAILQ_HEAD(,device)	bus_data_devices;
829static int bus_data_generation = 1;
830
831static kobj_method_t null_methods[] = {
832	KOBJMETHOD_END
833};
834
835DEFINE_CLASS(null, null_methods, 0);
836
837/*
838 * Bus pass implementation
839 */
840
841static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
842int bus_current_pass = BUS_PASS_ROOT;
843
844/**
845 * @internal
846 * @brief Register the pass level of a new driver attachment
847 *
848 * Register a new driver attachment's pass level.  If no driver
849 * attachment with the same pass level has been added, then @p new
850 * will be added to the global passes list.
851 *
852 * @param new		the new driver attachment
853 */
854static void
855driver_register_pass(struct driverlink *new)
856{
857	struct driverlink *dl;
858
859	/* We only consider pass numbers during boot. */
860	if (bus_current_pass == BUS_PASS_DEFAULT)
861		return;
862
863	/*
864	 * Walk the passes list.  If we already know about this pass
865	 * then there is nothing to do.  If we don't, then insert this
866	 * driver link into the list.
867	 */
868	TAILQ_FOREACH(dl, &passes, passlink) {
869		if (dl->pass < new->pass)
870			continue;
871		if (dl->pass == new->pass)
872			return;
873		TAILQ_INSERT_BEFORE(dl, new, passlink);
874		return;
875	}
876	TAILQ_INSERT_TAIL(&passes, new, passlink);
877}
878
879/**
880 * @brief Raise the current bus pass
881 *
882 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
883 * method on the root bus to kick off a new device tree scan for each
884 * new pass level that has at least one driver.
885 */
886void
887bus_set_pass(int pass)
888{
889	struct driverlink *dl;
890
891	if (bus_current_pass > pass)
892		panic("Attempt to lower bus pass level");
893
894	TAILQ_FOREACH(dl, &passes, passlink) {
895		/* Skip pass values below the current pass level. */
896		if (dl->pass <= bus_current_pass)
897			continue;
898
899		/*
900		 * Bail once we hit a driver with a pass level that is
901		 * too high.
902		 */
903		if (dl->pass > pass)
904			break;
905
906		/*
907		 * Raise the pass level to the next level and rescan
908		 * the tree.
909		 */
910		bus_current_pass = dl->pass;
911		BUS_NEW_PASS(root_bus);
912	}
913
914	/*
915	 * If there isn't a driver registered for the requested pass,
916	 * then bus_current_pass might still be less than 'pass'.  Set
917	 * it to 'pass' in that case.
918	 */
919	if (bus_current_pass < pass)
920		bus_current_pass = pass;
921	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
922}
923
924/*
925 * Devclass implementation
926 */
927
928static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
929
930/**
931 * @internal
932 * @brief Find or create a device class
933 *
934 * If a device class with the name @p classname exists, return it,
935 * otherwise if @p create is non-zero create and return a new device
936 * class.
937 *
938 * If @p parentname is non-NULL, the parent of the devclass is set to
939 * the devclass of that name.
940 *
941 * @param classname	the devclass name to find or create
942 * @param parentname	the parent devclass name or @c NULL
943 * @param create	non-zero to create a devclass
944 */
945static devclass_t
946devclass_find_internal(const char *classname, const char *parentname,
947		       int create)
948{
949	devclass_t dc;
950
951	PDEBUG(("looking for %s", classname));
952	if (!classname)
953		return (NULL);
954
955	TAILQ_FOREACH(dc, &devclasses, link) {
956		if (!strcmp(dc->name, classname))
957			break;
958	}
959
960	if (create && !dc) {
961		PDEBUG(("creating %s", classname));
962		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
963		    M_BUS, M_NOWAIT | M_ZERO);
964		if (!dc)
965			return (NULL);
966		dc->parent = NULL;
967		dc->name = (char*) (dc + 1);
968		strcpy(dc->name, classname);
969		TAILQ_INIT(&dc->drivers);
970		TAILQ_INSERT_TAIL(&devclasses, dc, link);
971
972		bus_data_generation_update();
973	}
974
975	/*
976	 * If a parent class is specified, then set that as our parent so
977	 * that this devclass will support drivers for the parent class as
978	 * well.  If the parent class has the same name don't do this though
979	 * as it creates a cycle that can trigger an infinite loop in
980	 * device_probe_child() if a device exists for which there is no
981	 * suitable driver.
982	 */
983	if (parentname && dc && !dc->parent &&
984	    strcmp(classname, parentname) != 0) {
985		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
986		dc->parent->flags |= DC_HAS_CHILDREN;
987	}
988
989	return (dc);
990}
991
992/**
993 * @brief Create a device class
994 *
995 * If a device class with the name @p classname exists, return it,
996 * otherwise create and return a new device class.
997 *
998 * @param classname	the devclass name to find or create
999 */
1000devclass_t
1001devclass_create(const char *classname)
1002{
1003	return (devclass_find_internal(classname, NULL, TRUE));
1004}
1005
1006/**
1007 * @brief Find a device class
1008 *
1009 * If a device class with the name @p classname exists, return it,
1010 * otherwise return @c NULL.
1011 *
1012 * @param classname	the devclass name to find
1013 */
1014devclass_t
1015devclass_find(const char *classname)
1016{
1017	return (devclass_find_internal(classname, NULL, FALSE));
1018}
1019
1020/**
1021 * @brief Register that a device driver has been added to a devclass
1022 *
1023 * Register that a device driver has been added to a devclass.  This
1024 * is called by devclass_add_driver to accomplish the recursive
1025 * notification of all the children classes of dc, as well as dc.
1026 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1027 * the devclass.  We do a full search here of the devclass list at
1028 * each iteration level to save storing children-lists in the devclass
1029 * structure.  If we ever move beyond a few dozen devices doing this,
1030 * we may need to reevaluate...
1031 *
1032 * @param dc		the devclass to edit
1033 * @param driver	the driver that was just added
1034 */
1035static void
1036devclass_driver_added(devclass_t dc, driver_t *driver)
1037{
1038	devclass_t parent;
1039	int i;
1040
1041	/*
1042	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1043	 */
1044	for (i = 0; i < dc->maxunit; i++)
1045		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1046			BUS_DRIVER_ADDED(dc->devices[i], driver);
1047
1048	/*
1049	 * Walk through the children classes.  Since we only keep a
1050	 * single parent pointer around, we walk the entire list of
1051	 * devclasses looking for children.  We set the
1052	 * DC_HAS_CHILDREN flag when a child devclass is created on
1053	 * the parent, so we only walk the list for those devclasses
1054	 * that have children.
1055	 */
1056	if (!(dc->flags & DC_HAS_CHILDREN))
1057		return;
1058	parent = dc;
1059	TAILQ_FOREACH(dc, &devclasses, link) {
1060		if (dc->parent == parent)
1061			devclass_driver_added(dc, driver);
1062	}
1063}
1064
1065/**
1066 * @brief Add a device driver to a device class
1067 *
1068 * Add a device driver to a devclass. This is normally called
1069 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1070 * all devices in the devclass will be called to allow them to attempt
1071 * to re-probe any unmatched children.
1072 *
1073 * @param dc		the devclass to edit
1074 * @param driver	the driver to register
1075 */
1076static int
1077devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1078{
1079	driverlink_t dl;
1080	const char *parentname;
1081
1082	PDEBUG(("%s", DRIVERNAME(driver)));
1083
1084	/* Don't allow invalid pass values. */
1085	if (pass <= BUS_PASS_ROOT)
1086		return (EINVAL);
1087
1088	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1089	if (!dl)
1090		return (ENOMEM);
1091
1092	/*
1093	 * Compile the driver's methods. Also increase the reference count
1094	 * so that the class doesn't get freed when the last instance
1095	 * goes. This means we can safely use static methods and avoids a
1096	 * double-free in devclass_delete_driver.
1097	 */
1098	kobj_class_compile((kobj_class_t) driver);
1099
1100	/*
1101	 * If the driver has any base classes, make the
1102	 * devclass inherit from the devclass of the driver's
1103	 * first base class. This will allow the system to
1104	 * search for drivers in both devclasses for children
1105	 * of a device using this driver.
1106	 */
1107	if (driver->baseclasses)
1108		parentname = driver->baseclasses[0]->name;
1109	else
1110		parentname = NULL;
1111	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1112
1113	dl->driver = driver;
1114	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1115	driver->refs++;		/* XXX: kobj_mtx */
1116	dl->pass = pass;
1117	driver_register_pass(dl);
1118
1119	devclass_driver_added(dc, driver);
1120	bus_data_generation_update();
1121	return (0);
1122}
1123
1124/**
1125 * @brief Delete a device driver from a device class
1126 *
1127 * Delete a device driver from a devclass. This is normally called
1128 * automatically by DRIVER_MODULE().
1129 *
1130 * If the driver is currently attached to any devices,
1131 * devclass_delete_driver() will first attempt to detach from each
1132 * device. If one of the detach calls fails, the driver will not be
1133 * deleted.
1134 *
1135 * @param dc		the devclass to edit
1136 * @param driver	the driver to unregister
1137 */
1138static int
1139devclass_delete_driver(devclass_t busclass, driver_t *driver)
1140{
1141	devclass_t dc = devclass_find(driver->name);
1142	driverlink_t dl;
1143	device_t dev;
1144	int i;
1145	int error;
1146
1147	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1148
1149	if (!dc)
1150		return (0);
1151
1152	/*
1153	 * Find the link structure in the bus' list of drivers.
1154	 */
1155	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1156		if (dl->driver == driver)
1157			break;
1158	}
1159
1160	if (!dl) {
1161		PDEBUG(("%s not found in %s list", driver->name,
1162		    busclass->name));
1163		return (ENOENT);
1164	}
1165
1166	/*
1167	 * Disassociate from any devices.  We iterate through all the
1168	 * devices in the devclass of the driver and detach any which are
1169	 * using the driver and which have a parent in the devclass which
1170	 * we are deleting from.
1171	 *
1172	 * Note that since a driver can be in multiple devclasses, we
1173	 * should not detach devices which are not children of devices in
1174	 * the affected devclass.
1175	 */
1176	for (i = 0; i < dc->maxunit; i++) {
1177		if (dc->devices[i]) {
1178			dev = dc->devices[i];
1179			if (dev->driver == driver && dev->parent &&
1180			    dev->parent->devclass == busclass) {
1181				if ((error = device_detach(dev)) != 0)
1182					return (error);
1183				device_set_driver(dev, NULL);
1184				BUS_PROBE_NOMATCH(dev->parent, dev);
1185				devnomatch(dev);
1186				dev->flags |= DF_DONENOMATCH;
1187			}
1188		}
1189	}
1190
1191	TAILQ_REMOVE(&busclass->drivers, dl, link);
1192	free(dl, M_BUS);
1193
1194	/* XXX: kobj_mtx */
1195	driver->refs--;
1196	if (driver->refs == 0)
1197		kobj_class_free((kobj_class_t) driver);
1198
1199	bus_data_generation_update();
1200	return (0);
1201}
1202
1203/**
1204 * @brief Quiesces a set of device drivers from a device class
1205 *
1206 * Quiesce a device driver from a devclass. This is normally called
1207 * automatically by DRIVER_MODULE().
1208 *
1209 * If the driver is currently attached to any devices,
1210 * devclass_quiesece_driver() will first attempt to quiesce each
1211 * device.
1212 *
1213 * @param dc		the devclass to edit
1214 * @param driver	the driver to unregister
1215 */
1216static int
1217devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1218{
1219	devclass_t dc = devclass_find(driver->name);
1220	driverlink_t dl;
1221	device_t dev;
1222	int i;
1223	int error;
1224
1225	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1226
1227	if (!dc)
1228		return (0);
1229
1230	/*
1231	 * Find the link structure in the bus' list of drivers.
1232	 */
1233	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1234		if (dl->driver == driver)
1235			break;
1236	}
1237
1238	if (!dl) {
1239		PDEBUG(("%s not found in %s list", driver->name,
1240		    busclass->name));
1241		return (ENOENT);
1242	}
1243
1244	/*
1245	 * Quiesce all devices.  We iterate through all the devices in
1246	 * the devclass of the driver and quiesce any which are using
1247	 * the driver and which have a parent in the devclass which we
1248	 * are quiescing.
1249	 *
1250	 * Note that since a driver can be in multiple devclasses, we
1251	 * should not quiesce devices which are not children of
1252	 * devices in the affected devclass.
1253	 */
1254	for (i = 0; i < dc->maxunit; i++) {
1255		if (dc->devices[i]) {
1256			dev = dc->devices[i];
1257			if (dev->driver == driver && dev->parent &&
1258			    dev->parent->devclass == busclass) {
1259				if ((error = device_quiesce(dev)) != 0)
1260					return (error);
1261			}
1262		}
1263	}
1264
1265	return (0);
1266}
1267
1268/**
1269 * @internal
1270 */
1271static driverlink_t
1272devclass_find_driver_internal(devclass_t dc, const char *classname)
1273{
1274	driverlink_t dl;
1275
1276	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1277
1278	TAILQ_FOREACH(dl, &dc->drivers, link) {
1279		if (!strcmp(dl->driver->name, classname))
1280			return (dl);
1281	}
1282
1283	PDEBUG(("not found"));
1284	return (NULL);
1285}
1286
1287/**
1288 * @brief Return the name of the devclass
1289 */
1290const char *
1291devclass_get_name(devclass_t dc)
1292{
1293	return (dc->name);
1294}
1295
1296/**
1297 * @brief Find a device given a unit number
1298 *
1299 * @param dc		the devclass to search
1300 * @param unit		the unit number to search for
1301 *
1302 * @returns		the device with the given unit number or @c
1303 *			NULL if there is no such device
1304 */
1305device_t
1306devclass_get_device(devclass_t dc, int unit)
1307{
1308	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1309		return (NULL);
1310	return (dc->devices[unit]);
1311}
1312
1313/**
1314 * @brief Find the softc field of a device given a unit number
1315 *
1316 * @param dc		the devclass to search
1317 * @param unit		the unit number to search for
1318 *
1319 * @returns		the softc field of the device with the given
1320 *			unit number or @c NULL if there is no such
1321 *			device
1322 */
1323void *
1324devclass_get_softc(devclass_t dc, int unit)
1325{
1326	device_t dev;
1327
1328	dev = devclass_get_device(dc, unit);
1329	if (!dev)
1330		return (NULL);
1331
1332	return (device_get_softc(dev));
1333}
1334
1335/**
1336 * @brief Get a list of devices in the devclass
1337 *
1338 * An array containing a list of all the devices in the given devclass
1339 * is allocated and returned in @p *devlistp. The number of devices
1340 * in the array is returned in @p *devcountp. The caller should free
1341 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1342 *
1343 * @param dc		the devclass to examine
1344 * @param devlistp	points at location for array pointer return
1345 *			value
1346 * @param devcountp	points at location for array size return value
1347 *
1348 * @retval 0		success
1349 * @retval ENOMEM	the array allocation failed
1350 */
1351int
1352devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1353{
1354	int count, i;
1355	device_t *list;
1356
1357	count = devclass_get_count(dc);
1358	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1359	if (!list)
1360		return (ENOMEM);
1361
1362	count = 0;
1363	for (i = 0; i < dc->maxunit; i++) {
1364		if (dc->devices[i]) {
1365			list[count] = dc->devices[i];
1366			count++;
1367		}
1368	}
1369
1370	*devlistp = list;
1371	*devcountp = count;
1372
1373	return (0);
1374}
1375
1376/**
1377 * @brief Get a list of drivers in the devclass
1378 *
1379 * An array containing a list of pointers to all the drivers in the
1380 * given devclass is allocated and returned in @p *listp.  The number
1381 * of drivers in the array is returned in @p *countp. The caller should
1382 * free the array using @c free(p, M_TEMP).
1383 *
1384 * @param dc		the devclass to examine
1385 * @param listp		gives location for array pointer return value
1386 * @param countp	gives location for number of array elements
1387 *			return value
1388 *
1389 * @retval 0		success
1390 * @retval ENOMEM	the array allocation failed
1391 */
1392int
1393devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1394{
1395	driverlink_t dl;
1396	driver_t **list;
1397	int count;
1398
1399	count = 0;
1400	TAILQ_FOREACH(dl, &dc->drivers, link)
1401		count++;
1402	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1403	if (list == NULL)
1404		return (ENOMEM);
1405
1406	count = 0;
1407	TAILQ_FOREACH(dl, &dc->drivers, link) {
1408		list[count] = dl->driver;
1409		count++;
1410	}
1411	*listp = list;
1412	*countp = count;
1413
1414	return (0);
1415}
1416
1417/**
1418 * @brief Get the number of devices in a devclass
1419 *
1420 * @param dc		the devclass to examine
1421 */
1422int
1423devclass_get_count(devclass_t dc)
1424{
1425	int count, i;
1426
1427	count = 0;
1428	for (i = 0; i < dc->maxunit; i++)
1429		if (dc->devices[i])
1430			count++;
1431	return (count);
1432}
1433
1434/**
1435 * @brief Get the maximum unit number used in a devclass
1436 *
1437 * Note that this is one greater than the highest currently-allocated
1438 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1439 * that not even the devclass has been allocated yet.
1440 *
1441 * @param dc		the devclass to examine
1442 */
1443int
1444devclass_get_maxunit(devclass_t dc)
1445{
1446	if (dc == NULL)
1447		return (-1);
1448	return (dc->maxunit);
1449}
1450
1451/**
1452 * @brief Find a free unit number in a devclass
1453 *
1454 * This function searches for the first unused unit number greater
1455 * that or equal to @p unit.
1456 *
1457 * @param dc		the devclass to examine
1458 * @param unit		the first unit number to check
1459 */
1460int
1461devclass_find_free_unit(devclass_t dc, int unit)
1462{
1463	if (dc == NULL)
1464		return (unit);
1465	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1466		unit++;
1467	return (unit);
1468}
1469
1470/**
1471 * @brief Set the parent of a devclass
1472 *
1473 * The parent class is normally initialised automatically by
1474 * DRIVER_MODULE().
1475 *
1476 * @param dc		the devclass to edit
1477 * @param pdc		the new parent devclass
1478 */
1479void
1480devclass_set_parent(devclass_t dc, devclass_t pdc)
1481{
1482	dc->parent = pdc;
1483}
1484
1485/**
1486 * @brief Get the parent of a devclass
1487 *
1488 * @param dc		the devclass to examine
1489 */
1490devclass_t
1491devclass_get_parent(devclass_t dc)
1492{
1493	return (dc->parent);
1494}
1495
1496struct sysctl_ctx_list *
1497devclass_get_sysctl_ctx(devclass_t dc)
1498{
1499	return (&dc->sysctl_ctx);
1500}
1501
1502struct sysctl_oid *
1503devclass_get_sysctl_tree(devclass_t dc)
1504{
1505	return (dc->sysctl_tree);
1506}
1507
1508/**
1509 * @internal
1510 * @brief Allocate a unit number
1511 *
1512 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1513 * will do). The allocated unit number is returned in @p *unitp.
1514
1515 * @param dc		the devclass to allocate from
1516 * @param unitp		points at the location for the allocated unit
1517 *			number
1518 *
1519 * @retval 0		success
1520 * @retval EEXIST	the requested unit number is already allocated
1521 * @retval ENOMEM	memory allocation failure
1522 */
1523static int
1524devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1525{
1526	const char *s;
1527	int unit = *unitp;
1528
1529	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1530
1531	/* Ask the parent bus if it wants to wire this device. */
1532	if (unit == -1)
1533		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1534		    &unit);
1535
1536	/* If we were given a wired unit number, check for existing device */
1537	/* XXX imp XXX */
1538	if (unit != -1) {
1539		if (unit >= 0 && unit < dc->maxunit &&
1540		    dc->devices[unit] != NULL) {
1541			if (bootverbose)
1542				printf("%s: %s%d already exists; skipping it\n",
1543				    dc->name, dc->name, *unitp);
1544			return (EEXIST);
1545		}
1546	} else {
1547		/* Unwired device, find the next available slot for it */
1548		unit = 0;
1549		for (unit = 0;; unit++) {
1550			/* If there is an "at" hint for a unit then skip it. */
1551			if (resource_string_value(dc->name, unit, "at", &s) ==
1552			    0)
1553				continue;
1554
1555			/* If this device slot is already in use, skip it. */
1556			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1557				continue;
1558
1559			break;
1560		}
1561	}
1562
1563	/*
1564	 * We've selected a unit beyond the length of the table, so let's
1565	 * extend the table to make room for all units up to and including
1566	 * this one.
1567	 */
1568	if (unit >= dc->maxunit) {
1569		device_t *newlist, *oldlist;
1570		int newsize;
1571
1572		oldlist = dc->devices;
1573		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1574		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1575		if (!newlist)
1576			return (ENOMEM);
1577		if (oldlist != NULL)
1578			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1579		bzero(newlist + dc->maxunit,
1580		    sizeof(device_t) * (newsize - dc->maxunit));
1581		dc->devices = newlist;
1582		dc->maxunit = newsize;
1583		if (oldlist != NULL)
1584			free(oldlist, M_BUS);
1585	}
1586	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1587
1588	*unitp = unit;
1589	return (0);
1590}
1591
1592/**
1593 * @internal
1594 * @brief Add a device to a devclass
1595 *
1596 * A unit number is allocated for the device (using the device's
1597 * preferred unit number if any) and the device is registered in the
1598 * devclass. This allows the device to be looked up by its unit
1599 * number, e.g. by decoding a dev_t minor number.
1600 *
1601 * @param dc		the devclass to add to
1602 * @param dev		the device to add
1603 *
1604 * @retval 0		success
1605 * @retval EEXIST	the requested unit number is already allocated
1606 * @retval ENOMEM	memory allocation failure
1607 */
1608static int
1609devclass_add_device(devclass_t dc, device_t dev)
1610{
1611	int buflen, error;
1612
1613	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1614
1615	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1616	if (buflen < 0)
1617		return (ENOMEM);
1618	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1619	if (!dev->nameunit)
1620		return (ENOMEM);
1621
1622	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1623		free(dev->nameunit, M_BUS);
1624		dev->nameunit = NULL;
1625		return (error);
1626	}
1627	dc->devices[dev->unit] = dev;
1628	dev->devclass = dc;
1629	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1630
1631	return (0);
1632}
1633
1634/**
1635 * @internal
1636 * @brief Delete a device from a devclass
1637 *
1638 * The device is removed from the devclass's device list and its unit
1639 * number is freed.
1640
1641 * @param dc		the devclass to delete from
1642 * @param dev		the device to delete
1643 *
1644 * @retval 0		success
1645 */
1646static int
1647devclass_delete_device(devclass_t dc, device_t dev)
1648{
1649	if (!dc || !dev)
1650		return (0);
1651
1652	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1653
1654	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1655		panic("devclass_delete_device: inconsistent device class");
1656	dc->devices[dev->unit] = NULL;
1657	if (dev->flags & DF_WILDCARD)
1658		dev->unit = -1;
1659	dev->devclass = NULL;
1660	free(dev->nameunit, M_BUS);
1661	dev->nameunit = NULL;
1662
1663	return (0);
1664}
1665
1666/**
1667 * @internal
1668 * @brief Make a new device and add it as a child of @p parent
1669 *
1670 * @param parent	the parent of the new device
1671 * @param name		the devclass name of the new device or @c NULL
1672 *			to leave the devclass unspecified
1673 * @parem unit		the unit number of the new device of @c -1 to
1674 *			leave the unit number unspecified
1675 *
1676 * @returns the new device
1677 */
1678static device_t
1679make_device(device_t parent, const char *name, int unit)
1680{
1681	device_t dev;
1682	devclass_t dc;
1683
1684	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1685
1686	if (name) {
1687		dc = devclass_find_internal(name, NULL, TRUE);
1688		if (!dc) {
1689			printf("make_device: can't find device class %s\n",
1690			    name);
1691			return (NULL);
1692		}
1693	} else {
1694		dc = NULL;
1695	}
1696
1697	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1698	if (!dev)
1699		return (NULL);
1700
1701	dev->parent = parent;
1702	TAILQ_INIT(&dev->children);
1703	kobj_init((kobj_t) dev, &null_class);
1704	dev->driver = NULL;
1705	dev->devclass = NULL;
1706	dev->unit = unit;
1707	dev->nameunit = NULL;
1708	dev->desc = NULL;
1709	dev->busy = 0;
1710	dev->devflags = 0;
1711	dev->flags = DF_ENABLED;
1712	dev->order = 0;
1713	if (unit == -1)
1714		dev->flags |= DF_WILDCARD;
1715	if (name) {
1716		dev->flags |= DF_FIXEDCLASS;
1717		if (devclass_add_device(dc, dev)) {
1718			kobj_delete((kobj_t) dev, M_BUS);
1719			return (NULL);
1720		}
1721	}
1722	dev->ivars = NULL;
1723	dev->softc = NULL;
1724
1725	dev->state = DS_NOTPRESENT;
1726
1727	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1728	bus_data_generation_update();
1729
1730	return (dev);
1731}
1732
1733/**
1734 * @internal
1735 * @brief Print a description of a device.
1736 */
1737static int
1738device_print_child(device_t dev, device_t child)
1739{
1740	int retval = 0;
1741
1742	if (device_is_alive(child))
1743		retval += BUS_PRINT_CHILD(dev, child);
1744	else
1745		retval += device_printf(child, " not found\n");
1746
1747	return (retval);
1748}
1749
1750/**
1751 * @brief Create a new device
1752 *
1753 * This creates a new device and adds it as a child of an existing
1754 * parent device. The new device will be added after the last existing
1755 * child with order zero.
1756 *
1757 * @param dev		the device which will be the parent of the
1758 *			new child device
1759 * @param name		devclass name for new device or @c NULL if not
1760 *			specified
1761 * @param unit		unit number for new device or @c -1 if not
1762 *			specified
1763 *
1764 * @returns		the new device
1765 */
1766device_t
1767device_add_child(device_t dev, const char *name, int unit)
1768{
1769	return (device_add_child_ordered(dev, 0, name, unit));
1770}
1771
1772/**
1773 * @brief Create a new device
1774 *
1775 * This creates a new device and adds it as a child of an existing
1776 * parent device. The new device will be added after the last existing
1777 * child with the same order.
1778 *
1779 * @param dev		the device which will be the parent of the
1780 *			new child device
1781 * @param order		a value which is used to partially sort the
1782 *			children of @p dev - devices created using
1783 *			lower values of @p order appear first in @p
1784 *			dev's list of children
1785 * @param name		devclass name for new device or @c NULL if not
1786 *			specified
1787 * @param unit		unit number for new device or @c -1 if not
1788 *			specified
1789 *
1790 * @returns		the new device
1791 */
1792device_t
1793device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1794{
1795	device_t child;
1796	device_t place;
1797
1798	PDEBUG(("%s at %s with order %d as unit %d",
1799	    name, DEVICENAME(dev), order, unit));
1800
1801	child = make_device(dev, name, unit);
1802	if (child == NULL)
1803		return (child);
1804	child->order = order;
1805
1806	TAILQ_FOREACH(place, &dev->children, link) {
1807		if (place->order > order)
1808			break;
1809	}
1810
1811	if (place) {
1812		/*
1813		 * The device 'place' is the first device whose order is
1814		 * greater than the new child.
1815		 */
1816		TAILQ_INSERT_BEFORE(place, child, link);
1817	} else {
1818		/*
1819		 * The new child's order is greater or equal to the order of
1820		 * any existing device. Add the child to the tail of the list.
1821		 */
1822		TAILQ_INSERT_TAIL(&dev->children, child, link);
1823	}
1824
1825	bus_data_generation_update();
1826	return (child);
1827}
1828
1829/**
1830 * @brief Delete a device
1831 *
1832 * This function deletes a device along with all of its children. If
1833 * the device currently has a driver attached to it, the device is
1834 * detached first using device_detach().
1835 *
1836 * @param dev		the parent device
1837 * @param child		the device to delete
1838 *
1839 * @retval 0		success
1840 * @retval non-zero	a unit error code describing the error
1841 */
1842int
1843device_delete_child(device_t dev, device_t child)
1844{
1845	int error;
1846	device_t grandchild;
1847
1848	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1849
1850	/* remove children first */
1851	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1852		error = device_delete_child(child, grandchild);
1853		if (error)
1854			return (error);
1855	}
1856
1857	if ((error = device_detach(child)) != 0)
1858		return (error);
1859	if (child->devclass)
1860		devclass_delete_device(child->devclass, child);
1861	TAILQ_REMOVE(&dev->children, child, link);
1862	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1863	kobj_delete((kobj_t) child, M_BUS);
1864
1865	bus_data_generation_update();
1866	return (0);
1867}
1868
1869/**
1870 * @brief Find a device given a unit number
1871 *
1872 * This is similar to devclass_get_devices() but only searches for
1873 * devices which have @p dev as a parent.
1874 *
1875 * @param dev		the parent device to search
1876 * @param unit		the unit number to search for.  If the unit is -1,
1877 *			return the first child of @p dev which has name
1878 *			@p classname (that is, the one with the lowest unit.)
1879 *
1880 * @returns		the device with the given unit number or @c
1881 *			NULL if there is no such device
1882 */
1883device_t
1884device_find_child(device_t dev, const char *classname, int unit)
1885{
1886	devclass_t dc;
1887	device_t child;
1888
1889	dc = devclass_find(classname);
1890	if (!dc)
1891		return (NULL);
1892
1893	if (unit != -1) {
1894		child = devclass_get_device(dc, unit);
1895		if (child && child->parent == dev)
1896			return (child);
1897	} else {
1898		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1899			child = devclass_get_device(dc, unit);
1900			if (child && child->parent == dev)
1901				return (child);
1902		}
1903	}
1904	return (NULL);
1905}
1906
1907/**
1908 * @internal
1909 */
1910static driverlink_t
1911first_matching_driver(devclass_t dc, device_t dev)
1912{
1913	if (dev->devclass)
1914		return (devclass_find_driver_internal(dc, dev->devclass->name));
1915	return (TAILQ_FIRST(&dc->drivers));
1916}
1917
1918/**
1919 * @internal
1920 */
1921static driverlink_t
1922next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1923{
1924	if (dev->devclass) {
1925		driverlink_t dl;
1926		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1927			if (!strcmp(dev->devclass->name, dl->driver->name))
1928				return (dl);
1929		return (NULL);
1930	}
1931	return (TAILQ_NEXT(last, link));
1932}
1933
1934/**
1935 * @internal
1936 */
1937int
1938device_probe_child(device_t dev, device_t child)
1939{
1940	devclass_t dc;
1941	driverlink_t best = NULL;
1942	driverlink_t dl;
1943	int result, pri = 0;
1944	int hasclass = (child->devclass != NULL);
1945
1946	GIANT_REQUIRED;
1947
1948	dc = dev->devclass;
1949	if (!dc)
1950		panic("device_probe_child: parent device has no devclass");
1951
1952	/*
1953	 * If the state is already probed, then return.  However, don't
1954	 * return if we can rebid this object.
1955	 */
1956	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1957		return (0);
1958
1959	for (; dc; dc = dc->parent) {
1960		for (dl = first_matching_driver(dc, child);
1961		     dl;
1962		     dl = next_matching_driver(dc, child, dl)) {
1963
1964			/* If this driver's pass is too high, then ignore it. */
1965			if (dl->pass > bus_current_pass)
1966				continue;
1967
1968			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1969			device_set_driver(child, dl->driver);
1970			if (!hasclass) {
1971				if (device_set_devclass(child, dl->driver->name)) {
1972					printf("driver bug: Unable to set devclass (devname: %s)\n",
1973					    (child ? device_get_name(child) :
1974						"no device"));
1975					device_set_driver(child, NULL);
1976					continue;
1977				}
1978			}
1979
1980			/* Fetch any flags for the device before probing. */
1981			resource_int_value(dl->driver->name, child->unit,
1982			    "flags", &child->devflags);
1983
1984			result = DEVICE_PROBE(child);
1985
1986			/* Reset flags and devclass before the next probe. */
1987			child->devflags = 0;
1988			if (!hasclass)
1989				device_set_devclass(child, NULL);
1990
1991			/*
1992			 * If the driver returns SUCCESS, there can be
1993			 * no higher match for this device.
1994			 */
1995			if (result == 0) {
1996				best = dl;
1997				pri = 0;
1998				break;
1999			}
2000
2001			/*
2002			 * The driver returned an error so it
2003			 * certainly doesn't match.
2004			 */
2005			if (result > 0) {
2006				device_set_driver(child, NULL);
2007				continue;
2008			}
2009
2010			/*
2011			 * A priority lower than SUCCESS, remember the
2012			 * best matching driver. Initialise the value
2013			 * of pri for the first match.
2014			 */
2015			if (best == NULL || result > pri) {
2016				/*
2017				 * Probes that return BUS_PROBE_NOWILDCARD
2018				 * or lower only match when they are set
2019				 * in stone by the parent bus.
2020				 */
2021				if (result <= BUS_PROBE_NOWILDCARD &&
2022				    child->flags & DF_WILDCARD)
2023					continue;
2024				best = dl;
2025				pri = result;
2026				continue;
2027			}
2028		}
2029		/*
2030		 * If we have an unambiguous match in this devclass,
2031		 * don't look in the parent.
2032		 */
2033		if (best && pri == 0)
2034			break;
2035	}
2036
2037	/*
2038	 * If we found a driver, change state and initialise the devclass.
2039	 */
2040	/* XXX What happens if we rebid and got no best? */
2041	if (best) {
2042		/*
2043		 * If this device was atached, and we were asked to
2044		 * rescan, and it is a different driver, then we have
2045		 * to detach the old driver and reattach this new one.
2046		 * Note, we don't have to check for DF_REBID here
2047		 * because if the state is > DS_ALIVE, we know it must
2048		 * be.
2049		 *
2050		 * This assumes that all DF_REBID drivers can have
2051		 * their probe routine called at any time and that
2052		 * they are idempotent as well as completely benign in
2053		 * normal operations.
2054		 *
2055		 * We also have to make sure that the detach
2056		 * succeeded, otherwise we fail the operation (or
2057		 * maybe it should just fail silently?  I'm torn).
2058		 */
2059		if (child->state > DS_ALIVE && best->driver != child->driver)
2060			if ((result = device_detach(dev)) != 0)
2061				return (result);
2062
2063		/* Set the winning driver, devclass, and flags. */
2064		if (!child->devclass) {
2065			result = device_set_devclass(child, best->driver->name);
2066			if (result != 0)
2067				return (result);
2068		}
2069		device_set_driver(child, best->driver);
2070		resource_int_value(best->driver->name, child->unit,
2071		    "flags", &child->devflags);
2072
2073		if (pri < 0) {
2074			/*
2075			 * A bit bogus. Call the probe method again to make
2076			 * sure that we have the right description.
2077			 */
2078			DEVICE_PROBE(child);
2079#if 0
2080			child->flags |= DF_REBID;
2081#endif
2082		} else
2083			child->flags &= ~DF_REBID;
2084		child->state = DS_ALIVE;
2085
2086		bus_data_generation_update();
2087		return (0);
2088	}
2089
2090	return (ENXIO);
2091}
2092
2093/**
2094 * @brief Return the parent of a device
2095 */
2096device_t
2097device_get_parent(device_t dev)
2098{
2099	return (dev->parent);
2100}
2101
2102/**
2103 * @brief Get a list of children of a device
2104 *
2105 * An array containing a list of all the children of the given device
2106 * is allocated and returned in @p *devlistp. The number of devices
2107 * in the array is returned in @p *devcountp. The caller should free
2108 * the array using @c free(p, M_TEMP).
2109 *
2110 * @param dev		the device to examine
2111 * @param devlistp	points at location for array pointer return
2112 *			value
2113 * @param devcountp	points at location for array size return value
2114 *
2115 * @retval 0		success
2116 * @retval ENOMEM	the array allocation failed
2117 */
2118int
2119device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2120{
2121	int count;
2122	device_t child;
2123	device_t *list;
2124
2125	count = 0;
2126	TAILQ_FOREACH(child, &dev->children, link) {
2127		count++;
2128	}
2129
2130	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2131	if (!list)
2132		return (ENOMEM);
2133
2134	count = 0;
2135	TAILQ_FOREACH(child, &dev->children, link) {
2136		list[count] = child;
2137		count++;
2138	}
2139
2140	*devlistp = list;
2141	*devcountp = count;
2142
2143	return (0);
2144}
2145
2146/**
2147 * @brief Return the current driver for the device or @c NULL if there
2148 * is no driver currently attached
2149 */
2150driver_t *
2151device_get_driver(device_t dev)
2152{
2153	return (dev->driver);
2154}
2155
2156/**
2157 * @brief Return the current devclass for the device or @c NULL if
2158 * there is none.
2159 */
2160devclass_t
2161device_get_devclass(device_t dev)
2162{
2163	return (dev->devclass);
2164}
2165
2166/**
2167 * @brief Return the name of the device's devclass or @c NULL if there
2168 * is none.
2169 */
2170const char *
2171device_get_name(device_t dev)
2172{
2173	if (dev != NULL && dev->devclass)
2174		return (devclass_get_name(dev->devclass));
2175	return (NULL);
2176}
2177
2178/**
2179 * @brief Return a string containing the device's devclass name
2180 * followed by an ascii representation of the device's unit number
2181 * (e.g. @c "foo2").
2182 */
2183const char *
2184device_get_nameunit(device_t dev)
2185{
2186	return (dev->nameunit);
2187}
2188
2189/**
2190 * @brief Return the device's unit number.
2191 */
2192int
2193device_get_unit(device_t dev)
2194{
2195	return (dev->unit);
2196}
2197
2198/**
2199 * @brief Return the device's description string
2200 */
2201const char *
2202device_get_desc(device_t dev)
2203{
2204	return (dev->desc);
2205}
2206
2207/**
2208 * @brief Return the device's flags
2209 */
2210u_int32_t
2211device_get_flags(device_t dev)
2212{
2213	return (dev->devflags);
2214}
2215
2216struct sysctl_ctx_list *
2217device_get_sysctl_ctx(device_t dev)
2218{
2219	return (&dev->sysctl_ctx);
2220}
2221
2222struct sysctl_oid *
2223device_get_sysctl_tree(device_t dev)
2224{
2225	return (dev->sysctl_tree);
2226}
2227
2228/**
2229 * @brief Print the name of the device followed by a colon and a space
2230 *
2231 * @returns the number of characters printed
2232 */
2233int
2234device_print_prettyname(device_t dev)
2235{
2236	const char *name = device_get_name(dev);
2237
2238	if (name == NULL)
2239		return (printf("unknown: "));
2240	return (printf("%s%d: ", name, device_get_unit(dev)));
2241}
2242
2243/**
2244 * @brief Print the name of the device followed by a colon, a space
2245 * and the result of calling vprintf() with the value of @p fmt and
2246 * the following arguments.
2247 *
2248 * @returns the number of characters printed
2249 */
2250int
2251device_printf(device_t dev, const char * fmt, ...)
2252{
2253	va_list ap;
2254	int retval;
2255
2256	retval = device_print_prettyname(dev);
2257	va_start(ap, fmt);
2258	retval += vprintf(fmt, ap);
2259	va_end(ap);
2260	return (retval);
2261}
2262
2263/**
2264 * @internal
2265 */
2266static void
2267device_set_desc_internal(device_t dev, const char* desc, int copy)
2268{
2269	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2270		free(dev->desc, M_BUS);
2271		dev->flags &= ~DF_DESCMALLOCED;
2272		dev->desc = NULL;
2273	}
2274
2275	if (copy && desc) {
2276		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2277		if (dev->desc) {
2278			strcpy(dev->desc, desc);
2279			dev->flags |= DF_DESCMALLOCED;
2280		}
2281	} else {
2282		/* Avoid a -Wcast-qual warning */
2283		dev->desc = (char *)(uintptr_t) desc;
2284	}
2285
2286	bus_data_generation_update();
2287}
2288
2289/**
2290 * @brief Set the device's description
2291 *
2292 * The value of @c desc should be a string constant that will not
2293 * change (at least until the description is changed in a subsequent
2294 * call to device_set_desc() or device_set_desc_copy()).
2295 */
2296void
2297device_set_desc(device_t dev, const char* desc)
2298{
2299	device_set_desc_internal(dev, desc, FALSE);
2300}
2301
2302/**
2303 * @brief Set the device's description
2304 *
2305 * The string pointed to by @c desc is copied. Use this function if
2306 * the device description is generated, (e.g. with sprintf()).
2307 */
2308void
2309device_set_desc_copy(device_t dev, const char* desc)
2310{
2311	device_set_desc_internal(dev, desc, TRUE);
2312}
2313
2314/**
2315 * @brief Set the device's flags
2316 */
2317void
2318device_set_flags(device_t dev, u_int32_t flags)
2319{
2320	dev->devflags = flags;
2321}
2322
2323/**
2324 * @brief Return the device's softc field
2325 *
2326 * The softc is allocated and zeroed when a driver is attached, based
2327 * on the size field of the driver.
2328 */
2329void *
2330device_get_softc(device_t dev)
2331{
2332	return (dev->softc);
2333}
2334
2335/**
2336 * @brief Set the device's softc field
2337 *
2338 * Most drivers do not need to use this since the softc is allocated
2339 * automatically when the driver is attached.
2340 */
2341void
2342device_set_softc(device_t dev, void *softc)
2343{
2344	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2345		free(dev->softc, M_BUS_SC);
2346	dev->softc = softc;
2347	if (dev->softc)
2348		dev->flags |= DF_EXTERNALSOFTC;
2349	else
2350		dev->flags &= ~DF_EXTERNALSOFTC;
2351}
2352
2353/**
2354 * @brief Get the device's ivars field
2355 *
2356 * The ivars field is used by the parent device to store per-device
2357 * state (e.g. the physical location of the device or a list of
2358 * resources).
2359 */
2360void *
2361device_get_ivars(device_t dev)
2362{
2363
2364	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2365	return (dev->ivars);
2366}
2367
2368/**
2369 * @brief Set the device's ivars field
2370 */
2371void
2372device_set_ivars(device_t dev, void * ivars)
2373{
2374
2375	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2376	dev->ivars = ivars;
2377}
2378
2379/**
2380 * @brief Return the device's state
2381 */
2382device_state_t
2383device_get_state(device_t dev)
2384{
2385	return (dev->state);
2386}
2387
2388/**
2389 * @brief Set the DF_ENABLED flag for the device
2390 */
2391void
2392device_enable(device_t dev)
2393{
2394	dev->flags |= DF_ENABLED;
2395}
2396
2397/**
2398 * @brief Clear the DF_ENABLED flag for the device
2399 */
2400void
2401device_disable(device_t dev)
2402{
2403	dev->flags &= ~DF_ENABLED;
2404}
2405
2406/**
2407 * @brief Increment the busy counter for the device
2408 */
2409void
2410device_busy(device_t dev)
2411{
2412	if (dev->state < DS_ATTACHED)
2413		panic("device_busy: called for unattached device");
2414	if (dev->busy == 0 && dev->parent)
2415		device_busy(dev->parent);
2416	dev->busy++;
2417	dev->state = DS_BUSY;
2418}
2419
2420/**
2421 * @brief Decrement the busy counter for the device
2422 */
2423void
2424device_unbusy(device_t dev)
2425{
2426	if (dev->state != DS_BUSY)
2427		panic("device_unbusy: called for non-busy device %s",
2428		    device_get_nameunit(dev));
2429	dev->busy--;
2430	if (dev->busy == 0) {
2431		if (dev->parent)
2432			device_unbusy(dev->parent);
2433		dev->state = DS_ATTACHED;
2434	}
2435}
2436
2437/**
2438 * @brief Set the DF_QUIET flag for the device
2439 */
2440void
2441device_quiet(device_t dev)
2442{
2443	dev->flags |= DF_QUIET;
2444}
2445
2446/**
2447 * @brief Clear the DF_QUIET flag for the device
2448 */
2449void
2450device_verbose(device_t dev)
2451{
2452	dev->flags &= ~DF_QUIET;
2453}
2454
2455/**
2456 * @brief Return non-zero if the DF_QUIET flag is set on the device
2457 */
2458int
2459device_is_quiet(device_t dev)
2460{
2461	return ((dev->flags & DF_QUIET) != 0);
2462}
2463
2464/**
2465 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2466 */
2467int
2468device_is_enabled(device_t dev)
2469{
2470	return ((dev->flags & DF_ENABLED) != 0);
2471}
2472
2473/**
2474 * @brief Return non-zero if the device was successfully probed
2475 */
2476int
2477device_is_alive(device_t dev)
2478{
2479	return (dev->state >= DS_ALIVE);
2480}
2481
2482/**
2483 * @brief Return non-zero if the device currently has a driver
2484 * attached to it
2485 */
2486int
2487device_is_attached(device_t dev)
2488{
2489	return (dev->state >= DS_ATTACHED);
2490}
2491
2492/**
2493 * @brief Set the devclass of a device
2494 * @see devclass_add_device().
2495 */
2496int
2497device_set_devclass(device_t dev, const char *classname)
2498{
2499	devclass_t dc;
2500	int error;
2501
2502	if (!classname) {
2503		if (dev->devclass)
2504			devclass_delete_device(dev->devclass, dev);
2505		return (0);
2506	}
2507
2508	if (dev->devclass) {
2509		printf("device_set_devclass: device class already set\n");
2510		return (EINVAL);
2511	}
2512
2513	dc = devclass_find_internal(classname, NULL, TRUE);
2514	if (!dc)
2515		return (ENOMEM);
2516
2517	error = devclass_add_device(dc, dev);
2518
2519	bus_data_generation_update();
2520	return (error);
2521}
2522
2523/**
2524 * @brief Set the driver of a device
2525 *
2526 * @retval 0		success
2527 * @retval EBUSY	the device already has a driver attached
2528 * @retval ENOMEM	a memory allocation failure occurred
2529 */
2530int
2531device_set_driver(device_t dev, driver_t *driver)
2532{
2533	if (dev->state >= DS_ATTACHED)
2534		return (EBUSY);
2535
2536	if (dev->driver == driver)
2537		return (0);
2538
2539	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2540		free(dev->softc, M_BUS_SC);
2541		dev->softc = NULL;
2542	}
2543	kobj_delete((kobj_t) dev, NULL);
2544	dev->driver = driver;
2545	if (driver) {
2546		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2547		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2548			dev->softc = malloc(driver->size, M_BUS_SC,
2549			    M_NOWAIT | M_ZERO);
2550			if (!dev->softc) {
2551				kobj_delete((kobj_t) dev, NULL);
2552				kobj_init((kobj_t) dev, &null_class);
2553				dev->driver = NULL;
2554				return (ENOMEM);
2555			}
2556		}
2557	} else {
2558		kobj_init((kobj_t) dev, &null_class);
2559	}
2560
2561	bus_data_generation_update();
2562	return (0);
2563}
2564
2565/**
2566 * @brief Probe a device, and return this status.
2567 *
2568 * This function is the core of the device autoconfiguration
2569 * system. Its purpose is to select a suitable driver for a device and
2570 * then call that driver to initialise the hardware appropriately. The
2571 * driver is selected by calling the DEVICE_PROBE() method of a set of
2572 * candidate drivers and then choosing the driver which returned the
2573 * best value. This driver is then attached to the device using
2574 * device_attach().
2575 *
2576 * The set of suitable drivers is taken from the list of drivers in
2577 * the parent device's devclass. If the device was originally created
2578 * with a specific class name (see device_add_child()), only drivers
2579 * with that name are probed, otherwise all drivers in the devclass
2580 * are probed. If no drivers return successful probe values in the
2581 * parent devclass, the search continues in the parent of that
2582 * devclass (see devclass_get_parent()) if any.
2583 *
2584 * @param dev		the device to initialise
2585 *
2586 * @retval 0		success
2587 * @retval ENXIO	no driver was found
2588 * @retval ENOMEM	memory allocation failure
2589 * @retval non-zero	some other unix error code
2590 * @retval -1		Device already attached
2591 */
2592int
2593device_probe(device_t dev)
2594{
2595	int error;
2596
2597	GIANT_REQUIRED;
2598
2599	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2600		return (-1);
2601
2602	if (!(dev->flags & DF_ENABLED)) {
2603		if (bootverbose && device_get_name(dev) != NULL) {
2604			device_print_prettyname(dev);
2605			printf("not probed (disabled)\n");
2606		}
2607		return (-1);
2608	}
2609	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2610		if (bus_current_pass == BUS_PASS_DEFAULT &&
2611		    !(dev->flags & DF_DONENOMATCH)) {
2612			BUS_PROBE_NOMATCH(dev->parent, dev);
2613			devnomatch(dev);
2614			dev->flags |= DF_DONENOMATCH;
2615		}
2616		return (error);
2617	}
2618	return (0);
2619}
2620
2621/**
2622 * @brief Probe a device and attach a driver if possible
2623 *
2624 * calls device_probe() and attaches if that was successful.
2625 */
2626int
2627device_probe_and_attach(device_t dev)
2628{
2629	int error;
2630
2631	GIANT_REQUIRED;
2632
2633	error = device_probe(dev);
2634	if (error == -1)
2635		return (0);
2636	else if (error != 0)
2637		return (error);
2638	return (device_attach(dev));
2639}
2640
2641/**
2642 * @brief Attach a device driver to a device
2643 *
2644 * This function is a wrapper around the DEVICE_ATTACH() driver
2645 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2646 * device's sysctl tree, optionally prints a description of the device
2647 * and queues a notification event for user-based device management
2648 * services.
2649 *
2650 * Normally this function is only called internally from
2651 * device_probe_and_attach().
2652 *
2653 * @param dev		the device to initialise
2654 *
2655 * @retval 0		success
2656 * @retval ENXIO	no driver was found
2657 * @retval ENOMEM	memory allocation failure
2658 * @retval non-zero	some other unix error code
2659 */
2660int
2661device_attach(device_t dev)
2662{
2663	int error;
2664
2665	device_sysctl_init(dev);
2666	if (!device_is_quiet(dev))
2667		device_print_child(dev->parent, dev);
2668	if ((error = DEVICE_ATTACH(dev)) != 0) {
2669		printf("device_attach: %s%d attach returned %d\n",
2670		    dev->driver->name, dev->unit, error);
2671		/* Unset the class; set in device_probe_child */
2672		if (dev->devclass == NULL)
2673			device_set_devclass(dev, NULL);
2674		device_set_driver(dev, NULL);
2675		device_sysctl_fini(dev);
2676		dev->state = DS_NOTPRESENT;
2677		return (error);
2678	}
2679	device_sysctl_update(dev);
2680	dev->state = DS_ATTACHED;
2681	dev->flags &= ~DF_DONENOMATCH;
2682	devadded(dev);
2683	return (0);
2684}
2685
2686/**
2687 * @brief Detach a driver from a device
2688 *
2689 * This function is a wrapper around the DEVICE_DETACH() driver
2690 * method. If the call to DEVICE_DETACH() succeeds, it calls
2691 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2692 * notification event for user-based device management services and
2693 * cleans up the device's sysctl tree.
2694 *
2695 * @param dev		the device to un-initialise
2696 *
2697 * @retval 0		success
2698 * @retval ENXIO	no driver was found
2699 * @retval ENOMEM	memory allocation failure
2700 * @retval non-zero	some other unix error code
2701 */
2702int
2703device_detach(device_t dev)
2704{
2705	int error;
2706
2707	GIANT_REQUIRED;
2708
2709	PDEBUG(("%s", DEVICENAME(dev)));
2710	if (dev->state == DS_BUSY)
2711		return (EBUSY);
2712	if (dev->state != DS_ATTACHED)
2713		return (0);
2714
2715	if ((error = DEVICE_DETACH(dev)) != 0)
2716		return (error);
2717	devremoved(dev);
2718	if (!device_is_quiet(dev))
2719		device_printf(dev, "detached\n");
2720	if (dev->parent)
2721		BUS_CHILD_DETACHED(dev->parent, dev);
2722
2723	if (!(dev->flags & DF_FIXEDCLASS))
2724		devclass_delete_device(dev->devclass, dev);
2725
2726	dev->state = DS_NOTPRESENT;
2727	device_set_driver(dev, NULL);
2728	device_set_desc(dev, NULL);
2729	device_sysctl_fini(dev);
2730
2731	return (0);
2732}
2733
2734/**
2735 * @brief Tells a driver to quiesce itself.
2736 *
2737 * This function is a wrapper around the DEVICE_QUIESCE() driver
2738 * method. If the call to DEVICE_QUIESCE() succeeds.
2739 *
2740 * @param dev		the device to quiesce
2741 *
2742 * @retval 0		success
2743 * @retval ENXIO	no driver was found
2744 * @retval ENOMEM	memory allocation failure
2745 * @retval non-zero	some other unix error code
2746 */
2747int
2748device_quiesce(device_t dev)
2749{
2750
2751	PDEBUG(("%s", DEVICENAME(dev)));
2752	if (dev->state == DS_BUSY)
2753		return (EBUSY);
2754	if (dev->state != DS_ATTACHED)
2755		return (0);
2756
2757	return (DEVICE_QUIESCE(dev));
2758}
2759
2760/**
2761 * @brief Notify a device of system shutdown
2762 *
2763 * This function calls the DEVICE_SHUTDOWN() driver method if the
2764 * device currently has an attached driver.
2765 *
2766 * @returns the value returned by DEVICE_SHUTDOWN()
2767 */
2768int
2769device_shutdown(device_t dev)
2770{
2771	if (dev->state < DS_ATTACHED)
2772		return (0);
2773	return (DEVICE_SHUTDOWN(dev));
2774}
2775
2776/**
2777 * @brief Set the unit number of a device
2778 *
2779 * This function can be used to override the unit number used for a
2780 * device (e.g. to wire a device to a pre-configured unit number).
2781 */
2782int
2783device_set_unit(device_t dev, int unit)
2784{
2785	devclass_t dc;
2786	int err;
2787
2788	dc = device_get_devclass(dev);
2789	if (unit < dc->maxunit && dc->devices[unit])
2790		return (EBUSY);
2791	err = devclass_delete_device(dc, dev);
2792	if (err)
2793		return (err);
2794	dev->unit = unit;
2795	err = devclass_add_device(dc, dev);
2796	if (err)
2797		return (err);
2798
2799	bus_data_generation_update();
2800	return (0);
2801}
2802
2803/*======================================*/
2804/*
2805 * Some useful method implementations to make life easier for bus drivers.
2806 */
2807
2808/**
2809 * @brief Initialise a resource list.
2810 *
2811 * @param rl		the resource list to initialise
2812 */
2813void
2814resource_list_init(struct resource_list *rl)
2815{
2816	STAILQ_INIT(rl);
2817}
2818
2819/**
2820 * @brief Reclaim memory used by a resource list.
2821 *
2822 * This function frees the memory for all resource entries on the list
2823 * (if any).
2824 *
2825 * @param rl		the resource list to free
2826 */
2827void
2828resource_list_free(struct resource_list *rl)
2829{
2830	struct resource_list_entry *rle;
2831
2832	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2833		if (rle->res)
2834			panic("resource_list_free: resource entry is busy");
2835		STAILQ_REMOVE_HEAD(rl, link);
2836		free(rle, M_BUS);
2837	}
2838}
2839
2840/**
2841 * @brief Add a resource entry.
2842 *
2843 * This function adds a resource entry using the given @p type, @p
2844 * start, @p end and @p count values. A rid value is chosen by
2845 * searching sequentially for the first unused rid starting at zero.
2846 *
2847 * @param rl		the resource list to edit
2848 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2849 * @param start		the start address of the resource
2850 * @param end		the end address of the resource
2851 * @param count		XXX end-start+1
2852 */
2853int
2854resource_list_add_next(struct resource_list *rl, int type, u_long start,
2855    u_long end, u_long count)
2856{
2857	int rid;
2858
2859	rid = 0;
2860	while (resource_list_find(rl, type, rid) != NULL)
2861		rid++;
2862	resource_list_add(rl, type, rid, start, end, count);
2863	return (rid);
2864}
2865
2866/**
2867 * @brief Add or modify a resource entry.
2868 *
2869 * If an existing entry exists with the same type and rid, it will be
2870 * modified using the given values of @p start, @p end and @p
2871 * count. If no entry exists, a new one will be created using the
2872 * given values.  The resource list entry that matches is then returned.
2873 *
2874 * @param rl		the resource list to edit
2875 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2876 * @param rid		the resource identifier
2877 * @param start		the start address of the resource
2878 * @param end		the end address of the resource
2879 * @param count		XXX end-start+1
2880 */
2881struct resource_list_entry *
2882resource_list_add(struct resource_list *rl, int type, int rid,
2883    u_long start, u_long end, u_long count)
2884{
2885	struct resource_list_entry *rle;
2886
2887	rle = resource_list_find(rl, type, rid);
2888	if (!rle) {
2889		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2890		    M_NOWAIT);
2891		if (!rle)
2892			panic("resource_list_add: can't record entry");
2893		STAILQ_INSERT_TAIL(rl, rle, link);
2894		rle->type = type;
2895		rle->rid = rid;
2896		rle->res = NULL;
2897		rle->flags = 0;
2898	}
2899
2900	if (rle->res)
2901		panic("resource_list_add: resource entry is busy");
2902
2903	rle->start = start;
2904	rle->end = end;
2905	rle->count = count;
2906	return (rle);
2907}
2908
2909/**
2910 * @brief Determine if a resource entry is busy.
2911 *
2912 * Returns true if a resource entry is busy meaning that it has an
2913 * associated resource that is not an unallocated "reserved" resource.
2914 *
2915 * @param rl		the resource list to search
2916 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2917 * @param rid		the resource identifier
2918 *
2919 * @returns Non-zero if the entry is busy, zero otherwise.
2920 */
2921int
2922resource_list_busy(struct resource_list *rl, int type, int rid)
2923{
2924	struct resource_list_entry *rle;
2925
2926	rle = resource_list_find(rl, type, rid);
2927	if (rle == NULL || rle->res == NULL)
2928		return (0);
2929	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2930		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2931		    ("reserved resource is active"));
2932		return (0);
2933	}
2934	return (1);
2935}
2936
2937/**
2938 * @brief Find a resource entry by type and rid.
2939 *
2940 * @param rl		the resource list to search
2941 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2942 * @param rid		the resource identifier
2943 *
2944 * @returns the resource entry pointer or NULL if there is no such
2945 * entry.
2946 */
2947struct resource_list_entry *
2948resource_list_find(struct resource_list *rl, int type, int rid)
2949{
2950	struct resource_list_entry *rle;
2951
2952	STAILQ_FOREACH(rle, rl, link) {
2953		if (rle->type == type && rle->rid == rid)
2954			return (rle);
2955	}
2956	return (NULL);
2957}
2958
2959/**
2960 * @brief Delete a resource entry.
2961 *
2962 * @param rl		the resource list to edit
2963 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2964 * @param rid		the resource identifier
2965 */
2966void
2967resource_list_delete(struct resource_list *rl, int type, int rid)
2968{
2969	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2970
2971	if (rle) {
2972		if (rle->res != NULL)
2973			panic("resource_list_delete: resource has not been released");
2974		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2975		free(rle, M_BUS);
2976	}
2977}
2978
2979/**
2980 * @brief Allocate a reserved resource
2981 *
2982 * This can be used by busses to force the allocation of resources
2983 * that are always active in the system even if they are not allocated
2984 * by a driver (e.g. PCI BARs).  This function is usually called when
2985 * adding a new child to the bus.  The resource is allocated from the
2986 * parent bus when it is reserved.  The resource list entry is marked
2987 * with RLE_RESERVED to note that it is a reserved resource.
2988 *
2989 * Subsequent attempts to allocate the resource with
2990 * resource_list_alloc() will succeed the first time and will set
2991 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2992 * resource that has been allocated is released with
2993 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2994 * the actual resource remains allocated.  The resource can be released to
2995 * the parent bus by calling resource_list_unreserve().
2996 *
2997 * @param rl		the resource list to allocate from
2998 * @param bus		the parent device of @p child
2999 * @param child		the device for which the resource is being reserved
3000 * @param type		the type of resource to allocate
3001 * @param rid		a pointer to the resource identifier
3002 * @param start		hint at the start of the resource range - pass
3003 *			@c 0UL for any start address
3004 * @param end		hint at the end of the resource range - pass
3005 *			@c ~0UL for any end address
3006 * @param count		hint at the size of range required - pass @c 1
3007 *			for any size
3008 * @param flags		any extra flags to control the resource
3009 *			allocation - see @c RF_XXX flags in
3010 *			<sys/rman.h> for details
3011 *
3012 * @returns		the resource which was allocated or @c NULL if no
3013 *			resource could be allocated
3014 */
3015struct resource *
3016resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3017    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3018{
3019	struct resource_list_entry *rle = NULL;
3020	int passthrough = (device_get_parent(child) != bus);
3021	struct resource *r;
3022
3023	if (passthrough)
3024		panic(
3025    "resource_list_reserve() should only be called for direct children");
3026	if (flags & RF_ACTIVE)
3027		panic(
3028    "resource_list_reserve() should only reserve inactive resources");
3029
3030	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3031	    flags);
3032	if (r != NULL) {
3033		rle = resource_list_find(rl, type, *rid);
3034		rle->flags |= RLE_RESERVED;
3035	}
3036	return (r);
3037}
3038
3039/**
3040 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3041 *
3042 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3043 * and passing the allocation up to the parent of @p bus. This assumes
3044 * that the first entry of @c device_get_ivars(child) is a struct
3045 * resource_list. This also handles 'passthrough' allocations where a
3046 * child is a remote descendant of bus by passing the allocation up to
3047 * the parent of bus.
3048 *
3049 * Typically, a bus driver would store a list of child resources
3050 * somewhere in the child device's ivars (see device_get_ivars()) and
3051 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3052 * then call resource_list_alloc() to perform the allocation.
3053 *
3054 * @param rl		the resource list to allocate from
3055 * @param bus		the parent device of @p child
3056 * @param child		the device which is requesting an allocation
3057 * @param type		the type of resource to allocate
3058 * @param rid		a pointer to the resource identifier
3059 * @param start		hint at the start of the resource range - pass
3060 *			@c 0UL for any start address
3061 * @param end		hint at the end of the resource range - pass
3062 *			@c ~0UL for any end address
3063 * @param count		hint at the size of range required - pass @c 1
3064 *			for any size
3065 * @param flags		any extra flags to control the resource
3066 *			allocation - see @c RF_XXX flags in
3067 *			<sys/rman.h> for details
3068 *
3069 * @returns		the resource which was allocated or @c NULL if no
3070 *			resource could be allocated
3071 */
3072struct resource *
3073resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3074    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3075{
3076	struct resource_list_entry *rle = NULL;
3077	int passthrough = (device_get_parent(child) != bus);
3078	int isdefault = (start == 0UL && end == ~0UL);
3079
3080	if (passthrough) {
3081		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3082		    type, rid, start, end, count, flags));
3083	}
3084
3085	rle = resource_list_find(rl, type, *rid);
3086
3087	if (!rle)
3088		return (NULL);		/* no resource of that type/rid */
3089
3090	if (rle->res) {
3091		if (rle->flags & RLE_RESERVED) {
3092			if (rle->flags & RLE_ALLOCATED)
3093				return (NULL);
3094			if ((flags & RF_ACTIVE) &&
3095			    bus_activate_resource(child, type, *rid,
3096			    rle->res) != 0)
3097				return (NULL);
3098			rle->flags |= RLE_ALLOCATED;
3099			return (rle->res);
3100		}
3101		panic("resource_list_alloc: resource entry is busy");
3102	}
3103
3104	if (isdefault) {
3105		start = rle->start;
3106		count = ulmax(count, rle->count);
3107		end = ulmax(rle->end, start + count - 1);
3108	}
3109
3110	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3111	    type, rid, start, end, count, flags);
3112
3113	/*
3114	 * Record the new range.
3115	 */
3116	if (rle->res) {
3117		rle->start = rman_get_start(rle->res);
3118		rle->end = rman_get_end(rle->res);
3119		rle->count = count;
3120	}
3121
3122	return (rle->res);
3123}
3124
3125/**
3126 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3127 *
3128 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3129 * used with resource_list_alloc().
3130 *
3131 * @param rl		the resource list which was allocated from
3132 * @param bus		the parent device of @p child
3133 * @param child		the device which is requesting a release
3134 * @param type		the type of resource to release
3135 * @param rid		the resource identifier
3136 * @param res		the resource to release
3137 *
3138 * @retval 0		success
3139 * @retval non-zero	a standard unix error code indicating what
3140 *			error condition prevented the operation
3141 */
3142int
3143resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3144    int type, int rid, struct resource *res)
3145{
3146	struct resource_list_entry *rle = NULL;
3147	int passthrough = (device_get_parent(child) != bus);
3148	int error;
3149
3150	if (passthrough) {
3151		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3152		    type, rid, res));
3153	}
3154
3155	rle = resource_list_find(rl, type, rid);
3156
3157	if (!rle)
3158		panic("resource_list_release: can't find resource");
3159	if (!rle->res)
3160		panic("resource_list_release: resource entry is not busy");
3161	if (rle->flags & RLE_RESERVED) {
3162		if (rle->flags & RLE_ALLOCATED) {
3163			if (rman_get_flags(res) & RF_ACTIVE) {
3164				error = bus_deactivate_resource(child, type,
3165				    rid, res);
3166				if (error)
3167					return (error);
3168			}
3169			rle->flags &= ~RLE_ALLOCATED;
3170			return (0);
3171		}
3172		return (EINVAL);
3173	}
3174
3175	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3176	    type, rid, res);
3177	if (error)
3178		return (error);
3179
3180	rle->res = NULL;
3181	return (0);
3182}
3183
3184/**
3185 * @brief Fully release a reserved resource
3186 *
3187 * Fully releases a resouce reserved via resource_list_reserve().
3188 *
3189 * @param rl		the resource list which was allocated from
3190 * @param bus		the parent device of @p child
3191 * @param child		the device whose reserved resource is being released
3192 * @param type		the type of resource to release
3193 * @param rid		the resource identifier
3194 * @param res		the resource to release
3195 *
3196 * @retval 0		success
3197 * @retval non-zero	a standard unix error code indicating what
3198 *			error condition prevented the operation
3199 */
3200int
3201resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3202    int type, int rid)
3203{
3204	struct resource_list_entry *rle = NULL;
3205	int passthrough = (device_get_parent(child) != bus);
3206
3207	if (passthrough)
3208		panic(
3209    "resource_list_unreserve() should only be called for direct children");
3210
3211	rle = resource_list_find(rl, type, rid);
3212
3213	if (!rle)
3214		panic("resource_list_unreserve: can't find resource");
3215	if (!(rle->flags & RLE_RESERVED))
3216		return (EINVAL);
3217	if (rle->flags & RLE_ALLOCATED)
3218		return (EBUSY);
3219	rle->flags &= ~RLE_RESERVED;
3220	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3221}
3222
3223/**
3224 * @brief Print a description of resources in a resource list
3225 *
3226 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3227 * The name is printed if at least one resource of the given type is available.
3228 * The format is used to print resource start and end.
3229 *
3230 * @param rl		the resource list to print
3231 * @param name		the name of @p type, e.g. @c "memory"
3232 * @param type		type type of resource entry to print
3233 * @param format	printf(9) format string to print resource
3234 *			start and end values
3235 *
3236 * @returns		the number of characters printed
3237 */
3238int
3239resource_list_print_type(struct resource_list *rl, const char *name, int type,
3240    const char *format)
3241{
3242	struct resource_list_entry *rle;
3243	int printed, retval;
3244
3245	printed = 0;
3246	retval = 0;
3247	/* Yes, this is kinda cheating */
3248	STAILQ_FOREACH(rle, rl, link) {
3249		if (rle->type == type) {
3250			if (printed == 0)
3251				retval += printf(" %s ", name);
3252			else
3253				retval += printf(",");
3254			printed++;
3255			retval += printf(format, rle->start);
3256			if (rle->count > 1) {
3257				retval += printf("-");
3258				retval += printf(format, rle->start +
3259						 rle->count - 1);
3260			}
3261		}
3262	}
3263	return (retval);
3264}
3265
3266/**
3267 * @brief Releases all the resources in a list.
3268 *
3269 * @param rl		The resource list to purge.
3270 *
3271 * @returns		nothing
3272 */
3273void
3274resource_list_purge(struct resource_list *rl)
3275{
3276	struct resource_list_entry *rle;
3277
3278	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3279		if (rle->res)
3280			bus_release_resource(rman_get_device(rle->res),
3281			    rle->type, rle->rid, rle->res);
3282		STAILQ_REMOVE_HEAD(rl, link);
3283		free(rle, M_BUS);
3284	}
3285}
3286
3287device_t
3288bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3289{
3290
3291	return (device_add_child_ordered(dev, order, name, unit));
3292}
3293
3294/**
3295 * @brief Helper function for implementing DEVICE_PROBE()
3296 *
3297 * This function can be used to help implement the DEVICE_PROBE() for
3298 * a bus (i.e. a device which has other devices attached to it). It
3299 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3300 * devclass.
3301 */
3302int
3303bus_generic_probe(device_t dev)
3304{
3305	devclass_t dc = dev->devclass;
3306	driverlink_t dl;
3307
3308	TAILQ_FOREACH(dl, &dc->drivers, link) {
3309		/*
3310		 * If this driver's pass is too high, then ignore it.
3311		 * For most drivers in the default pass, this will
3312		 * never be true.  For early-pass drivers they will
3313		 * only call the identify routines of eligible drivers
3314		 * when this routine is called.  Drivers for later
3315		 * passes should have their identify routines called
3316		 * on early-pass busses during BUS_NEW_PASS().
3317		 */
3318		if (dl->pass > bus_current_pass)
3319				continue;
3320		DEVICE_IDENTIFY(dl->driver, dev);
3321	}
3322
3323	return (0);
3324}
3325
3326/**
3327 * @brief Helper function for implementing DEVICE_ATTACH()
3328 *
3329 * This function can be used to help implement the DEVICE_ATTACH() for
3330 * a bus. It calls device_probe_and_attach() for each of the device's
3331 * children.
3332 */
3333int
3334bus_generic_attach(device_t dev)
3335{
3336	device_t child;
3337
3338	TAILQ_FOREACH(child, &dev->children, link) {
3339		device_probe_and_attach(child);
3340	}
3341
3342	return (0);
3343}
3344
3345/**
3346 * @brief Helper function for implementing DEVICE_DETACH()
3347 *
3348 * This function can be used to help implement the DEVICE_DETACH() for
3349 * a bus. It calls device_detach() for each of the device's
3350 * children.
3351 */
3352int
3353bus_generic_detach(device_t dev)
3354{
3355	device_t child;
3356	int error;
3357
3358	if (dev->state != DS_ATTACHED)
3359		return (EBUSY);
3360
3361	TAILQ_FOREACH(child, &dev->children, link) {
3362		if ((error = device_detach(child)) != 0)
3363			return (error);
3364	}
3365
3366	return (0);
3367}
3368
3369/**
3370 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3371 *
3372 * This function can be used to help implement the DEVICE_SHUTDOWN()
3373 * for a bus. It calls device_shutdown() for each of the device's
3374 * children.
3375 */
3376int
3377bus_generic_shutdown(device_t dev)
3378{
3379	device_t child;
3380
3381	TAILQ_FOREACH(child, &dev->children, link) {
3382		device_shutdown(child);
3383	}
3384
3385	return (0);
3386}
3387
3388/**
3389 * @brief Helper function for implementing DEVICE_SUSPEND()
3390 *
3391 * This function can be used to help implement the DEVICE_SUSPEND()
3392 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3393 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3394 * operation is aborted and any devices which were suspended are
3395 * resumed immediately by calling their DEVICE_RESUME() methods.
3396 */
3397int
3398bus_generic_suspend(device_t dev)
3399{
3400	int		error;
3401	device_t	child, child2;
3402
3403	TAILQ_FOREACH(child, &dev->children, link) {
3404		error = DEVICE_SUSPEND(child);
3405		if (error) {
3406			for (child2 = TAILQ_FIRST(&dev->children);
3407			     child2 && child2 != child;
3408			     child2 = TAILQ_NEXT(child2, link))
3409				DEVICE_RESUME(child2);
3410			return (error);
3411		}
3412	}
3413	return (0);
3414}
3415
3416/**
3417 * @brief Helper function for implementing DEVICE_RESUME()
3418 *
3419 * This function can be used to help implement the DEVICE_RESUME() for
3420 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3421 */
3422int
3423bus_generic_resume(device_t dev)
3424{
3425	device_t	child;
3426
3427	TAILQ_FOREACH(child, &dev->children, link) {
3428		DEVICE_RESUME(child);
3429		/* if resume fails, there's nothing we can usefully do... */
3430	}
3431	return (0);
3432}
3433
3434/**
3435 * @brief Helper function for implementing BUS_PRINT_CHILD().
3436 *
3437 * This function prints the first part of the ascii representation of
3438 * @p child, including its name, unit and description (if any - see
3439 * device_set_desc()).
3440 *
3441 * @returns the number of characters printed
3442 */
3443int
3444bus_print_child_header(device_t dev, device_t child)
3445{
3446	int	retval = 0;
3447
3448	if (device_get_desc(child)) {
3449		retval += device_printf(child, "<%s>", device_get_desc(child));
3450	} else {
3451		retval += printf("%s", device_get_nameunit(child));
3452	}
3453
3454	return (retval);
3455}
3456
3457/**
3458 * @brief Helper function for implementing BUS_PRINT_CHILD().
3459 *
3460 * This function prints the last part of the ascii representation of
3461 * @p child, which consists of the string @c " on " followed by the
3462 * name and unit of the @p dev.
3463 *
3464 * @returns the number of characters printed
3465 */
3466int
3467bus_print_child_footer(device_t dev, device_t child)
3468{
3469	return (printf(" on %s\n", device_get_nameunit(dev)));
3470}
3471
3472/**
3473 * @brief Helper function for implementing BUS_PRINT_CHILD().
3474 *
3475 * This function simply calls bus_print_child_header() followed by
3476 * bus_print_child_footer().
3477 *
3478 * @returns the number of characters printed
3479 */
3480int
3481bus_generic_print_child(device_t dev, device_t child)
3482{
3483	int	retval = 0;
3484
3485	retval += bus_print_child_header(dev, child);
3486	retval += bus_print_child_footer(dev, child);
3487
3488	return (retval);
3489}
3490
3491/**
3492 * @brief Stub function for implementing BUS_READ_IVAR().
3493 *
3494 * @returns ENOENT
3495 */
3496int
3497bus_generic_read_ivar(device_t dev, device_t child, int index,
3498    uintptr_t * result)
3499{
3500	return (ENOENT);
3501}
3502
3503/**
3504 * @brief Stub function for implementing BUS_WRITE_IVAR().
3505 *
3506 * @returns ENOENT
3507 */
3508int
3509bus_generic_write_ivar(device_t dev, device_t child, int index,
3510    uintptr_t value)
3511{
3512	return (ENOENT);
3513}
3514
3515/**
3516 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3517 *
3518 * @returns NULL
3519 */
3520struct resource_list *
3521bus_generic_get_resource_list(device_t dev, device_t child)
3522{
3523	return (NULL);
3524}
3525
3526/**
3527 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3528 *
3529 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3530 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3531 * and then calls device_probe_and_attach() for each unattached child.
3532 */
3533void
3534bus_generic_driver_added(device_t dev, driver_t *driver)
3535{
3536	device_t child;
3537
3538	DEVICE_IDENTIFY(driver, dev);
3539	TAILQ_FOREACH(child, &dev->children, link) {
3540		if (child->state == DS_NOTPRESENT ||
3541		    (child->flags & DF_REBID))
3542			device_probe_and_attach(child);
3543	}
3544}
3545
3546/**
3547 * @brief Helper function for implementing BUS_NEW_PASS().
3548 *
3549 * This implementing of BUS_NEW_PASS() first calls the identify
3550 * routines for any drivers that probe at the current pass.  Then it
3551 * walks the list of devices for this bus.  If a device is already
3552 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3553 * device is not already attached, it attempts to attach a driver to
3554 * it.
3555 */
3556void
3557bus_generic_new_pass(device_t dev)
3558{
3559	driverlink_t dl;
3560	devclass_t dc;
3561	device_t child;
3562
3563	dc = dev->devclass;
3564	TAILQ_FOREACH(dl, &dc->drivers, link) {
3565		if (dl->pass == bus_current_pass)
3566			DEVICE_IDENTIFY(dl->driver, dev);
3567	}
3568	TAILQ_FOREACH(child, &dev->children, link) {
3569		if (child->state >= DS_ATTACHED)
3570			BUS_NEW_PASS(child);
3571		else if (child->state == DS_NOTPRESENT)
3572			device_probe_and_attach(child);
3573	}
3574}
3575
3576/**
3577 * @brief Helper function for implementing BUS_SETUP_INTR().
3578 *
3579 * This simple implementation of BUS_SETUP_INTR() simply calls the
3580 * BUS_SETUP_INTR() method of the parent of @p dev.
3581 */
3582int
3583bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3584    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3585    void **cookiep)
3586{
3587	/* Propagate up the bus hierarchy until someone handles it. */
3588	if (dev->parent)
3589		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3590		    filter, intr, arg, cookiep));
3591	return (EINVAL);
3592}
3593
3594/**
3595 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3596 *
3597 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3598 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3599 */
3600int
3601bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3602    void *cookie)
3603{
3604	/* Propagate up the bus hierarchy until someone handles it. */
3605	if (dev->parent)
3606		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3607	return (EINVAL);
3608}
3609
3610/**
3611 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3612 *
3613 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3614 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3615 */
3616struct resource *
3617bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3618    u_long start, u_long end, u_long count, u_int flags)
3619{
3620	/* Propagate up the bus hierarchy until someone handles it. */
3621	if (dev->parent)
3622		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3623		    start, end, count, flags));
3624	return (NULL);
3625}
3626
3627/**
3628 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3629 *
3630 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3631 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3632 */
3633int
3634bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3635    struct resource *r)
3636{
3637	/* Propagate up the bus hierarchy until someone handles it. */
3638	if (dev->parent)
3639		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3640		    r));
3641	return (EINVAL);
3642}
3643
3644/**
3645 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3646 *
3647 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3648 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3649 */
3650int
3651bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3652    struct resource *r)
3653{
3654	/* Propagate up the bus hierarchy until someone handles it. */
3655	if (dev->parent)
3656		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3657		    r));
3658	return (EINVAL);
3659}
3660
3661/**
3662 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3663 *
3664 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3665 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3666 */
3667int
3668bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3669    int rid, struct resource *r)
3670{
3671	/* Propagate up the bus hierarchy until someone handles it. */
3672	if (dev->parent)
3673		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3674		    r));
3675	return (EINVAL);
3676}
3677
3678/**
3679 * @brief Helper function for implementing BUS_BIND_INTR().
3680 *
3681 * This simple implementation of BUS_BIND_INTR() simply calls the
3682 * BUS_BIND_INTR() method of the parent of @p dev.
3683 */
3684int
3685bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3686    int cpu)
3687{
3688
3689	/* Propagate up the bus hierarchy until someone handles it. */
3690	if (dev->parent)
3691		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3692	return (EINVAL);
3693}
3694
3695/**
3696 * @brief Helper function for implementing BUS_CONFIG_INTR().
3697 *
3698 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3699 * BUS_CONFIG_INTR() method of the parent of @p dev.
3700 */
3701int
3702bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3703    enum intr_polarity pol)
3704{
3705
3706	/* Propagate up the bus hierarchy until someone handles it. */
3707	if (dev->parent)
3708		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3709	return (EINVAL);
3710}
3711
3712/**
3713 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3714 *
3715 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3716 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3717 */
3718int
3719bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3720    void *cookie, const char *descr)
3721{
3722
3723	/* Propagate up the bus hierarchy until someone handles it. */
3724	if (dev->parent)
3725		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3726		    descr));
3727	return (EINVAL);
3728}
3729
3730/**
3731 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3732 *
3733 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3734 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3735 */
3736bus_dma_tag_t
3737bus_generic_get_dma_tag(device_t dev, device_t child)
3738{
3739
3740	/* Propagate up the bus hierarchy until someone handles it. */
3741	if (dev->parent != NULL)
3742		return (BUS_GET_DMA_TAG(dev->parent, child));
3743	return (NULL);
3744}
3745
3746/**
3747 * @brief Helper function for implementing BUS_GET_RESOURCE().
3748 *
3749 * This implementation of BUS_GET_RESOURCE() uses the
3750 * resource_list_find() function to do most of the work. It calls
3751 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3752 * search.
3753 */
3754int
3755bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3756    u_long *startp, u_long *countp)
3757{
3758	struct resource_list *		rl = NULL;
3759	struct resource_list_entry *	rle = NULL;
3760
3761	rl = BUS_GET_RESOURCE_LIST(dev, child);
3762	if (!rl)
3763		return (EINVAL);
3764
3765	rle = resource_list_find(rl, type, rid);
3766	if (!rle)
3767		return (ENOENT);
3768
3769	if (startp)
3770		*startp = rle->start;
3771	if (countp)
3772		*countp = rle->count;
3773
3774	return (0);
3775}
3776
3777/**
3778 * @brief Helper function for implementing BUS_SET_RESOURCE().
3779 *
3780 * This implementation of BUS_SET_RESOURCE() uses the
3781 * resource_list_add() function to do most of the work. It calls
3782 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3783 * edit.
3784 */
3785int
3786bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3787    u_long start, u_long count)
3788{
3789	struct resource_list *		rl = NULL;
3790
3791	rl = BUS_GET_RESOURCE_LIST(dev, child);
3792	if (!rl)
3793		return (EINVAL);
3794
3795	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3796
3797	return (0);
3798}
3799
3800/**
3801 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3802 *
3803 * This implementation of BUS_DELETE_RESOURCE() uses the
3804 * resource_list_delete() function to do most of the work. It calls
3805 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3806 * edit.
3807 */
3808void
3809bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3810{
3811	struct resource_list *		rl = NULL;
3812
3813	rl = BUS_GET_RESOURCE_LIST(dev, child);
3814	if (!rl)
3815		return;
3816
3817	resource_list_delete(rl, type, rid);
3818
3819	return;
3820}
3821
3822/**
3823 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3824 *
3825 * This implementation of BUS_RELEASE_RESOURCE() uses the
3826 * resource_list_release() function to do most of the work. It calls
3827 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3828 */
3829int
3830bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3831    int rid, struct resource *r)
3832{
3833	struct resource_list *		rl = NULL;
3834
3835	if (device_get_parent(child) != dev)
3836		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3837		    type, rid, r));
3838
3839	rl = BUS_GET_RESOURCE_LIST(dev, child);
3840	if (!rl)
3841		return (EINVAL);
3842
3843	return (resource_list_release(rl, dev, child, type, rid, r));
3844}
3845
3846/**
3847 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3848 *
3849 * This implementation of BUS_ALLOC_RESOURCE() uses the
3850 * resource_list_alloc() function to do most of the work. It calls
3851 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3852 */
3853struct resource *
3854bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3855    int *rid, u_long start, u_long end, u_long count, u_int flags)
3856{
3857	struct resource_list *		rl = NULL;
3858
3859	if (device_get_parent(child) != dev)
3860		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3861		    type, rid, start, end, count, flags));
3862
3863	rl = BUS_GET_RESOURCE_LIST(dev, child);
3864	if (!rl)
3865		return (NULL);
3866
3867	return (resource_list_alloc(rl, dev, child, type, rid,
3868	    start, end, count, flags));
3869}
3870
3871/**
3872 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3873 *
3874 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3875 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3876 */
3877int
3878bus_generic_child_present(device_t dev, device_t child)
3879{
3880	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3881}
3882
3883/*
3884 * Some convenience functions to make it easier for drivers to use the
3885 * resource-management functions.  All these really do is hide the
3886 * indirection through the parent's method table, making for slightly
3887 * less-wordy code.  In the future, it might make sense for this code
3888 * to maintain some sort of a list of resources allocated by each device.
3889 */
3890
3891int
3892bus_alloc_resources(device_t dev, struct resource_spec *rs,
3893    struct resource **res)
3894{
3895	int i;
3896
3897	for (i = 0; rs[i].type != -1; i++)
3898		res[i] = NULL;
3899	for (i = 0; rs[i].type != -1; i++) {
3900		res[i] = bus_alloc_resource_any(dev,
3901		    rs[i].type, &rs[i].rid, rs[i].flags);
3902		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3903			bus_release_resources(dev, rs, res);
3904			return (ENXIO);
3905		}
3906	}
3907	return (0);
3908}
3909
3910void
3911bus_release_resources(device_t dev, const struct resource_spec *rs,
3912    struct resource **res)
3913{
3914	int i;
3915
3916	for (i = 0; rs[i].type != -1; i++)
3917		if (res[i] != NULL) {
3918			bus_release_resource(
3919			    dev, rs[i].type, rs[i].rid, res[i]);
3920			res[i] = NULL;
3921		}
3922}
3923
3924/**
3925 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3926 *
3927 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3928 * parent of @p dev.
3929 */
3930struct resource *
3931bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3932    u_long count, u_int flags)
3933{
3934	if (dev->parent == NULL)
3935		return (NULL);
3936	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3937	    count, flags));
3938}
3939
3940/**
3941 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3942 *
3943 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3944 * parent of @p dev.
3945 */
3946int
3947bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3948{
3949	if (dev->parent == NULL)
3950		return (EINVAL);
3951	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3952}
3953
3954/**
3955 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3956 *
3957 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3958 * parent of @p dev.
3959 */
3960int
3961bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3962{
3963	if (dev->parent == NULL)
3964		return (EINVAL);
3965	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3966}
3967
3968/**
3969 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3970 *
3971 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3972 * parent of @p dev.
3973 */
3974int
3975bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3976{
3977	if (dev->parent == NULL)
3978		return (EINVAL);
3979	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3980}
3981
3982/**
3983 * @brief Wrapper function for BUS_SETUP_INTR().
3984 *
3985 * This function simply calls the BUS_SETUP_INTR() method of the
3986 * parent of @p dev.
3987 */
3988int
3989bus_setup_intr(device_t dev, struct resource *r, int flags,
3990    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3991{
3992	int error;
3993
3994	if (dev->parent == NULL)
3995		return (EINVAL);
3996	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3997	    arg, cookiep);
3998	if (error != 0)
3999		return (error);
4000	if (handler != NULL && !(flags & INTR_MPSAFE))
4001		device_printf(dev, "[GIANT-LOCKED]\n");
4002	if (bootverbose && (flags & INTR_MPSAFE))
4003		device_printf(dev, "[MPSAFE]\n");
4004	if (filter != NULL) {
4005		if (handler == NULL)
4006			device_printf(dev, "[FILTER]\n");
4007		else
4008			device_printf(dev, "[FILTER+ITHREAD]\n");
4009	} else
4010		device_printf(dev, "[ITHREAD]\n");
4011	return (0);
4012}
4013
4014/**
4015 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4016 *
4017 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4018 * parent of @p dev.
4019 */
4020int
4021bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4022{
4023	if (dev->parent == NULL)
4024		return (EINVAL);
4025	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4026}
4027
4028/**
4029 * @brief Wrapper function for BUS_BIND_INTR().
4030 *
4031 * This function simply calls the BUS_BIND_INTR() method of the
4032 * parent of @p dev.
4033 */
4034int
4035bus_bind_intr(device_t dev, struct resource *r, int cpu)
4036{
4037	if (dev->parent == NULL)
4038		return (EINVAL);
4039	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4040}
4041
4042/**
4043 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4044 *
4045 * This function first formats the requested description into a
4046 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4047 * the parent of @p dev.
4048 */
4049int
4050bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4051    const char *fmt, ...)
4052{
4053	va_list ap;
4054	char descr[MAXCOMLEN + 1];
4055
4056	if (dev->parent == NULL)
4057		return (EINVAL);
4058	va_start(ap, fmt);
4059	vsnprintf(descr, sizeof(descr), fmt, ap);
4060	va_end(ap);
4061	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4062}
4063
4064/**
4065 * @brief Wrapper function for BUS_SET_RESOURCE().
4066 *
4067 * This function simply calls the BUS_SET_RESOURCE() method of the
4068 * parent of @p dev.
4069 */
4070int
4071bus_set_resource(device_t dev, int type, int rid,
4072    u_long start, u_long count)
4073{
4074	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4075	    start, count));
4076}
4077
4078/**
4079 * @brief Wrapper function for BUS_GET_RESOURCE().
4080 *
4081 * This function simply calls the BUS_GET_RESOURCE() method of the
4082 * parent of @p dev.
4083 */
4084int
4085bus_get_resource(device_t dev, int type, int rid,
4086    u_long *startp, u_long *countp)
4087{
4088	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4089	    startp, countp));
4090}
4091
4092/**
4093 * @brief Wrapper function for BUS_GET_RESOURCE().
4094 *
4095 * This function simply calls the BUS_GET_RESOURCE() method of the
4096 * parent of @p dev and returns the start value.
4097 */
4098u_long
4099bus_get_resource_start(device_t dev, int type, int rid)
4100{
4101	u_long start, count;
4102	int error;
4103
4104	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4105	    &start, &count);
4106	if (error)
4107		return (0);
4108	return (start);
4109}
4110
4111/**
4112 * @brief Wrapper function for BUS_GET_RESOURCE().
4113 *
4114 * This function simply calls the BUS_GET_RESOURCE() method of the
4115 * parent of @p dev and returns the count value.
4116 */
4117u_long
4118bus_get_resource_count(device_t dev, int type, int rid)
4119{
4120	u_long start, count;
4121	int error;
4122
4123	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4124	    &start, &count);
4125	if (error)
4126		return (0);
4127	return (count);
4128}
4129
4130/**
4131 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4132 *
4133 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4134 * parent of @p dev.
4135 */
4136void
4137bus_delete_resource(device_t dev, int type, int rid)
4138{
4139	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4140}
4141
4142/**
4143 * @brief Wrapper function for BUS_CHILD_PRESENT().
4144 *
4145 * This function simply calls the BUS_CHILD_PRESENT() method of the
4146 * parent of @p dev.
4147 */
4148int
4149bus_child_present(device_t child)
4150{
4151	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4152}
4153
4154/**
4155 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4156 *
4157 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4158 * parent of @p dev.
4159 */
4160int
4161bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4162{
4163	device_t parent;
4164
4165	parent = device_get_parent(child);
4166	if (parent == NULL) {
4167		*buf = '\0';
4168		return (0);
4169	}
4170	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4171}
4172
4173/**
4174 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4175 *
4176 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4177 * parent of @p dev.
4178 */
4179int
4180bus_child_location_str(device_t child, char *buf, size_t buflen)
4181{
4182	device_t parent;
4183
4184	parent = device_get_parent(child);
4185	if (parent == NULL) {
4186		*buf = '\0';
4187		return (0);
4188	}
4189	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4190}
4191
4192/**
4193 * @brief Wrapper function for BUS_GET_DMA_TAG().
4194 *
4195 * This function simply calls the BUS_GET_DMA_TAG() method of the
4196 * parent of @p dev.
4197 */
4198bus_dma_tag_t
4199bus_get_dma_tag(device_t dev)
4200{
4201	device_t parent;
4202
4203	parent = device_get_parent(dev);
4204	if (parent == NULL)
4205		return (NULL);
4206	return (BUS_GET_DMA_TAG(parent, dev));
4207}
4208
4209/* Resume all devices and then notify userland that we're up again. */
4210static int
4211root_resume(device_t dev)
4212{
4213	int error;
4214
4215	error = bus_generic_resume(dev);
4216	if (error == 0)
4217		devctl_notify("kern", "power", "resume", NULL);
4218	return (error);
4219}
4220
4221static int
4222root_print_child(device_t dev, device_t child)
4223{
4224	int	retval = 0;
4225
4226	retval += bus_print_child_header(dev, child);
4227	retval += printf("\n");
4228
4229	return (retval);
4230}
4231
4232static int
4233root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4234    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4235{
4236	/*
4237	 * If an interrupt mapping gets to here something bad has happened.
4238	 */
4239	panic("root_setup_intr");
4240}
4241
4242/*
4243 * If we get here, assume that the device is permanant and really is
4244 * present in the system.  Removable bus drivers are expected to intercept
4245 * this call long before it gets here.  We return -1 so that drivers that
4246 * really care can check vs -1 or some ERRNO returned higher in the food
4247 * chain.
4248 */
4249static int
4250root_child_present(device_t dev, device_t child)
4251{
4252	return (-1);
4253}
4254
4255static kobj_method_t root_methods[] = {
4256	/* Device interface */
4257	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4258	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4259	KOBJMETHOD(device_resume,	root_resume),
4260
4261	/* Bus interface */
4262	KOBJMETHOD(bus_print_child,	root_print_child),
4263	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4264	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4265	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4266	KOBJMETHOD(bus_child_present,	root_child_present),
4267
4268	KOBJMETHOD_END
4269};
4270
4271static driver_t root_driver = {
4272	"root",
4273	root_methods,
4274	1,			/* no softc */
4275};
4276
4277device_t	root_bus;
4278devclass_t	root_devclass;
4279
4280static int
4281root_bus_module_handler(module_t mod, int what, void* arg)
4282{
4283	switch (what) {
4284	case MOD_LOAD:
4285		TAILQ_INIT(&bus_data_devices);
4286		kobj_class_compile((kobj_class_t) &root_driver);
4287		root_bus = make_device(NULL, "root", 0);
4288		root_bus->desc = "System root bus";
4289		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4290		root_bus->driver = &root_driver;
4291		root_bus->state = DS_ATTACHED;
4292		root_devclass = devclass_find_internal("root", NULL, FALSE);
4293		devinit();
4294		return (0);
4295
4296	case MOD_SHUTDOWN:
4297		device_shutdown(root_bus);
4298		return (0);
4299	default:
4300		return (EOPNOTSUPP);
4301	}
4302
4303	return (0);
4304}
4305
4306static moduledata_t root_bus_mod = {
4307	"rootbus",
4308	root_bus_module_handler,
4309	NULL
4310};
4311DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4312
4313/**
4314 * @brief Automatically configure devices
4315 *
4316 * This function begins the autoconfiguration process by calling
4317 * device_probe_and_attach() for each child of the @c root0 device.
4318 */
4319void
4320root_bus_configure(void)
4321{
4322
4323	PDEBUG(("."));
4324
4325	/* Eventually this will be split up, but this is sufficient for now. */
4326	bus_set_pass(BUS_PASS_DEFAULT);
4327}
4328
4329/**
4330 * @brief Module handler for registering device drivers
4331 *
4332 * This module handler is used to automatically register device
4333 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4334 * devclass_add_driver() for the driver described by the
4335 * driver_module_data structure pointed to by @p arg
4336 */
4337int
4338driver_module_handler(module_t mod, int what, void *arg)
4339{
4340	struct driver_module_data *dmd;
4341	devclass_t bus_devclass;
4342	kobj_class_t driver;
4343	int error, pass;
4344
4345	dmd = (struct driver_module_data *)arg;
4346	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4347	error = 0;
4348
4349	switch (what) {
4350	case MOD_LOAD:
4351		if (dmd->dmd_chainevh)
4352			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4353
4354		pass = dmd->dmd_pass;
4355		driver = dmd->dmd_driver;
4356		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4357		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4358		error = devclass_add_driver(bus_devclass, driver, pass,
4359		    dmd->dmd_devclass);
4360		break;
4361
4362	case MOD_UNLOAD:
4363		PDEBUG(("Unloading module: driver %s from bus %s",
4364		    DRIVERNAME(dmd->dmd_driver),
4365		    dmd->dmd_busname));
4366		error = devclass_delete_driver(bus_devclass,
4367		    dmd->dmd_driver);
4368
4369		if (!error && dmd->dmd_chainevh)
4370			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4371		break;
4372	case MOD_QUIESCE:
4373		PDEBUG(("Quiesce module: driver %s from bus %s",
4374		    DRIVERNAME(dmd->dmd_driver),
4375		    dmd->dmd_busname));
4376		error = devclass_quiesce_driver(bus_devclass,
4377		    dmd->dmd_driver);
4378
4379		if (!error && dmd->dmd_chainevh)
4380			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4381		break;
4382	default:
4383		error = EOPNOTSUPP;
4384		break;
4385	}
4386
4387	return (error);
4388}
4389
4390/**
4391 * @brief Enumerate all hinted devices for this bus.
4392 *
4393 * Walks through the hints for this bus and calls the bus_hinted_child
4394 * routine for each one it fines.  It searches first for the specific
4395 * bus that's being probed for hinted children (eg isa0), and then for
4396 * generic children (eg isa).
4397 *
4398 * @param	dev	bus device to enumerate
4399 */
4400void
4401bus_enumerate_hinted_children(device_t bus)
4402{
4403	int i;
4404	const char *dname, *busname;
4405	int dunit;
4406
4407	/*
4408	 * enumerate all devices on the specific bus
4409	 */
4410	busname = device_get_nameunit(bus);
4411	i = 0;
4412	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4413		BUS_HINTED_CHILD(bus, dname, dunit);
4414
4415	/*
4416	 * and all the generic ones.
4417	 */
4418	busname = device_get_name(bus);
4419	i = 0;
4420	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4421		BUS_HINTED_CHILD(bus, dname, dunit);
4422}
4423
4424#ifdef BUS_DEBUG
4425
4426/* the _short versions avoid iteration by not calling anything that prints
4427 * more than oneliners. I love oneliners.
4428 */
4429
4430static void
4431print_device_short(device_t dev, int indent)
4432{
4433	if (!dev)
4434		return;
4435
4436	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4437	    dev->unit, dev->desc,
4438	    (dev->parent? "":"no "),
4439	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4440	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4441	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4442	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4443	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4444	    (dev->flags&DF_REBID? "rebiddable,":""),
4445	    (dev->ivars? "":"no "),
4446	    (dev->softc? "":"no "),
4447	    dev->busy));
4448}
4449
4450static void
4451print_device(device_t dev, int indent)
4452{
4453	if (!dev)
4454		return;
4455
4456	print_device_short(dev, indent);
4457
4458	indentprintf(("Parent:\n"));
4459	print_device_short(dev->parent, indent+1);
4460	indentprintf(("Driver:\n"));
4461	print_driver_short(dev->driver, indent+1);
4462	indentprintf(("Devclass:\n"));
4463	print_devclass_short(dev->devclass, indent+1);
4464}
4465
4466void
4467print_device_tree_short(device_t dev, int indent)
4468/* print the device and all its children (indented) */
4469{
4470	device_t child;
4471
4472	if (!dev)
4473		return;
4474
4475	print_device_short(dev, indent);
4476
4477	TAILQ_FOREACH(child, &dev->children, link) {
4478		print_device_tree_short(child, indent+1);
4479	}
4480}
4481
4482void
4483print_device_tree(device_t dev, int indent)
4484/* print the device and all its children (indented) */
4485{
4486	device_t child;
4487
4488	if (!dev)
4489		return;
4490
4491	print_device(dev, indent);
4492
4493	TAILQ_FOREACH(child, &dev->children, link) {
4494		print_device_tree(child, indent+1);
4495	}
4496}
4497
4498static void
4499print_driver_short(driver_t *driver, int indent)
4500{
4501	if (!driver)
4502		return;
4503
4504	indentprintf(("driver %s: softc size = %zd\n",
4505	    driver->name, driver->size));
4506}
4507
4508static void
4509print_driver(driver_t *driver, int indent)
4510{
4511	if (!driver)
4512		return;
4513
4514	print_driver_short(driver, indent);
4515}
4516
4517
4518static void
4519print_driver_list(driver_list_t drivers, int indent)
4520{
4521	driverlink_t driver;
4522
4523	TAILQ_FOREACH(driver, &drivers, link) {
4524		print_driver(driver->driver, indent);
4525	}
4526}
4527
4528static void
4529print_devclass_short(devclass_t dc, int indent)
4530{
4531	if ( !dc )
4532		return;
4533
4534	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4535}
4536
4537static void
4538print_devclass(devclass_t dc, int indent)
4539{
4540	int i;
4541
4542	if ( !dc )
4543		return;
4544
4545	print_devclass_short(dc, indent);
4546	indentprintf(("Drivers:\n"));
4547	print_driver_list(dc->drivers, indent+1);
4548
4549	indentprintf(("Devices:\n"));
4550	for (i = 0; i < dc->maxunit; i++)
4551		if (dc->devices[i])
4552			print_device(dc->devices[i], indent+1);
4553}
4554
4555void
4556print_devclass_list_short(void)
4557{
4558	devclass_t dc;
4559
4560	printf("Short listing of devclasses, drivers & devices:\n");
4561	TAILQ_FOREACH(dc, &devclasses, link) {
4562		print_devclass_short(dc, 0);
4563	}
4564}
4565
4566void
4567print_devclass_list(void)
4568{
4569	devclass_t dc;
4570
4571	printf("Full listing of devclasses, drivers & devices:\n");
4572	TAILQ_FOREACH(dc, &devclasses, link) {
4573		print_devclass(dc, 0);
4574	}
4575}
4576
4577#endif
4578
4579/*
4580 * User-space access to the device tree.
4581 *
4582 * We implement a small set of nodes:
4583 *
4584 * hw.bus			Single integer read method to obtain the
4585 *				current generation count.
4586 * hw.bus.devices		Reads the entire device tree in flat space.
4587 * hw.bus.rman			Resource manager interface
4588 *
4589 * We might like to add the ability to scan devclasses and/or drivers to
4590 * determine what else is currently loaded/available.
4591 */
4592
4593static int
4594sysctl_bus(SYSCTL_HANDLER_ARGS)
4595{
4596	struct u_businfo	ubus;
4597
4598	ubus.ub_version = BUS_USER_VERSION;
4599	ubus.ub_generation = bus_data_generation;
4600
4601	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4602}
4603SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4604    "bus-related data");
4605
4606static int
4607sysctl_devices(SYSCTL_HANDLER_ARGS)
4608{
4609	int			*name = (int *)arg1;
4610	u_int			namelen = arg2;
4611	int			index;
4612	struct device		*dev;
4613	struct u_device		udev;	/* XXX this is a bit big */
4614	int			error;
4615
4616	if (namelen != 2)
4617		return (EINVAL);
4618
4619	if (bus_data_generation_check(name[0]))
4620		return (EINVAL);
4621
4622	index = name[1];
4623
4624	/*
4625	 * Scan the list of devices, looking for the requested index.
4626	 */
4627	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4628		if (index-- == 0)
4629			break;
4630	}
4631	if (dev == NULL)
4632		return (ENOENT);
4633
4634	/*
4635	 * Populate the return array.
4636	 */
4637	bzero(&udev, sizeof(udev));
4638	udev.dv_handle = (uintptr_t)dev;
4639	udev.dv_parent = (uintptr_t)dev->parent;
4640	if (dev->nameunit != NULL)
4641		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4642	if (dev->desc != NULL)
4643		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4644	if (dev->driver != NULL && dev->driver->name != NULL)
4645		strlcpy(udev.dv_drivername, dev->driver->name,
4646		    sizeof(udev.dv_drivername));
4647	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4648	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4649	udev.dv_devflags = dev->devflags;
4650	udev.dv_flags = dev->flags;
4651	udev.dv_state = dev->state;
4652	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4653	return (error);
4654}
4655
4656SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4657    "system device tree");
4658
4659int
4660bus_data_generation_check(int generation)
4661{
4662	if (generation != bus_data_generation)
4663		return (1);
4664
4665	/* XXX generate optimised lists here? */
4666	return (0);
4667}
4668
4669void
4670bus_data_generation_update(void)
4671{
4672	bus_data_generation++;
4673}
4674
4675int
4676bus_free_resource(device_t dev, int type, struct resource *r)
4677{
4678	if (r == NULL)
4679		return (0);
4680	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4681}
4682