subr_bus.c revision 198367
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 198367 2009-10-22 14:53:44Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53#include <sys/interrupt.h>
54
55#include <machine/stdarg.h>
56
57#include <vm/uma.h>
58
59SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61
62/*
63 * Used to attach drivers to devclasses.
64 */
65typedef struct driverlink *driverlink_t;
66struct driverlink {
67	kobj_class_t	driver;
68	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69	int		pass;
70	TAILQ_ENTRY(driverlink) passlink;
71};
72
73/*
74 * Forward declarations
75 */
76typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
77typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
78typedef TAILQ_HEAD(device_list, device) device_list_t;
79
80struct devclass {
81	TAILQ_ENTRY(devclass) link;
82	devclass_t	parent;		/* parent in devclass hierarchy */
83	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
84	char		*name;
85	device_t	*devices;	/* array of devices indexed by unit */
86	int		maxunit;	/* size of devices array */
87	int		flags;
88#define DC_HAS_CHILDREN		1
89
90	struct sysctl_ctx_list sysctl_ctx;
91	struct sysctl_oid *sysctl_tree;
92};
93
94/**
95 * @brief Implementation of device.
96 */
97struct device {
98	/*
99	 * A device is a kernel object. The first field must be the
100	 * current ops table for the object.
101	 */
102	KOBJ_FIELDS;
103
104	/*
105	 * Device hierarchy.
106	 */
107	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
108	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
109	device_t	parent;		/**< parent of this device  */
110	device_list_t	children;	/**< list of child devices */
111
112	/*
113	 * Details of this device.
114	 */
115	driver_t	*driver;	/**< current driver */
116	devclass_t	devclass;	/**< current device class */
117	int		unit;		/**< current unit number */
118	char*		nameunit;	/**< name+unit e.g. foodev0 */
119	char*		desc;		/**< driver specific description */
120	int		busy;		/**< count of calls to device_busy() */
121	device_state_t	state;		/**< current device state  */
122	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
123	u_short		flags;		/**< internal device flags  */
124#define	DF_ENABLED	1		/* device should be probed/attached */
125#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
126#define	DF_WILDCARD	4		/* unit was originally wildcard */
127#define	DF_DESCMALLOCED	8		/* description was malloced */
128#define	DF_QUIET	16		/* don't print verbose attach message */
129#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
130#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
131#define	DF_REBID	128		/* Can rebid after attach */
132	u_char	order;			/**< order from device_add_child_ordered() */
133	u_char	pad;
134	void	*ivars;			/**< instance variables  */
135	void	*softc;			/**< current driver's variables  */
136
137	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
138	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
139};
140
141static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
142static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
143
144#ifdef BUS_DEBUG
145
146static int bus_debug = 1;
147TUNABLE_INT("bus.debug", &bus_debug);
148SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
149    "Debug bus code");
150
151#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
152#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
153#define DRIVERNAME(d)	((d)? d->name : "no driver")
154#define DEVCLANAME(d)	((d)? d->name : "no devclass")
155
156/**
157 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
158 * prevent syslog from deleting initial spaces
159 */
160#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
161
162static void print_device_short(device_t dev, int indent);
163static void print_device(device_t dev, int indent);
164void print_device_tree_short(device_t dev, int indent);
165void print_device_tree(device_t dev, int indent);
166static void print_driver_short(driver_t *driver, int indent);
167static void print_driver(driver_t *driver, int indent);
168static void print_driver_list(driver_list_t drivers, int indent);
169static void print_devclass_short(devclass_t dc, int indent);
170static void print_devclass(devclass_t dc, int indent);
171void print_devclass_list_short(void);
172void print_devclass_list(void);
173
174#else
175/* Make the compiler ignore the function calls */
176#define PDEBUG(a)			/* nop */
177#define DEVICENAME(d)			/* nop */
178#define DRIVERNAME(d)			/* nop */
179#define DEVCLANAME(d)			/* nop */
180
181#define print_device_short(d,i)		/* nop */
182#define print_device(d,i)		/* nop */
183#define print_device_tree_short(d,i)	/* nop */
184#define print_device_tree(d,i)		/* nop */
185#define print_driver_short(d,i)		/* nop */
186#define print_driver(d,i)		/* nop */
187#define print_driver_list(d,i)		/* nop */
188#define print_devclass_short(d,i)	/* nop */
189#define print_devclass(d,i)		/* nop */
190#define print_devclass_list_short()	/* nop */
191#define print_devclass_list()		/* nop */
192#endif
193
194/*
195 * dev sysctl tree
196 */
197
198enum {
199	DEVCLASS_SYSCTL_PARENT,
200};
201
202static int
203devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
204{
205	devclass_t dc = (devclass_t)arg1;
206	const char *value;
207
208	switch (arg2) {
209	case DEVCLASS_SYSCTL_PARENT:
210		value = dc->parent ? dc->parent->name : "";
211		break;
212	default:
213		return (EINVAL);
214	}
215	return (SYSCTL_OUT(req, value, strlen(value)));
216}
217
218static void
219devclass_sysctl_init(devclass_t dc)
220{
221
222	if (dc->sysctl_tree != NULL)
223		return;
224	sysctl_ctx_init(&dc->sysctl_ctx);
225	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
226	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
227	    CTLFLAG_RD, NULL, "");
228	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
229	    OID_AUTO, "%parent", CTLFLAG_RD,
230	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
231	    "parent class");
232}
233
234enum {
235	DEVICE_SYSCTL_DESC,
236	DEVICE_SYSCTL_DRIVER,
237	DEVICE_SYSCTL_LOCATION,
238	DEVICE_SYSCTL_PNPINFO,
239	DEVICE_SYSCTL_PARENT,
240};
241
242static int
243device_sysctl_handler(SYSCTL_HANDLER_ARGS)
244{
245	device_t dev = (device_t)arg1;
246	const char *value;
247	char *buf;
248	int error;
249
250	buf = NULL;
251	switch (arg2) {
252	case DEVICE_SYSCTL_DESC:
253		value = dev->desc ? dev->desc : "";
254		break;
255	case DEVICE_SYSCTL_DRIVER:
256		value = dev->driver ? dev->driver->name : "";
257		break;
258	case DEVICE_SYSCTL_LOCATION:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_location_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PNPINFO:
263		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
264		bus_child_pnpinfo_str(dev, buf, 1024);
265		break;
266	case DEVICE_SYSCTL_PARENT:
267		value = dev->parent ? dev->parent->nameunit : "";
268		break;
269	default:
270		return (EINVAL);
271	}
272	error = SYSCTL_OUT(req, value, strlen(value));
273	if (buf != NULL)
274		free(buf, M_BUS);
275	return (error);
276}
277
278static void
279device_sysctl_init(device_t dev)
280{
281	devclass_t dc = dev->devclass;
282
283	if (dev->sysctl_tree != NULL)
284		return;
285	devclass_sysctl_init(dc);
286	sysctl_ctx_init(&dev->sysctl_ctx);
287	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
288	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
289	    dev->nameunit + strlen(dc->name),
290	    CTLFLAG_RD, NULL, "");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%desc", CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
294	    "device description");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%driver", CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
298	    "device driver name");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%location", CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
302	    "device location relative to parent");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
306	    "device identification");
307	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
308	    OID_AUTO, "%parent", CTLFLAG_RD,
309	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
310	    "parent device");
311}
312
313static void
314device_sysctl_update(device_t dev)
315{
316	devclass_t dc = dev->devclass;
317
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
321}
322
323static void
324device_sysctl_fini(device_t dev)
325{
326	if (dev->sysctl_tree == NULL)
327		return;
328	sysctl_ctx_free(&dev->sysctl_ctx);
329	dev->sysctl_tree = NULL;
330}
331
332/*
333 * /dev/devctl implementation
334 */
335
336/*
337 * This design allows only one reader for /dev/devctl.  This is not desirable
338 * in the long run, but will get a lot of hair out of this implementation.
339 * Maybe we should make this device a clonable device.
340 *
341 * Also note: we specifically do not attach a device to the device_t tree
342 * to avoid potential chicken and egg problems.  One could argue that all
343 * of this belongs to the root node.  One could also further argue that the
344 * sysctl interface that we have not might more properly be an ioctl
345 * interface, but at this stage of the game, I'm not inclined to rock that
346 * boat.
347 *
348 * I'm also not sure that the SIGIO support is done correctly or not, as
349 * I copied it from a driver that had SIGIO support that likely hasn't been
350 * tested since 3.4 or 2.2.8!
351 */
352
353/* Deprecated way to adjust queue length */
354static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
355/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
356SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, NULL,
357    0, sysctl_devctl_disable, "I", "devctl disable -- deprecated");
358
359#define DEVCTL_DEFAULT_QUEUE_LEN 1000
360static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
361static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
362TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
363SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW, NULL,
364    0, sysctl_devctl_queue, "I", "devctl queue length");
365
366static d_open_t		devopen;
367static d_close_t	devclose;
368static d_read_t		devread;
369static d_ioctl_t	devioctl;
370static d_poll_t		devpoll;
371
372static struct cdevsw dev_cdevsw = {
373	.d_version =	D_VERSION,
374	.d_flags =	D_NEEDGIANT,
375	.d_open =	devopen,
376	.d_close =	devclose,
377	.d_read =	devread,
378	.d_ioctl =	devioctl,
379	.d_poll =	devpoll,
380	.d_name =	"devctl",
381};
382
383struct dev_event_info
384{
385	char *dei_data;
386	TAILQ_ENTRY(dev_event_info) dei_link;
387};
388
389TAILQ_HEAD(devq, dev_event_info);
390
391static struct dev_softc
392{
393	int	inuse;
394	int	nonblock;
395	int	queued;
396	struct mtx mtx;
397	struct cv cv;
398	struct selinfo sel;
399	struct devq devq;
400	struct proc *async_proc;
401} devsoftc;
402
403static struct cdev *devctl_dev;
404
405static void
406devinit(void)
407{
408	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
409	    "devctl");
410	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
411	cv_init(&devsoftc.cv, "dev cv");
412	TAILQ_INIT(&devsoftc.devq);
413}
414
415static int
416devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
417{
418	if (devsoftc.inuse)
419		return (EBUSY);
420	/* move to init */
421	devsoftc.inuse = 1;
422	devsoftc.nonblock = 0;
423	devsoftc.async_proc = NULL;
424	return (0);
425}
426
427static int
428devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
429{
430	devsoftc.inuse = 0;
431	mtx_lock(&devsoftc.mtx);
432	cv_broadcast(&devsoftc.cv);
433	mtx_unlock(&devsoftc.mtx);
434	devsoftc.async_proc = NULL;
435	return (0);
436}
437
438/*
439 * The read channel for this device is used to report changes to
440 * userland in realtime.  We are required to free the data as well as
441 * the n1 object because we allocate them separately.  Also note that
442 * we return one record at a time.  If you try to read this device a
443 * character at a time, you will lose the rest of the data.  Listening
444 * programs are expected to cope.
445 */
446static int
447devread(struct cdev *dev, struct uio *uio, int ioflag)
448{
449	struct dev_event_info *n1;
450	int rv;
451
452	mtx_lock(&devsoftc.mtx);
453	while (TAILQ_EMPTY(&devsoftc.devq)) {
454		if (devsoftc.nonblock) {
455			mtx_unlock(&devsoftc.mtx);
456			return (EAGAIN);
457		}
458		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
459		if (rv) {
460			/*
461			 * Need to translate ERESTART to EINTR here? -- jake
462			 */
463			mtx_unlock(&devsoftc.mtx);
464			return (rv);
465		}
466	}
467	n1 = TAILQ_FIRST(&devsoftc.devq);
468	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
469	devsoftc.queued--;
470	mtx_unlock(&devsoftc.mtx);
471	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
472	free(n1->dei_data, M_BUS);
473	free(n1, M_BUS);
474	return (rv);
475}
476
477static	int
478devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
479{
480	switch (cmd) {
481
482	case FIONBIO:
483		if (*(int*)data)
484			devsoftc.nonblock = 1;
485		else
486			devsoftc.nonblock = 0;
487		return (0);
488	case FIOASYNC:
489		if (*(int*)data)
490			devsoftc.async_proc = td->td_proc;
491		else
492			devsoftc.async_proc = NULL;
493		return (0);
494
495		/* (un)Support for other fcntl() calls. */
496	case FIOCLEX:
497	case FIONCLEX:
498	case FIONREAD:
499	case FIOSETOWN:
500	case FIOGETOWN:
501	default:
502		break;
503	}
504	return (ENOTTY);
505}
506
507static	int
508devpoll(struct cdev *dev, int events, struct thread *td)
509{
510	int	revents = 0;
511
512	mtx_lock(&devsoftc.mtx);
513	if (events & (POLLIN | POLLRDNORM)) {
514		if (!TAILQ_EMPTY(&devsoftc.devq))
515			revents = events & (POLLIN | POLLRDNORM);
516		else
517			selrecord(td, &devsoftc.sel);
518	}
519	mtx_unlock(&devsoftc.mtx);
520
521	return (revents);
522}
523
524/**
525 * @brief Return whether the userland process is running
526 */
527boolean_t
528devctl_process_running(void)
529{
530	return (devsoftc.inuse == 1);
531}
532
533/**
534 * @brief Queue data to be read from the devctl device
535 *
536 * Generic interface to queue data to the devctl device.  It is
537 * assumed that @p data is properly formatted.  It is further assumed
538 * that @p data is allocated using the M_BUS malloc type.
539 */
540void
541devctl_queue_data(char *data)
542{
543	struct dev_event_info *n1 = NULL, *n2 = NULL;
544	struct proc *p;
545
546	if (strlen(data) == 0)
547		return;
548	if (devctl_queue_length == 0)
549		return;
550	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
551	if (n1 == NULL)
552		return;
553	n1->dei_data = data;
554	mtx_lock(&devsoftc.mtx);
555	if (devctl_queue_length == 0) {
556		free(n1->dei_data, M_BUS);
557		free(n1, M_BUS);
558		return;
559	}
560	/* Leave at least one spot in the queue... */
561	while (devsoftc.queued > devctl_queue_length - 1) {
562		n2 = TAILQ_FIRST(&devsoftc.devq);
563		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
564		free(n2->dei_data, M_BUS);
565		free(n2, M_BUS);
566		devsoftc.queued--;
567	}
568	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
569	devsoftc.queued++;
570	cv_broadcast(&devsoftc.cv);
571	mtx_unlock(&devsoftc.mtx);
572	selwakeup(&devsoftc.sel);
573	p = devsoftc.async_proc;
574	if (p != NULL) {
575		PROC_LOCK(p);
576		psignal(p, SIGIO);
577		PROC_UNLOCK(p);
578	}
579}
580
581/**
582 * @brief Send a 'notification' to userland, using standard ways
583 */
584void
585devctl_notify(const char *system, const char *subsystem, const char *type,
586    const char *data)
587{
588	int len = 0;
589	char *msg;
590
591	if (system == NULL)
592		return;		/* BOGUS!  Must specify system. */
593	if (subsystem == NULL)
594		return;		/* BOGUS!  Must specify subsystem. */
595	if (type == NULL)
596		return;		/* BOGUS!  Must specify type. */
597	len += strlen(" system=") + strlen(system);
598	len += strlen(" subsystem=") + strlen(subsystem);
599	len += strlen(" type=") + strlen(type);
600	/* add in the data message plus newline. */
601	if (data != NULL)
602		len += strlen(data);
603	len += 3;	/* '!', '\n', and NUL */
604	msg = malloc(len, M_BUS, M_NOWAIT);
605	if (msg == NULL)
606		return;		/* Drop it on the floor */
607	if (data != NULL)
608		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
609		    system, subsystem, type, data);
610	else
611		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
612		    system, subsystem, type);
613	devctl_queue_data(msg);
614}
615
616/*
617 * Common routine that tries to make sending messages as easy as possible.
618 * We allocate memory for the data, copy strings into that, but do not
619 * free it unless there's an error.  The dequeue part of the driver should
620 * free the data.  We don't send data when the device is disabled.  We do
621 * send data, even when we have no listeners, because we wish to avoid
622 * races relating to startup and restart of listening applications.
623 *
624 * devaddq is designed to string together the type of event, with the
625 * object of that event, plus the plug and play info and location info
626 * for that event.  This is likely most useful for devices, but less
627 * useful for other consumers of this interface.  Those should use
628 * the devctl_queue_data() interface instead.
629 */
630static void
631devaddq(const char *type, const char *what, device_t dev)
632{
633	char *data = NULL;
634	char *loc = NULL;
635	char *pnp = NULL;
636	const char *parstr;
637
638	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
639		return;
640	data = malloc(1024, M_BUS, M_NOWAIT);
641	if (data == NULL)
642		goto bad;
643
644	/* get the bus specific location of this device */
645	loc = malloc(1024, M_BUS, M_NOWAIT);
646	if (loc == NULL)
647		goto bad;
648	*loc = '\0';
649	bus_child_location_str(dev, loc, 1024);
650
651	/* Get the bus specific pnp info of this device */
652	pnp = malloc(1024, M_BUS, M_NOWAIT);
653	if (pnp == NULL)
654		goto bad;
655	*pnp = '\0';
656	bus_child_pnpinfo_str(dev, pnp, 1024);
657
658	/* Get the parent of this device, or / if high enough in the tree. */
659	if (device_get_parent(dev) == NULL)
660		parstr = ".";	/* Or '/' ? */
661	else
662		parstr = device_get_nameunit(device_get_parent(dev));
663	/* String it all together. */
664	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
665	  parstr);
666	free(loc, M_BUS);
667	free(pnp, M_BUS);
668	devctl_queue_data(data);
669	return;
670bad:
671	free(pnp, M_BUS);
672	free(loc, M_BUS);
673	free(data, M_BUS);
674	return;
675}
676
677/*
678 * A device was added to the tree.  We are called just after it successfully
679 * attaches (that is, probe and attach success for this device).  No call
680 * is made if a device is merely parented into the tree.  See devnomatch
681 * if probe fails.  If attach fails, no notification is sent (but maybe
682 * we should have a different message for this).
683 */
684static void
685devadded(device_t dev)
686{
687	char *pnp = NULL;
688	char *tmp = NULL;
689
690	pnp = malloc(1024, M_BUS, M_NOWAIT);
691	if (pnp == NULL)
692		goto fail;
693	tmp = malloc(1024, M_BUS, M_NOWAIT);
694	if (tmp == NULL)
695		goto fail;
696	*pnp = '\0';
697	bus_child_pnpinfo_str(dev, pnp, 1024);
698	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
699	devaddq("+", tmp, dev);
700fail:
701	if (pnp != NULL)
702		free(pnp, M_BUS);
703	if (tmp != NULL)
704		free(tmp, M_BUS);
705	return;
706}
707
708/*
709 * A device was removed from the tree.  We are called just before this
710 * happens.
711 */
712static void
713devremoved(device_t dev)
714{
715	char *pnp = NULL;
716	char *tmp = NULL;
717
718	pnp = malloc(1024, M_BUS, M_NOWAIT);
719	if (pnp == NULL)
720		goto fail;
721	tmp = malloc(1024, M_BUS, M_NOWAIT);
722	if (tmp == NULL)
723		goto fail;
724	*pnp = '\0';
725	bus_child_pnpinfo_str(dev, pnp, 1024);
726	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
727	devaddq("-", tmp, dev);
728fail:
729	if (pnp != NULL)
730		free(pnp, M_BUS);
731	if (tmp != NULL)
732		free(tmp, M_BUS);
733	return;
734}
735
736/*
737 * Called when there's no match for this device.  This is only called
738 * the first time that no match happens, so we don't keep getting this
739 * message.  Should that prove to be undesirable, we can change it.
740 * This is called when all drivers that can attach to a given bus
741 * decline to accept this device.  Other errrors may not be detected.
742 */
743static void
744devnomatch(device_t dev)
745{
746	devaddq("?", "", dev);
747}
748
749static int
750sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
751{
752	struct dev_event_info *n1;
753	int dis, error;
754
755	dis = devctl_queue_length == 0;
756	error = sysctl_handle_int(oidp, &dis, 0, req);
757	if (error || !req->newptr)
758		return (error);
759	mtx_lock(&devsoftc.mtx);
760	if (dis) {
761		while (!TAILQ_EMPTY(&devsoftc.devq)) {
762			n1 = TAILQ_FIRST(&devsoftc.devq);
763			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
764			free(n1->dei_data, M_BUS);
765			free(n1, M_BUS);
766		}
767		devsoftc.queued = 0;
768		devctl_queue_length = 0;
769	} else {
770		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
771	}
772	mtx_unlock(&devsoftc.mtx);
773	return (0);
774}
775
776static int
777sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
778{
779	struct dev_event_info *n1;
780	int q, error;
781
782	q = devctl_queue_length;
783	error = sysctl_handle_int(oidp, &q, 0, req);
784	if (error || !req->newptr)
785		return (error);
786	if (q < 0)
787		return (EINVAL);
788	mtx_lock(&devsoftc.mtx);
789	devctl_queue_length = q;
790	while (devsoftc.queued > devctl_queue_length) {
791		n1 = TAILQ_FIRST(&devsoftc.devq);
792		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
793		free(n1->dei_data, M_BUS);
794		free(n1, M_BUS);
795		devsoftc.queued--;
796	}
797	mtx_unlock(&devsoftc.mtx);
798	return (0);
799}
800
801/* End of /dev/devctl code */
802
803static TAILQ_HEAD(,device)	bus_data_devices;
804static int bus_data_generation = 1;
805
806static kobj_method_t null_methods[] = {
807	KOBJMETHOD_END
808};
809
810DEFINE_CLASS(null, null_methods, 0);
811
812/*
813 * Bus pass implementation
814 */
815
816static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
817int bus_current_pass = BUS_PASS_ROOT;
818
819/**
820 * @internal
821 * @brief Register the pass level of a new driver attachment
822 *
823 * Register a new driver attachment's pass level.  If no driver
824 * attachment with the same pass level has been added, then @p new
825 * will be added to the global passes list.
826 *
827 * @param new		the new driver attachment
828 */
829static void
830driver_register_pass(struct driverlink *new)
831{
832	struct driverlink *dl;
833
834	/* We only consider pass numbers during boot. */
835	if (bus_current_pass == BUS_PASS_DEFAULT)
836		return;
837
838	/*
839	 * Walk the passes list.  If we already know about this pass
840	 * then there is nothing to do.  If we don't, then insert this
841	 * driver link into the list.
842	 */
843	TAILQ_FOREACH(dl, &passes, passlink) {
844		if (dl->pass < new->pass)
845			continue;
846		if (dl->pass == new->pass)
847			return;
848		TAILQ_INSERT_BEFORE(dl, new, passlink);
849		return;
850	}
851	TAILQ_INSERT_TAIL(&passes, new, passlink);
852}
853
854/**
855 * @brief Raise the current bus pass
856 *
857 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
858 * method on the root bus to kick off a new device tree scan for each
859 * new pass level that has at least one driver.
860 */
861void
862bus_set_pass(int pass)
863{
864	struct driverlink *dl;
865
866	if (bus_current_pass > pass)
867		panic("Attempt to lower bus pass level");
868
869	TAILQ_FOREACH(dl, &passes, passlink) {
870		/* Skip pass values below the current pass level. */
871		if (dl->pass <= bus_current_pass)
872			continue;
873
874		/*
875		 * Bail once we hit a driver with a pass level that is
876		 * too high.
877		 */
878		if (dl->pass > pass)
879			break;
880
881		/*
882		 * Raise the pass level to the next level and rescan
883		 * the tree.
884		 */
885		bus_current_pass = dl->pass;
886		BUS_NEW_PASS(root_bus);
887	}
888
889	/*
890	 * If there isn't a driver registered for the requested pass,
891	 * then bus_current_pass might still be less than 'pass'.  Set
892	 * it to 'pass' in that case.
893	 */
894	if (bus_current_pass < pass)
895		bus_current_pass = pass;
896	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
897}
898
899/*
900 * Devclass implementation
901 */
902
903static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
904
905/**
906 * @internal
907 * @brief Find or create a device class
908 *
909 * If a device class with the name @p classname exists, return it,
910 * otherwise if @p create is non-zero create and return a new device
911 * class.
912 *
913 * If @p parentname is non-NULL, the parent of the devclass is set to
914 * the devclass of that name.
915 *
916 * @param classname	the devclass name to find or create
917 * @param parentname	the parent devclass name or @c NULL
918 * @param create	non-zero to create a devclass
919 */
920static devclass_t
921devclass_find_internal(const char *classname, const char *parentname,
922		       int create)
923{
924	devclass_t dc;
925
926	PDEBUG(("looking for %s", classname));
927	if (!classname)
928		return (NULL);
929
930	TAILQ_FOREACH(dc, &devclasses, link) {
931		if (!strcmp(dc->name, classname))
932			break;
933	}
934
935	if (create && !dc) {
936		PDEBUG(("creating %s", classname));
937		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
938		    M_BUS, M_NOWAIT | M_ZERO);
939		if (!dc)
940			return (NULL);
941		dc->parent = NULL;
942		dc->name = (char*) (dc + 1);
943		strcpy(dc->name, classname);
944		TAILQ_INIT(&dc->drivers);
945		TAILQ_INSERT_TAIL(&devclasses, dc, link);
946
947		bus_data_generation_update();
948	}
949
950	/*
951	 * If a parent class is specified, then set that as our parent so
952	 * that this devclass will support drivers for the parent class as
953	 * well.  If the parent class has the same name don't do this though
954	 * as it creates a cycle that can trigger an infinite loop in
955	 * device_probe_child() if a device exists for which there is no
956	 * suitable driver.
957	 */
958	if (parentname && dc && !dc->parent &&
959	    strcmp(classname, parentname) != 0) {
960		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
961		dc->parent->flags |= DC_HAS_CHILDREN;
962	}
963
964	return (dc);
965}
966
967/**
968 * @brief Create a device class
969 *
970 * If a device class with the name @p classname exists, return it,
971 * otherwise create and return a new device class.
972 *
973 * @param classname	the devclass name to find or create
974 */
975devclass_t
976devclass_create(const char *classname)
977{
978	return (devclass_find_internal(classname, NULL, TRUE));
979}
980
981/**
982 * @brief Find a device class
983 *
984 * If a device class with the name @p classname exists, return it,
985 * otherwise return @c NULL.
986 *
987 * @param classname	the devclass name to find
988 */
989devclass_t
990devclass_find(const char *classname)
991{
992	return (devclass_find_internal(classname, NULL, FALSE));
993}
994
995/**
996 * @brief Register that a device driver has been added to a devclass
997 *
998 * Register that a device driver has been added to a devclass.  This
999 * is called by devclass_add_driver to accomplish the recursive
1000 * notification of all the children classes of dc, as well as dc.
1001 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1002 * the devclass.  We do a full search here of the devclass list at
1003 * each iteration level to save storing children-lists in the devclass
1004 * structure.  If we ever move beyond a few dozen devices doing this,
1005 * we may need to reevaluate...
1006 *
1007 * @param dc		the devclass to edit
1008 * @param driver	the driver that was just added
1009 */
1010static void
1011devclass_driver_added(devclass_t dc, driver_t *driver)
1012{
1013	devclass_t parent;
1014	int i;
1015
1016	/*
1017	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1018	 */
1019	for (i = 0; i < dc->maxunit; i++)
1020		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1021			BUS_DRIVER_ADDED(dc->devices[i], driver);
1022
1023	/*
1024	 * Walk through the children classes.  Since we only keep a
1025	 * single parent pointer around, we walk the entire list of
1026	 * devclasses looking for children.  We set the
1027	 * DC_HAS_CHILDREN flag when a child devclass is created on
1028	 * the parent, so we only walk the list for those devclasses
1029	 * that have children.
1030	 */
1031	if (!(dc->flags & DC_HAS_CHILDREN))
1032		return;
1033	parent = dc;
1034	TAILQ_FOREACH(dc, &devclasses, link) {
1035		if (dc->parent == parent)
1036			devclass_driver_added(dc, driver);
1037	}
1038}
1039
1040/**
1041 * @brief Add a device driver to a device class
1042 *
1043 * Add a device driver to a devclass. This is normally called
1044 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1045 * all devices in the devclass will be called to allow them to attempt
1046 * to re-probe any unmatched children.
1047 *
1048 * @param dc		the devclass to edit
1049 * @param driver	the driver to register
1050 */
1051static int
1052devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1053{
1054	driverlink_t dl;
1055	const char *parentname;
1056
1057	PDEBUG(("%s", DRIVERNAME(driver)));
1058
1059	/* Don't allow invalid pass values. */
1060	if (pass <= BUS_PASS_ROOT)
1061		return (EINVAL);
1062
1063	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1064	if (!dl)
1065		return (ENOMEM);
1066
1067	/*
1068	 * Compile the driver's methods. Also increase the reference count
1069	 * so that the class doesn't get freed when the last instance
1070	 * goes. This means we can safely use static methods and avoids a
1071	 * double-free in devclass_delete_driver.
1072	 */
1073	kobj_class_compile((kobj_class_t) driver);
1074
1075	/*
1076	 * If the driver has any base classes, make the
1077	 * devclass inherit from the devclass of the driver's
1078	 * first base class. This will allow the system to
1079	 * search for drivers in both devclasses for children
1080	 * of a device using this driver.
1081	 */
1082	if (driver->baseclasses)
1083		parentname = driver->baseclasses[0]->name;
1084	else
1085		parentname = NULL;
1086	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1087
1088	dl->driver = driver;
1089	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1090	driver->refs++;		/* XXX: kobj_mtx */
1091	dl->pass = pass;
1092	driver_register_pass(dl);
1093
1094	devclass_driver_added(dc, driver);
1095	bus_data_generation_update();
1096	return (0);
1097}
1098
1099/**
1100 * @brief Delete a device driver from a device class
1101 *
1102 * Delete a device driver from a devclass. This is normally called
1103 * automatically by DRIVER_MODULE().
1104 *
1105 * If the driver is currently attached to any devices,
1106 * devclass_delete_driver() will first attempt to detach from each
1107 * device. If one of the detach calls fails, the driver will not be
1108 * deleted.
1109 *
1110 * @param dc		the devclass to edit
1111 * @param driver	the driver to unregister
1112 */
1113static int
1114devclass_delete_driver(devclass_t busclass, driver_t *driver)
1115{
1116	devclass_t dc = devclass_find(driver->name);
1117	driverlink_t dl;
1118	device_t dev;
1119	int i;
1120	int error;
1121
1122	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1123
1124	if (!dc)
1125		return (0);
1126
1127	/*
1128	 * Find the link structure in the bus' list of drivers.
1129	 */
1130	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1131		if (dl->driver == driver)
1132			break;
1133	}
1134
1135	if (!dl) {
1136		PDEBUG(("%s not found in %s list", driver->name,
1137		    busclass->name));
1138		return (ENOENT);
1139	}
1140
1141	/*
1142	 * Disassociate from any devices.  We iterate through all the
1143	 * devices in the devclass of the driver and detach any which are
1144	 * using the driver and which have a parent in the devclass which
1145	 * we are deleting from.
1146	 *
1147	 * Note that since a driver can be in multiple devclasses, we
1148	 * should not detach devices which are not children of devices in
1149	 * the affected devclass.
1150	 */
1151	for (i = 0; i < dc->maxunit; i++) {
1152		if (dc->devices[i]) {
1153			dev = dc->devices[i];
1154			if (dev->driver == driver && dev->parent &&
1155			    dev->parent->devclass == busclass) {
1156				if ((error = device_detach(dev)) != 0)
1157					return (error);
1158				device_set_driver(dev, NULL);
1159			}
1160		}
1161	}
1162
1163	TAILQ_REMOVE(&busclass->drivers, dl, link);
1164	free(dl, M_BUS);
1165
1166	/* XXX: kobj_mtx */
1167	driver->refs--;
1168	if (driver->refs == 0)
1169		kobj_class_free((kobj_class_t) driver);
1170
1171	bus_data_generation_update();
1172	return (0);
1173}
1174
1175/**
1176 * @brief Quiesces a set of device drivers from a device class
1177 *
1178 * Quiesce a device driver from a devclass. This is normally called
1179 * automatically by DRIVER_MODULE().
1180 *
1181 * If the driver is currently attached to any devices,
1182 * devclass_quiesece_driver() will first attempt to quiesce each
1183 * device.
1184 *
1185 * @param dc		the devclass to edit
1186 * @param driver	the driver to unregister
1187 */
1188static int
1189devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1190{
1191	devclass_t dc = devclass_find(driver->name);
1192	driverlink_t dl;
1193	device_t dev;
1194	int i;
1195	int error;
1196
1197	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1198
1199	if (!dc)
1200		return (0);
1201
1202	/*
1203	 * Find the link structure in the bus' list of drivers.
1204	 */
1205	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1206		if (dl->driver == driver)
1207			break;
1208	}
1209
1210	if (!dl) {
1211		PDEBUG(("%s not found in %s list", driver->name,
1212		    busclass->name));
1213		return (ENOENT);
1214	}
1215
1216	/*
1217	 * Quiesce all devices.  We iterate through all the devices in
1218	 * the devclass of the driver and quiesce any which are using
1219	 * the driver and which have a parent in the devclass which we
1220	 * are quiescing.
1221	 *
1222	 * Note that since a driver can be in multiple devclasses, we
1223	 * should not quiesce devices which are not children of
1224	 * devices in the affected devclass.
1225	 */
1226	for (i = 0; i < dc->maxunit; i++) {
1227		if (dc->devices[i]) {
1228			dev = dc->devices[i];
1229			if (dev->driver == driver && dev->parent &&
1230			    dev->parent->devclass == busclass) {
1231				if ((error = device_quiesce(dev)) != 0)
1232					return (error);
1233			}
1234		}
1235	}
1236
1237	return (0);
1238}
1239
1240/**
1241 * @internal
1242 */
1243static driverlink_t
1244devclass_find_driver_internal(devclass_t dc, const char *classname)
1245{
1246	driverlink_t dl;
1247
1248	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1249
1250	TAILQ_FOREACH(dl, &dc->drivers, link) {
1251		if (!strcmp(dl->driver->name, classname))
1252			return (dl);
1253	}
1254
1255	PDEBUG(("not found"));
1256	return (NULL);
1257}
1258
1259/**
1260 * @brief Return the name of the devclass
1261 */
1262const char *
1263devclass_get_name(devclass_t dc)
1264{
1265	return (dc->name);
1266}
1267
1268/**
1269 * @brief Find a device given a unit number
1270 *
1271 * @param dc		the devclass to search
1272 * @param unit		the unit number to search for
1273 *
1274 * @returns		the device with the given unit number or @c
1275 *			NULL if there is no such device
1276 */
1277device_t
1278devclass_get_device(devclass_t dc, int unit)
1279{
1280	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1281		return (NULL);
1282	return (dc->devices[unit]);
1283}
1284
1285/**
1286 * @brief Find the softc field of a device given a unit number
1287 *
1288 * @param dc		the devclass to search
1289 * @param unit		the unit number to search for
1290 *
1291 * @returns		the softc field of the device with the given
1292 *			unit number or @c NULL if there is no such
1293 *			device
1294 */
1295void *
1296devclass_get_softc(devclass_t dc, int unit)
1297{
1298	device_t dev;
1299
1300	dev = devclass_get_device(dc, unit);
1301	if (!dev)
1302		return (NULL);
1303
1304	return (device_get_softc(dev));
1305}
1306
1307/**
1308 * @brief Get a list of devices in the devclass
1309 *
1310 * An array containing a list of all the devices in the given devclass
1311 * is allocated and returned in @p *devlistp. The number of devices
1312 * in the array is returned in @p *devcountp. The caller should free
1313 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1314 *
1315 * @param dc		the devclass to examine
1316 * @param devlistp	points at location for array pointer return
1317 *			value
1318 * @param devcountp	points at location for array size return value
1319 *
1320 * @retval 0		success
1321 * @retval ENOMEM	the array allocation failed
1322 */
1323int
1324devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1325{
1326	int count, i;
1327	device_t *list;
1328
1329	count = devclass_get_count(dc);
1330	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1331	if (!list)
1332		return (ENOMEM);
1333
1334	count = 0;
1335	for (i = 0; i < dc->maxunit; i++) {
1336		if (dc->devices[i]) {
1337			list[count] = dc->devices[i];
1338			count++;
1339		}
1340	}
1341
1342	*devlistp = list;
1343	*devcountp = count;
1344
1345	return (0);
1346}
1347
1348/**
1349 * @brief Get a list of drivers in the devclass
1350 *
1351 * An array containing a list of pointers to all the drivers in the
1352 * given devclass is allocated and returned in @p *listp.  The number
1353 * of drivers in the array is returned in @p *countp. The caller should
1354 * free the array using @c free(p, M_TEMP).
1355 *
1356 * @param dc		the devclass to examine
1357 * @param listp		gives location for array pointer return value
1358 * @param countp	gives location for number of array elements
1359 *			return value
1360 *
1361 * @retval 0		success
1362 * @retval ENOMEM	the array allocation failed
1363 */
1364int
1365devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1366{
1367	driverlink_t dl;
1368	driver_t **list;
1369	int count;
1370
1371	count = 0;
1372	TAILQ_FOREACH(dl, &dc->drivers, link)
1373		count++;
1374	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1375	if (list == NULL)
1376		return (ENOMEM);
1377
1378	count = 0;
1379	TAILQ_FOREACH(dl, &dc->drivers, link) {
1380		list[count] = dl->driver;
1381		count++;
1382	}
1383	*listp = list;
1384	*countp = count;
1385
1386	return (0);
1387}
1388
1389/**
1390 * @brief Get the number of devices in a devclass
1391 *
1392 * @param dc		the devclass to examine
1393 */
1394int
1395devclass_get_count(devclass_t dc)
1396{
1397	int count, i;
1398
1399	count = 0;
1400	for (i = 0; i < dc->maxunit; i++)
1401		if (dc->devices[i])
1402			count++;
1403	return (count);
1404}
1405
1406/**
1407 * @brief Get the maximum unit number used in a devclass
1408 *
1409 * Note that this is one greater than the highest currently-allocated
1410 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1411 * that not even the devclass has been allocated yet.
1412 *
1413 * @param dc		the devclass to examine
1414 */
1415int
1416devclass_get_maxunit(devclass_t dc)
1417{
1418	if (dc == NULL)
1419		return (-1);
1420	return (dc->maxunit);
1421}
1422
1423/**
1424 * @brief Find a free unit number in a devclass
1425 *
1426 * This function searches for the first unused unit number greater
1427 * that or equal to @p unit.
1428 *
1429 * @param dc		the devclass to examine
1430 * @param unit		the first unit number to check
1431 */
1432int
1433devclass_find_free_unit(devclass_t dc, int unit)
1434{
1435	if (dc == NULL)
1436		return (unit);
1437	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1438		unit++;
1439	return (unit);
1440}
1441
1442/**
1443 * @brief Set the parent of a devclass
1444 *
1445 * The parent class is normally initialised automatically by
1446 * DRIVER_MODULE().
1447 *
1448 * @param dc		the devclass to edit
1449 * @param pdc		the new parent devclass
1450 */
1451void
1452devclass_set_parent(devclass_t dc, devclass_t pdc)
1453{
1454	dc->parent = pdc;
1455}
1456
1457/**
1458 * @brief Get the parent of a devclass
1459 *
1460 * @param dc		the devclass to examine
1461 */
1462devclass_t
1463devclass_get_parent(devclass_t dc)
1464{
1465	return (dc->parent);
1466}
1467
1468struct sysctl_ctx_list *
1469devclass_get_sysctl_ctx(devclass_t dc)
1470{
1471	return (&dc->sysctl_ctx);
1472}
1473
1474struct sysctl_oid *
1475devclass_get_sysctl_tree(devclass_t dc)
1476{
1477	return (dc->sysctl_tree);
1478}
1479
1480/**
1481 * @internal
1482 * @brief Allocate a unit number
1483 *
1484 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1485 * will do). The allocated unit number is returned in @p *unitp.
1486
1487 * @param dc		the devclass to allocate from
1488 * @param unitp		points at the location for the allocated unit
1489 *			number
1490 *
1491 * @retval 0		success
1492 * @retval EEXIST	the requested unit number is already allocated
1493 * @retval ENOMEM	memory allocation failure
1494 */
1495static int
1496devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1497{
1498	const char *s;
1499	int unit = *unitp;
1500
1501	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1502
1503	/* Ask the parent bus if it wants to wire this device. */
1504	if (unit == -1)
1505		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1506		    &unit);
1507
1508	/* If we were given a wired unit number, check for existing device */
1509	/* XXX imp XXX */
1510	if (unit != -1) {
1511		if (unit >= 0 && unit < dc->maxunit &&
1512		    dc->devices[unit] != NULL) {
1513			if (bootverbose)
1514				printf("%s: %s%d already exists; skipping it\n",
1515				    dc->name, dc->name, *unitp);
1516			return (EEXIST);
1517		}
1518	} else {
1519		/* Unwired device, find the next available slot for it */
1520		unit = 0;
1521		for (unit = 0;; unit++) {
1522			/* If there is an "at" hint for a unit then skip it. */
1523			if (resource_string_value(dc->name, unit, "at", &s) ==
1524			    0)
1525				continue;
1526
1527			/* If this device slot is already in use, skip it. */
1528			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1529				continue;
1530
1531			break;
1532		}
1533	}
1534
1535	/*
1536	 * We've selected a unit beyond the length of the table, so let's
1537	 * extend the table to make room for all units up to and including
1538	 * this one.
1539	 */
1540	if (unit >= dc->maxunit) {
1541		device_t *newlist, *oldlist;
1542		int newsize;
1543
1544		oldlist = dc->devices;
1545		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1546		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1547		if (!newlist)
1548			return (ENOMEM);
1549		if (oldlist != NULL)
1550			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1551		bzero(newlist + dc->maxunit,
1552		    sizeof(device_t) * (newsize - dc->maxunit));
1553		dc->devices = newlist;
1554		dc->maxunit = newsize;
1555		if (oldlist != NULL)
1556			free(oldlist, M_BUS);
1557	}
1558	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1559
1560	*unitp = unit;
1561	return (0);
1562}
1563
1564/**
1565 * @internal
1566 * @brief Add a device to a devclass
1567 *
1568 * A unit number is allocated for the device (using the device's
1569 * preferred unit number if any) and the device is registered in the
1570 * devclass. This allows the device to be looked up by its unit
1571 * number, e.g. by decoding a dev_t minor number.
1572 *
1573 * @param dc		the devclass to add to
1574 * @param dev		the device to add
1575 *
1576 * @retval 0		success
1577 * @retval EEXIST	the requested unit number is already allocated
1578 * @retval ENOMEM	memory allocation failure
1579 */
1580static int
1581devclass_add_device(devclass_t dc, device_t dev)
1582{
1583	int buflen, error;
1584
1585	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1586
1587	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1588	if (buflen < 0)
1589		return (ENOMEM);
1590	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1591	if (!dev->nameunit)
1592		return (ENOMEM);
1593
1594	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1595		free(dev->nameunit, M_BUS);
1596		dev->nameunit = NULL;
1597		return (error);
1598	}
1599	dc->devices[dev->unit] = dev;
1600	dev->devclass = dc;
1601	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1602
1603	return (0);
1604}
1605
1606/**
1607 * @internal
1608 * @brief Delete a device from a devclass
1609 *
1610 * The device is removed from the devclass's device list and its unit
1611 * number is freed.
1612
1613 * @param dc		the devclass to delete from
1614 * @param dev		the device to delete
1615 *
1616 * @retval 0		success
1617 */
1618static int
1619devclass_delete_device(devclass_t dc, device_t dev)
1620{
1621	if (!dc || !dev)
1622		return (0);
1623
1624	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1625
1626	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1627		panic("devclass_delete_device: inconsistent device class");
1628	dc->devices[dev->unit] = NULL;
1629	if (dev->flags & DF_WILDCARD)
1630		dev->unit = -1;
1631	dev->devclass = NULL;
1632	free(dev->nameunit, M_BUS);
1633	dev->nameunit = NULL;
1634
1635	return (0);
1636}
1637
1638/**
1639 * @internal
1640 * @brief Make a new device and add it as a child of @p parent
1641 *
1642 * @param parent	the parent of the new device
1643 * @param name		the devclass name of the new device or @c NULL
1644 *			to leave the devclass unspecified
1645 * @parem unit		the unit number of the new device of @c -1 to
1646 *			leave the unit number unspecified
1647 *
1648 * @returns the new device
1649 */
1650static device_t
1651make_device(device_t parent, const char *name, int unit)
1652{
1653	device_t dev;
1654	devclass_t dc;
1655
1656	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1657
1658	if (name) {
1659		dc = devclass_find_internal(name, NULL, TRUE);
1660		if (!dc) {
1661			printf("make_device: can't find device class %s\n",
1662			    name);
1663			return (NULL);
1664		}
1665	} else {
1666		dc = NULL;
1667	}
1668
1669	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1670	if (!dev)
1671		return (NULL);
1672
1673	dev->parent = parent;
1674	TAILQ_INIT(&dev->children);
1675	kobj_init((kobj_t) dev, &null_class);
1676	dev->driver = NULL;
1677	dev->devclass = NULL;
1678	dev->unit = unit;
1679	dev->nameunit = NULL;
1680	dev->desc = NULL;
1681	dev->busy = 0;
1682	dev->devflags = 0;
1683	dev->flags = DF_ENABLED;
1684	dev->order = 0;
1685	if (unit == -1)
1686		dev->flags |= DF_WILDCARD;
1687	if (name) {
1688		dev->flags |= DF_FIXEDCLASS;
1689		if (devclass_add_device(dc, dev)) {
1690			kobj_delete((kobj_t) dev, M_BUS);
1691			return (NULL);
1692		}
1693	}
1694	dev->ivars = NULL;
1695	dev->softc = NULL;
1696
1697	dev->state = DS_NOTPRESENT;
1698
1699	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1700	bus_data_generation_update();
1701
1702	return (dev);
1703}
1704
1705/**
1706 * @internal
1707 * @brief Print a description of a device.
1708 */
1709static int
1710device_print_child(device_t dev, device_t child)
1711{
1712	int retval = 0;
1713
1714	if (device_is_alive(child))
1715		retval += BUS_PRINT_CHILD(dev, child);
1716	else
1717		retval += device_printf(child, " not found\n");
1718
1719	return (retval);
1720}
1721
1722/**
1723 * @brief Create a new device
1724 *
1725 * This creates a new device and adds it as a child of an existing
1726 * parent device. The new device will be added after the last existing
1727 * child with order zero.
1728 *
1729 * @param dev		the device which will be the parent of the
1730 *			new child device
1731 * @param name		devclass name for new device or @c NULL if not
1732 *			specified
1733 * @param unit		unit number for new device or @c -1 if not
1734 *			specified
1735 *
1736 * @returns		the new device
1737 */
1738device_t
1739device_add_child(device_t dev, const char *name, int unit)
1740{
1741	return (device_add_child_ordered(dev, 0, name, unit));
1742}
1743
1744/**
1745 * @brief Create a new device
1746 *
1747 * This creates a new device and adds it as a child of an existing
1748 * parent device. The new device will be added after the last existing
1749 * child with the same order.
1750 *
1751 * @param dev		the device which will be the parent of the
1752 *			new child device
1753 * @param order		a value which is used to partially sort the
1754 *			children of @p dev - devices created using
1755 *			lower values of @p order appear first in @p
1756 *			dev's list of children
1757 * @param name		devclass name for new device or @c NULL if not
1758 *			specified
1759 * @param unit		unit number for new device or @c -1 if not
1760 *			specified
1761 *
1762 * @returns		the new device
1763 */
1764device_t
1765device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1766{
1767	device_t child;
1768	device_t place;
1769
1770	PDEBUG(("%s at %s with order %d as unit %d",
1771	    name, DEVICENAME(dev), order, unit));
1772
1773	child = make_device(dev, name, unit);
1774	if (child == NULL)
1775		return (child);
1776	child->order = order;
1777
1778	TAILQ_FOREACH(place, &dev->children, link) {
1779		if (place->order > order)
1780			break;
1781	}
1782
1783	if (place) {
1784		/*
1785		 * The device 'place' is the first device whose order is
1786		 * greater than the new child.
1787		 */
1788		TAILQ_INSERT_BEFORE(place, child, link);
1789	} else {
1790		/*
1791		 * The new child's order is greater or equal to the order of
1792		 * any existing device. Add the child to the tail of the list.
1793		 */
1794		TAILQ_INSERT_TAIL(&dev->children, child, link);
1795	}
1796
1797	bus_data_generation_update();
1798	return (child);
1799}
1800
1801/**
1802 * @brief Delete a device
1803 *
1804 * This function deletes a device along with all of its children. If
1805 * the device currently has a driver attached to it, the device is
1806 * detached first using device_detach().
1807 *
1808 * @param dev		the parent device
1809 * @param child		the device to delete
1810 *
1811 * @retval 0		success
1812 * @retval non-zero	a unit error code describing the error
1813 */
1814int
1815device_delete_child(device_t dev, device_t child)
1816{
1817	int error;
1818	device_t grandchild;
1819
1820	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1821
1822	/* remove children first */
1823	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1824		error = device_delete_child(child, grandchild);
1825		if (error)
1826			return (error);
1827	}
1828
1829	if ((error = device_detach(child)) != 0)
1830		return (error);
1831	if (child->devclass)
1832		devclass_delete_device(child->devclass, child);
1833	TAILQ_REMOVE(&dev->children, child, link);
1834	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1835	kobj_delete((kobj_t) child, M_BUS);
1836
1837	bus_data_generation_update();
1838	return (0);
1839}
1840
1841/**
1842 * @brief Find a device given a unit number
1843 *
1844 * This is similar to devclass_get_devices() but only searches for
1845 * devices which have @p dev as a parent.
1846 *
1847 * @param dev		the parent device to search
1848 * @param unit		the unit number to search for.  If the unit is -1,
1849 *			return the first child of @p dev which has name
1850 *			@p classname (that is, the one with the lowest unit.)
1851 *
1852 * @returns		the device with the given unit number or @c
1853 *			NULL if there is no such device
1854 */
1855device_t
1856device_find_child(device_t dev, const char *classname, int unit)
1857{
1858	devclass_t dc;
1859	device_t child;
1860
1861	dc = devclass_find(classname);
1862	if (!dc)
1863		return (NULL);
1864
1865	if (unit != -1) {
1866		child = devclass_get_device(dc, unit);
1867		if (child && child->parent == dev)
1868			return (child);
1869	} else {
1870		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1871			child = devclass_get_device(dc, unit);
1872			if (child && child->parent == dev)
1873				return (child);
1874		}
1875	}
1876	return (NULL);
1877}
1878
1879/**
1880 * @internal
1881 */
1882static driverlink_t
1883first_matching_driver(devclass_t dc, device_t dev)
1884{
1885	if (dev->devclass)
1886		return (devclass_find_driver_internal(dc, dev->devclass->name));
1887	return (TAILQ_FIRST(&dc->drivers));
1888}
1889
1890/**
1891 * @internal
1892 */
1893static driverlink_t
1894next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1895{
1896	if (dev->devclass) {
1897		driverlink_t dl;
1898		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1899			if (!strcmp(dev->devclass->name, dl->driver->name))
1900				return (dl);
1901		return (NULL);
1902	}
1903	return (TAILQ_NEXT(last, link));
1904}
1905
1906/**
1907 * @internal
1908 */
1909int
1910device_probe_child(device_t dev, device_t child)
1911{
1912	devclass_t dc;
1913	driverlink_t best = NULL;
1914	driverlink_t dl;
1915	int result, pri = 0;
1916	int hasclass = (child->devclass != NULL);
1917
1918	GIANT_REQUIRED;
1919
1920	dc = dev->devclass;
1921	if (!dc)
1922		panic("device_probe_child: parent device has no devclass");
1923
1924	/*
1925	 * If the state is already probed, then return.  However, don't
1926	 * return if we can rebid this object.
1927	 */
1928	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1929		return (0);
1930
1931	for (; dc; dc = dc->parent) {
1932		for (dl = first_matching_driver(dc, child);
1933		     dl;
1934		     dl = next_matching_driver(dc, child, dl)) {
1935
1936			/* If this driver's pass is too high, then ignore it. */
1937			if (dl->pass > bus_current_pass)
1938				continue;
1939
1940			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1941			device_set_driver(child, dl->driver);
1942			if (!hasclass) {
1943				if (device_set_devclass(child, dl->driver->name)) {
1944					printf("driver bug: Unable to set devclass (devname: %s)\n",
1945					    (child ? device_get_name(child) :
1946						"no device"));
1947					device_set_driver(child, NULL);
1948					continue;
1949				}
1950			}
1951
1952			/* Fetch any flags for the device before probing. */
1953			resource_int_value(dl->driver->name, child->unit,
1954			    "flags", &child->devflags);
1955
1956			result = DEVICE_PROBE(child);
1957
1958			/* Reset flags and devclass before the next probe. */
1959			child->devflags = 0;
1960			if (!hasclass)
1961				device_set_devclass(child, NULL);
1962
1963			/*
1964			 * If the driver returns SUCCESS, there can be
1965			 * no higher match for this device.
1966			 */
1967			if (result == 0) {
1968				best = dl;
1969				pri = 0;
1970				break;
1971			}
1972
1973			/*
1974			 * The driver returned an error so it
1975			 * certainly doesn't match.
1976			 */
1977			if (result > 0) {
1978				device_set_driver(child, NULL);
1979				continue;
1980			}
1981
1982			/*
1983			 * A priority lower than SUCCESS, remember the
1984			 * best matching driver. Initialise the value
1985			 * of pri for the first match.
1986			 */
1987			if (best == NULL || result > pri) {
1988				/*
1989				 * Probes that return BUS_PROBE_NOWILDCARD
1990				 * or lower only match when they are set
1991				 * in stone by the parent bus.
1992				 */
1993				if (result <= BUS_PROBE_NOWILDCARD &&
1994				    child->flags & DF_WILDCARD)
1995					continue;
1996				best = dl;
1997				pri = result;
1998				continue;
1999			}
2000		}
2001		/*
2002		 * If we have an unambiguous match in this devclass,
2003		 * don't look in the parent.
2004		 */
2005		if (best && pri == 0)
2006			break;
2007	}
2008
2009	/*
2010	 * If we found a driver, change state and initialise the devclass.
2011	 */
2012	/* XXX What happens if we rebid and got no best? */
2013	if (best) {
2014		/*
2015		 * If this device was atached, and we were asked to
2016		 * rescan, and it is a different driver, then we have
2017		 * to detach the old driver and reattach this new one.
2018		 * Note, we don't have to check for DF_REBID here
2019		 * because if the state is > DS_ALIVE, we know it must
2020		 * be.
2021		 *
2022		 * This assumes that all DF_REBID drivers can have
2023		 * their probe routine called at any time and that
2024		 * they are idempotent as well as completely benign in
2025		 * normal operations.
2026		 *
2027		 * We also have to make sure that the detach
2028		 * succeeded, otherwise we fail the operation (or
2029		 * maybe it should just fail silently?  I'm torn).
2030		 */
2031		if (child->state > DS_ALIVE && best->driver != child->driver)
2032			if ((result = device_detach(dev)) != 0)
2033				return (result);
2034
2035		/* Set the winning driver, devclass, and flags. */
2036		if (!child->devclass) {
2037			result = device_set_devclass(child, best->driver->name);
2038			if (result != 0)
2039				return (result);
2040		}
2041		device_set_driver(child, best->driver);
2042		resource_int_value(best->driver->name, child->unit,
2043		    "flags", &child->devflags);
2044
2045		if (pri < 0) {
2046			/*
2047			 * A bit bogus. Call the probe method again to make
2048			 * sure that we have the right description.
2049			 */
2050			DEVICE_PROBE(child);
2051#if 0
2052			child->flags |= DF_REBID;
2053#endif
2054		} else
2055			child->flags &= ~DF_REBID;
2056		child->state = DS_ALIVE;
2057
2058		bus_data_generation_update();
2059		return (0);
2060	}
2061
2062	return (ENXIO);
2063}
2064
2065/**
2066 * @brief Return the parent of a device
2067 */
2068device_t
2069device_get_parent(device_t dev)
2070{
2071	return (dev->parent);
2072}
2073
2074/**
2075 * @brief Get a list of children of a device
2076 *
2077 * An array containing a list of all the children of the given device
2078 * is allocated and returned in @p *devlistp. The number of devices
2079 * in the array is returned in @p *devcountp. The caller should free
2080 * the array using @c free(p, M_TEMP).
2081 *
2082 * @param dev		the device to examine
2083 * @param devlistp	points at location for array pointer return
2084 *			value
2085 * @param devcountp	points at location for array size return value
2086 *
2087 * @retval 0		success
2088 * @retval ENOMEM	the array allocation failed
2089 */
2090int
2091device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2092{
2093	int count;
2094	device_t child;
2095	device_t *list;
2096
2097	count = 0;
2098	TAILQ_FOREACH(child, &dev->children, link) {
2099		count++;
2100	}
2101
2102	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2103	if (!list)
2104		return (ENOMEM);
2105
2106	count = 0;
2107	TAILQ_FOREACH(child, &dev->children, link) {
2108		list[count] = child;
2109		count++;
2110	}
2111
2112	*devlistp = list;
2113	*devcountp = count;
2114
2115	return (0);
2116}
2117
2118/**
2119 * @brief Return the current driver for the device or @c NULL if there
2120 * is no driver currently attached
2121 */
2122driver_t *
2123device_get_driver(device_t dev)
2124{
2125	return (dev->driver);
2126}
2127
2128/**
2129 * @brief Return the current devclass for the device or @c NULL if
2130 * there is none.
2131 */
2132devclass_t
2133device_get_devclass(device_t dev)
2134{
2135	return (dev->devclass);
2136}
2137
2138/**
2139 * @brief Return the name of the device's devclass or @c NULL if there
2140 * is none.
2141 */
2142const char *
2143device_get_name(device_t dev)
2144{
2145	if (dev != NULL && dev->devclass)
2146		return (devclass_get_name(dev->devclass));
2147	return (NULL);
2148}
2149
2150/**
2151 * @brief Return a string containing the device's devclass name
2152 * followed by an ascii representation of the device's unit number
2153 * (e.g. @c "foo2").
2154 */
2155const char *
2156device_get_nameunit(device_t dev)
2157{
2158	return (dev->nameunit);
2159}
2160
2161/**
2162 * @brief Return the device's unit number.
2163 */
2164int
2165device_get_unit(device_t dev)
2166{
2167	return (dev->unit);
2168}
2169
2170/**
2171 * @brief Return the device's description string
2172 */
2173const char *
2174device_get_desc(device_t dev)
2175{
2176	return (dev->desc);
2177}
2178
2179/**
2180 * @brief Return the device's flags
2181 */
2182u_int32_t
2183device_get_flags(device_t dev)
2184{
2185	return (dev->devflags);
2186}
2187
2188struct sysctl_ctx_list *
2189device_get_sysctl_ctx(device_t dev)
2190{
2191	return (&dev->sysctl_ctx);
2192}
2193
2194struct sysctl_oid *
2195device_get_sysctl_tree(device_t dev)
2196{
2197	return (dev->sysctl_tree);
2198}
2199
2200/**
2201 * @brief Print the name of the device followed by a colon and a space
2202 *
2203 * @returns the number of characters printed
2204 */
2205int
2206device_print_prettyname(device_t dev)
2207{
2208	const char *name = device_get_name(dev);
2209
2210	if (name == NULL)
2211		return (printf("unknown: "));
2212	return (printf("%s%d: ", name, device_get_unit(dev)));
2213}
2214
2215/**
2216 * @brief Print the name of the device followed by a colon, a space
2217 * and the result of calling vprintf() with the value of @p fmt and
2218 * the following arguments.
2219 *
2220 * @returns the number of characters printed
2221 */
2222int
2223device_printf(device_t dev, const char * fmt, ...)
2224{
2225	va_list ap;
2226	int retval;
2227
2228	retval = device_print_prettyname(dev);
2229	va_start(ap, fmt);
2230	retval += vprintf(fmt, ap);
2231	va_end(ap);
2232	return (retval);
2233}
2234
2235/**
2236 * @internal
2237 */
2238static void
2239device_set_desc_internal(device_t dev, const char* desc, int copy)
2240{
2241	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2242		free(dev->desc, M_BUS);
2243		dev->flags &= ~DF_DESCMALLOCED;
2244		dev->desc = NULL;
2245	}
2246
2247	if (copy && desc) {
2248		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2249		if (dev->desc) {
2250			strcpy(dev->desc, desc);
2251			dev->flags |= DF_DESCMALLOCED;
2252		}
2253	} else {
2254		/* Avoid a -Wcast-qual warning */
2255		dev->desc = (char *)(uintptr_t) desc;
2256	}
2257
2258	bus_data_generation_update();
2259}
2260
2261/**
2262 * @brief Set the device's description
2263 *
2264 * The value of @c desc should be a string constant that will not
2265 * change (at least until the description is changed in a subsequent
2266 * call to device_set_desc() or device_set_desc_copy()).
2267 */
2268void
2269device_set_desc(device_t dev, const char* desc)
2270{
2271	device_set_desc_internal(dev, desc, FALSE);
2272}
2273
2274/**
2275 * @brief Set the device's description
2276 *
2277 * The string pointed to by @c desc is copied. Use this function if
2278 * the device description is generated, (e.g. with sprintf()).
2279 */
2280void
2281device_set_desc_copy(device_t dev, const char* desc)
2282{
2283	device_set_desc_internal(dev, desc, TRUE);
2284}
2285
2286/**
2287 * @brief Set the device's flags
2288 */
2289void
2290device_set_flags(device_t dev, u_int32_t flags)
2291{
2292	dev->devflags = flags;
2293}
2294
2295/**
2296 * @brief Return the device's softc field
2297 *
2298 * The softc is allocated and zeroed when a driver is attached, based
2299 * on the size field of the driver.
2300 */
2301void *
2302device_get_softc(device_t dev)
2303{
2304	return (dev->softc);
2305}
2306
2307/**
2308 * @brief Set the device's softc field
2309 *
2310 * Most drivers do not need to use this since the softc is allocated
2311 * automatically when the driver is attached.
2312 */
2313void
2314device_set_softc(device_t dev, void *softc)
2315{
2316	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2317		free(dev->softc, M_BUS_SC);
2318	dev->softc = softc;
2319	if (dev->softc)
2320		dev->flags |= DF_EXTERNALSOFTC;
2321	else
2322		dev->flags &= ~DF_EXTERNALSOFTC;
2323}
2324
2325/**
2326 * @brief Get the device's ivars field
2327 *
2328 * The ivars field is used by the parent device to store per-device
2329 * state (e.g. the physical location of the device or a list of
2330 * resources).
2331 */
2332void *
2333device_get_ivars(device_t dev)
2334{
2335
2336	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2337	return (dev->ivars);
2338}
2339
2340/**
2341 * @brief Set the device's ivars field
2342 */
2343void
2344device_set_ivars(device_t dev, void * ivars)
2345{
2346
2347	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2348	dev->ivars = ivars;
2349}
2350
2351/**
2352 * @brief Return the device's state
2353 */
2354device_state_t
2355device_get_state(device_t dev)
2356{
2357	return (dev->state);
2358}
2359
2360/**
2361 * @brief Set the DF_ENABLED flag for the device
2362 */
2363void
2364device_enable(device_t dev)
2365{
2366	dev->flags |= DF_ENABLED;
2367}
2368
2369/**
2370 * @brief Clear the DF_ENABLED flag for the device
2371 */
2372void
2373device_disable(device_t dev)
2374{
2375	dev->flags &= ~DF_ENABLED;
2376}
2377
2378/**
2379 * @brief Increment the busy counter for the device
2380 */
2381void
2382device_busy(device_t dev)
2383{
2384	if (dev->state < DS_ATTACHED)
2385		panic("device_busy: called for unattached device");
2386	if (dev->busy == 0 && dev->parent)
2387		device_busy(dev->parent);
2388	dev->busy++;
2389	dev->state = DS_BUSY;
2390}
2391
2392/**
2393 * @brief Decrement the busy counter for the device
2394 */
2395void
2396device_unbusy(device_t dev)
2397{
2398	if (dev->state != DS_BUSY)
2399		panic("device_unbusy: called for non-busy device %s",
2400		    device_get_nameunit(dev));
2401	dev->busy--;
2402	if (dev->busy == 0) {
2403		if (dev->parent)
2404			device_unbusy(dev->parent);
2405		dev->state = DS_ATTACHED;
2406	}
2407}
2408
2409/**
2410 * @brief Set the DF_QUIET flag for the device
2411 */
2412void
2413device_quiet(device_t dev)
2414{
2415	dev->flags |= DF_QUIET;
2416}
2417
2418/**
2419 * @brief Clear the DF_QUIET flag for the device
2420 */
2421void
2422device_verbose(device_t dev)
2423{
2424	dev->flags &= ~DF_QUIET;
2425}
2426
2427/**
2428 * @brief Return non-zero if the DF_QUIET flag is set on the device
2429 */
2430int
2431device_is_quiet(device_t dev)
2432{
2433	return ((dev->flags & DF_QUIET) != 0);
2434}
2435
2436/**
2437 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2438 */
2439int
2440device_is_enabled(device_t dev)
2441{
2442	return ((dev->flags & DF_ENABLED) != 0);
2443}
2444
2445/**
2446 * @brief Return non-zero if the device was successfully probed
2447 */
2448int
2449device_is_alive(device_t dev)
2450{
2451	return (dev->state >= DS_ALIVE);
2452}
2453
2454/**
2455 * @brief Return non-zero if the device currently has a driver
2456 * attached to it
2457 */
2458int
2459device_is_attached(device_t dev)
2460{
2461	return (dev->state >= DS_ATTACHED);
2462}
2463
2464/**
2465 * @brief Set the devclass of a device
2466 * @see devclass_add_device().
2467 */
2468int
2469device_set_devclass(device_t dev, const char *classname)
2470{
2471	devclass_t dc;
2472	int error;
2473
2474	if (!classname) {
2475		if (dev->devclass)
2476			devclass_delete_device(dev->devclass, dev);
2477		return (0);
2478	}
2479
2480	if (dev->devclass) {
2481		printf("device_set_devclass: device class already set\n");
2482		return (EINVAL);
2483	}
2484
2485	dc = devclass_find_internal(classname, NULL, TRUE);
2486	if (!dc)
2487		return (ENOMEM);
2488
2489	error = devclass_add_device(dc, dev);
2490
2491	bus_data_generation_update();
2492	return (error);
2493}
2494
2495/**
2496 * @brief Set the driver of a device
2497 *
2498 * @retval 0		success
2499 * @retval EBUSY	the device already has a driver attached
2500 * @retval ENOMEM	a memory allocation failure occurred
2501 */
2502int
2503device_set_driver(device_t dev, driver_t *driver)
2504{
2505	if (dev->state >= DS_ATTACHED)
2506		return (EBUSY);
2507
2508	if (dev->driver == driver)
2509		return (0);
2510
2511	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2512		free(dev->softc, M_BUS_SC);
2513		dev->softc = NULL;
2514	}
2515	kobj_delete((kobj_t) dev, NULL);
2516	dev->driver = driver;
2517	if (driver) {
2518		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2519		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2520			dev->softc = malloc(driver->size, M_BUS_SC,
2521			    M_NOWAIT | M_ZERO);
2522			if (!dev->softc) {
2523				kobj_delete((kobj_t) dev, NULL);
2524				kobj_init((kobj_t) dev, &null_class);
2525				dev->driver = NULL;
2526				return (ENOMEM);
2527			}
2528		}
2529	} else {
2530		kobj_init((kobj_t) dev, &null_class);
2531	}
2532
2533	bus_data_generation_update();
2534	return (0);
2535}
2536
2537/**
2538 * @brief Probe a device, and return this status.
2539 *
2540 * This function is the core of the device autoconfiguration
2541 * system. Its purpose is to select a suitable driver for a device and
2542 * then call that driver to initialise the hardware appropriately. The
2543 * driver is selected by calling the DEVICE_PROBE() method of a set of
2544 * candidate drivers and then choosing the driver which returned the
2545 * best value. This driver is then attached to the device using
2546 * device_attach().
2547 *
2548 * The set of suitable drivers is taken from the list of drivers in
2549 * the parent device's devclass. If the device was originally created
2550 * with a specific class name (see device_add_child()), only drivers
2551 * with that name are probed, otherwise all drivers in the devclass
2552 * are probed. If no drivers return successful probe values in the
2553 * parent devclass, the search continues in the parent of that
2554 * devclass (see devclass_get_parent()) if any.
2555 *
2556 * @param dev		the device to initialise
2557 *
2558 * @retval 0		success
2559 * @retval ENXIO	no driver was found
2560 * @retval ENOMEM	memory allocation failure
2561 * @retval non-zero	some other unix error code
2562 * @retval -1		Device already attached
2563 */
2564int
2565device_probe(device_t dev)
2566{
2567	int error;
2568
2569	GIANT_REQUIRED;
2570
2571	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2572		return (-1);
2573
2574	if (!(dev->flags & DF_ENABLED)) {
2575		if (bootverbose && device_get_name(dev) != NULL) {
2576			device_print_prettyname(dev);
2577			printf("not probed (disabled)\n");
2578		}
2579		return (-1);
2580	}
2581	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2582		if (bus_current_pass == BUS_PASS_DEFAULT &&
2583		    !(dev->flags & DF_DONENOMATCH)) {
2584			BUS_PROBE_NOMATCH(dev->parent, dev);
2585			devnomatch(dev);
2586			dev->flags |= DF_DONENOMATCH;
2587		}
2588		return (error);
2589	}
2590	return (0);
2591}
2592
2593/**
2594 * @brief Probe a device and attach a driver if possible
2595 *
2596 * calls device_probe() and attaches if that was successful.
2597 */
2598int
2599device_probe_and_attach(device_t dev)
2600{
2601	int error;
2602
2603	GIANT_REQUIRED;
2604
2605	error = device_probe(dev);
2606	if (error == -1)
2607		return (0);
2608	else if (error != 0)
2609		return (error);
2610	return (device_attach(dev));
2611}
2612
2613/**
2614 * @brief Attach a device driver to a device
2615 *
2616 * This function is a wrapper around the DEVICE_ATTACH() driver
2617 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2618 * device's sysctl tree, optionally prints a description of the device
2619 * and queues a notification event for user-based device management
2620 * services.
2621 *
2622 * Normally this function is only called internally from
2623 * device_probe_and_attach().
2624 *
2625 * @param dev		the device to initialise
2626 *
2627 * @retval 0		success
2628 * @retval ENXIO	no driver was found
2629 * @retval ENOMEM	memory allocation failure
2630 * @retval non-zero	some other unix error code
2631 */
2632int
2633device_attach(device_t dev)
2634{
2635	int error;
2636
2637	device_sysctl_init(dev);
2638	if (!device_is_quiet(dev))
2639		device_print_child(dev->parent, dev);
2640	if ((error = DEVICE_ATTACH(dev)) != 0) {
2641		printf("device_attach: %s%d attach returned %d\n",
2642		    dev->driver->name, dev->unit, error);
2643		/* Unset the class; set in device_probe_child */
2644		if (dev->devclass == NULL)
2645			device_set_devclass(dev, NULL);
2646		device_set_driver(dev, NULL);
2647		device_sysctl_fini(dev);
2648		dev->state = DS_NOTPRESENT;
2649		return (error);
2650	}
2651	device_sysctl_update(dev);
2652	dev->state = DS_ATTACHED;
2653	devadded(dev);
2654	return (0);
2655}
2656
2657/**
2658 * @brief Detach a driver from a device
2659 *
2660 * This function is a wrapper around the DEVICE_DETACH() driver
2661 * method. If the call to DEVICE_DETACH() succeeds, it calls
2662 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2663 * notification event for user-based device management services and
2664 * cleans up the device's sysctl tree.
2665 *
2666 * @param dev		the device to un-initialise
2667 *
2668 * @retval 0		success
2669 * @retval ENXIO	no driver was found
2670 * @retval ENOMEM	memory allocation failure
2671 * @retval non-zero	some other unix error code
2672 */
2673int
2674device_detach(device_t dev)
2675{
2676	int error;
2677
2678	GIANT_REQUIRED;
2679
2680	PDEBUG(("%s", DEVICENAME(dev)));
2681	if (dev->state == DS_BUSY)
2682		return (EBUSY);
2683	if (dev->state != DS_ATTACHED)
2684		return (0);
2685
2686	if ((error = DEVICE_DETACH(dev)) != 0)
2687		return (error);
2688	devremoved(dev);
2689	if (!device_is_quiet(dev))
2690		device_printf(dev, "detached\n");
2691	if (dev->parent)
2692		BUS_CHILD_DETACHED(dev->parent, dev);
2693
2694	if (!(dev->flags & DF_FIXEDCLASS))
2695		devclass_delete_device(dev->devclass, dev);
2696
2697	dev->state = DS_NOTPRESENT;
2698	device_set_driver(dev, NULL);
2699	device_set_desc(dev, NULL);
2700	device_sysctl_fini(dev);
2701
2702	return (0);
2703}
2704
2705/**
2706 * @brief Tells a driver to quiesce itself.
2707 *
2708 * This function is a wrapper around the DEVICE_QUIESCE() driver
2709 * method. If the call to DEVICE_QUIESCE() succeeds.
2710 *
2711 * @param dev		the device to quiesce
2712 *
2713 * @retval 0		success
2714 * @retval ENXIO	no driver was found
2715 * @retval ENOMEM	memory allocation failure
2716 * @retval non-zero	some other unix error code
2717 */
2718int
2719device_quiesce(device_t dev)
2720{
2721
2722	PDEBUG(("%s", DEVICENAME(dev)));
2723	if (dev->state == DS_BUSY)
2724		return (EBUSY);
2725	if (dev->state != DS_ATTACHED)
2726		return (0);
2727
2728	return (DEVICE_QUIESCE(dev));
2729}
2730
2731/**
2732 * @brief Notify a device of system shutdown
2733 *
2734 * This function calls the DEVICE_SHUTDOWN() driver method if the
2735 * device currently has an attached driver.
2736 *
2737 * @returns the value returned by DEVICE_SHUTDOWN()
2738 */
2739int
2740device_shutdown(device_t dev)
2741{
2742	if (dev->state < DS_ATTACHED)
2743		return (0);
2744	return (DEVICE_SHUTDOWN(dev));
2745}
2746
2747/**
2748 * @brief Set the unit number of a device
2749 *
2750 * This function can be used to override the unit number used for a
2751 * device (e.g. to wire a device to a pre-configured unit number).
2752 */
2753int
2754device_set_unit(device_t dev, int unit)
2755{
2756	devclass_t dc;
2757	int err;
2758
2759	dc = device_get_devclass(dev);
2760	if (unit < dc->maxunit && dc->devices[unit])
2761		return (EBUSY);
2762	err = devclass_delete_device(dc, dev);
2763	if (err)
2764		return (err);
2765	dev->unit = unit;
2766	err = devclass_add_device(dc, dev);
2767	if (err)
2768		return (err);
2769
2770	bus_data_generation_update();
2771	return (0);
2772}
2773
2774/*======================================*/
2775/*
2776 * Some useful method implementations to make life easier for bus drivers.
2777 */
2778
2779/**
2780 * @brief Initialise a resource list.
2781 *
2782 * @param rl		the resource list to initialise
2783 */
2784void
2785resource_list_init(struct resource_list *rl)
2786{
2787	STAILQ_INIT(rl);
2788}
2789
2790/**
2791 * @brief Reclaim memory used by a resource list.
2792 *
2793 * This function frees the memory for all resource entries on the list
2794 * (if any).
2795 *
2796 * @param rl		the resource list to free
2797 */
2798void
2799resource_list_free(struct resource_list *rl)
2800{
2801	struct resource_list_entry *rle;
2802
2803	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2804		if (rle->res)
2805			panic("resource_list_free: resource entry is busy");
2806		STAILQ_REMOVE_HEAD(rl, link);
2807		free(rle, M_BUS);
2808	}
2809}
2810
2811/**
2812 * @brief Add a resource entry.
2813 *
2814 * This function adds a resource entry using the given @p type, @p
2815 * start, @p end and @p count values. A rid value is chosen by
2816 * searching sequentially for the first unused rid starting at zero.
2817 *
2818 * @param rl		the resource list to edit
2819 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2820 * @param start		the start address of the resource
2821 * @param end		the end address of the resource
2822 * @param count		XXX end-start+1
2823 */
2824int
2825resource_list_add_next(struct resource_list *rl, int type, u_long start,
2826    u_long end, u_long count)
2827{
2828	int rid;
2829
2830	rid = 0;
2831	while (resource_list_find(rl, type, rid) != NULL)
2832		rid++;
2833	resource_list_add(rl, type, rid, start, end, count);
2834	return (rid);
2835}
2836
2837/**
2838 * @brief Add or modify a resource entry.
2839 *
2840 * If an existing entry exists with the same type and rid, it will be
2841 * modified using the given values of @p start, @p end and @p
2842 * count. If no entry exists, a new one will be created using the
2843 * given values.  The resource list entry that matches is then returned.
2844 *
2845 * @param rl		the resource list to edit
2846 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2847 * @param rid		the resource identifier
2848 * @param start		the start address of the resource
2849 * @param end		the end address of the resource
2850 * @param count		XXX end-start+1
2851 */
2852struct resource_list_entry *
2853resource_list_add(struct resource_list *rl, int type, int rid,
2854    u_long start, u_long end, u_long count)
2855{
2856	struct resource_list_entry *rle;
2857
2858	rle = resource_list_find(rl, type, rid);
2859	if (!rle) {
2860		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2861		    M_NOWAIT);
2862		if (!rle)
2863			panic("resource_list_add: can't record entry");
2864		STAILQ_INSERT_TAIL(rl, rle, link);
2865		rle->type = type;
2866		rle->rid = rid;
2867		rle->res = NULL;
2868	}
2869
2870	if (rle->res)
2871		panic("resource_list_add: resource entry is busy");
2872
2873	rle->start = start;
2874	rle->end = end;
2875	rle->count = count;
2876	return (rle);
2877}
2878
2879/**
2880 * @brief Find a resource entry by type and rid.
2881 *
2882 * @param rl		the resource list to search
2883 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2884 * @param rid		the resource identifier
2885 *
2886 * @returns the resource entry pointer or NULL if there is no such
2887 * entry.
2888 */
2889struct resource_list_entry *
2890resource_list_find(struct resource_list *rl, int type, int rid)
2891{
2892	struct resource_list_entry *rle;
2893
2894	STAILQ_FOREACH(rle, rl, link) {
2895		if (rle->type == type && rle->rid == rid)
2896			return (rle);
2897	}
2898	return (NULL);
2899}
2900
2901/**
2902 * @brief Delete a resource entry.
2903 *
2904 * @param rl		the resource list to edit
2905 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2906 * @param rid		the resource identifier
2907 */
2908void
2909resource_list_delete(struct resource_list *rl, int type, int rid)
2910{
2911	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2912
2913	if (rle) {
2914		if (rle->res != NULL)
2915			panic("resource_list_delete: resource has not been released");
2916		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2917		free(rle, M_BUS);
2918	}
2919}
2920
2921/**
2922 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2923 *
2924 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2925 * and passing the allocation up to the parent of @p bus. This assumes
2926 * that the first entry of @c device_get_ivars(child) is a struct
2927 * resource_list. This also handles 'passthrough' allocations where a
2928 * child is a remote descendant of bus by passing the allocation up to
2929 * the parent of bus.
2930 *
2931 * Typically, a bus driver would store a list of child resources
2932 * somewhere in the child device's ivars (see device_get_ivars()) and
2933 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2934 * then call resource_list_alloc() to perform the allocation.
2935 *
2936 * @param rl		the resource list to allocate from
2937 * @param bus		the parent device of @p child
2938 * @param child		the device which is requesting an allocation
2939 * @param type		the type of resource to allocate
2940 * @param rid		a pointer to the resource identifier
2941 * @param start		hint at the start of the resource range - pass
2942 *			@c 0UL for any start address
2943 * @param end		hint at the end of the resource range - pass
2944 *			@c ~0UL for any end address
2945 * @param count		hint at the size of range required - pass @c 1
2946 *			for any size
2947 * @param flags		any extra flags to control the resource
2948 *			allocation - see @c RF_XXX flags in
2949 *			<sys/rman.h> for details
2950 *
2951 * @returns		the resource which was allocated or @c NULL if no
2952 *			resource could be allocated
2953 */
2954struct resource *
2955resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2956    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2957{
2958	struct resource_list_entry *rle = NULL;
2959	int passthrough = (device_get_parent(child) != bus);
2960	int isdefault = (start == 0UL && end == ~0UL);
2961
2962	if (passthrough) {
2963		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2964		    type, rid, start, end, count, flags));
2965	}
2966
2967	rle = resource_list_find(rl, type, *rid);
2968
2969	if (!rle)
2970		return (NULL);		/* no resource of that type/rid */
2971
2972	if (rle->res)
2973		panic("resource_list_alloc: resource entry is busy");
2974
2975	if (isdefault) {
2976		start = rle->start;
2977		count = ulmax(count, rle->count);
2978		end = ulmax(rle->end, start + count - 1);
2979	}
2980
2981	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2982	    type, rid, start, end, count, flags);
2983
2984	/*
2985	 * Record the new range.
2986	 */
2987	if (rle->res) {
2988		rle->start = rman_get_start(rle->res);
2989		rle->end = rman_get_end(rle->res);
2990		rle->count = count;
2991	}
2992
2993	return (rle->res);
2994}
2995
2996/**
2997 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2998 *
2999 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3000 * used with resource_list_alloc().
3001 *
3002 * @param rl		the resource list which was allocated from
3003 * @param bus		the parent device of @p child
3004 * @param child		the device which is requesting a release
3005 * @param type		the type of resource to allocate
3006 * @param rid		the resource identifier
3007 * @param res		the resource to release
3008 *
3009 * @retval 0		success
3010 * @retval non-zero	a standard unix error code indicating what
3011 *			error condition prevented the operation
3012 */
3013int
3014resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3015    int type, int rid, struct resource *res)
3016{
3017	struct resource_list_entry *rle = NULL;
3018	int passthrough = (device_get_parent(child) != bus);
3019	int error;
3020
3021	if (passthrough) {
3022		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3023		    type, rid, res));
3024	}
3025
3026	rle = resource_list_find(rl, type, rid);
3027
3028	if (!rle)
3029		panic("resource_list_release: can't find resource");
3030	if (!rle->res)
3031		panic("resource_list_release: resource entry is not busy");
3032
3033	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3034	    type, rid, res);
3035	if (error)
3036		return (error);
3037
3038	rle->res = NULL;
3039	return (0);
3040}
3041
3042/**
3043 * @brief Print a description of resources in a resource list
3044 *
3045 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3046 * The name is printed if at least one resource of the given type is available.
3047 * The format is used to print resource start and end.
3048 *
3049 * @param rl		the resource list to print
3050 * @param name		the name of @p type, e.g. @c "memory"
3051 * @param type		type type of resource entry to print
3052 * @param format	printf(9) format string to print resource
3053 *			start and end values
3054 *
3055 * @returns		the number of characters printed
3056 */
3057int
3058resource_list_print_type(struct resource_list *rl, const char *name, int type,
3059    const char *format)
3060{
3061	struct resource_list_entry *rle;
3062	int printed, retval;
3063
3064	printed = 0;
3065	retval = 0;
3066	/* Yes, this is kinda cheating */
3067	STAILQ_FOREACH(rle, rl, link) {
3068		if (rle->type == type) {
3069			if (printed == 0)
3070				retval += printf(" %s ", name);
3071			else
3072				retval += printf(",");
3073			printed++;
3074			retval += printf(format, rle->start);
3075			if (rle->count > 1) {
3076				retval += printf("-");
3077				retval += printf(format, rle->start +
3078						 rle->count - 1);
3079			}
3080		}
3081	}
3082	return (retval);
3083}
3084
3085/**
3086 * @brief Releases all the resources in a list.
3087 *
3088 * @param rl		The resource list to purge.
3089 *
3090 * @returns		nothing
3091 */
3092void
3093resource_list_purge(struct resource_list *rl)
3094{
3095	struct resource_list_entry *rle;
3096
3097	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3098		if (rle->res)
3099			bus_release_resource(rman_get_device(rle->res),
3100			    rle->type, rle->rid, rle->res);
3101		STAILQ_REMOVE_HEAD(rl, link);
3102		free(rle, M_BUS);
3103	}
3104}
3105
3106device_t
3107bus_generic_add_child(device_t dev, int order, const char *name, int unit)
3108{
3109
3110	return (device_add_child_ordered(dev, order, name, unit));
3111}
3112
3113/**
3114 * @brief Helper function for implementing DEVICE_PROBE()
3115 *
3116 * This function can be used to help implement the DEVICE_PROBE() for
3117 * a bus (i.e. a device which has other devices attached to it). It
3118 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3119 * devclass.
3120 */
3121int
3122bus_generic_probe(device_t dev)
3123{
3124	devclass_t dc = dev->devclass;
3125	driverlink_t dl;
3126
3127	TAILQ_FOREACH(dl, &dc->drivers, link) {
3128		/*
3129		 * If this driver's pass is too high, then ignore it.
3130		 * For most drivers in the default pass, this will
3131		 * never be true.  For early-pass drivers they will
3132		 * only call the identify routines of eligible drivers
3133		 * when this routine is called.  Drivers for later
3134		 * passes should have their identify routines called
3135		 * on early-pass busses during BUS_NEW_PASS().
3136		 */
3137		if (dl->pass > bus_current_pass)
3138				continue;
3139		DEVICE_IDENTIFY(dl->driver, dev);
3140	}
3141
3142	return (0);
3143}
3144
3145/**
3146 * @brief Helper function for implementing DEVICE_ATTACH()
3147 *
3148 * This function can be used to help implement the DEVICE_ATTACH() for
3149 * a bus. It calls device_probe_and_attach() for each of the device's
3150 * children.
3151 */
3152int
3153bus_generic_attach(device_t dev)
3154{
3155	device_t child;
3156
3157	TAILQ_FOREACH(child, &dev->children, link) {
3158		device_probe_and_attach(child);
3159	}
3160
3161	return (0);
3162}
3163
3164/**
3165 * @brief Helper function for implementing DEVICE_DETACH()
3166 *
3167 * This function can be used to help implement the DEVICE_DETACH() for
3168 * a bus. It calls device_detach() for each of the device's
3169 * children.
3170 */
3171int
3172bus_generic_detach(device_t dev)
3173{
3174	device_t child;
3175	int error;
3176
3177	if (dev->state != DS_ATTACHED)
3178		return (EBUSY);
3179
3180	TAILQ_FOREACH(child, &dev->children, link) {
3181		if ((error = device_detach(child)) != 0)
3182			return (error);
3183	}
3184
3185	return (0);
3186}
3187
3188/**
3189 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3190 *
3191 * This function can be used to help implement the DEVICE_SHUTDOWN()
3192 * for a bus. It calls device_shutdown() for each of the device's
3193 * children.
3194 */
3195int
3196bus_generic_shutdown(device_t dev)
3197{
3198	device_t child;
3199
3200	TAILQ_FOREACH(child, &dev->children, link) {
3201		device_shutdown(child);
3202	}
3203
3204	return (0);
3205}
3206
3207/**
3208 * @brief Helper function for implementing DEVICE_SUSPEND()
3209 *
3210 * This function can be used to help implement the DEVICE_SUSPEND()
3211 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3212 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3213 * operation is aborted and any devices which were suspended are
3214 * resumed immediately by calling their DEVICE_RESUME() methods.
3215 */
3216int
3217bus_generic_suspend(device_t dev)
3218{
3219	int		error;
3220	device_t	child, child2;
3221
3222	TAILQ_FOREACH(child, &dev->children, link) {
3223		error = DEVICE_SUSPEND(child);
3224		if (error) {
3225			for (child2 = TAILQ_FIRST(&dev->children);
3226			     child2 && child2 != child;
3227			     child2 = TAILQ_NEXT(child2, link))
3228				DEVICE_RESUME(child2);
3229			return (error);
3230		}
3231	}
3232	return (0);
3233}
3234
3235/**
3236 * @brief Helper function for implementing DEVICE_RESUME()
3237 *
3238 * This function can be used to help implement the DEVICE_RESUME() for
3239 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3240 */
3241int
3242bus_generic_resume(device_t dev)
3243{
3244	device_t	child;
3245
3246	TAILQ_FOREACH(child, &dev->children, link) {
3247		DEVICE_RESUME(child);
3248		/* if resume fails, there's nothing we can usefully do... */
3249	}
3250	return (0);
3251}
3252
3253/**
3254 * @brief Helper function for implementing BUS_PRINT_CHILD().
3255 *
3256 * This function prints the first part of the ascii representation of
3257 * @p child, including its name, unit and description (if any - see
3258 * device_set_desc()).
3259 *
3260 * @returns the number of characters printed
3261 */
3262int
3263bus_print_child_header(device_t dev, device_t child)
3264{
3265	int	retval = 0;
3266
3267	if (device_get_desc(child)) {
3268		retval += device_printf(child, "<%s>", device_get_desc(child));
3269	} else {
3270		retval += printf("%s", device_get_nameunit(child));
3271	}
3272
3273	return (retval);
3274}
3275
3276/**
3277 * @brief Helper function for implementing BUS_PRINT_CHILD().
3278 *
3279 * This function prints the last part of the ascii representation of
3280 * @p child, which consists of the string @c " on " followed by the
3281 * name and unit of the @p dev.
3282 *
3283 * @returns the number of characters printed
3284 */
3285int
3286bus_print_child_footer(device_t dev, device_t child)
3287{
3288	return (printf(" on %s\n", device_get_nameunit(dev)));
3289}
3290
3291/**
3292 * @brief Helper function for implementing BUS_PRINT_CHILD().
3293 *
3294 * This function simply calls bus_print_child_header() followed by
3295 * bus_print_child_footer().
3296 *
3297 * @returns the number of characters printed
3298 */
3299int
3300bus_generic_print_child(device_t dev, device_t child)
3301{
3302	int	retval = 0;
3303
3304	retval += bus_print_child_header(dev, child);
3305	retval += bus_print_child_footer(dev, child);
3306
3307	return (retval);
3308}
3309
3310/**
3311 * @brief Stub function for implementing BUS_READ_IVAR().
3312 *
3313 * @returns ENOENT
3314 */
3315int
3316bus_generic_read_ivar(device_t dev, device_t child, int index,
3317    uintptr_t * result)
3318{
3319	return (ENOENT);
3320}
3321
3322/**
3323 * @brief Stub function for implementing BUS_WRITE_IVAR().
3324 *
3325 * @returns ENOENT
3326 */
3327int
3328bus_generic_write_ivar(device_t dev, device_t child, int index,
3329    uintptr_t value)
3330{
3331	return (ENOENT);
3332}
3333
3334/**
3335 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3336 *
3337 * @returns NULL
3338 */
3339struct resource_list *
3340bus_generic_get_resource_list(device_t dev, device_t child)
3341{
3342	return (NULL);
3343}
3344
3345/**
3346 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3347 *
3348 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3349 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3350 * and then calls device_probe_and_attach() for each unattached child.
3351 */
3352void
3353bus_generic_driver_added(device_t dev, driver_t *driver)
3354{
3355	device_t child;
3356
3357	DEVICE_IDENTIFY(driver, dev);
3358	TAILQ_FOREACH(child, &dev->children, link) {
3359		if (child->state == DS_NOTPRESENT ||
3360		    (child->flags & DF_REBID))
3361			device_probe_and_attach(child);
3362	}
3363}
3364
3365/**
3366 * @brief Helper function for implementing BUS_NEW_PASS().
3367 *
3368 * This implementing of BUS_NEW_PASS() first calls the identify
3369 * routines for any drivers that probe at the current pass.  Then it
3370 * walks the list of devices for this bus.  If a device is already
3371 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3372 * device is not already attached, it attempts to attach a driver to
3373 * it.
3374 */
3375void
3376bus_generic_new_pass(device_t dev)
3377{
3378	driverlink_t dl;
3379	devclass_t dc;
3380	device_t child;
3381
3382	dc = dev->devclass;
3383	TAILQ_FOREACH(dl, &dc->drivers, link) {
3384		if (dl->pass == bus_current_pass)
3385			DEVICE_IDENTIFY(dl->driver, dev);
3386	}
3387	TAILQ_FOREACH(child, &dev->children, link) {
3388		if (child->state >= DS_ATTACHED)
3389			BUS_NEW_PASS(child);
3390		else if (child->state == DS_NOTPRESENT)
3391			device_probe_and_attach(child);
3392	}
3393}
3394
3395/**
3396 * @brief Helper function for implementing BUS_SETUP_INTR().
3397 *
3398 * This simple implementation of BUS_SETUP_INTR() simply calls the
3399 * BUS_SETUP_INTR() method of the parent of @p dev.
3400 */
3401int
3402bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3403    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3404    void **cookiep)
3405{
3406	/* Propagate up the bus hierarchy until someone handles it. */
3407	if (dev->parent)
3408		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3409		    filter, intr, arg, cookiep));
3410	return (EINVAL);
3411}
3412
3413/**
3414 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3415 *
3416 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3417 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3418 */
3419int
3420bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3421    void *cookie)
3422{
3423	/* Propagate up the bus hierarchy until someone handles it. */
3424	if (dev->parent)
3425		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3426	return (EINVAL);
3427}
3428
3429/**
3430 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3431 *
3432 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3433 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3434 */
3435struct resource *
3436bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3437    u_long start, u_long end, u_long count, u_int flags)
3438{
3439	/* Propagate up the bus hierarchy until someone handles it. */
3440	if (dev->parent)
3441		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3442		    start, end, count, flags));
3443	return (NULL);
3444}
3445
3446/**
3447 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3448 *
3449 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3450 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3451 */
3452int
3453bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3454    struct resource *r)
3455{
3456	/* Propagate up the bus hierarchy until someone handles it. */
3457	if (dev->parent)
3458		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3459		    r));
3460	return (EINVAL);
3461}
3462
3463/**
3464 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3465 *
3466 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3467 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3468 */
3469int
3470bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3471    struct resource *r)
3472{
3473	/* Propagate up the bus hierarchy until someone handles it. */
3474	if (dev->parent)
3475		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3476		    r));
3477	return (EINVAL);
3478}
3479
3480/**
3481 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3482 *
3483 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3484 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3485 */
3486int
3487bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3488    int rid, struct resource *r)
3489{
3490	/* Propagate up the bus hierarchy until someone handles it. */
3491	if (dev->parent)
3492		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3493		    r));
3494	return (EINVAL);
3495}
3496
3497/**
3498 * @brief Helper function for implementing BUS_BIND_INTR().
3499 *
3500 * This simple implementation of BUS_BIND_INTR() simply calls the
3501 * BUS_BIND_INTR() method of the parent of @p dev.
3502 */
3503int
3504bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3505    int cpu)
3506{
3507
3508	/* Propagate up the bus hierarchy until someone handles it. */
3509	if (dev->parent)
3510		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3511	return (EINVAL);
3512}
3513
3514/**
3515 * @brief Helper function for implementing BUS_CONFIG_INTR().
3516 *
3517 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3518 * BUS_CONFIG_INTR() method of the parent of @p dev.
3519 */
3520int
3521bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3522    enum intr_polarity pol)
3523{
3524
3525	/* Propagate up the bus hierarchy until someone handles it. */
3526	if (dev->parent)
3527		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3528	return (EINVAL);
3529}
3530
3531/**
3532 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3533 *
3534 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3535 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3536 */
3537int
3538bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3539    void *cookie, const char *descr)
3540{
3541
3542	/* Propagate up the bus hierarchy until someone handles it. */
3543	if (dev->parent)
3544		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3545		    descr));
3546	return (EINVAL);
3547}
3548
3549/**
3550 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3551 *
3552 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3553 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3554 */
3555bus_dma_tag_t
3556bus_generic_get_dma_tag(device_t dev, device_t child)
3557{
3558
3559	/* Propagate up the bus hierarchy until someone handles it. */
3560	if (dev->parent != NULL)
3561		return (BUS_GET_DMA_TAG(dev->parent, child));
3562	return (NULL);
3563}
3564
3565/**
3566 * @brief Helper function for implementing BUS_GET_RESOURCE().
3567 *
3568 * This implementation of BUS_GET_RESOURCE() uses the
3569 * resource_list_find() function to do most of the work. It calls
3570 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3571 * search.
3572 */
3573int
3574bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3575    u_long *startp, u_long *countp)
3576{
3577	struct resource_list *		rl = NULL;
3578	struct resource_list_entry *	rle = NULL;
3579
3580	rl = BUS_GET_RESOURCE_LIST(dev, child);
3581	if (!rl)
3582		return (EINVAL);
3583
3584	rle = resource_list_find(rl, type, rid);
3585	if (!rle)
3586		return (ENOENT);
3587
3588	if (startp)
3589		*startp = rle->start;
3590	if (countp)
3591		*countp = rle->count;
3592
3593	return (0);
3594}
3595
3596/**
3597 * @brief Helper function for implementing BUS_SET_RESOURCE().
3598 *
3599 * This implementation of BUS_SET_RESOURCE() uses the
3600 * resource_list_add() function to do most of the work. It calls
3601 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3602 * edit.
3603 */
3604int
3605bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3606    u_long start, u_long count)
3607{
3608	struct resource_list *		rl = NULL;
3609
3610	rl = BUS_GET_RESOURCE_LIST(dev, child);
3611	if (!rl)
3612		return (EINVAL);
3613
3614	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3615
3616	return (0);
3617}
3618
3619/**
3620 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3621 *
3622 * This implementation of BUS_DELETE_RESOURCE() uses the
3623 * resource_list_delete() function to do most of the work. It calls
3624 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3625 * edit.
3626 */
3627void
3628bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3629{
3630	struct resource_list *		rl = NULL;
3631
3632	rl = BUS_GET_RESOURCE_LIST(dev, child);
3633	if (!rl)
3634		return;
3635
3636	resource_list_delete(rl, type, rid);
3637
3638	return;
3639}
3640
3641/**
3642 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3643 *
3644 * This implementation of BUS_RELEASE_RESOURCE() uses the
3645 * resource_list_release() function to do most of the work. It calls
3646 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3647 */
3648int
3649bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3650    int rid, struct resource *r)
3651{
3652	struct resource_list *		rl = NULL;
3653
3654	rl = BUS_GET_RESOURCE_LIST(dev, child);
3655	if (!rl)
3656		return (EINVAL);
3657
3658	return (resource_list_release(rl, dev, child, type, rid, r));
3659}
3660
3661/**
3662 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3663 *
3664 * This implementation of BUS_ALLOC_RESOURCE() uses the
3665 * resource_list_alloc() function to do most of the work. It calls
3666 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3667 */
3668struct resource *
3669bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3670    int *rid, u_long start, u_long end, u_long count, u_int flags)
3671{
3672	struct resource_list *		rl = NULL;
3673
3674	rl = BUS_GET_RESOURCE_LIST(dev, child);
3675	if (!rl)
3676		return (NULL);
3677
3678	return (resource_list_alloc(rl, dev, child, type, rid,
3679	    start, end, count, flags));
3680}
3681
3682/**
3683 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3684 *
3685 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3686 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3687 */
3688int
3689bus_generic_child_present(device_t dev, device_t child)
3690{
3691	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3692}
3693
3694/*
3695 * Some convenience functions to make it easier for drivers to use the
3696 * resource-management functions.  All these really do is hide the
3697 * indirection through the parent's method table, making for slightly
3698 * less-wordy code.  In the future, it might make sense for this code
3699 * to maintain some sort of a list of resources allocated by each device.
3700 */
3701
3702int
3703bus_alloc_resources(device_t dev, struct resource_spec *rs,
3704    struct resource **res)
3705{
3706	int i;
3707
3708	for (i = 0; rs[i].type != -1; i++)
3709		res[i] = NULL;
3710	for (i = 0; rs[i].type != -1; i++) {
3711		res[i] = bus_alloc_resource_any(dev,
3712		    rs[i].type, &rs[i].rid, rs[i].flags);
3713		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3714			bus_release_resources(dev, rs, res);
3715			return (ENXIO);
3716		}
3717	}
3718	return (0);
3719}
3720
3721void
3722bus_release_resources(device_t dev, const struct resource_spec *rs,
3723    struct resource **res)
3724{
3725	int i;
3726
3727	for (i = 0; rs[i].type != -1; i++)
3728		if (res[i] != NULL) {
3729			bus_release_resource(
3730			    dev, rs[i].type, rs[i].rid, res[i]);
3731			res[i] = NULL;
3732		}
3733}
3734
3735/**
3736 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3737 *
3738 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3739 * parent of @p dev.
3740 */
3741struct resource *
3742bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3743    u_long count, u_int flags)
3744{
3745	if (dev->parent == NULL)
3746		return (NULL);
3747	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3748	    count, flags));
3749}
3750
3751/**
3752 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3753 *
3754 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3755 * parent of @p dev.
3756 */
3757int
3758bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3759{
3760	if (dev->parent == NULL)
3761		return (EINVAL);
3762	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3763}
3764
3765/**
3766 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3767 *
3768 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3769 * parent of @p dev.
3770 */
3771int
3772bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3773{
3774	if (dev->parent == NULL)
3775		return (EINVAL);
3776	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3777}
3778
3779/**
3780 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3781 *
3782 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3783 * parent of @p dev.
3784 */
3785int
3786bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3787{
3788	if (dev->parent == NULL)
3789		return (EINVAL);
3790	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3791}
3792
3793/**
3794 * @brief Wrapper function for BUS_SETUP_INTR().
3795 *
3796 * This function simply calls the BUS_SETUP_INTR() method of the
3797 * parent of @p dev.
3798 */
3799int
3800bus_setup_intr(device_t dev, struct resource *r, int flags,
3801    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3802{
3803	int error;
3804
3805	if (dev->parent == NULL)
3806		return (EINVAL);
3807	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3808	    arg, cookiep);
3809	if (error != 0)
3810		return (error);
3811	if (handler != NULL && !(flags & INTR_MPSAFE))
3812		device_printf(dev, "[GIANT-LOCKED]\n");
3813	if (bootverbose && (flags & INTR_MPSAFE))
3814		device_printf(dev, "[MPSAFE]\n");
3815	if (filter != NULL) {
3816		if (handler == NULL)
3817			device_printf(dev, "[FILTER]\n");
3818		else
3819			device_printf(dev, "[FILTER+ITHREAD]\n");
3820	} else
3821		device_printf(dev, "[ITHREAD]\n");
3822	return (0);
3823}
3824
3825/**
3826 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3827 *
3828 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3829 * parent of @p dev.
3830 */
3831int
3832bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3833{
3834	if (dev->parent == NULL)
3835		return (EINVAL);
3836	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3837}
3838
3839/**
3840 * @brief Wrapper function for BUS_BIND_INTR().
3841 *
3842 * This function simply calls the BUS_BIND_INTR() method of the
3843 * parent of @p dev.
3844 */
3845int
3846bus_bind_intr(device_t dev, struct resource *r, int cpu)
3847{
3848	if (dev->parent == NULL)
3849		return (EINVAL);
3850	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
3851}
3852
3853/**
3854 * @brief Wrapper function for BUS_DESCRIBE_INTR().
3855 *
3856 * This function first formats the requested description into a
3857 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
3858 * the parent of @p dev.
3859 */
3860int
3861bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
3862    const char *fmt, ...)
3863{
3864	char descr[MAXCOMLEN];
3865	va_list ap;
3866
3867	if (dev->parent == NULL)
3868		return (EINVAL);
3869	va_start(ap, fmt);
3870	vsnprintf(descr, sizeof(descr), fmt, ap);
3871	va_end(ap);
3872	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
3873}
3874
3875/**
3876 * @brief Wrapper function for BUS_SET_RESOURCE().
3877 *
3878 * This function simply calls the BUS_SET_RESOURCE() method of the
3879 * parent of @p dev.
3880 */
3881int
3882bus_set_resource(device_t dev, int type, int rid,
3883    u_long start, u_long count)
3884{
3885	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3886	    start, count));
3887}
3888
3889/**
3890 * @brief Wrapper function for BUS_GET_RESOURCE().
3891 *
3892 * This function simply calls the BUS_GET_RESOURCE() method of the
3893 * parent of @p dev.
3894 */
3895int
3896bus_get_resource(device_t dev, int type, int rid,
3897    u_long *startp, u_long *countp)
3898{
3899	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3900	    startp, countp));
3901}
3902
3903/**
3904 * @brief Wrapper function for BUS_GET_RESOURCE().
3905 *
3906 * This function simply calls the BUS_GET_RESOURCE() method of the
3907 * parent of @p dev and returns the start value.
3908 */
3909u_long
3910bus_get_resource_start(device_t dev, int type, int rid)
3911{
3912	u_long start, count;
3913	int error;
3914
3915	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3916	    &start, &count);
3917	if (error)
3918		return (0);
3919	return (start);
3920}
3921
3922/**
3923 * @brief Wrapper function for BUS_GET_RESOURCE().
3924 *
3925 * This function simply calls the BUS_GET_RESOURCE() method of the
3926 * parent of @p dev and returns the count value.
3927 */
3928u_long
3929bus_get_resource_count(device_t dev, int type, int rid)
3930{
3931	u_long start, count;
3932	int error;
3933
3934	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3935	    &start, &count);
3936	if (error)
3937		return (0);
3938	return (count);
3939}
3940
3941/**
3942 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3943 *
3944 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3945 * parent of @p dev.
3946 */
3947void
3948bus_delete_resource(device_t dev, int type, int rid)
3949{
3950	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3951}
3952
3953/**
3954 * @brief Wrapper function for BUS_CHILD_PRESENT().
3955 *
3956 * This function simply calls the BUS_CHILD_PRESENT() method of the
3957 * parent of @p dev.
3958 */
3959int
3960bus_child_present(device_t child)
3961{
3962	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3963}
3964
3965/**
3966 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3967 *
3968 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3969 * parent of @p dev.
3970 */
3971int
3972bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3973{
3974	device_t parent;
3975
3976	parent = device_get_parent(child);
3977	if (parent == NULL) {
3978		*buf = '\0';
3979		return (0);
3980	}
3981	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3982}
3983
3984/**
3985 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3986 *
3987 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3988 * parent of @p dev.
3989 */
3990int
3991bus_child_location_str(device_t child, char *buf, size_t buflen)
3992{
3993	device_t parent;
3994
3995	parent = device_get_parent(child);
3996	if (parent == NULL) {
3997		*buf = '\0';
3998		return (0);
3999	}
4000	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4001}
4002
4003/**
4004 * @brief Wrapper function for BUS_GET_DMA_TAG().
4005 *
4006 * This function simply calls the BUS_GET_DMA_TAG() method of the
4007 * parent of @p dev.
4008 */
4009bus_dma_tag_t
4010bus_get_dma_tag(device_t dev)
4011{
4012	device_t parent;
4013
4014	parent = device_get_parent(dev);
4015	if (parent == NULL)
4016		return (NULL);
4017	return (BUS_GET_DMA_TAG(parent, dev));
4018}
4019
4020/* Resume all devices and then notify userland that we're up again. */
4021static int
4022root_resume(device_t dev)
4023{
4024	int error;
4025
4026	error = bus_generic_resume(dev);
4027	if (error == 0)
4028		devctl_notify("kern", "power", "resume", NULL);
4029	return (error);
4030}
4031
4032static int
4033root_print_child(device_t dev, device_t child)
4034{
4035	int	retval = 0;
4036
4037	retval += bus_print_child_header(dev, child);
4038	retval += printf("\n");
4039
4040	return (retval);
4041}
4042
4043static int
4044root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4045    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4046{
4047	/*
4048	 * If an interrupt mapping gets to here something bad has happened.
4049	 */
4050	panic("root_setup_intr");
4051}
4052
4053/*
4054 * If we get here, assume that the device is permanant and really is
4055 * present in the system.  Removable bus drivers are expected to intercept
4056 * this call long before it gets here.  We return -1 so that drivers that
4057 * really care can check vs -1 or some ERRNO returned higher in the food
4058 * chain.
4059 */
4060static int
4061root_child_present(device_t dev, device_t child)
4062{
4063	return (-1);
4064}
4065
4066static kobj_method_t root_methods[] = {
4067	/* Device interface */
4068	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4069	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4070	KOBJMETHOD(device_resume,	root_resume),
4071
4072	/* Bus interface */
4073	KOBJMETHOD(bus_print_child,	root_print_child),
4074	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4075	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4076	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4077	KOBJMETHOD(bus_child_present,	root_child_present),
4078
4079	KOBJMETHOD_END
4080};
4081
4082static driver_t root_driver = {
4083	"root",
4084	root_methods,
4085	1,			/* no softc */
4086};
4087
4088device_t	root_bus;
4089devclass_t	root_devclass;
4090
4091static int
4092root_bus_module_handler(module_t mod, int what, void* arg)
4093{
4094	switch (what) {
4095	case MOD_LOAD:
4096		TAILQ_INIT(&bus_data_devices);
4097		kobj_class_compile((kobj_class_t) &root_driver);
4098		root_bus = make_device(NULL, "root", 0);
4099		root_bus->desc = "System root bus";
4100		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4101		root_bus->driver = &root_driver;
4102		root_bus->state = DS_ATTACHED;
4103		root_devclass = devclass_find_internal("root", NULL, FALSE);
4104		devinit();
4105		return (0);
4106
4107	case MOD_SHUTDOWN:
4108		device_shutdown(root_bus);
4109		return (0);
4110	default:
4111		return (EOPNOTSUPP);
4112	}
4113
4114	return (0);
4115}
4116
4117static moduledata_t root_bus_mod = {
4118	"rootbus",
4119	root_bus_module_handler,
4120	NULL
4121};
4122DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4123
4124/**
4125 * @brief Automatically configure devices
4126 *
4127 * This function begins the autoconfiguration process by calling
4128 * device_probe_and_attach() for each child of the @c root0 device.
4129 */
4130void
4131root_bus_configure(void)
4132{
4133
4134	PDEBUG(("."));
4135
4136	/* Eventually this will be split up, but this is sufficient for now. */
4137	bus_set_pass(BUS_PASS_DEFAULT);
4138}
4139
4140/**
4141 * @brief Module handler for registering device drivers
4142 *
4143 * This module handler is used to automatically register device
4144 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4145 * devclass_add_driver() for the driver described by the
4146 * driver_module_data structure pointed to by @p arg
4147 */
4148int
4149driver_module_handler(module_t mod, int what, void *arg)
4150{
4151	struct driver_module_data *dmd;
4152	devclass_t bus_devclass;
4153	kobj_class_t driver;
4154	int error, pass;
4155
4156	dmd = (struct driver_module_data *)arg;
4157	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4158	error = 0;
4159
4160	switch (what) {
4161	case MOD_LOAD:
4162		if (dmd->dmd_chainevh)
4163			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4164
4165		pass = dmd->dmd_pass;
4166		driver = dmd->dmd_driver;
4167		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4168		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4169		error = devclass_add_driver(bus_devclass, driver, pass,
4170		    dmd->dmd_devclass);
4171		break;
4172
4173	case MOD_UNLOAD:
4174		PDEBUG(("Unloading module: driver %s from bus %s",
4175		    DRIVERNAME(dmd->dmd_driver),
4176		    dmd->dmd_busname));
4177		error = devclass_delete_driver(bus_devclass,
4178		    dmd->dmd_driver);
4179
4180		if (!error && dmd->dmd_chainevh)
4181			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4182		break;
4183	case MOD_QUIESCE:
4184		PDEBUG(("Quiesce module: driver %s from bus %s",
4185		    DRIVERNAME(dmd->dmd_driver),
4186		    dmd->dmd_busname));
4187		error = devclass_quiesce_driver(bus_devclass,
4188		    dmd->dmd_driver);
4189
4190		if (!error && dmd->dmd_chainevh)
4191			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4192		break;
4193	default:
4194		error = EOPNOTSUPP;
4195		break;
4196	}
4197
4198	return (error);
4199}
4200
4201/**
4202 * @brief Enumerate all hinted devices for this bus.
4203 *
4204 * Walks through the hints for this bus and calls the bus_hinted_child
4205 * routine for each one it fines.  It searches first for the specific
4206 * bus that's being probed for hinted children (eg isa0), and then for
4207 * generic children (eg isa).
4208 *
4209 * @param	dev	bus device to enumerate
4210 */
4211void
4212bus_enumerate_hinted_children(device_t bus)
4213{
4214	int i;
4215	const char *dname, *busname;
4216	int dunit;
4217
4218	/*
4219	 * enumerate all devices on the specific bus
4220	 */
4221	busname = device_get_nameunit(bus);
4222	i = 0;
4223	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4224		BUS_HINTED_CHILD(bus, dname, dunit);
4225
4226	/*
4227	 * and all the generic ones.
4228	 */
4229	busname = device_get_name(bus);
4230	i = 0;
4231	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4232		BUS_HINTED_CHILD(bus, dname, dunit);
4233}
4234
4235#ifdef BUS_DEBUG
4236
4237/* the _short versions avoid iteration by not calling anything that prints
4238 * more than oneliners. I love oneliners.
4239 */
4240
4241static void
4242print_device_short(device_t dev, int indent)
4243{
4244	if (!dev)
4245		return;
4246
4247	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4248	    dev->unit, dev->desc,
4249	    (dev->parent? "":"no "),
4250	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4251	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4252	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4253	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4254	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4255	    (dev->flags&DF_REBID? "rebiddable,":""),
4256	    (dev->ivars? "":"no "),
4257	    (dev->softc? "":"no "),
4258	    dev->busy));
4259}
4260
4261static void
4262print_device(device_t dev, int indent)
4263{
4264	if (!dev)
4265		return;
4266
4267	print_device_short(dev, indent);
4268
4269	indentprintf(("Parent:\n"));
4270	print_device_short(dev->parent, indent+1);
4271	indentprintf(("Driver:\n"));
4272	print_driver_short(dev->driver, indent+1);
4273	indentprintf(("Devclass:\n"));
4274	print_devclass_short(dev->devclass, indent+1);
4275}
4276
4277void
4278print_device_tree_short(device_t dev, int indent)
4279/* print the device and all its children (indented) */
4280{
4281	device_t child;
4282
4283	if (!dev)
4284		return;
4285
4286	print_device_short(dev, indent);
4287
4288	TAILQ_FOREACH(child, &dev->children, link) {
4289		print_device_tree_short(child, indent+1);
4290	}
4291}
4292
4293void
4294print_device_tree(device_t dev, int indent)
4295/* print the device and all its children (indented) */
4296{
4297	device_t child;
4298
4299	if (!dev)
4300		return;
4301
4302	print_device(dev, indent);
4303
4304	TAILQ_FOREACH(child, &dev->children, link) {
4305		print_device_tree(child, indent+1);
4306	}
4307}
4308
4309static void
4310print_driver_short(driver_t *driver, int indent)
4311{
4312	if (!driver)
4313		return;
4314
4315	indentprintf(("driver %s: softc size = %zd\n",
4316	    driver->name, driver->size));
4317}
4318
4319static void
4320print_driver(driver_t *driver, int indent)
4321{
4322	if (!driver)
4323		return;
4324
4325	print_driver_short(driver, indent);
4326}
4327
4328
4329static void
4330print_driver_list(driver_list_t drivers, int indent)
4331{
4332	driverlink_t driver;
4333
4334	TAILQ_FOREACH(driver, &drivers, link) {
4335		print_driver(driver->driver, indent);
4336	}
4337}
4338
4339static void
4340print_devclass_short(devclass_t dc, int indent)
4341{
4342	if ( !dc )
4343		return;
4344
4345	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4346}
4347
4348static void
4349print_devclass(devclass_t dc, int indent)
4350{
4351	int i;
4352
4353	if ( !dc )
4354		return;
4355
4356	print_devclass_short(dc, indent);
4357	indentprintf(("Drivers:\n"));
4358	print_driver_list(dc->drivers, indent+1);
4359
4360	indentprintf(("Devices:\n"));
4361	for (i = 0; i < dc->maxunit; i++)
4362		if (dc->devices[i])
4363			print_device(dc->devices[i], indent+1);
4364}
4365
4366void
4367print_devclass_list_short(void)
4368{
4369	devclass_t dc;
4370
4371	printf("Short listing of devclasses, drivers & devices:\n");
4372	TAILQ_FOREACH(dc, &devclasses, link) {
4373		print_devclass_short(dc, 0);
4374	}
4375}
4376
4377void
4378print_devclass_list(void)
4379{
4380	devclass_t dc;
4381
4382	printf("Full listing of devclasses, drivers & devices:\n");
4383	TAILQ_FOREACH(dc, &devclasses, link) {
4384		print_devclass(dc, 0);
4385	}
4386}
4387
4388#endif
4389
4390/*
4391 * User-space access to the device tree.
4392 *
4393 * We implement a small set of nodes:
4394 *
4395 * hw.bus			Single integer read method to obtain the
4396 *				current generation count.
4397 * hw.bus.devices		Reads the entire device tree in flat space.
4398 * hw.bus.rman			Resource manager interface
4399 *
4400 * We might like to add the ability to scan devclasses and/or drivers to
4401 * determine what else is currently loaded/available.
4402 */
4403
4404static int
4405sysctl_bus(SYSCTL_HANDLER_ARGS)
4406{
4407	struct u_businfo	ubus;
4408
4409	ubus.ub_version = BUS_USER_VERSION;
4410	ubus.ub_generation = bus_data_generation;
4411
4412	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4413}
4414SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4415    "bus-related data");
4416
4417static int
4418sysctl_devices(SYSCTL_HANDLER_ARGS)
4419{
4420	int			*name = (int *)arg1;
4421	u_int			namelen = arg2;
4422	int			index;
4423	struct device		*dev;
4424	struct u_device		udev;	/* XXX this is a bit big */
4425	int			error;
4426
4427	if (namelen != 2)
4428		return (EINVAL);
4429
4430	if (bus_data_generation_check(name[0]))
4431		return (EINVAL);
4432
4433	index = name[1];
4434
4435	/*
4436	 * Scan the list of devices, looking for the requested index.
4437	 */
4438	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4439		if (index-- == 0)
4440			break;
4441	}
4442	if (dev == NULL)
4443		return (ENOENT);
4444
4445	/*
4446	 * Populate the return array.
4447	 */
4448	bzero(&udev, sizeof(udev));
4449	udev.dv_handle = (uintptr_t)dev;
4450	udev.dv_parent = (uintptr_t)dev->parent;
4451	if (dev->nameunit != NULL)
4452		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4453	if (dev->desc != NULL)
4454		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4455	if (dev->driver != NULL && dev->driver->name != NULL)
4456		strlcpy(udev.dv_drivername, dev->driver->name,
4457		    sizeof(udev.dv_drivername));
4458	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4459	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4460	udev.dv_devflags = dev->devflags;
4461	udev.dv_flags = dev->flags;
4462	udev.dv_state = dev->state;
4463	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4464	return (error);
4465}
4466
4467SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4468    "system device tree");
4469
4470int
4471bus_data_generation_check(int generation)
4472{
4473	if (generation != bus_data_generation)
4474		return (1);
4475
4476	/* XXX generate optimised lists here? */
4477	return (0);
4478}
4479
4480void
4481bus_data_generation_update(void)
4482{
4483	bus_data_generation++;
4484}
4485
4486int
4487bus_free_resource(device_t dev, int type, struct resource *r)
4488{
4489	if (r == NULL)
4490		return (0);
4491	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4492}
4493