subr_bus.c revision 208898
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 208898 2010-06-07 18:47:53Z mav $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/limits.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54#include <sys/interrupt.h>
55
56#include <machine/stdarg.h>
57
58#include <vm/uma.h>
59
60SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
61SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
62
63/*
64 * Used to attach drivers to devclasses.
65 */
66typedef struct driverlink *driverlink_t;
67struct driverlink {
68	kobj_class_t	driver;
69	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
70	int		pass;
71	TAILQ_ENTRY(driverlink) passlink;
72};
73
74/*
75 * Forward declarations
76 */
77typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
78typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
79typedef TAILQ_HEAD(device_list, device) device_list_t;
80
81struct devclass {
82	TAILQ_ENTRY(devclass) link;
83	devclass_t	parent;		/* parent in devclass hierarchy */
84	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
85	char		*name;
86	device_t	*devices;	/* array of devices indexed by unit */
87	int		maxunit;	/* size of devices array */
88	int		flags;
89#define DC_HAS_CHILDREN		1
90
91	struct sysctl_ctx_list sysctl_ctx;
92	struct sysctl_oid *sysctl_tree;
93};
94
95/**
96 * @brief Implementation of device.
97 */
98struct device {
99	/*
100	 * A device is a kernel object. The first field must be the
101	 * current ops table for the object.
102	 */
103	KOBJ_FIELDS;
104
105	/*
106	 * Device hierarchy.
107	 */
108	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
109	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
110	device_t	parent;		/**< parent of this device  */
111	device_list_t	children;	/**< list of child devices */
112
113	/*
114	 * Details of this device.
115	 */
116	driver_t	*driver;	/**< current driver */
117	devclass_t	devclass;	/**< current device class */
118	int		unit;		/**< current unit number */
119	char*		nameunit;	/**< name+unit e.g. foodev0 */
120	char*		desc;		/**< driver specific description */
121	int		busy;		/**< count of calls to device_busy() */
122	device_state_t	state;		/**< current device state  */
123	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
124	u_short		flags;		/**< internal device flags  */
125#define	DF_ENABLED	1		/* device should be probed/attached */
126#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
127#define	DF_WILDCARD	4		/* unit was originally wildcard */
128#define	DF_DESCMALLOCED	8		/* description was malloced */
129#define	DF_QUIET	16		/* don't print verbose attach message */
130#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
131#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
132#define	DF_REBID	128		/* Can rebid after attach */
133	u_char	order;			/**< order from device_add_child_ordered() */
134	u_char	pad;
135	void	*ivars;			/**< instance variables  */
136	void	*softc;			/**< current driver's variables  */
137
138	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
139	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
140};
141
142static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
143static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
144
145#ifdef BUS_DEBUG
146
147static int bus_debug = 1;
148TUNABLE_INT("bus.debug", &bus_debug);
149SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
150    "Debug bus code");
151
152#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
153#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
154#define DRIVERNAME(d)	((d)? d->name : "no driver")
155#define DEVCLANAME(d)	((d)? d->name : "no devclass")
156
157/**
158 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
159 * prevent syslog from deleting initial spaces
160 */
161#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
162
163static void print_device_short(device_t dev, int indent);
164static void print_device(device_t dev, int indent);
165void print_device_tree_short(device_t dev, int indent);
166void print_device_tree(device_t dev, int indent);
167static void print_driver_short(driver_t *driver, int indent);
168static void print_driver(driver_t *driver, int indent);
169static void print_driver_list(driver_list_t drivers, int indent);
170static void print_devclass_short(devclass_t dc, int indent);
171static void print_devclass(devclass_t dc, int indent);
172void print_devclass_list_short(void);
173void print_devclass_list(void);
174
175#else
176/* Make the compiler ignore the function calls */
177#define PDEBUG(a)			/* nop */
178#define DEVICENAME(d)			/* nop */
179#define DRIVERNAME(d)			/* nop */
180#define DEVCLANAME(d)			/* nop */
181
182#define print_device_short(d,i)		/* nop */
183#define print_device(d,i)		/* nop */
184#define print_device_tree_short(d,i)	/* nop */
185#define print_device_tree(d,i)		/* nop */
186#define print_driver_short(d,i)		/* nop */
187#define print_driver(d,i)		/* nop */
188#define print_driver_list(d,i)		/* nop */
189#define print_devclass_short(d,i)	/* nop */
190#define print_devclass(d,i)		/* nop */
191#define print_devclass_list_short()	/* nop */
192#define print_devclass_list()		/* nop */
193#endif
194
195/*
196 * dev sysctl tree
197 */
198
199enum {
200	DEVCLASS_SYSCTL_PARENT,
201};
202
203static int
204devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
205{
206	devclass_t dc = (devclass_t)arg1;
207	const char *value;
208
209	switch (arg2) {
210	case DEVCLASS_SYSCTL_PARENT:
211		value = dc->parent ? dc->parent->name : "";
212		break;
213	default:
214		return (EINVAL);
215	}
216	return (SYSCTL_OUT(req, value, strlen(value)));
217}
218
219static void
220devclass_sysctl_init(devclass_t dc)
221{
222
223	if (dc->sysctl_tree != NULL)
224		return;
225	sysctl_ctx_init(&dc->sysctl_ctx);
226	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
227	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
228	    CTLFLAG_RD, NULL, "");
229	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
230	    OID_AUTO, "%parent", CTLFLAG_RD,
231	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
232	    "parent class");
233}
234
235enum {
236	DEVICE_SYSCTL_DESC,
237	DEVICE_SYSCTL_DRIVER,
238	DEVICE_SYSCTL_LOCATION,
239	DEVICE_SYSCTL_PNPINFO,
240	DEVICE_SYSCTL_PARENT,
241};
242
243static int
244device_sysctl_handler(SYSCTL_HANDLER_ARGS)
245{
246	device_t dev = (device_t)arg1;
247	const char *value;
248	char *buf;
249	int error;
250
251	buf = NULL;
252	switch (arg2) {
253	case DEVICE_SYSCTL_DESC:
254		value = dev->desc ? dev->desc : "";
255		break;
256	case DEVICE_SYSCTL_DRIVER:
257		value = dev->driver ? dev->driver->name : "";
258		break;
259	case DEVICE_SYSCTL_LOCATION:
260		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
261		bus_child_location_str(dev, buf, 1024);
262		break;
263	case DEVICE_SYSCTL_PNPINFO:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_pnpinfo_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PARENT:
268		value = dev->parent ? dev->parent->nameunit : "";
269		break;
270	default:
271		return (EINVAL);
272	}
273	error = SYSCTL_OUT(req, value, strlen(value));
274	if (buf != NULL)
275		free(buf, M_BUS);
276	return (error);
277}
278
279static void
280device_sysctl_init(device_t dev)
281{
282	devclass_t dc = dev->devclass;
283
284	if (dev->sysctl_tree != NULL)
285		return;
286	devclass_sysctl_init(dc);
287	sysctl_ctx_init(&dev->sysctl_ctx);
288	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
289	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
290	    dev->nameunit + strlen(dc->name),
291	    CTLFLAG_RD, NULL, "");
292	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
293	    OID_AUTO, "%desc", CTLFLAG_RD,
294	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
295	    "device description");
296	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297	    OID_AUTO, "%driver", CTLFLAG_RD,
298	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
299	    "device driver name");
300	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301	    OID_AUTO, "%location", CTLFLAG_RD,
302	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
303	    "device location relative to parent");
304	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
306	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
307	    "device identification");
308	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309	    OID_AUTO, "%parent", CTLFLAG_RD,
310	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
311	    "parent device");
312}
313
314static void
315device_sysctl_update(device_t dev)
316{
317	devclass_t dc = dev->devclass;
318
319	if (dev->sysctl_tree == NULL)
320		return;
321	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
322}
323
324static void
325device_sysctl_fini(device_t dev)
326{
327	if (dev->sysctl_tree == NULL)
328		return;
329	sysctl_ctx_free(&dev->sysctl_ctx);
330	dev->sysctl_tree = NULL;
331}
332
333/*
334 * /dev/devctl implementation
335 */
336
337/*
338 * This design allows only one reader for /dev/devctl.  This is not desirable
339 * in the long run, but will get a lot of hair out of this implementation.
340 * Maybe we should make this device a clonable device.
341 *
342 * Also note: we specifically do not attach a device to the device_t tree
343 * to avoid potential chicken and egg problems.  One could argue that all
344 * of this belongs to the root node.  One could also further argue that the
345 * sysctl interface that we have not might more properly be an ioctl
346 * interface, but at this stage of the game, I'm not inclined to rock that
347 * boat.
348 *
349 * I'm also not sure that the SIGIO support is done correctly or not, as
350 * I copied it from a driver that had SIGIO support that likely hasn't been
351 * tested since 3.4 or 2.2.8!
352 */
353
354/* Deprecated way to adjust queue length */
355static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
356/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
357SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
358    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
359
360#define DEVCTL_DEFAULT_QUEUE_LEN 1000
361static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
362static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
363TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
364SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
365    0, sysctl_devctl_queue, "I", "devctl queue length");
366
367static d_open_t		devopen;
368static d_close_t	devclose;
369static d_read_t		devread;
370static d_ioctl_t	devioctl;
371static d_poll_t		devpoll;
372
373static struct cdevsw dev_cdevsw = {
374	.d_version =	D_VERSION,
375	.d_flags =	D_NEEDGIANT,
376	.d_open =	devopen,
377	.d_close =	devclose,
378	.d_read =	devread,
379	.d_ioctl =	devioctl,
380	.d_poll =	devpoll,
381	.d_name =	"devctl",
382};
383
384struct dev_event_info
385{
386	char *dei_data;
387	TAILQ_ENTRY(dev_event_info) dei_link;
388};
389
390TAILQ_HEAD(devq, dev_event_info);
391
392static struct dev_softc
393{
394	int	inuse;
395	int	nonblock;
396	int	queued;
397	struct mtx mtx;
398	struct cv cv;
399	struct selinfo sel;
400	struct devq devq;
401	struct proc *async_proc;
402} devsoftc;
403
404static struct cdev *devctl_dev;
405
406static void
407devinit(void)
408{
409	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
410	    "devctl");
411	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
412	cv_init(&devsoftc.cv, "dev cv");
413	TAILQ_INIT(&devsoftc.devq);
414}
415
416static int
417devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
418{
419	if (devsoftc.inuse)
420		return (EBUSY);
421	/* move to init */
422	devsoftc.inuse = 1;
423	devsoftc.nonblock = 0;
424	devsoftc.async_proc = NULL;
425	return (0);
426}
427
428static int
429devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
430{
431	devsoftc.inuse = 0;
432	mtx_lock(&devsoftc.mtx);
433	cv_broadcast(&devsoftc.cv);
434	mtx_unlock(&devsoftc.mtx);
435	devsoftc.async_proc = NULL;
436	return (0);
437}
438
439/*
440 * The read channel for this device is used to report changes to
441 * userland in realtime.  We are required to free the data as well as
442 * the n1 object because we allocate them separately.  Also note that
443 * we return one record at a time.  If you try to read this device a
444 * character at a time, you will lose the rest of the data.  Listening
445 * programs are expected to cope.
446 */
447static int
448devread(struct cdev *dev, struct uio *uio, int ioflag)
449{
450	struct dev_event_info *n1;
451	int rv;
452
453	mtx_lock(&devsoftc.mtx);
454	while (TAILQ_EMPTY(&devsoftc.devq)) {
455		if (devsoftc.nonblock) {
456			mtx_unlock(&devsoftc.mtx);
457			return (EAGAIN);
458		}
459		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
460		if (rv) {
461			/*
462			 * Need to translate ERESTART to EINTR here? -- jake
463			 */
464			mtx_unlock(&devsoftc.mtx);
465			return (rv);
466		}
467	}
468	n1 = TAILQ_FIRST(&devsoftc.devq);
469	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
470	devsoftc.queued--;
471	mtx_unlock(&devsoftc.mtx);
472	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
473	free(n1->dei_data, M_BUS);
474	free(n1, M_BUS);
475	return (rv);
476}
477
478static	int
479devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
480{
481	switch (cmd) {
482
483	case FIONBIO:
484		if (*(int*)data)
485			devsoftc.nonblock = 1;
486		else
487			devsoftc.nonblock = 0;
488		return (0);
489	case FIOASYNC:
490		if (*(int*)data)
491			devsoftc.async_proc = td->td_proc;
492		else
493			devsoftc.async_proc = NULL;
494		return (0);
495
496		/* (un)Support for other fcntl() calls. */
497	case FIOCLEX:
498	case FIONCLEX:
499	case FIONREAD:
500	case FIOSETOWN:
501	case FIOGETOWN:
502	default:
503		break;
504	}
505	return (ENOTTY);
506}
507
508static	int
509devpoll(struct cdev *dev, int events, struct thread *td)
510{
511	int	revents = 0;
512
513	mtx_lock(&devsoftc.mtx);
514	if (events & (POLLIN | POLLRDNORM)) {
515		if (!TAILQ_EMPTY(&devsoftc.devq))
516			revents = events & (POLLIN | POLLRDNORM);
517		else
518			selrecord(td, &devsoftc.sel);
519	}
520	mtx_unlock(&devsoftc.mtx);
521
522	return (revents);
523}
524
525/**
526 * @brief Return whether the userland process is running
527 */
528boolean_t
529devctl_process_running(void)
530{
531	return (devsoftc.inuse == 1);
532}
533
534/**
535 * @brief Queue data to be read from the devctl device
536 *
537 * Generic interface to queue data to the devctl device.  It is
538 * assumed that @p data is properly formatted.  It is further assumed
539 * that @p data is allocated using the M_BUS malloc type.
540 */
541void
542devctl_queue_data(char *data)
543{
544	struct dev_event_info *n1 = NULL, *n2 = NULL;
545	struct proc *p;
546
547	if (strlen(data) == 0)
548		goto out;
549	if (devctl_queue_length == 0)
550		goto out;
551	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
552	if (n1 == NULL)
553		goto out;
554	n1->dei_data = data;
555	mtx_lock(&devsoftc.mtx);
556	if (devctl_queue_length == 0) {
557		mtx_unlock(&devsoftc.mtx);
558		free(n1->dei_data, M_BUS);
559		free(n1, M_BUS);
560		return;
561	}
562	/* Leave at least one spot in the queue... */
563	while (devsoftc.queued > devctl_queue_length - 1) {
564		n2 = TAILQ_FIRST(&devsoftc.devq);
565		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
566		free(n2->dei_data, M_BUS);
567		free(n2, M_BUS);
568		devsoftc.queued--;
569	}
570	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
571	devsoftc.queued++;
572	cv_broadcast(&devsoftc.cv);
573	mtx_unlock(&devsoftc.mtx);
574	selwakeup(&devsoftc.sel);
575	p = devsoftc.async_proc;
576	if (p != NULL) {
577		PROC_LOCK(p);
578		psignal(p, SIGIO);
579		PROC_UNLOCK(p);
580	}
581	return;
582out:
583	/*
584	 * We have to free data on all error paths since the caller
585	 * assumes it will be free'd when this item is dequeued.
586	 */
587	free(data, M_BUS);
588	return;
589}
590
591/**
592 * @brief Send a 'notification' to userland, using standard ways
593 */
594void
595devctl_notify(const char *system, const char *subsystem, const char *type,
596    const char *data)
597{
598	int len = 0;
599	char *msg;
600
601	if (system == NULL)
602		return;		/* BOGUS!  Must specify system. */
603	if (subsystem == NULL)
604		return;		/* BOGUS!  Must specify subsystem. */
605	if (type == NULL)
606		return;		/* BOGUS!  Must specify type. */
607	len += strlen(" system=") + strlen(system);
608	len += strlen(" subsystem=") + strlen(subsystem);
609	len += strlen(" type=") + strlen(type);
610	/* add in the data message plus newline. */
611	if (data != NULL)
612		len += strlen(data);
613	len += 3;	/* '!', '\n', and NUL */
614	msg = malloc(len, M_BUS, M_NOWAIT);
615	if (msg == NULL)
616		return;		/* Drop it on the floor */
617	if (data != NULL)
618		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
619		    system, subsystem, type, data);
620	else
621		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
622		    system, subsystem, type);
623	devctl_queue_data(msg);
624}
625
626/*
627 * Common routine that tries to make sending messages as easy as possible.
628 * We allocate memory for the data, copy strings into that, but do not
629 * free it unless there's an error.  The dequeue part of the driver should
630 * free the data.  We don't send data when the device is disabled.  We do
631 * send data, even when we have no listeners, because we wish to avoid
632 * races relating to startup and restart of listening applications.
633 *
634 * devaddq is designed to string together the type of event, with the
635 * object of that event, plus the plug and play info and location info
636 * for that event.  This is likely most useful for devices, but less
637 * useful for other consumers of this interface.  Those should use
638 * the devctl_queue_data() interface instead.
639 */
640static void
641devaddq(const char *type, const char *what, device_t dev)
642{
643	char *data = NULL;
644	char *loc = NULL;
645	char *pnp = NULL;
646	const char *parstr;
647
648	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
649		return;
650	data = malloc(1024, M_BUS, M_NOWAIT);
651	if (data == NULL)
652		goto bad;
653
654	/* get the bus specific location of this device */
655	loc = malloc(1024, M_BUS, M_NOWAIT);
656	if (loc == NULL)
657		goto bad;
658	*loc = '\0';
659	bus_child_location_str(dev, loc, 1024);
660
661	/* Get the bus specific pnp info of this device */
662	pnp = malloc(1024, M_BUS, M_NOWAIT);
663	if (pnp == NULL)
664		goto bad;
665	*pnp = '\0';
666	bus_child_pnpinfo_str(dev, pnp, 1024);
667
668	/* Get the parent of this device, or / if high enough in the tree. */
669	if (device_get_parent(dev) == NULL)
670		parstr = ".";	/* Or '/' ? */
671	else
672		parstr = device_get_nameunit(device_get_parent(dev));
673	/* String it all together. */
674	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
675	  parstr);
676	free(loc, M_BUS);
677	free(pnp, M_BUS);
678	devctl_queue_data(data);
679	return;
680bad:
681	free(pnp, M_BUS);
682	free(loc, M_BUS);
683	free(data, M_BUS);
684	return;
685}
686
687/*
688 * A device was added to the tree.  We are called just after it successfully
689 * attaches (that is, probe and attach success for this device).  No call
690 * is made if a device is merely parented into the tree.  See devnomatch
691 * if probe fails.  If attach fails, no notification is sent (but maybe
692 * we should have a different message for this).
693 */
694static void
695devadded(device_t dev)
696{
697	char *pnp = NULL;
698	char *tmp = NULL;
699
700	pnp = malloc(1024, M_BUS, M_NOWAIT);
701	if (pnp == NULL)
702		goto fail;
703	tmp = malloc(1024, M_BUS, M_NOWAIT);
704	if (tmp == NULL)
705		goto fail;
706	*pnp = '\0';
707	bus_child_pnpinfo_str(dev, pnp, 1024);
708	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
709	devaddq("+", tmp, dev);
710fail:
711	if (pnp != NULL)
712		free(pnp, M_BUS);
713	if (tmp != NULL)
714		free(tmp, M_BUS);
715	return;
716}
717
718/*
719 * A device was removed from the tree.  We are called just before this
720 * happens.
721 */
722static void
723devremoved(device_t dev)
724{
725	char *pnp = NULL;
726	char *tmp = NULL;
727
728	pnp = malloc(1024, M_BUS, M_NOWAIT);
729	if (pnp == NULL)
730		goto fail;
731	tmp = malloc(1024, M_BUS, M_NOWAIT);
732	if (tmp == NULL)
733		goto fail;
734	*pnp = '\0';
735	bus_child_pnpinfo_str(dev, pnp, 1024);
736	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
737	devaddq("-", tmp, dev);
738fail:
739	if (pnp != NULL)
740		free(pnp, M_BUS);
741	if (tmp != NULL)
742		free(tmp, M_BUS);
743	return;
744}
745
746/*
747 * Called when there's no match for this device.  This is only called
748 * the first time that no match happens, so we don't keep getting this
749 * message.  Should that prove to be undesirable, we can change it.
750 * This is called when all drivers that can attach to a given bus
751 * decline to accept this device.  Other errors may not be detected.
752 */
753static void
754devnomatch(device_t dev)
755{
756	devaddq("?", "", dev);
757}
758
759static int
760sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
761{
762	struct dev_event_info *n1;
763	int dis, error;
764
765	dis = devctl_queue_length == 0;
766	error = sysctl_handle_int(oidp, &dis, 0, req);
767	if (error || !req->newptr)
768		return (error);
769	mtx_lock(&devsoftc.mtx);
770	if (dis) {
771		while (!TAILQ_EMPTY(&devsoftc.devq)) {
772			n1 = TAILQ_FIRST(&devsoftc.devq);
773			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
774			free(n1->dei_data, M_BUS);
775			free(n1, M_BUS);
776		}
777		devsoftc.queued = 0;
778		devctl_queue_length = 0;
779	} else {
780		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
781	}
782	mtx_unlock(&devsoftc.mtx);
783	return (0);
784}
785
786static int
787sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
788{
789	struct dev_event_info *n1;
790	int q, error;
791
792	q = devctl_queue_length;
793	error = sysctl_handle_int(oidp, &q, 0, req);
794	if (error || !req->newptr)
795		return (error);
796	if (q < 0)
797		return (EINVAL);
798	mtx_lock(&devsoftc.mtx);
799	devctl_queue_length = q;
800	while (devsoftc.queued > devctl_queue_length) {
801		n1 = TAILQ_FIRST(&devsoftc.devq);
802		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
803		free(n1->dei_data, M_BUS);
804		free(n1, M_BUS);
805		devsoftc.queued--;
806	}
807	mtx_unlock(&devsoftc.mtx);
808	return (0);
809}
810
811/* End of /dev/devctl code */
812
813static TAILQ_HEAD(,device)	bus_data_devices;
814static int bus_data_generation = 1;
815
816static kobj_method_t null_methods[] = {
817	KOBJMETHOD_END
818};
819
820DEFINE_CLASS(null, null_methods, 0);
821
822/*
823 * Bus pass implementation
824 */
825
826static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
827int bus_current_pass = BUS_PASS_ROOT;
828
829/**
830 * @internal
831 * @brief Register the pass level of a new driver attachment
832 *
833 * Register a new driver attachment's pass level.  If no driver
834 * attachment with the same pass level has been added, then @p new
835 * will be added to the global passes list.
836 *
837 * @param new		the new driver attachment
838 */
839static void
840driver_register_pass(struct driverlink *new)
841{
842	struct driverlink *dl;
843
844	/* We only consider pass numbers during boot. */
845	if (bus_current_pass == BUS_PASS_DEFAULT)
846		return;
847
848	/*
849	 * Walk the passes list.  If we already know about this pass
850	 * then there is nothing to do.  If we don't, then insert this
851	 * driver link into the list.
852	 */
853	TAILQ_FOREACH(dl, &passes, passlink) {
854		if (dl->pass < new->pass)
855			continue;
856		if (dl->pass == new->pass)
857			return;
858		TAILQ_INSERT_BEFORE(dl, new, passlink);
859		return;
860	}
861	TAILQ_INSERT_TAIL(&passes, new, passlink);
862}
863
864/**
865 * @brief Raise the current bus pass
866 *
867 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
868 * method on the root bus to kick off a new device tree scan for each
869 * new pass level that has at least one driver.
870 */
871void
872bus_set_pass(int pass)
873{
874	struct driverlink *dl;
875
876	if (bus_current_pass > pass)
877		panic("Attempt to lower bus pass level");
878
879	TAILQ_FOREACH(dl, &passes, passlink) {
880		/* Skip pass values below the current pass level. */
881		if (dl->pass <= bus_current_pass)
882			continue;
883
884		/*
885		 * Bail once we hit a driver with a pass level that is
886		 * too high.
887		 */
888		if (dl->pass > pass)
889			break;
890
891		/*
892		 * Raise the pass level to the next level and rescan
893		 * the tree.
894		 */
895		bus_current_pass = dl->pass;
896		BUS_NEW_PASS(root_bus);
897	}
898
899	/*
900	 * If there isn't a driver registered for the requested pass,
901	 * then bus_current_pass might still be less than 'pass'.  Set
902	 * it to 'pass' in that case.
903	 */
904	if (bus_current_pass < pass)
905		bus_current_pass = pass;
906	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
907}
908
909/*
910 * Devclass implementation
911 */
912
913static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
914
915/**
916 * @internal
917 * @brief Find or create a device class
918 *
919 * If a device class with the name @p classname exists, return it,
920 * otherwise if @p create is non-zero create and return a new device
921 * class.
922 *
923 * If @p parentname is non-NULL, the parent of the devclass is set to
924 * the devclass of that name.
925 *
926 * @param classname	the devclass name to find or create
927 * @param parentname	the parent devclass name or @c NULL
928 * @param create	non-zero to create a devclass
929 */
930static devclass_t
931devclass_find_internal(const char *classname, const char *parentname,
932		       int create)
933{
934	devclass_t dc;
935
936	PDEBUG(("looking for %s", classname));
937	if (!classname)
938		return (NULL);
939
940	TAILQ_FOREACH(dc, &devclasses, link) {
941		if (!strcmp(dc->name, classname))
942			break;
943	}
944
945	if (create && !dc) {
946		PDEBUG(("creating %s", classname));
947		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
948		    M_BUS, M_NOWAIT | M_ZERO);
949		if (!dc)
950			return (NULL);
951		dc->parent = NULL;
952		dc->name = (char*) (dc + 1);
953		strcpy(dc->name, classname);
954		TAILQ_INIT(&dc->drivers);
955		TAILQ_INSERT_TAIL(&devclasses, dc, link);
956
957		bus_data_generation_update();
958	}
959
960	/*
961	 * If a parent class is specified, then set that as our parent so
962	 * that this devclass will support drivers for the parent class as
963	 * well.  If the parent class has the same name don't do this though
964	 * as it creates a cycle that can trigger an infinite loop in
965	 * device_probe_child() if a device exists for which there is no
966	 * suitable driver.
967	 */
968	if (parentname && dc && !dc->parent &&
969	    strcmp(classname, parentname) != 0) {
970		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
971		dc->parent->flags |= DC_HAS_CHILDREN;
972	}
973
974	return (dc);
975}
976
977/**
978 * @brief Create a device class
979 *
980 * If a device class with the name @p classname exists, return it,
981 * otherwise create and return a new device class.
982 *
983 * @param classname	the devclass name to find or create
984 */
985devclass_t
986devclass_create(const char *classname)
987{
988	return (devclass_find_internal(classname, NULL, TRUE));
989}
990
991/**
992 * @brief Find a device class
993 *
994 * If a device class with the name @p classname exists, return it,
995 * otherwise return @c NULL.
996 *
997 * @param classname	the devclass name to find
998 */
999devclass_t
1000devclass_find(const char *classname)
1001{
1002	return (devclass_find_internal(classname, NULL, FALSE));
1003}
1004
1005/**
1006 * @brief Register that a device driver has been added to a devclass
1007 *
1008 * Register that a device driver has been added to a devclass.  This
1009 * is called by devclass_add_driver to accomplish the recursive
1010 * notification of all the children classes of dc, as well as dc.
1011 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1012 * the devclass.  We do a full search here of the devclass list at
1013 * each iteration level to save storing children-lists in the devclass
1014 * structure.  If we ever move beyond a few dozen devices doing this,
1015 * we may need to reevaluate...
1016 *
1017 * @param dc		the devclass to edit
1018 * @param driver	the driver that was just added
1019 */
1020static void
1021devclass_driver_added(devclass_t dc, driver_t *driver)
1022{
1023	devclass_t parent;
1024	int i;
1025
1026	/*
1027	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1028	 */
1029	for (i = 0; i < dc->maxunit; i++)
1030		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1031			BUS_DRIVER_ADDED(dc->devices[i], driver);
1032
1033	/*
1034	 * Walk through the children classes.  Since we only keep a
1035	 * single parent pointer around, we walk the entire list of
1036	 * devclasses looking for children.  We set the
1037	 * DC_HAS_CHILDREN flag when a child devclass is created on
1038	 * the parent, so we only walk the list for those devclasses
1039	 * that have children.
1040	 */
1041	if (!(dc->flags & DC_HAS_CHILDREN))
1042		return;
1043	parent = dc;
1044	TAILQ_FOREACH(dc, &devclasses, link) {
1045		if (dc->parent == parent)
1046			devclass_driver_added(dc, driver);
1047	}
1048}
1049
1050/**
1051 * @brief Add a device driver to a device class
1052 *
1053 * Add a device driver to a devclass. This is normally called
1054 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1055 * all devices in the devclass will be called to allow them to attempt
1056 * to re-probe any unmatched children.
1057 *
1058 * @param dc		the devclass to edit
1059 * @param driver	the driver to register
1060 */
1061static int
1062devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1063{
1064	driverlink_t dl;
1065	const char *parentname;
1066
1067	PDEBUG(("%s", DRIVERNAME(driver)));
1068
1069	/* Don't allow invalid pass values. */
1070	if (pass <= BUS_PASS_ROOT)
1071		return (EINVAL);
1072
1073	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1074	if (!dl)
1075		return (ENOMEM);
1076
1077	/*
1078	 * Compile the driver's methods. Also increase the reference count
1079	 * so that the class doesn't get freed when the last instance
1080	 * goes. This means we can safely use static methods and avoids a
1081	 * double-free in devclass_delete_driver.
1082	 */
1083	kobj_class_compile((kobj_class_t) driver);
1084
1085	/*
1086	 * If the driver has any base classes, make the
1087	 * devclass inherit from the devclass of the driver's
1088	 * first base class. This will allow the system to
1089	 * search for drivers in both devclasses for children
1090	 * of a device using this driver.
1091	 */
1092	if (driver->baseclasses)
1093		parentname = driver->baseclasses[0]->name;
1094	else
1095		parentname = NULL;
1096	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1097
1098	dl->driver = driver;
1099	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1100	driver->refs++;		/* XXX: kobj_mtx */
1101	dl->pass = pass;
1102	driver_register_pass(dl);
1103
1104	devclass_driver_added(dc, driver);
1105	bus_data_generation_update();
1106	return (0);
1107}
1108
1109/**
1110 * @brief Delete a device driver from a device class
1111 *
1112 * Delete a device driver from a devclass. This is normally called
1113 * automatically by DRIVER_MODULE().
1114 *
1115 * If the driver is currently attached to any devices,
1116 * devclass_delete_driver() will first attempt to detach from each
1117 * device. If one of the detach calls fails, the driver will not be
1118 * deleted.
1119 *
1120 * @param dc		the devclass to edit
1121 * @param driver	the driver to unregister
1122 */
1123static int
1124devclass_delete_driver(devclass_t busclass, driver_t *driver)
1125{
1126	devclass_t dc = devclass_find(driver->name);
1127	driverlink_t dl;
1128	device_t dev;
1129	int i;
1130	int error;
1131
1132	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1133
1134	if (!dc)
1135		return (0);
1136
1137	/*
1138	 * Find the link structure in the bus' list of drivers.
1139	 */
1140	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1141		if (dl->driver == driver)
1142			break;
1143	}
1144
1145	if (!dl) {
1146		PDEBUG(("%s not found in %s list", driver->name,
1147		    busclass->name));
1148		return (ENOENT);
1149	}
1150
1151	/*
1152	 * Disassociate from any devices.  We iterate through all the
1153	 * devices in the devclass of the driver and detach any which are
1154	 * using the driver and which have a parent in the devclass which
1155	 * we are deleting from.
1156	 *
1157	 * Note that since a driver can be in multiple devclasses, we
1158	 * should not detach devices which are not children of devices in
1159	 * the affected devclass.
1160	 */
1161	for (i = 0; i < dc->maxunit; i++) {
1162		if (dc->devices[i]) {
1163			dev = dc->devices[i];
1164			if (dev->driver == driver && dev->parent &&
1165			    dev->parent->devclass == busclass) {
1166				if ((error = device_detach(dev)) != 0)
1167					return (error);
1168				device_set_driver(dev, NULL);
1169				BUS_PROBE_NOMATCH(dev->parent, dev);
1170				devnomatch(dev);
1171				dev->flags |= DF_DONENOMATCH;
1172			}
1173		}
1174	}
1175
1176	TAILQ_REMOVE(&busclass->drivers, dl, link);
1177	free(dl, M_BUS);
1178
1179	/* XXX: kobj_mtx */
1180	driver->refs--;
1181	if (driver->refs == 0)
1182		kobj_class_free((kobj_class_t) driver);
1183
1184	bus_data_generation_update();
1185	return (0);
1186}
1187
1188/**
1189 * @brief Quiesces a set of device drivers from a device class
1190 *
1191 * Quiesce a device driver from a devclass. This is normally called
1192 * automatically by DRIVER_MODULE().
1193 *
1194 * If the driver is currently attached to any devices,
1195 * devclass_quiesece_driver() will first attempt to quiesce each
1196 * device.
1197 *
1198 * @param dc		the devclass to edit
1199 * @param driver	the driver to unregister
1200 */
1201static int
1202devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1203{
1204	devclass_t dc = devclass_find(driver->name);
1205	driverlink_t dl;
1206	device_t dev;
1207	int i;
1208	int error;
1209
1210	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1211
1212	if (!dc)
1213		return (0);
1214
1215	/*
1216	 * Find the link structure in the bus' list of drivers.
1217	 */
1218	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1219		if (dl->driver == driver)
1220			break;
1221	}
1222
1223	if (!dl) {
1224		PDEBUG(("%s not found in %s list", driver->name,
1225		    busclass->name));
1226		return (ENOENT);
1227	}
1228
1229	/*
1230	 * Quiesce all devices.  We iterate through all the devices in
1231	 * the devclass of the driver and quiesce any which are using
1232	 * the driver and which have a parent in the devclass which we
1233	 * are quiescing.
1234	 *
1235	 * Note that since a driver can be in multiple devclasses, we
1236	 * should not quiesce devices which are not children of
1237	 * devices in the affected devclass.
1238	 */
1239	for (i = 0; i < dc->maxunit; i++) {
1240		if (dc->devices[i]) {
1241			dev = dc->devices[i];
1242			if (dev->driver == driver && dev->parent &&
1243			    dev->parent->devclass == busclass) {
1244				if ((error = device_quiesce(dev)) != 0)
1245					return (error);
1246			}
1247		}
1248	}
1249
1250	return (0);
1251}
1252
1253/**
1254 * @internal
1255 */
1256static driverlink_t
1257devclass_find_driver_internal(devclass_t dc, const char *classname)
1258{
1259	driverlink_t dl;
1260
1261	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1262
1263	TAILQ_FOREACH(dl, &dc->drivers, link) {
1264		if (!strcmp(dl->driver->name, classname))
1265			return (dl);
1266	}
1267
1268	PDEBUG(("not found"));
1269	return (NULL);
1270}
1271
1272/**
1273 * @brief Return the name of the devclass
1274 */
1275const char *
1276devclass_get_name(devclass_t dc)
1277{
1278	return (dc->name);
1279}
1280
1281/**
1282 * @brief Find a device given a unit number
1283 *
1284 * @param dc		the devclass to search
1285 * @param unit		the unit number to search for
1286 *
1287 * @returns		the device with the given unit number or @c
1288 *			NULL if there is no such device
1289 */
1290device_t
1291devclass_get_device(devclass_t dc, int unit)
1292{
1293	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1294		return (NULL);
1295	return (dc->devices[unit]);
1296}
1297
1298/**
1299 * @brief Find the softc field of a device given a unit number
1300 *
1301 * @param dc		the devclass to search
1302 * @param unit		the unit number to search for
1303 *
1304 * @returns		the softc field of the device with the given
1305 *			unit number or @c NULL if there is no such
1306 *			device
1307 */
1308void *
1309devclass_get_softc(devclass_t dc, int unit)
1310{
1311	device_t dev;
1312
1313	dev = devclass_get_device(dc, unit);
1314	if (!dev)
1315		return (NULL);
1316
1317	return (device_get_softc(dev));
1318}
1319
1320/**
1321 * @brief Get a list of devices in the devclass
1322 *
1323 * An array containing a list of all the devices in the given devclass
1324 * is allocated and returned in @p *devlistp. The number of devices
1325 * in the array is returned in @p *devcountp. The caller should free
1326 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1327 *
1328 * @param dc		the devclass to examine
1329 * @param devlistp	points at location for array pointer return
1330 *			value
1331 * @param devcountp	points at location for array size return value
1332 *
1333 * @retval 0		success
1334 * @retval ENOMEM	the array allocation failed
1335 */
1336int
1337devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1338{
1339	int count, i;
1340	device_t *list;
1341
1342	count = devclass_get_count(dc);
1343	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1344	if (!list)
1345		return (ENOMEM);
1346
1347	count = 0;
1348	for (i = 0; i < dc->maxunit; i++) {
1349		if (dc->devices[i]) {
1350			list[count] = dc->devices[i];
1351			count++;
1352		}
1353	}
1354
1355	*devlistp = list;
1356	*devcountp = count;
1357
1358	return (0);
1359}
1360
1361/**
1362 * @brief Get a list of drivers in the devclass
1363 *
1364 * An array containing a list of pointers to all the drivers in the
1365 * given devclass is allocated and returned in @p *listp.  The number
1366 * of drivers in the array is returned in @p *countp. The caller should
1367 * free the array using @c free(p, M_TEMP).
1368 *
1369 * @param dc		the devclass to examine
1370 * @param listp		gives location for array pointer return value
1371 * @param countp	gives location for number of array elements
1372 *			return value
1373 *
1374 * @retval 0		success
1375 * @retval ENOMEM	the array allocation failed
1376 */
1377int
1378devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1379{
1380	driverlink_t dl;
1381	driver_t **list;
1382	int count;
1383
1384	count = 0;
1385	TAILQ_FOREACH(dl, &dc->drivers, link)
1386		count++;
1387	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1388	if (list == NULL)
1389		return (ENOMEM);
1390
1391	count = 0;
1392	TAILQ_FOREACH(dl, &dc->drivers, link) {
1393		list[count] = dl->driver;
1394		count++;
1395	}
1396	*listp = list;
1397	*countp = count;
1398
1399	return (0);
1400}
1401
1402/**
1403 * @brief Get the number of devices in a devclass
1404 *
1405 * @param dc		the devclass to examine
1406 */
1407int
1408devclass_get_count(devclass_t dc)
1409{
1410	int count, i;
1411
1412	count = 0;
1413	for (i = 0; i < dc->maxunit; i++)
1414		if (dc->devices[i])
1415			count++;
1416	return (count);
1417}
1418
1419/**
1420 * @brief Get the maximum unit number used in a devclass
1421 *
1422 * Note that this is one greater than the highest currently-allocated
1423 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1424 * that not even the devclass has been allocated yet.
1425 *
1426 * @param dc		the devclass to examine
1427 */
1428int
1429devclass_get_maxunit(devclass_t dc)
1430{
1431	if (dc == NULL)
1432		return (-1);
1433	return (dc->maxunit);
1434}
1435
1436/**
1437 * @brief Find a free unit number in a devclass
1438 *
1439 * This function searches for the first unused unit number greater
1440 * that or equal to @p unit.
1441 *
1442 * @param dc		the devclass to examine
1443 * @param unit		the first unit number to check
1444 */
1445int
1446devclass_find_free_unit(devclass_t dc, int unit)
1447{
1448	if (dc == NULL)
1449		return (unit);
1450	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1451		unit++;
1452	return (unit);
1453}
1454
1455/**
1456 * @brief Set the parent of a devclass
1457 *
1458 * The parent class is normally initialised automatically by
1459 * DRIVER_MODULE().
1460 *
1461 * @param dc		the devclass to edit
1462 * @param pdc		the new parent devclass
1463 */
1464void
1465devclass_set_parent(devclass_t dc, devclass_t pdc)
1466{
1467	dc->parent = pdc;
1468}
1469
1470/**
1471 * @brief Get the parent of a devclass
1472 *
1473 * @param dc		the devclass to examine
1474 */
1475devclass_t
1476devclass_get_parent(devclass_t dc)
1477{
1478	return (dc->parent);
1479}
1480
1481struct sysctl_ctx_list *
1482devclass_get_sysctl_ctx(devclass_t dc)
1483{
1484	return (&dc->sysctl_ctx);
1485}
1486
1487struct sysctl_oid *
1488devclass_get_sysctl_tree(devclass_t dc)
1489{
1490	return (dc->sysctl_tree);
1491}
1492
1493/**
1494 * @internal
1495 * @brief Allocate a unit number
1496 *
1497 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1498 * will do). The allocated unit number is returned in @p *unitp.
1499
1500 * @param dc		the devclass to allocate from
1501 * @param unitp		points at the location for the allocated unit
1502 *			number
1503 *
1504 * @retval 0		success
1505 * @retval EEXIST	the requested unit number is already allocated
1506 * @retval ENOMEM	memory allocation failure
1507 */
1508static int
1509devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1510{
1511	const char *s;
1512	int unit = *unitp;
1513
1514	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1515
1516	/* Ask the parent bus if it wants to wire this device. */
1517	if (unit == -1)
1518		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1519		    &unit);
1520
1521	/* If we were given a wired unit number, check for existing device */
1522	/* XXX imp XXX */
1523	if (unit != -1) {
1524		if (unit >= 0 && unit < dc->maxunit &&
1525		    dc->devices[unit] != NULL) {
1526			if (bootverbose)
1527				printf("%s: %s%d already exists; skipping it\n",
1528				    dc->name, dc->name, *unitp);
1529			return (EEXIST);
1530		}
1531	} else {
1532		/* Unwired device, find the next available slot for it */
1533		unit = 0;
1534		for (unit = 0;; unit++) {
1535			/* If there is an "at" hint for a unit then skip it. */
1536			if (resource_string_value(dc->name, unit, "at", &s) ==
1537			    0)
1538				continue;
1539
1540			/* If this device slot is already in use, skip it. */
1541			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1542				continue;
1543
1544			break;
1545		}
1546	}
1547
1548	/*
1549	 * We've selected a unit beyond the length of the table, so let's
1550	 * extend the table to make room for all units up to and including
1551	 * this one.
1552	 */
1553	if (unit >= dc->maxunit) {
1554		device_t *newlist, *oldlist;
1555		int newsize;
1556
1557		oldlist = dc->devices;
1558		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1559		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1560		if (!newlist)
1561			return (ENOMEM);
1562		if (oldlist != NULL)
1563			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1564		bzero(newlist + dc->maxunit,
1565		    sizeof(device_t) * (newsize - dc->maxunit));
1566		dc->devices = newlist;
1567		dc->maxunit = newsize;
1568		if (oldlist != NULL)
1569			free(oldlist, M_BUS);
1570	}
1571	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1572
1573	*unitp = unit;
1574	return (0);
1575}
1576
1577/**
1578 * @internal
1579 * @brief Add a device to a devclass
1580 *
1581 * A unit number is allocated for the device (using the device's
1582 * preferred unit number if any) and the device is registered in the
1583 * devclass. This allows the device to be looked up by its unit
1584 * number, e.g. by decoding a dev_t minor number.
1585 *
1586 * @param dc		the devclass to add to
1587 * @param dev		the device to add
1588 *
1589 * @retval 0		success
1590 * @retval EEXIST	the requested unit number is already allocated
1591 * @retval ENOMEM	memory allocation failure
1592 */
1593static int
1594devclass_add_device(devclass_t dc, device_t dev)
1595{
1596	int buflen, error;
1597
1598	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1599
1600	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1601	if (buflen < 0)
1602		return (ENOMEM);
1603	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1604	if (!dev->nameunit)
1605		return (ENOMEM);
1606
1607	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1608		free(dev->nameunit, M_BUS);
1609		dev->nameunit = NULL;
1610		return (error);
1611	}
1612	dc->devices[dev->unit] = dev;
1613	dev->devclass = dc;
1614	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1615
1616	return (0);
1617}
1618
1619/**
1620 * @internal
1621 * @brief Delete a device from a devclass
1622 *
1623 * The device is removed from the devclass's device list and its unit
1624 * number is freed.
1625
1626 * @param dc		the devclass to delete from
1627 * @param dev		the device to delete
1628 *
1629 * @retval 0		success
1630 */
1631static int
1632devclass_delete_device(devclass_t dc, device_t dev)
1633{
1634	if (!dc || !dev)
1635		return (0);
1636
1637	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1638
1639	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1640		panic("devclass_delete_device: inconsistent device class");
1641	dc->devices[dev->unit] = NULL;
1642	if (dev->flags & DF_WILDCARD)
1643		dev->unit = -1;
1644	dev->devclass = NULL;
1645	free(dev->nameunit, M_BUS);
1646	dev->nameunit = NULL;
1647
1648	return (0);
1649}
1650
1651/**
1652 * @internal
1653 * @brief Make a new device and add it as a child of @p parent
1654 *
1655 * @param parent	the parent of the new device
1656 * @param name		the devclass name of the new device or @c NULL
1657 *			to leave the devclass unspecified
1658 * @parem unit		the unit number of the new device of @c -1 to
1659 *			leave the unit number unspecified
1660 *
1661 * @returns the new device
1662 */
1663static device_t
1664make_device(device_t parent, const char *name, int unit)
1665{
1666	device_t dev;
1667	devclass_t dc;
1668
1669	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1670
1671	if (name) {
1672		dc = devclass_find_internal(name, NULL, TRUE);
1673		if (!dc) {
1674			printf("make_device: can't find device class %s\n",
1675			    name);
1676			return (NULL);
1677		}
1678	} else {
1679		dc = NULL;
1680	}
1681
1682	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1683	if (!dev)
1684		return (NULL);
1685
1686	dev->parent = parent;
1687	TAILQ_INIT(&dev->children);
1688	kobj_init((kobj_t) dev, &null_class);
1689	dev->driver = NULL;
1690	dev->devclass = NULL;
1691	dev->unit = unit;
1692	dev->nameunit = NULL;
1693	dev->desc = NULL;
1694	dev->busy = 0;
1695	dev->devflags = 0;
1696	dev->flags = DF_ENABLED;
1697	dev->order = 0;
1698	if (unit == -1)
1699		dev->flags |= DF_WILDCARD;
1700	if (name) {
1701		dev->flags |= DF_FIXEDCLASS;
1702		if (devclass_add_device(dc, dev)) {
1703			kobj_delete((kobj_t) dev, M_BUS);
1704			return (NULL);
1705		}
1706	}
1707	dev->ivars = NULL;
1708	dev->softc = NULL;
1709
1710	dev->state = DS_NOTPRESENT;
1711
1712	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1713	bus_data_generation_update();
1714
1715	return (dev);
1716}
1717
1718/**
1719 * @internal
1720 * @brief Print a description of a device.
1721 */
1722static int
1723device_print_child(device_t dev, device_t child)
1724{
1725	int retval = 0;
1726
1727	if (device_is_alive(child))
1728		retval += BUS_PRINT_CHILD(dev, child);
1729	else
1730		retval += device_printf(child, " not found\n");
1731
1732	return (retval);
1733}
1734
1735/**
1736 * @brief Create a new device
1737 *
1738 * This creates a new device and adds it as a child of an existing
1739 * parent device. The new device will be added after the last existing
1740 * child with order zero.
1741 *
1742 * @param dev		the device which will be the parent of the
1743 *			new child device
1744 * @param name		devclass name for new device or @c NULL if not
1745 *			specified
1746 * @param unit		unit number for new device or @c -1 if not
1747 *			specified
1748 *
1749 * @returns		the new device
1750 */
1751device_t
1752device_add_child(device_t dev, const char *name, int unit)
1753{
1754	return (device_add_child_ordered(dev, 0, name, unit));
1755}
1756
1757/**
1758 * @brief Create a new device
1759 *
1760 * This creates a new device and adds it as a child of an existing
1761 * parent device. The new device will be added after the last existing
1762 * child with the same order.
1763 *
1764 * @param dev		the device which will be the parent of the
1765 *			new child device
1766 * @param order		a value which is used to partially sort the
1767 *			children of @p dev - devices created using
1768 *			lower values of @p order appear first in @p
1769 *			dev's list of children
1770 * @param name		devclass name for new device or @c NULL if not
1771 *			specified
1772 * @param unit		unit number for new device or @c -1 if not
1773 *			specified
1774 *
1775 * @returns		the new device
1776 */
1777device_t
1778device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1779{
1780	device_t child;
1781	device_t place;
1782
1783	PDEBUG(("%s at %s with order %d as unit %d",
1784	    name, DEVICENAME(dev), order, unit));
1785
1786	child = make_device(dev, name, unit);
1787	if (child == NULL)
1788		return (child);
1789	child->order = order;
1790
1791	TAILQ_FOREACH(place, &dev->children, link) {
1792		if (place->order > order)
1793			break;
1794	}
1795
1796	if (place) {
1797		/*
1798		 * The device 'place' is the first device whose order is
1799		 * greater than the new child.
1800		 */
1801		TAILQ_INSERT_BEFORE(place, child, link);
1802	} else {
1803		/*
1804		 * The new child's order is greater or equal to the order of
1805		 * any existing device. Add the child to the tail of the list.
1806		 */
1807		TAILQ_INSERT_TAIL(&dev->children, child, link);
1808	}
1809
1810	bus_data_generation_update();
1811	return (child);
1812}
1813
1814/**
1815 * @brief Delete a device
1816 *
1817 * This function deletes a device along with all of its children. If
1818 * the device currently has a driver attached to it, the device is
1819 * detached first using device_detach().
1820 *
1821 * @param dev		the parent device
1822 * @param child		the device to delete
1823 *
1824 * @retval 0		success
1825 * @retval non-zero	a unit error code describing the error
1826 */
1827int
1828device_delete_child(device_t dev, device_t child)
1829{
1830	int error;
1831	device_t grandchild;
1832
1833	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1834
1835	/* remove children first */
1836	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1837		error = device_delete_child(child, grandchild);
1838		if (error)
1839			return (error);
1840	}
1841
1842	if ((error = device_detach(child)) != 0)
1843		return (error);
1844	if (child->devclass)
1845		devclass_delete_device(child->devclass, child);
1846	TAILQ_REMOVE(&dev->children, child, link);
1847	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1848	kobj_delete((kobj_t) child, M_BUS);
1849
1850	bus_data_generation_update();
1851	return (0);
1852}
1853
1854/**
1855 * @brief Find a device given a unit number
1856 *
1857 * This is similar to devclass_get_devices() but only searches for
1858 * devices which have @p dev as a parent.
1859 *
1860 * @param dev		the parent device to search
1861 * @param unit		the unit number to search for.  If the unit is -1,
1862 *			return the first child of @p dev which has name
1863 *			@p classname (that is, the one with the lowest unit.)
1864 *
1865 * @returns		the device with the given unit number or @c
1866 *			NULL if there is no such device
1867 */
1868device_t
1869device_find_child(device_t dev, const char *classname, int unit)
1870{
1871	devclass_t dc;
1872	device_t child;
1873
1874	dc = devclass_find(classname);
1875	if (!dc)
1876		return (NULL);
1877
1878	if (unit != -1) {
1879		child = devclass_get_device(dc, unit);
1880		if (child && child->parent == dev)
1881			return (child);
1882	} else {
1883		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1884			child = devclass_get_device(dc, unit);
1885			if (child && child->parent == dev)
1886				return (child);
1887		}
1888	}
1889	return (NULL);
1890}
1891
1892/**
1893 * @internal
1894 */
1895static driverlink_t
1896first_matching_driver(devclass_t dc, device_t dev)
1897{
1898	if (dev->devclass)
1899		return (devclass_find_driver_internal(dc, dev->devclass->name));
1900	return (TAILQ_FIRST(&dc->drivers));
1901}
1902
1903/**
1904 * @internal
1905 */
1906static driverlink_t
1907next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1908{
1909	if (dev->devclass) {
1910		driverlink_t dl;
1911		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1912			if (!strcmp(dev->devclass->name, dl->driver->name))
1913				return (dl);
1914		return (NULL);
1915	}
1916	return (TAILQ_NEXT(last, link));
1917}
1918
1919/**
1920 * @internal
1921 */
1922int
1923device_probe_child(device_t dev, device_t child)
1924{
1925	devclass_t dc;
1926	driverlink_t best = NULL;
1927	driverlink_t dl;
1928	int result, pri = 0;
1929	int hasclass = (child->devclass != NULL);
1930
1931	GIANT_REQUIRED;
1932
1933	dc = dev->devclass;
1934	if (!dc)
1935		panic("device_probe_child: parent device has no devclass");
1936
1937	/*
1938	 * If the state is already probed, then return.  However, don't
1939	 * return if we can rebid this object.
1940	 */
1941	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1942		return (0);
1943
1944	for (; dc; dc = dc->parent) {
1945		for (dl = first_matching_driver(dc, child);
1946		     dl;
1947		     dl = next_matching_driver(dc, child, dl)) {
1948
1949			/* If this driver's pass is too high, then ignore it. */
1950			if (dl->pass > bus_current_pass)
1951				continue;
1952
1953			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1954			device_set_driver(child, dl->driver);
1955			if (!hasclass) {
1956				if (device_set_devclass(child, dl->driver->name)) {
1957					printf("driver bug: Unable to set devclass (devname: %s)\n",
1958					    (child ? device_get_name(child) :
1959						"no device"));
1960					device_set_driver(child, NULL);
1961					continue;
1962				}
1963			}
1964
1965			/* Fetch any flags for the device before probing. */
1966			resource_int_value(dl->driver->name, child->unit,
1967			    "flags", &child->devflags);
1968
1969			result = DEVICE_PROBE(child);
1970
1971			/* Reset flags and devclass before the next probe. */
1972			child->devflags = 0;
1973			if (!hasclass)
1974				device_set_devclass(child, NULL);
1975
1976			/*
1977			 * If the driver returns SUCCESS, there can be
1978			 * no higher match for this device.
1979			 */
1980			if (result == 0) {
1981				best = dl;
1982				pri = 0;
1983				break;
1984			}
1985
1986			/*
1987			 * The driver returned an error so it
1988			 * certainly doesn't match.
1989			 */
1990			if (result > 0) {
1991				device_set_driver(child, NULL);
1992				continue;
1993			}
1994
1995			/*
1996			 * A priority lower than SUCCESS, remember the
1997			 * best matching driver. Initialise the value
1998			 * of pri for the first match.
1999			 */
2000			if (best == NULL || result > pri) {
2001				/*
2002				 * Probes that return BUS_PROBE_NOWILDCARD
2003				 * or lower only match when they are set
2004				 * in stone by the parent bus.
2005				 */
2006				if (result <= BUS_PROBE_NOWILDCARD &&
2007				    child->flags & DF_WILDCARD)
2008					continue;
2009				best = dl;
2010				pri = result;
2011				continue;
2012			}
2013		}
2014		/*
2015		 * If we have an unambiguous match in this devclass,
2016		 * don't look in the parent.
2017		 */
2018		if (best && pri == 0)
2019			break;
2020	}
2021
2022	/*
2023	 * If we found a driver, change state and initialise the devclass.
2024	 */
2025	/* XXX What happens if we rebid and got no best? */
2026	if (best) {
2027		/*
2028		 * If this device was atached, and we were asked to
2029		 * rescan, and it is a different driver, then we have
2030		 * to detach the old driver and reattach this new one.
2031		 * Note, we don't have to check for DF_REBID here
2032		 * because if the state is > DS_ALIVE, we know it must
2033		 * be.
2034		 *
2035		 * This assumes that all DF_REBID drivers can have
2036		 * their probe routine called at any time and that
2037		 * they are idempotent as well as completely benign in
2038		 * normal operations.
2039		 *
2040		 * We also have to make sure that the detach
2041		 * succeeded, otherwise we fail the operation (or
2042		 * maybe it should just fail silently?  I'm torn).
2043		 */
2044		if (child->state > DS_ALIVE && best->driver != child->driver)
2045			if ((result = device_detach(dev)) != 0)
2046				return (result);
2047
2048		/* Set the winning driver, devclass, and flags. */
2049		if (!child->devclass) {
2050			result = device_set_devclass(child, best->driver->name);
2051			if (result != 0)
2052				return (result);
2053		}
2054		device_set_driver(child, best->driver);
2055		resource_int_value(best->driver->name, child->unit,
2056		    "flags", &child->devflags);
2057
2058		if (pri < 0) {
2059			/*
2060			 * A bit bogus. Call the probe method again to make
2061			 * sure that we have the right description.
2062			 */
2063			DEVICE_PROBE(child);
2064#if 0
2065			child->flags |= DF_REBID;
2066#endif
2067		} else
2068			child->flags &= ~DF_REBID;
2069		child->state = DS_ALIVE;
2070
2071		bus_data_generation_update();
2072		return (0);
2073	}
2074
2075	return (ENXIO);
2076}
2077
2078/**
2079 * @brief Return the parent of a device
2080 */
2081device_t
2082device_get_parent(device_t dev)
2083{
2084	return (dev->parent);
2085}
2086
2087/**
2088 * @brief Get a list of children of a device
2089 *
2090 * An array containing a list of all the children of the given device
2091 * is allocated and returned in @p *devlistp. The number of devices
2092 * in the array is returned in @p *devcountp. The caller should free
2093 * the array using @c free(p, M_TEMP).
2094 *
2095 * @param dev		the device to examine
2096 * @param devlistp	points at location for array pointer return
2097 *			value
2098 * @param devcountp	points at location for array size return value
2099 *
2100 * @retval 0		success
2101 * @retval ENOMEM	the array allocation failed
2102 */
2103int
2104device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2105{
2106	int count;
2107	device_t child;
2108	device_t *list;
2109
2110	count = 0;
2111	TAILQ_FOREACH(child, &dev->children, link) {
2112		count++;
2113	}
2114
2115	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2116	if (!list)
2117		return (ENOMEM);
2118
2119	count = 0;
2120	TAILQ_FOREACH(child, &dev->children, link) {
2121		list[count] = child;
2122		count++;
2123	}
2124
2125	*devlistp = list;
2126	*devcountp = count;
2127
2128	return (0);
2129}
2130
2131/**
2132 * @brief Return the current driver for the device or @c NULL if there
2133 * is no driver currently attached
2134 */
2135driver_t *
2136device_get_driver(device_t dev)
2137{
2138	return (dev->driver);
2139}
2140
2141/**
2142 * @brief Return the current devclass for the device or @c NULL if
2143 * there is none.
2144 */
2145devclass_t
2146device_get_devclass(device_t dev)
2147{
2148	return (dev->devclass);
2149}
2150
2151/**
2152 * @brief Return the name of the device's devclass or @c NULL if there
2153 * is none.
2154 */
2155const char *
2156device_get_name(device_t dev)
2157{
2158	if (dev != NULL && dev->devclass)
2159		return (devclass_get_name(dev->devclass));
2160	return (NULL);
2161}
2162
2163/**
2164 * @brief Return a string containing the device's devclass name
2165 * followed by an ascii representation of the device's unit number
2166 * (e.g. @c "foo2").
2167 */
2168const char *
2169device_get_nameunit(device_t dev)
2170{
2171	return (dev->nameunit);
2172}
2173
2174/**
2175 * @brief Return the device's unit number.
2176 */
2177int
2178device_get_unit(device_t dev)
2179{
2180	return (dev->unit);
2181}
2182
2183/**
2184 * @brief Return the device's description string
2185 */
2186const char *
2187device_get_desc(device_t dev)
2188{
2189	return (dev->desc);
2190}
2191
2192/**
2193 * @brief Return the device's flags
2194 */
2195u_int32_t
2196device_get_flags(device_t dev)
2197{
2198	return (dev->devflags);
2199}
2200
2201struct sysctl_ctx_list *
2202device_get_sysctl_ctx(device_t dev)
2203{
2204	return (&dev->sysctl_ctx);
2205}
2206
2207struct sysctl_oid *
2208device_get_sysctl_tree(device_t dev)
2209{
2210	return (dev->sysctl_tree);
2211}
2212
2213/**
2214 * @brief Print the name of the device followed by a colon and a space
2215 *
2216 * @returns the number of characters printed
2217 */
2218int
2219device_print_prettyname(device_t dev)
2220{
2221	const char *name = device_get_name(dev);
2222
2223	if (name == NULL)
2224		return (printf("unknown: "));
2225	return (printf("%s%d: ", name, device_get_unit(dev)));
2226}
2227
2228/**
2229 * @brief Print the name of the device followed by a colon, a space
2230 * and the result of calling vprintf() with the value of @p fmt and
2231 * the following arguments.
2232 *
2233 * @returns the number of characters printed
2234 */
2235int
2236device_printf(device_t dev, const char * fmt, ...)
2237{
2238	va_list ap;
2239	int retval;
2240
2241	retval = device_print_prettyname(dev);
2242	va_start(ap, fmt);
2243	retval += vprintf(fmt, ap);
2244	va_end(ap);
2245	return (retval);
2246}
2247
2248/**
2249 * @internal
2250 */
2251static void
2252device_set_desc_internal(device_t dev, const char* desc, int copy)
2253{
2254	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2255		free(dev->desc, M_BUS);
2256		dev->flags &= ~DF_DESCMALLOCED;
2257		dev->desc = NULL;
2258	}
2259
2260	if (copy && desc) {
2261		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2262		if (dev->desc) {
2263			strcpy(dev->desc, desc);
2264			dev->flags |= DF_DESCMALLOCED;
2265		}
2266	} else {
2267		/* Avoid a -Wcast-qual warning */
2268		dev->desc = (char *)(uintptr_t) desc;
2269	}
2270
2271	bus_data_generation_update();
2272}
2273
2274/**
2275 * @brief Set the device's description
2276 *
2277 * The value of @c desc should be a string constant that will not
2278 * change (at least until the description is changed in a subsequent
2279 * call to device_set_desc() or device_set_desc_copy()).
2280 */
2281void
2282device_set_desc(device_t dev, const char* desc)
2283{
2284	device_set_desc_internal(dev, desc, FALSE);
2285}
2286
2287/**
2288 * @brief Set the device's description
2289 *
2290 * The string pointed to by @c desc is copied. Use this function if
2291 * the device description is generated, (e.g. with sprintf()).
2292 */
2293void
2294device_set_desc_copy(device_t dev, const char* desc)
2295{
2296	device_set_desc_internal(dev, desc, TRUE);
2297}
2298
2299/**
2300 * @brief Set the device's flags
2301 */
2302void
2303device_set_flags(device_t dev, u_int32_t flags)
2304{
2305	dev->devflags = flags;
2306}
2307
2308/**
2309 * @brief Return the device's softc field
2310 *
2311 * The softc is allocated and zeroed when a driver is attached, based
2312 * on the size field of the driver.
2313 */
2314void *
2315device_get_softc(device_t dev)
2316{
2317	return (dev->softc);
2318}
2319
2320/**
2321 * @brief Set the device's softc field
2322 *
2323 * Most drivers do not need to use this since the softc is allocated
2324 * automatically when the driver is attached.
2325 */
2326void
2327device_set_softc(device_t dev, void *softc)
2328{
2329	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2330		free(dev->softc, M_BUS_SC);
2331	dev->softc = softc;
2332	if (dev->softc)
2333		dev->flags |= DF_EXTERNALSOFTC;
2334	else
2335		dev->flags &= ~DF_EXTERNALSOFTC;
2336}
2337
2338/**
2339 * @brief Get the device's ivars field
2340 *
2341 * The ivars field is used by the parent device to store per-device
2342 * state (e.g. the physical location of the device or a list of
2343 * resources).
2344 */
2345void *
2346device_get_ivars(device_t dev)
2347{
2348
2349	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2350	return (dev->ivars);
2351}
2352
2353/**
2354 * @brief Set the device's ivars field
2355 */
2356void
2357device_set_ivars(device_t dev, void * ivars)
2358{
2359
2360	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2361	dev->ivars = ivars;
2362}
2363
2364/**
2365 * @brief Return the device's state
2366 */
2367device_state_t
2368device_get_state(device_t dev)
2369{
2370	return (dev->state);
2371}
2372
2373/**
2374 * @brief Set the DF_ENABLED flag for the device
2375 */
2376void
2377device_enable(device_t dev)
2378{
2379	dev->flags |= DF_ENABLED;
2380}
2381
2382/**
2383 * @brief Clear the DF_ENABLED flag for the device
2384 */
2385void
2386device_disable(device_t dev)
2387{
2388	dev->flags &= ~DF_ENABLED;
2389}
2390
2391/**
2392 * @brief Increment the busy counter for the device
2393 */
2394void
2395device_busy(device_t dev)
2396{
2397	if (dev->state < DS_ATTACHED)
2398		panic("device_busy: called for unattached device");
2399	if (dev->busy == 0 && dev->parent)
2400		device_busy(dev->parent);
2401	dev->busy++;
2402	dev->state = DS_BUSY;
2403}
2404
2405/**
2406 * @brief Decrement the busy counter for the device
2407 */
2408void
2409device_unbusy(device_t dev)
2410{
2411	if (dev->state != DS_BUSY)
2412		panic("device_unbusy: called for non-busy device %s",
2413		    device_get_nameunit(dev));
2414	dev->busy--;
2415	if (dev->busy == 0) {
2416		if (dev->parent)
2417			device_unbusy(dev->parent);
2418		dev->state = DS_ATTACHED;
2419	}
2420}
2421
2422/**
2423 * @brief Set the DF_QUIET flag for the device
2424 */
2425void
2426device_quiet(device_t dev)
2427{
2428	dev->flags |= DF_QUIET;
2429}
2430
2431/**
2432 * @brief Clear the DF_QUIET flag for the device
2433 */
2434void
2435device_verbose(device_t dev)
2436{
2437	dev->flags &= ~DF_QUIET;
2438}
2439
2440/**
2441 * @brief Return non-zero if the DF_QUIET flag is set on the device
2442 */
2443int
2444device_is_quiet(device_t dev)
2445{
2446	return ((dev->flags & DF_QUIET) != 0);
2447}
2448
2449/**
2450 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2451 */
2452int
2453device_is_enabled(device_t dev)
2454{
2455	return ((dev->flags & DF_ENABLED) != 0);
2456}
2457
2458/**
2459 * @brief Return non-zero if the device was successfully probed
2460 */
2461int
2462device_is_alive(device_t dev)
2463{
2464	return (dev->state >= DS_ALIVE);
2465}
2466
2467/**
2468 * @brief Return non-zero if the device currently has a driver
2469 * attached to it
2470 */
2471int
2472device_is_attached(device_t dev)
2473{
2474	return (dev->state >= DS_ATTACHED);
2475}
2476
2477/**
2478 * @brief Set the devclass of a device
2479 * @see devclass_add_device().
2480 */
2481int
2482device_set_devclass(device_t dev, const char *classname)
2483{
2484	devclass_t dc;
2485	int error;
2486
2487	if (!classname) {
2488		if (dev->devclass)
2489			devclass_delete_device(dev->devclass, dev);
2490		return (0);
2491	}
2492
2493	if (dev->devclass) {
2494		printf("device_set_devclass: device class already set\n");
2495		return (EINVAL);
2496	}
2497
2498	dc = devclass_find_internal(classname, NULL, TRUE);
2499	if (!dc)
2500		return (ENOMEM);
2501
2502	error = devclass_add_device(dc, dev);
2503
2504	bus_data_generation_update();
2505	return (error);
2506}
2507
2508/**
2509 * @brief Set the driver of a device
2510 *
2511 * @retval 0		success
2512 * @retval EBUSY	the device already has a driver attached
2513 * @retval ENOMEM	a memory allocation failure occurred
2514 */
2515int
2516device_set_driver(device_t dev, driver_t *driver)
2517{
2518	if (dev->state >= DS_ATTACHED)
2519		return (EBUSY);
2520
2521	if (dev->driver == driver)
2522		return (0);
2523
2524	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2525		free(dev->softc, M_BUS_SC);
2526		dev->softc = NULL;
2527	}
2528	kobj_delete((kobj_t) dev, NULL);
2529	dev->driver = driver;
2530	if (driver) {
2531		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2532		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2533			dev->softc = malloc(driver->size, M_BUS_SC,
2534			    M_NOWAIT | M_ZERO);
2535			if (!dev->softc) {
2536				kobj_delete((kobj_t) dev, NULL);
2537				kobj_init((kobj_t) dev, &null_class);
2538				dev->driver = NULL;
2539				return (ENOMEM);
2540			}
2541		}
2542	} else {
2543		kobj_init((kobj_t) dev, &null_class);
2544	}
2545
2546	bus_data_generation_update();
2547	return (0);
2548}
2549
2550/**
2551 * @brief Probe a device, and return this status.
2552 *
2553 * This function is the core of the device autoconfiguration
2554 * system. Its purpose is to select a suitable driver for a device and
2555 * then call that driver to initialise the hardware appropriately. The
2556 * driver is selected by calling the DEVICE_PROBE() method of a set of
2557 * candidate drivers and then choosing the driver which returned the
2558 * best value. This driver is then attached to the device using
2559 * device_attach().
2560 *
2561 * The set of suitable drivers is taken from the list of drivers in
2562 * the parent device's devclass. If the device was originally created
2563 * with a specific class name (see device_add_child()), only drivers
2564 * with that name are probed, otherwise all drivers in the devclass
2565 * are probed. If no drivers return successful probe values in the
2566 * parent devclass, the search continues in the parent of that
2567 * devclass (see devclass_get_parent()) if any.
2568 *
2569 * @param dev		the device to initialise
2570 *
2571 * @retval 0		success
2572 * @retval ENXIO	no driver was found
2573 * @retval ENOMEM	memory allocation failure
2574 * @retval non-zero	some other unix error code
2575 * @retval -1		Device already attached
2576 */
2577int
2578device_probe(device_t dev)
2579{
2580	int error;
2581
2582	GIANT_REQUIRED;
2583
2584	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2585		return (-1);
2586
2587	if (!(dev->flags & DF_ENABLED)) {
2588		if (bootverbose && device_get_name(dev) != NULL) {
2589			device_print_prettyname(dev);
2590			printf("not probed (disabled)\n");
2591		}
2592		return (-1);
2593	}
2594	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2595		if (bus_current_pass == BUS_PASS_DEFAULT &&
2596		    !(dev->flags & DF_DONENOMATCH)) {
2597			BUS_PROBE_NOMATCH(dev->parent, dev);
2598			devnomatch(dev);
2599			dev->flags |= DF_DONENOMATCH;
2600		}
2601		return (error);
2602	}
2603	return (0);
2604}
2605
2606/**
2607 * @brief Probe a device and attach a driver if possible
2608 *
2609 * calls device_probe() and attaches if that was successful.
2610 */
2611int
2612device_probe_and_attach(device_t dev)
2613{
2614	int error;
2615
2616	GIANT_REQUIRED;
2617
2618	error = device_probe(dev);
2619	if (error == -1)
2620		return (0);
2621	else if (error != 0)
2622		return (error);
2623	return (device_attach(dev));
2624}
2625
2626/**
2627 * @brief Attach a device driver to a device
2628 *
2629 * This function is a wrapper around the DEVICE_ATTACH() driver
2630 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2631 * device's sysctl tree, optionally prints a description of the device
2632 * and queues a notification event for user-based device management
2633 * services.
2634 *
2635 * Normally this function is only called internally from
2636 * device_probe_and_attach().
2637 *
2638 * @param dev		the device to initialise
2639 *
2640 * @retval 0		success
2641 * @retval ENXIO	no driver was found
2642 * @retval ENOMEM	memory allocation failure
2643 * @retval non-zero	some other unix error code
2644 */
2645int
2646device_attach(device_t dev)
2647{
2648	int error;
2649
2650	device_sysctl_init(dev);
2651	if (!device_is_quiet(dev))
2652		device_print_child(dev->parent, dev);
2653	if ((error = DEVICE_ATTACH(dev)) != 0) {
2654		printf("device_attach: %s%d attach returned %d\n",
2655		    dev->driver->name, dev->unit, error);
2656		/* Unset the class; set in device_probe_child */
2657		if (dev->devclass == NULL)
2658			device_set_devclass(dev, NULL);
2659		device_set_driver(dev, NULL);
2660		device_sysctl_fini(dev);
2661		dev->state = DS_NOTPRESENT;
2662		return (error);
2663	}
2664	device_sysctl_update(dev);
2665	dev->state = DS_ATTACHED;
2666	dev->flags &= ~DF_DONENOMATCH;
2667	devadded(dev);
2668	return (0);
2669}
2670
2671/**
2672 * @brief Detach a driver from a device
2673 *
2674 * This function is a wrapper around the DEVICE_DETACH() driver
2675 * method. If the call to DEVICE_DETACH() succeeds, it calls
2676 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2677 * notification event for user-based device management services and
2678 * cleans up the device's sysctl tree.
2679 *
2680 * @param dev		the device to un-initialise
2681 *
2682 * @retval 0		success
2683 * @retval ENXIO	no driver was found
2684 * @retval ENOMEM	memory allocation failure
2685 * @retval non-zero	some other unix error code
2686 */
2687int
2688device_detach(device_t dev)
2689{
2690	int error;
2691
2692	GIANT_REQUIRED;
2693
2694	PDEBUG(("%s", DEVICENAME(dev)));
2695	if (dev->state == DS_BUSY)
2696		return (EBUSY);
2697	if (dev->state != DS_ATTACHED)
2698		return (0);
2699
2700	if ((error = DEVICE_DETACH(dev)) != 0)
2701		return (error);
2702	devremoved(dev);
2703	if (!device_is_quiet(dev))
2704		device_printf(dev, "detached\n");
2705	if (dev->parent)
2706		BUS_CHILD_DETACHED(dev->parent, dev);
2707
2708	if (!(dev->flags & DF_FIXEDCLASS))
2709		devclass_delete_device(dev->devclass, dev);
2710
2711	dev->state = DS_NOTPRESENT;
2712	device_set_driver(dev, NULL);
2713	device_set_desc(dev, NULL);
2714	device_sysctl_fini(dev);
2715
2716	return (0);
2717}
2718
2719/**
2720 * @brief Tells a driver to quiesce itself.
2721 *
2722 * This function is a wrapper around the DEVICE_QUIESCE() driver
2723 * method. If the call to DEVICE_QUIESCE() succeeds.
2724 *
2725 * @param dev		the device to quiesce
2726 *
2727 * @retval 0		success
2728 * @retval ENXIO	no driver was found
2729 * @retval ENOMEM	memory allocation failure
2730 * @retval non-zero	some other unix error code
2731 */
2732int
2733device_quiesce(device_t dev)
2734{
2735
2736	PDEBUG(("%s", DEVICENAME(dev)));
2737	if (dev->state == DS_BUSY)
2738		return (EBUSY);
2739	if (dev->state != DS_ATTACHED)
2740		return (0);
2741
2742	return (DEVICE_QUIESCE(dev));
2743}
2744
2745/**
2746 * @brief Notify a device of system shutdown
2747 *
2748 * This function calls the DEVICE_SHUTDOWN() driver method if the
2749 * device currently has an attached driver.
2750 *
2751 * @returns the value returned by DEVICE_SHUTDOWN()
2752 */
2753int
2754device_shutdown(device_t dev)
2755{
2756	if (dev->state < DS_ATTACHED)
2757		return (0);
2758	return (DEVICE_SHUTDOWN(dev));
2759}
2760
2761/**
2762 * @brief Set the unit number of a device
2763 *
2764 * This function can be used to override the unit number used for a
2765 * device (e.g. to wire a device to a pre-configured unit number).
2766 */
2767int
2768device_set_unit(device_t dev, int unit)
2769{
2770	devclass_t dc;
2771	int err;
2772
2773	dc = device_get_devclass(dev);
2774	if (unit < dc->maxunit && dc->devices[unit])
2775		return (EBUSY);
2776	err = devclass_delete_device(dc, dev);
2777	if (err)
2778		return (err);
2779	dev->unit = unit;
2780	err = devclass_add_device(dc, dev);
2781	if (err)
2782		return (err);
2783
2784	bus_data_generation_update();
2785	return (0);
2786}
2787
2788/*======================================*/
2789/*
2790 * Some useful method implementations to make life easier for bus drivers.
2791 */
2792
2793/**
2794 * @brief Initialise a resource list.
2795 *
2796 * @param rl		the resource list to initialise
2797 */
2798void
2799resource_list_init(struct resource_list *rl)
2800{
2801	STAILQ_INIT(rl);
2802}
2803
2804/**
2805 * @brief Reclaim memory used by a resource list.
2806 *
2807 * This function frees the memory for all resource entries on the list
2808 * (if any).
2809 *
2810 * @param rl		the resource list to free
2811 */
2812void
2813resource_list_free(struct resource_list *rl)
2814{
2815	struct resource_list_entry *rle;
2816
2817	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2818		if (rle->res)
2819			panic("resource_list_free: resource entry is busy");
2820		STAILQ_REMOVE_HEAD(rl, link);
2821		free(rle, M_BUS);
2822	}
2823}
2824
2825/**
2826 * @brief Add a resource entry.
2827 *
2828 * This function adds a resource entry using the given @p type, @p
2829 * start, @p end and @p count values. A rid value is chosen by
2830 * searching sequentially for the first unused rid starting at zero.
2831 *
2832 * @param rl		the resource list to edit
2833 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2834 * @param start		the start address of the resource
2835 * @param end		the end address of the resource
2836 * @param count		XXX end-start+1
2837 */
2838int
2839resource_list_add_next(struct resource_list *rl, int type, u_long start,
2840    u_long end, u_long count)
2841{
2842	int rid;
2843
2844	rid = 0;
2845	while (resource_list_find(rl, type, rid) != NULL)
2846		rid++;
2847	resource_list_add(rl, type, rid, start, end, count);
2848	return (rid);
2849}
2850
2851/**
2852 * @brief Add or modify a resource entry.
2853 *
2854 * If an existing entry exists with the same type and rid, it will be
2855 * modified using the given values of @p start, @p end and @p
2856 * count. If no entry exists, a new one will be created using the
2857 * given values.  The resource list entry that matches is then returned.
2858 *
2859 * @param rl		the resource list to edit
2860 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2861 * @param rid		the resource identifier
2862 * @param start		the start address of the resource
2863 * @param end		the end address of the resource
2864 * @param count		XXX end-start+1
2865 */
2866struct resource_list_entry *
2867resource_list_add(struct resource_list *rl, int type, int rid,
2868    u_long start, u_long end, u_long count)
2869{
2870	struct resource_list_entry *rle;
2871
2872	rle = resource_list_find(rl, type, rid);
2873	if (!rle) {
2874		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2875		    M_NOWAIT);
2876		if (!rle)
2877			panic("resource_list_add: can't record entry");
2878		STAILQ_INSERT_TAIL(rl, rle, link);
2879		rle->type = type;
2880		rle->rid = rid;
2881		rle->res = NULL;
2882		rle->flags = 0;
2883	}
2884
2885	if (rle->res)
2886		panic("resource_list_add: resource entry is busy");
2887
2888	rle->start = start;
2889	rle->end = end;
2890	rle->count = count;
2891	return (rle);
2892}
2893
2894/**
2895 * @brief Determine if a resource entry is busy.
2896 *
2897 * Returns true if a resource entry is busy meaning that it has an
2898 * associated resource that is not an unallocated "reserved" resource.
2899 *
2900 * @param rl		the resource list to search
2901 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2902 * @param rid		the resource identifier
2903 *
2904 * @returns Non-zero if the entry is busy, zero otherwise.
2905 */
2906int
2907resource_list_busy(struct resource_list *rl, int type, int rid)
2908{
2909	struct resource_list_entry *rle;
2910
2911	rle = resource_list_find(rl, type, rid);
2912	if (rle == NULL || rle->res == NULL)
2913		return (0);
2914	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2915		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2916		    ("reserved resource is active"));
2917		return (0);
2918	}
2919	return (1);
2920}
2921
2922/**
2923 * @brief Find a resource entry by type and rid.
2924 *
2925 * @param rl		the resource list to search
2926 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2927 * @param rid		the resource identifier
2928 *
2929 * @returns the resource entry pointer or NULL if there is no such
2930 * entry.
2931 */
2932struct resource_list_entry *
2933resource_list_find(struct resource_list *rl, int type, int rid)
2934{
2935	struct resource_list_entry *rle;
2936
2937	STAILQ_FOREACH(rle, rl, link) {
2938		if (rle->type == type && rle->rid == rid)
2939			return (rle);
2940	}
2941	return (NULL);
2942}
2943
2944/**
2945 * @brief Delete a resource entry.
2946 *
2947 * @param rl		the resource list to edit
2948 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2949 * @param rid		the resource identifier
2950 */
2951void
2952resource_list_delete(struct resource_list *rl, int type, int rid)
2953{
2954	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2955
2956	if (rle) {
2957		if (rle->res != NULL)
2958			panic("resource_list_delete: resource has not been released");
2959		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2960		free(rle, M_BUS);
2961	}
2962}
2963
2964/**
2965 * @brief Allocate a reserved resource
2966 *
2967 * This can be used by busses to force the allocation of resources
2968 * that are always active in the system even if they are not allocated
2969 * by a driver (e.g. PCI BARs).  This function is usually called when
2970 * adding a new child to the bus.  The resource is allocated from the
2971 * parent bus when it is reserved.  The resource list entry is marked
2972 * with RLE_RESERVED to note that it is a reserved resource.
2973 *
2974 * Subsequent attempts to allocate the resource with
2975 * resource_list_alloc() will succeed the first time and will set
2976 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2977 * resource that has been allocated is released with
2978 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2979 * the actual resource remains allocated.  The resource can be released to
2980 * the parent bus by calling resource_list_unreserve().
2981 *
2982 * @param rl		the resource list to allocate from
2983 * @param bus		the parent device of @p child
2984 * @param child		the device for which the resource is being reserved
2985 * @param type		the type of resource to allocate
2986 * @param rid		a pointer to the resource identifier
2987 * @param start		hint at the start of the resource range - pass
2988 *			@c 0UL for any start address
2989 * @param end		hint at the end of the resource range - pass
2990 *			@c ~0UL for any end address
2991 * @param count		hint at the size of range required - pass @c 1
2992 *			for any size
2993 * @param flags		any extra flags to control the resource
2994 *			allocation - see @c RF_XXX flags in
2995 *			<sys/rman.h> for details
2996 *
2997 * @returns		the resource which was allocated or @c NULL if no
2998 *			resource could be allocated
2999 */
3000struct resource *
3001resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3002    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3003{
3004	struct resource_list_entry *rle = NULL;
3005	int passthrough = (device_get_parent(child) != bus);
3006	struct resource *r;
3007
3008	if (passthrough)
3009		panic(
3010    "resource_list_reserve() should only be called for direct children");
3011	if (flags & RF_ACTIVE)
3012		panic(
3013    "resource_list_reserve() should only reserve inactive resources");
3014
3015	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3016	    flags);
3017	if (r != NULL) {
3018		rle = resource_list_find(rl, type, *rid);
3019		rle->flags |= RLE_RESERVED;
3020	}
3021	return (r);
3022}
3023
3024/**
3025 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3026 *
3027 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3028 * and passing the allocation up to the parent of @p bus. This assumes
3029 * that the first entry of @c device_get_ivars(child) is a struct
3030 * resource_list. This also handles 'passthrough' allocations where a
3031 * child is a remote descendant of bus by passing the allocation up to
3032 * the parent of bus.
3033 *
3034 * Typically, a bus driver would store a list of child resources
3035 * somewhere in the child device's ivars (see device_get_ivars()) and
3036 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3037 * then call resource_list_alloc() to perform the allocation.
3038 *
3039 * @param rl		the resource list to allocate from
3040 * @param bus		the parent device of @p child
3041 * @param child		the device which is requesting an allocation
3042 * @param type		the type of resource to allocate
3043 * @param rid		a pointer to the resource identifier
3044 * @param start		hint at the start of the resource range - pass
3045 *			@c 0UL for any start address
3046 * @param end		hint at the end of the resource range - pass
3047 *			@c ~0UL for any end address
3048 * @param count		hint at the size of range required - pass @c 1
3049 *			for any size
3050 * @param flags		any extra flags to control the resource
3051 *			allocation - see @c RF_XXX flags in
3052 *			<sys/rman.h> for details
3053 *
3054 * @returns		the resource which was allocated or @c NULL if no
3055 *			resource could be allocated
3056 */
3057struct resource *
3058resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3059    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3060{
3061	struct resource_list_entry *rle = NULL;
3062	int passthrough = (device_get_parent(child) != bus);
3063	int isdefault = (start == 0UL && end == ~0UL);
3064
3065	if (passthrough) {
3066		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3067		    type, rid, start, end, count, flags));
3068	}
3069
3070	rle = resource_list_find(rl, type, *rid);
3071
3072	if (!rle)
3073		return (NULL);		/* no resource of that type/rid */
3074
3075	if (rle->res) {
3076		if (rle->flags & RLE_RESERVED) {
3077			if (rle->flags & RLE_ALLOCATED)
3078				return (NULL);
3079			if ((flags & RF_ACTIVE) &&
3080			    bus_activate_resource(child, type, *rid,
3081			    rle->res) != 0)
3082				return (NULL);
3083			rle->flags |= RLE_ALLOCATED;
3084			return (rle->res);
3085		}
3086		panic("resource_list_alloc: resource entry is busy");
3087	}
3088
3089	if (isdefault) {
3090		start = rle->start;
3091		count = ulmax(count, rle->count);
3092		end = ulmax(rle->end, start + count - 1);
3093	}
3094
3095	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3096	    type, rid, start, end, count, flags);
3097
3098	/*
3099	 * Record the new range.
3100	 */
3101	if (rle->res) {
3102		rle->start = rman_get_start(rle->res);
3103		rle->end = rman_get_end(rle->res);
3104		rle->count = count;
3105	}
3106
3107	return (rle->res);
3108}
3109
3110/**
3111 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3112 *
3113 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3114 * used with resource_list_alloc().
3115 *
3116 * @param rl		the resource list which was allocated from
3117 * @param bus		the parent device of @p child
3118 * @param child		the device which is requesting a release
3119 * @param type		the type of resource to release
3120 * @param rid		the resource identifier
3121 * @param res		the resource to release
3122 *
3123 * @retval 0		success
3124 * @retval non-zero	a standard unix error code indicating what
3125 *			error condition prevented the operation
3126 */
3127int
3128resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3129    int type, int rid, struct resource *res)
3130{
3131	struct resource_list_entry *rle = NULL;
3132	int passthrough = (device_get_parent(child) != bus);
3133	int error;
3134
3135	if (passthrough) {
3136		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3137		    type, rid, res));
3138	}
3139
3140	rle = resource_list_find(rl, type, rid);
3141
3142	if (!rle)
3143		panic("resource_list_release: can't find resource");
3144	if (!rle->res)
3145		panic("resource_list_release: resource entry is not busy");
3146	if (rle->flags & RLE_RESERVED) {
3147		if (rle->flags & RLE_ALLOCATED) {
3148			if (rman_get_flags(res) & RF_ACTIVE) {
3149				error = bus_deactivate_resource(child, type,
3150				    rid, res);
3151				if (error)
3152					return (error);
3153			}
3154			rle->flags &= ~RLE_ALLOCATED;
3155			return (0);
3156		}
3157		return (EINVAL);
3158	}
3159
3160	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3161	    type, rid, res);
3162	if (error)
3163		return (error);
3164
3165	rle->res = NULL;
3166	return (0);
3167}
3168
3169/**
3170 * @brief Fully release a reserved resource
3171 *
3172 * Fully releases a resouce reserved via resource_list_reserve().
3173 *
3174 * @param rl		the resource list which was allocated from
3175 * @param bus		the parent device of @p child
3176 * @param child		the device whose reserved resource is being released
3177 * @param type		the type of resource to release
3178 * @param rid		the resource identifier
3179 * @param res		the resource to release
3180 *
3181 * @retval 0		success
3182 * @retval non-zero	a standard unix error code indicating what
3183 *			error condition prevented the operation
3184 */
3185int
3186resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3187    int type, int rid)
3188{
3189	struct resource_list_entry *rle = NULL;
3190	int passthrough = (device_get_parent(child) != bus);
3191
3192	if (passthrough)
3193		panic(
3194    "resource_list_unreserve() should only be called for direct children");
3195
3196	rle = resource_list_find(rl, type, rid);
3197
3198	if (!rle)
3199		panic("resource_list_unreserve: can't find resource");
3200	if (!(rle->flags & RLE_RESERVED))
3201		return (EINVAL);
3202	if (rle->flags & RLE_ALLOCATED)
3203		return (EBUSY);
3204	rle->flags &= ~RLE_RESERVED;
3205	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3206}
3207
3208/**
3209 * @brief Print a description of resources in a resource list
3210 *
3211 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3212 * The name is printed if at least one resource of the given type is available.
3213 * The format is used to print resource start and end.
3214 *
3215 * @param rl		the resource list to print
3216 * @param name		the name of @p type, e.g. @c "memory"
3217 * @param type		type type of resource entry to print
3218 * @param format	printf(9) format string to print resource
3219 *			start and end values
3220 *
3221 * @returns		the number of characters printed
3222 */
3223int
3224resource_list_print_type(struct resource_list *rl, const char *name, int type,
3225    const char *format)
3226{
3227	struct resource_list_entry *rle;
3228	int printed, retval;
3229
3230	printed = 0;
3231	retval = 0;
3232	/* Yes, this is kinda cheating */
3233	STAILQ_FOREACH(rle, rl, link) {
3234		if (rle->type == type) {
3235			if (printed == 0)
3236				retval += printf(" %s ", name);
3237			else
3238				retval += printf(",");
3239			printed++;
3240			retval += printf(format, rle->start);
3241			if (rle->count > 1) {
3242				retval += printf("-");
3243				retval += printf(format, rle->start +
3244						 rle->count - 1);
3245			}
3246		}
3247	}
3248	return (retval);
3249}
3250
3251/**
3252 * @brief Releases all the resources in a list.
3253 *
3254 * @param rl		The resource list to purge.
3255 *
3256 * @returns		nothing
3257 */
3258void
3259resource_list_purge(struct resource_list *rl)
3260{
3261	struct resource_list_entry *rle;
3262
3263	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3264		if (rle->res)
3265			bus_release_resource(rman_get_device(rle->res),
3266			    rle->type, rle->rid, rle->res);
3267		STAILQ_REMOVE_HEAD(rl, link);
3268		free(rle, M_BUS);
3269	}
3270}
3271
3272device_t
3273bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3274{
3275
3276	return (device_add_child_ordered(dev, order, name, unit));
3277}
3278
3279/**
3280 * @brief Helper function for implementing DEVICE_PROBE()
3281 *
3282 * This function can be used to help implement the DEVICE_PROBE() for
3283 * a bus (i.e. a device which has other devices attached to it). It
3284 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3285 * devclass.
3286 */
3287int
3288bus_generic_probe(device_t dev)
3289{
3290	devclass_t dc = dev->devclass;
3291	driverlink_t dl;
3292
3293	TAILQ_FOREACH(dl, &dc->drivers, link) {
3294		/*
3295		 * If this driver's pass is too high, then ignore it.
3296		 * For most drivers in the default pass, this will
3297		 * never be true.  For early-pass drivers they will
3298		 * only call the identify routines of eligible drivers
3299		 * when this routine is called.  Drivers for later
3300		 * passes should have their identify routines called
3301		 * on early-pass busses during BUS_NEW_PASS().
3302		 */
3303		if (dl->pass > bus_current_pass)
3304				continue;
3305		DEVICE_IDENTIFY(dl->driver, dev);
3306	}
3307
3308	return (0);
3309}
3310
3311/**
3312 * @brief Helper function for implementing DEVICE_ATTACH()
3313 *
3314 * This function can be used to help implement the DEVICE_ATTACH() for
3315 * a bus. It calls device_probe_and_attach() for each of the device's
3316 * children.
3317 */
3318int
3319bus_generic_attach(device_t dev)
3320{
3321	device_t child;
3322
3323	TAILQ_FOREACH(child, &dev->children, link) {
3324		device_probe_and_attach(child);
3325	}
3326
3327	return (0);
3328}
3329
3330/**
3331 * @brief Helper function for implementing DEVICE_DETACH()
3332 *
3333 * This function can be used to help implement the DEVICE_DETACH() for
3334 * a bus. It calls device_detach() for each of the device's
3335 * children.
3336 */
3337int
3338bus_generic_detach(device_t dev)
3339{
3340	device_t child;
3341	int error;
3342
3343	if (dev->state != DS_ATTACHED)
3344		return (EBUSY);
3345
3346	TAILQ_FOREACH(child, &dev->children, link) {
3347		if ((error = device_detach(child)) != 0)
3348			return (error);
3349	}
3350
3351	return (0);
3352}
3353
3354/**
3355 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3356 *
3357 * This function can be used to help implement the DEVICE_SHUTDOWN()
3358 * for a bus. It calls device_shutdown() for each of the device's
3359 * children.
3360 */
3361int
3362bus_generic_shutdown(device_t dev)
3363{
3364	device_t child;
3365
3366	TAILQ_FOREACH(child, &dev->children, link) {
3367		device_shutdown(child);
3368	}
3369
3370	return (0);
3371}
3372
3373/**
3374 * @brief Helper function for implementing DEVICE_SUSPEND()
3375 *
3376 * This function can be used to help implement the DEVICE_SUSPEND()
3377 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3378 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3379 * operation is aborted and any devices which were suspended are
3380 * resumed immediately by calling their DEVICE_RESUME() methods.
3381 */
3382int
3383bus_generic_suspend(device_t dev)
3384{
3385	int		error;
3386	device_t	child, child2;
3387
3388	TAILQ_FOREACH(child, &dev->children, link) {
3389		error = DEVICE_SUSPEND(child);
3390		if (error) {
3391			for (child2 = TAILQ_FIRST(&dev->children);
3392			     child2 && child2 != child;
3393			     child2 = TAILQ_NEXT(child2, link))
3394				DEVICE_RESUME(child2);
3395			return (error);
3396		}
3397	}
3398	return (0);
3399}
3400
3401/**
3402 * @brief Helper function for implementing DEVICE_RESUME()
3403 *
3404 * This function can be used to help implement the DEVICE_RESUME() for
3405 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3406 */
3407int
3408bus_generic_resume(device_t dev)
3409{
3410	device_t	child;
3411
3412	TAILQ_FOREACH(child, &dev->children, link) {
3413		DEVICE_RESUME(child);
3414		/* if resume fails, there's nothing we can usefully do... */
3415	}
3416	return (0);
3417}
3418
3419/**
3420 * @brief Helper function for implementing BUS_PRINT_CHILD().
3421 *
3422 * This function prints the first part of the ascii representation of
3423 * @p child, including its name, unit and description (if any - see
3424 * device_set_desc()).
3425 *
3426 * @returns the number of characters printed
3427 */
3428int
3429bus_print_child_header(device_t dev, device_t child)
3430{
3431	int	retval = 0;
3432
3433	if (device_get_desc(child)) {
3434		retval += device_printf(child, "<%s>", device_get_desc(child));
3435	} else {
3436		retval += printf("%s", device_get_nameunit(child));
3437	}
3438
3439	return (retval);
3440}
3441
3442/**
3443 * @brief Helper function for implementing BUS_PRINT_CHILD().
3444 *
3445 * This function prints the last part of the ascii representation of
3446 * @p child, which consists of the string @c " on " followed by the
3447 * name and unit of the @p dev.
3448 *
3449 * @returns the number of characters printed
3450 */
3451int
3452bus_print_child_footer(device_t dev, device_t child)
3453{
3454	return (printf(" on %s\n", device_get_nameunit(dev)));
3455}
3456
3457/**
3458 * @brief Helper function for implementing BUS_PRINT_CHILD().
3459 *
3460 * This function simply calls bus_print_child_header() followed by
3461 * bus_print_child_footer().
3462 *
3463 * @returns the number of characters printed
3464 */
3465int
3466bus_generic_print_child(device_t dev, device_t child)
3467{
3468	int	retval = 0;
3469
3470	retval += bus_print_child_header(dev, child);
3471	retval += bus_print_child_footer(dev, child);
3472
3473	return (retval);
3474}
3475
3476/**
3477 * @brief Stub function for implementing BUS_READ_IVAR().
3478 *
3479 * @returns ENOENT
3480 */
3481int
3482bus_generic_read_ivar(device_t dev, device_t child, int index,
3483    uintptr_t * result)
3484{
3485	return (ENOENT);
3486}
3487
3488/**
3489 * @brief Stub function for implementing BUS_WRITE_IVAR().
3490 *
3491 * @returns ENOENT
3492 */
3493int
3494bus_generic_write_ivar(device_t dev, device_t child, int index,
3495    uintptr_t value)
3496{
3497	return (ENOENT);
3498}
3499
3500/**
3501 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3502 *
3503 * @returns NULL
3504 */
3505struct resource_list *
3506bus_generic_get_resource_list(device_t dev, device_t child)
3507{
3508	return (NULL);
3509}
3510
3511/**
3512 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3513 *
3514 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3515 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3516 * and then calls device_probe_and_attach() for each unattached child.
3517 */
3518void
3519bus_generic_driver_added(device_t dev, driver_t *driver)
3520{
3521	device_t child;
3522
3523	DEVICE_IDENTIFY(driver, dev);
3524	TAILQ_FOREACH(child, &dev->children, link) {
3525		if (child->state == DS_NOTPRESENT ||
3526		    (child->flags & DF_REBID))
3527			device_probe_and_attach(child);
3528	}
3529}
3530
3531/**
3532 * @brief Helper function for implementing BUS_NEW_PASS().
3533 *
3534 * This implementing of BUS_NEW_PASS() first calls the identify
3535 * routines for any drivers that probe at the current pass.  Then it
3536 * walks the list of devices for this bus.  If a device is already
3537 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3538 * device is not already attached, it attempts to attach a driver to
3539 * it.
3540 */
3541void
3542bus_generic_new_pass(device_t dev)
3543{
3544	driverlink_t dl;
3545	devclass_t dc;
3546	device_t child;
3547
3548	dc = dev->devclass;
3549	TAILQ_FOREACH(dl, &dc->drivers, link) {
3550		if (dl->pass == bus_current_pass)
3551			DEVICE_IDENTIFY(dl->driver, dev);
3552	}
3553	TAILQ_FOREACH(child, &dev->children, link) {
3554		if (child->state >= DS_ATTACHED)
3555			BUS_NEW_PASS(child);
3556		else if (child->state == DS_NOTPRESENT)
3557			device_probe_and_attach(child);
3558	}
3559}
3560
3561/**
3562 * @brief Helper function for implementing BUS_SETUP_INTR().
3563 *
3564 * This simple implementation of BUS_SETUP_INTR() simply calls the
3565 * BUS_SETUP_INTR() method of the parent of @p dev.
3566 */
3567int
3568bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3569    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3570    void **cookiep)
3571{
3572	/* Propagate up the bus hierarchy until someone handles it. */
3573	if (dev->parent)
3574		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3575		    filter, intr, arg, cookiep));
3576	return (EINVAL);
3577}
3578
3579/**
3580 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3581 *
3582 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3583 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3584 */
3585int
3586bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3587    void *cookie)
3588{
3589	/* Propagate up the bus hierarchy until someone handles it. */
3590	if (dev->parent)
3591		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3592	return (EINVAL);
3593}
3594
3595/**
3596 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3597 *
3598 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3599 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3600 */
3601struct resource *
3602bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3603    u_long start, u_long end, u_long count, u_int flags)
3604{
3605	/* Propagate up the bus hierarchy until someone handles it. */
3606	if (dev->parent)
3607		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3608		    start, end, count, flags));
3609	return (NULL);
3610}
3611
3612/**
3613 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3614 *
3615 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3616 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3617 */
3618int
3619bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3620    struct resource *r)
3621{
3622	/* Propagate up the bus hierarchy until someone handles it. */
3623	if (dev->parent)
3624		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3625		    r));
3626	return (EINVAL);
3627}
3628
3629/**
3630 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3631 *
3632 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3633 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3634 */
3635int
3636bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3637    struct resource *r)
3638{
3639	/* Propagate up the bus hierarchy until someone handles it. */
3640	if (dev->parent)
3641		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3642		    r));
3643	return (EINVAL);
3644}
3645
3646/**
3647 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3648 *
3649 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3650 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3651 */
3652int
3653bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3654    int rid, struct resource *r)
3655{
3656	/* Propagate up the bus hierarchy until someone handles it. */
3657	if (dev->parent)
3658		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3659		    r));
3660	return (EINVAL);
3661}
3662
3663/**
3664 * @brief Helper function for implementing BUS_BIND_INTR().
3665 *
3666 * This simple implementation of BUS_BIND_INTR() simply calls the
3667 * BUS_BIND_INTR() method of the parent of @p dev.
3668 */
3669int
3670bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3671    int cpu)
3672{
3673
3674	/* Propagate up the bus hierarchy until someone handles it. */
3675	if (dev->parent)
3676		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3677	return (EINVAL);
3678}
3679
3680/**
3681 * @brief Helper function for implementing BUS_CONFIG_INTR().
3682 *
3683 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3684 * BUS_CONFIG_INTR() method of the parent of @p dev.
3685 */
3686int
3687bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3688    enum intr_polarity pol)
3689{
3690
3691	/* Propagate up the bus hierarchy until someone handles it. */
3692	if (dev->parent)
3693		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3694	return (EINVAL);
3695}
3696
3697/**
3698 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3699 *
3700 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3701 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3702 */
3703int
3704bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3705    void *cookie, const char *descr)
3706{
3707
3708	/* Propagate up the bus hierarchy until someone handles it. */
3709	if (dev->parent)
3710		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3711		    descr));
3712	return (EINVAL);
3713}
3714
3715/**
3716 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3717 *
3718 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3719 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3720 */
3721bus_dma_tag_t
3722bus_generic_get_dma_tag(device_t dev, device_t child)
3723{
3724
3725	/* Propagate up the bus hierarchy until someone handles it. */
3726	if (dev->parent != NULL)
3727		return (BUS_GET_DMA_TAG(dev->parent, child));
3728	return (NULL);
3729}
3730
3731/**
3732 * @brief Helper function for implementing BUS_GET_RESOURCE().
3733 *
3734 * This implementation of BUS_GET_RESOURCE() uses the
3735 * resource_list_find() function to do most of the work. It calls
3736 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3737 * search.
3738 */
3739int
3740bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3741    u_long *startp, u_long *countp)
3742{
3743	struct resource_list *		rl = NULL;
3744	struct resource_list_entry *	rle = NULL;
3745
3746	rl = BUS_GET_RESOURCE_LIST(dev, child);
3747	if (!rl)
3748		return (EINVAL);
3749
3750	rle = resource_list_find(rl, type, rid);
3751	if (!rle)
3752		return (ENOENT);
3753
3754	if (startp)
3755		*startp = rle->start;
3756	if (countp)
3757		*countp = rle->count;
3758
3759	return (0);
3760}
3761
3762/**
3763 * @brief Helper function for implementing BUS_SET_RESOURCE().
3764 *
3765 * This implementation of BUS_SET_RESOURCE() uses the
3766 * resource_list_add() function to do most of the work. It calls
3767 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3768 * edit.
3769 */
3770int
3771bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3772    u_long start, u_long count)
3773{
3774	struct resource_list *		rl = NULL;
3775
3776	rl = BUS_GET_RESOURCE_LIST(dev, child);
3777	if (!rl)
3778		return (EINVAL);
3779
3780	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3781
3782	return (0);
3783}
3784
3785/**
3786 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3787 *
3788 * This implementation of BUS_DELETE_RESOURCE() uses the
3789 * resource_list_delete() function to do most of the work. It calls
3790 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3791 * edit.
3792 */
3793void
3794bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3795{
3796	struct resource_list *		rl = NULL;
3797
3798	rl = BUS_GET_RESOURCE_LIST(dev, child);
3799	if (!rl)
3800		return;
3801
3802	resource_list_delete(rl, type, rid);
3803
3804	return;
3805}
3806
3807/**
3808 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3809 *
3810 * This implementation of BUS_RELEASE_RESOURCE() uses the
3811 * resource_list_release() function to do most of the work. It calls
3812 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3813 */
3814int
3815bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3816    int rid, struct resource *r)
3817{
3818	struct resource_list *		rl = NULL;
3819
3820	if (device_get_parent(child) != dev)
3821		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
3822		    type, rid, r));
3823
3824	rl = BUS_GET_RESOURCE_LIST(dev, child);
3825	if (!rl)
3826		return (EINVAL);
3827
3828	return (resource_list_release(rl, dev, child, type, rid, r));
3829}
3830
3831/**
3832 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3833 *
3834 * This implementation of BUS_ALLOC_RESOURCE() uses the
3835 * resource_list_alloc() function to do most of the work. It calls
3836 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3837 */
3838struct resource *
3839bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3840    int *rid, u_long start, u_long end, u_long count, u_int flags)
3841{
3842	struct resource_list *		rl = NULL;
3843
3844	if (device_get_parent(child) != dev)
3845		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
3846		    type, rid, start, end, count, flags));
3847
3848	rl = BUS_GET_RESOURCE_LIST(dev, child);
3849	if (!rl)
3850		return (NULL);
3851
3852	return (resource_list_alloc(rl, dev, child, type, rid,
3853	    start, end, count, flags));
3854}
3855
3856/**
3857 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3858 *
3859 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3860 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3861 */
3862int
3863bus_generic_child_present(device_t dev, device_t child)
3864{
3865	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3866}
3867
3868/*
3869 * Some convenience functions to make it easier for drivers to use the
3870 * resource-management functions.  All these really do is hide the
3871 * indirection through the parent's method table, making for slightly
3872 * less-wordy code.  In the future, it might make sense for this code
3873 * to maintain some sort of a list of resources allocated by each device.
3874 */
3875
3876int
3877bus_alloc_resources(device_t dev, struct resource_spec *rs,
3878    struct resource **res)
3879{
3880	int i;
3881
3882	for (i = 0; rs[i].type != -1; i++)
3883		res[i] = NULL;
3884	for (i = 0; rs[i].type != -1; i++) {
3885		res[i] = bus_alloc_resource_any(dev,
3886		    rs[i].type, &rs[i].rid, rs[i].flags);
3887		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3888			bus_release_resources(dev, rs, res);
3889			return (ENXIO);
3890		}
3891	}
3892	return (0);
3893}
3894
3895void
3896bus_release_resources(device_t dev, const struct resource_spec *rs,
3897    struct resource **res)
3898{
3899	int i;
3900
3901	for (i = 0; rs[i].type != -1; i++)
3902		if (res[i] != NULL) {
3903			bus_release_resource(
3904			    dev, rs[i].type, rs[i].rid, res[i]);
3905			res[i] = NULL;
3906		}
3907}
3908
3909/**
3910 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3911 *
3912 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3913 * parent of @p dev.
3914 */
3915struct resource *
3916bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3917    u_long count, u_int flags)
3918{
3919	if (dev->parent == NULL)
3920		return (NULL);
3921	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3922	    count, flags));
3923}
3924
3925/**
3926 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3927 *
3928 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3929 * parent of @p dev.
3930 */
3931int
3932bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3933{
3934	if (dev->parent == NULL)
3935		return (EINVAL);
3936	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3937}
3938
3939/**
3940 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3941 *
3942 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3943 * parent of @p dev.
3944 */
3945int
3946bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3947{
3948	if (dev->parent == NULL)
3949		return (EINVAL);
3950	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3951}
3952
3953/**
3954 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3955 *
3956 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3957 * parent of @p dev.
3958 */
3959int
3960bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3961{
3962	if (dev->parent == NULL)
3963		return (EINVAL);
3964	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3965}
3966
3967/**
3968 * @brief Wrapper function for BUS_SETUP_INTR().
3969 *
3970 * This function simply calls the BUS_SETUP_INTR() method of the
3971 * parent of @p dev.
3972 */
3973int
3974bus_setup_intr(device_t dev, struct resource *r, int flags,
3975    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3976{
3977	int error;
3978
3979	if (dev->parent == NULL)
3980		return (EINVAL);
3981	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3982	    arg, cookiep);
3983	if (error != 0)
3984		return (error);
3985	if (handler != NULL && !(flags & INTR_MPSAFE))
3986		device_printf(dev, "[GIANT-LOCKED]\n");
3987	if (bootverbose && (flags & INTR_MPSAFE))
3988		device_printf(dev, "[MPSAFE]\n");
3989	if (filter != NULL) {
3990		if (handler == NULL)
3991			device_printf(dev, "[FILTER]\n");
3992		else
3993			device_printf(dev, "[FILTER+ITHREAD]\n");
3994	} else
3995		device_printf(dev, "[ITHREAD]\n");
3996	return (0);
3997}
3998
3999/**
4000 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4001 *
4002 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4003 * parent of @p dev.
4004 */
4005int
4006bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4007{
4008	if (dev->parent == NULL)
4009		return (EINVAL);
4010	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4011}
4012
4013/**
4014 * @brief Wrapper function for BUS_BIND_INTR().
4015 *
4016 * This function simply calls the BUS_BIND_INTR() method of the
4017 * parent of @p dev.
4018 */
4019int
4020bus_bind_intr(device_t dev, struct resource *r, int cpu)
4021{
4022	if (dev->parent == NULL)
4023		return (EINVAL);
4024	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4025}
4026
4027/**
4028 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4029 *
4030 * This function first formats the requested description into a
4031 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4032 * the parent of @p dev.
4033 */
4034int
4035bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4036    const char *fmt, ...)
4037{
4038	va_list ap;
4039	char descr[MAXCOMLEN + 1];
4040
4041	if (dev->parent == NULL)
4042		return (EINVAL);
4043	va_start(ap, fmt);
4044	vsnprintf(descr, sizeof(descr), fmt, ap);
4045	va_end(ap);
4046	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4047}
4048
4049/**
4050 * @brief Wrapper function for BUS_SET_RESOURCE().
4051 *
4052 * This function simply calls the BUS_SET_RESOURCE() method of the
4053 * parent of @p dev.
4054 */
4055int
4056bus_set_resource(device_t dev, int type, int rid,
4057    u_long start, u_long count)
4058{
4059	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4060	    start, count));
4061}
4062
4063/**
4064 * @brief Wrapper function for BUS_GET_RESOURCE().
4065 *
4066 * This function simply calls the BUS_GET_RESOURCE() method of the
4067 * parent of @p dev.
4068 */
4069int
4070bus_get_resource(device_t dev, int type, int rid,
4071    u_long *startp, u_long *countp)
4072{
4073	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4074	    startp, countp));
4075}
4076
4077/**
4078 * @brief Wrapper function for BUS_GET_RESOURCE().
4079 *
4080 * This function simply calls the BUS_GET_RESOURCE() method of the
4081 * parent of @p dev and returns the start value.
4082 */
4083u_long
4084bus_get_resource_start(device_t dev, int type, int rid)
4085{
4086	u_long start, count;
4087	int error;
4088
4089	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4090	    &start, &count);
4091	if (error)
4092		return (0);
4093	return (start);
4094}
4095
4096/**
4097 * @brief Wrapper function for BUS_GET_RESOURCE().
4098 *
4099 * This function simply calls the BUS_GET_RESOURCE() method of the
4100 * parent of @p dev and returns the count value.
4101 */
4102u_long
4103bus_get_resource_count(device_t dev, int type, int rid)
4104{
4105	u_long start, count;
4106	int error;
4107
4108	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4109	    &start, &count);
4110	if (error)
4111		return (0);
4112	return (count);
4113}
4114
4115/**
4116 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4117 *
4118 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4119 * parent of @p dev.
4120 */
4121void
4122bus_delete_resource(device_t dev, int type, int rid)
4123{
4124	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4125}
4126
4127/**
4128 * @brief Wrapper function for BUS_CHILD_PRESENT().
4129 *
4130 * This function simply calls the BUS_CHILD_PRESENT() method of the
4131 * parent of @p dev.
4132 */
4133int
4134bus_child_present(device_t child)
4135{
4136	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4137}
4138
4139/**
4140 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4141 *
4142 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4143 * parent of @p dev.
4144 */
4145int
4146bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4147{
4148	device_t parent;
4149
4150	parent = device_get_parent(child);
4151	if (parent == NULL) {
4152		*buf = '\0';
4153		return (0);
4154	}
4155	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4156}
4157
4158/**
4159 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4160 *
4161 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4162 * parent of @p dev.
4163 */
4164int
4165bus_child_location_str(device_t child, char *buf, size_t buflen)
4166{
4167	device_t parent;
4168
4169	parent = device_get_parent(child);
4170	if (parent == NULL) {
4171		*buf = '\0';
4172		return (0);
4173	}
4174	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4175}
4176
4177/**
4178 * @brief Wrapper function for BUS_GET_DMA_TAG().
4179 *
4180 * This function simply calls the BUS_GET_DMA_TAG() method of the
4181 * parent of @p dev.
4182 */
4183bus_dma_tag_t
4184bus_get_dma_tag(device_t dev)
4185{
4186	device_t parent;
4187
4188	parent = device_get_parent(dev);
4189	if (parent == NULL)
4190		return (NULL);
4191	return (BUS_GET_DMA_TAG(parent, dev));
4192}
4193
4194/* Resume all devices and then notify userland that we're up again. */
4195static int
4196root_resume(device_t dev)
4197{
4198	int error;
4199
4200	error = bus_generic_resume(dev);
4201	if (error == 0)
4202		devctl_notify("kern", "power", "resume", NULL);
4203	return (error);
4204}
4205
4206static int
4207root_print_child(device_t dev, device_t child)
4208{
4209	int	retval = 0;
4210
4211	retval += bus_print_child_header(dev, child);
4212	retval += printf("\n");
4213
4214	return (retval);
4215}
4216
4217static int
4218root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4219    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4220{
4221	/*
4222	 * If an interrupt mapping gets to here something bad has happened.
4223	 */
4224	panic("root_setup_intr");
4225}
4226
4227/*
4228 * If we get here, assume that the device is permanant and really is
4229 * present in the system.  Removable bus drivers are expected to intercept
4230 * this call long before it gets here.  We return -1 so that drivers that
4231 * really care can check vs -1 or some ERRNO returned higher in the food
4232 * chain.
4233 */
4234static int
4235root_child_present(device_t dev, device_t child)
4236{
4237	return (-1);
4238}
4239
4240static kobj_method_t root_methods[] = {
4241	/* Device interface */
4242	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4243	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4244	KOBJMETHOD(device_resume,	root_resume),
4245
4246	/* Bus interface */
4247	KOBJMETHOD(bus_print_child,	root_print_child),
4248	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4249	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4250	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4251	KOBJMETHOD(bus_child_present,	root_child_present),
4252
4253	KOBJMETHOD_END
4254};
4255
4256static driver_t root_driver = {
4257	"root",
4258	root_methods,
4259	1,			/* no softc */
4260};
4261
4262device_t	root_bus;
4263devclass_t	root_devclass;
4264
4265static int
4266root_bus_module_handler(module_t mod, int what, void* arg)
4267{
4268	switch (what) {
4269	case MOD_LOAD:
4270		TAILQ_INIT(&bus_data_devices);
4271		kobj_class_compile((kobj_class_t) &root_driver);
4272		root_bus = make_device(NULL, "root", 0);
4273		root_bus->desc = "System root bus";
4274		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4275		root_bus->driver = &root_driver;
4276		root_bus->state = DS_ATTACHED;
4277		root_devclass = devclass_find_internal("root", NULL, FALSE);
4278		devinit();
4279		return (0);
4280
4281	case MOD_SHUTDOWN:
4282		device_shutdown(root_bus);
4283		return (0);
4284	default:
4285		return (EOPNOTSUPP);
4286	}
4287
4288	return (0);
4289}
4290
4291static moduledata_t root_bus_mod = {
4292	"rootbus",
4293	root_bus_module_handler,
4294	NULL
4295};
4296DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4297
4298/**
4299 * @brief Automatically configure devices
4300 *
4301 * This function begins the autoconfiguration process by calling
4302 * device_probe_and_attach() for each child of the @c root0 device.
4303 */
4304void
4305root_bus_configure(void)
4306{
4307
4308	PDEBUG(("."));
4309
4310	/* Eventually this will be split up, but this is sufficient for now. */
4311	bus_set_pass(BUS_PASS_DEFAULT);
4312}
4313
4314/**
4315 * @brief Module handler for registering device drivers
4316 *
4317 * This module handler is used to automatically register device
4318 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4319 * devclass_add_driver() for the driver described by the
4320 * driver_module_data structure pointed to by @p arg
4321 */
4322int
4323driver_module_handler(module_t mod, int what, void *arg)
4324{
4325	struct driver_module_data *dmd;
4326	devclass_t bus_devclass;
4327	kobj_class_t driver;
4328	int error, pass;
4329
4330	dmd = (struct driver_module_data *)arg;
4331	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4332	error = 0;
4333
4334	switch (what) {
4335	case MOD_LOAD:
4336		if (dmd->dmd_chainevh)
4337			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4338
4339		pass = dmd->dmd_pass;
4340		driver = dmd->dmd_driver;
4341		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4342		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4343		error = devclass_add_driver(bus_devclass, driver, pass,
4344		    dmd->dmd_devclass);
4345		break;
4346
4347	case MOD_UNLOAD:
4348		PDEBUG(("Unloading module: driver %s from bus %s",
4349		    DRIVERNAME(dmd->dmd_driver),
4350		    dmd->dmd_busname));
4351		error = devclass_delete_driver(bus_devclass,
4352		    dmd->dmd_driver);
4353
4354		if (!error && dmd->dmd_chainevh)
4355			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4356		break;
4357	case MOD_QUIESCE:
4358		PDEBUG(("Quiesce module: driver %s from bus %s",
4359		    DRIVERNAME(dmd->dmd_driver),
4360		    dmd->dmd_busname));
4361		error = devclass_quiesce_driver(bus_devclass,
4362		    dmd->dmd_driver);
4363
4364		if (!error && dmd->dmd_chainevh)
4365			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4366		break;
4367	default:
4368		error = EOPNOTSUPP;
4369		break;
4370	}
4371
4372	return (error);
4373}
4374
4375/**
4376 * @brief Enumerate all hinted devices for this bus.
4377 *
4378 * Walks through the hints for this bus and calls the bus_hinted_child
4379 * routine for each one it fines.  It searches first for the specific
4380 * bus that's being probed for hinted children (eg isa0), and then for
4381 * generic children (eg isa).
4382 *
4383 * @param	dev	bus device to enumerate
4384 */
4385void
4386bus_enumerate_hinted_children(device_t bus)
4387{
4388	int i;
4389	const char *dname, *busname;
4390	int dunit;
4391
4392	/*
4393	 * enumerate all devices on the specific bus
4394	 */
4395	busname = device_get_nameunit(bus);
4396	i = 0;
4397	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4398		BUS_HINTED_CHILD(bus, dname, dunit);
4399
4400	/*
4401	 * and all the generic ones.
4402	 */
4403	busname = device_get_name(bus);
4404	i = 0;
4405	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4406		BUS_HINTED_CHILD(bus, dname, dunit);
4407}
4408
4409#ifdef BUS_DEBUG
4410
4411/* the _short versions avoid iteration by not calling anything that prints
4412 * more than oneliners. I love oneliners.
4413 */
4414
4415static void
4416print_device_short(device_t dev, int indent)
4417{
4418	if (!dev)
4419		return;
4420
4421	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4422	    dev->unit, dev->desc,
4423	    (dev->parent? "":"no "),
4424	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4425	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4426	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4427	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4428	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4429	    (dev->flags&DF_REBID? "rebiddable,":""),
4430	    (dev->ivars? "":"no "),
4431	    (dev->softc? "":"no "),
4432	    dev->busy));
4433}
4434
4435static void
4436print_device(device_t dev, int indent)
4437{
4438	if (!dev)
4439		return;
4440
4441	print_device_short(dev, indent);
4442
4443	indentprintf(("Parent:\n"));
4444	print_device_short(dev->parent, indent+1);
4445	indentprintf(("Driver:\n"));
4446	print_driver_short(dev->driver, indent+1);
4447	indentprintf(("Devclass:\n"));
4448	print_devclass_short(dev->devclass, indent+1);
4449}
4450
4451void
4452print_device_tree_short(device_t dev, int indent)
4453/* print the device and all its children (indented) */
4454{
4455	device_t child;
4456
4457	if (!dev)
4458		return;
4459
4460	print_device_short(dev, indent);
4461
4462	TAILQ_FOREACH(child, &dev->children, link) {
4463		print_device_tree_short(child, indent+1);
4464	}
4465}
4466
4467void
4468print_device_tree(device_t dev, int indent)
4469/* print the device and all its children (indented) */
4470{
4471	device_t child;
4472
4473	if (!dev)
4474		return;
4475
4476	print_device(dev, indent);
4477
4478	TAILQ_FOREACH(child, &dev->children, link) {
4479		print_device_tree(child, indent+1);
4480	}
4481}
4482
4483static void
4484print_driver_short(driver_t *driver, int indent)
4485{
4486	if (!driver)
4487		return;
4488
4489	indentprintf(("driver %s: softc size = %zd\n",
4490	    driver->name, driver->size));
4491}
4492
4493static void
4494print_driver(driver_t *driver, int indent)
4495{
4496	if (!driver)
4497		return;
4498
4499	print_driver_short(driver, indent);
4500}
4501
4502
4503static void
4504print_driver_list(driver_list_t drivers, int indent)
4505{
4506	driverlink_t driver;
4507
4508	TAILQ_FOREACH(driver, &drivers, link) {
4509		print_driver(driver->driver, indent);
4510	}
4511}
4512
4513static void
4514print_devclass_short(devclass_t dc, int indent)
4515{
4516	if ( !dc )
4517		return;
4518
4519	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4520}
4521
4522static void
4523print_devclass(devclass_t dc, int indent)
4524{
4525	int i;
4526
4527	if ( !dc )
4528		return;
4529
4530	print_devclass_short(dc, indent);
4531	indentprintf(("Drivers:\n"));
4532	print_driver_list(dc->drivers, indent+1);
4533
4534	indentprintf(("Devices:\n"));
4535	for (i = 0; i < dc->maxunit; i++)
4536		if (dc->devices[i])
4537			print_device(dc->devices[i], indent+1);
4538}
4539
4540void
4541print_devclass_list_short(void)
4542{
4543	devclass_t dc;
4544
4545	printf("Short listing of devclasses, drivers & devices:\n");
4546	TAILQ_FOREACH(dc, &devclasses, link) {
4547		print_devclass_short(dc, 0);
4548	}
4549}
4550
4551void
4552print_devclass_list(void)
4553{
4554	devclass_t dc;
4555
4556	printf("Full listing of devclasses, drivers & devices:\n");
4557	TAILQ_FOREACH(dc, &devclasses, link) {
4558		print_devclass(dc, 0);
4559	}
4560}
4561
4562#endif
4563
4564/*
4565 * User-space access to the device tree.
4566 *
4567 * We implement a small set of nodes:
4568 *
4569 * hw.bus			Single integer read method to obtain the
4570 *				current generation count.
4571 * hw.bus.devices		Reads the entire device tree in flat space.
4572 * hw.bus.rman			Resource manager interface
4573 *
4574 * We might like to add the ability to scan devclasses and/or drivers to
4575 * determine what else is currently loaded/available.
4576 */
4577
4578static int
4579sysctl_bus(SYSCTL_HANDLER_ARGS)
4580{
4581	struct u_businfo	ubus;
4582
4583	ubus.ub_version = BUS_USER_VERSION;
4584	ubus.ub_generation = bus_data_generation;
4585
4586	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4587}
4588SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4589    "bus-related data");
4590
4591static int
4592sysctl_devices(SYSCTL_HANDLER_ARGS)
4593{
4594	int			*name = (int *)arg1;
4595	u_int			namelen = arg2;
4596	int			index;
4597	struct device		*dev;
4598	struct u_device		udev;	/* XXX this is a bit big */
4599	int			error;
4600
4601	if (namelen != 2)
4602		return (EINVAL);
4603
4604	if (bus_data_generation_check(name[0]))
4605		return (EINVAL);
4606
4607	index = name[1];
4608
4609	/*
4610	 * Scan the list of devices, looking for the requested index.
4611	 */
4612	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4613		if (index-- == 0)
4614			break;
4615	}
4616	if (dev == NULL)
4617		return (ENOENT);
4618
4619	/*
4620	 * Populate the return array.
4621	 */
4622	bzero(&udev, sizeof(udev));
4623	udev.dv_handle = (uintptr_t)dev;
4624	udev.dv_parent = (uintptr_t)dev->parent;
4625	if (dev->nameunit != NULL)
4626		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4627	if (dev->desc != NULL)
4628		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4629	if (dev->driver != NULL && dev->driver->name != NULL)
4630		strlcpy(udev.dv_drivername, dev->driver->name,
4631		    sizeof(udev.dv_drivername));
4632	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4633	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4634	udev.dv_devflags = dev->devflags;
4635	udev.dv_flags = dev->flags;
4636	udev.dv_state = dev->state;
4637	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4638	return (error);
4639}
4640
4641SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4642    "system device tree");
4643
4644int
4645bus_data_generation_check(int generation)
4646{
4647	if (generation != bus_data_generation)
4648		return (1);
4649
4650	/* XXX generate optimised lists here? */
4651	return (0);
4652}
4653
4654void
4655bus_data_generation_update(void)
4656{
4657	bus_data_generation++;
4658}
4659
4660int
4661bus_free_resource(device_t dev, int type, struct resource *r)
4662{
4663	if (r == NULL)
4664		return (0);
4665	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4666}
4667