subr_bus.c revision 179087
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 179087 2008-05-18 13:55:51Z rpaulo $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53#include <sys/interrupt.h>
54
55#include <machine/stdarg.h>
56
57#include <vm/uma.h>
58
59SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61
62/*
63 * Used to attach drivers to devclasses.
64 */
65typedef struct driverlink *driverlink_t;
66struct driverlink {
67	kobj_class_t	driver;
68	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69};
70
71/*
72 * Forward declarations
73 */
74typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76typedef TAILQ_HEAD(device_list, device) device_list_t;
77
78struct devclass {
79	TAILQ_ENTRY(devclass) link;
80	devclass_t	parent;		/* parent in devclass hierarchy */
81	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82	char		*name;
83	device_t	*devices;	/* array of devices indexed by unit */
84	int		maxunit;	/* size of devices array */
85
86	struct sysctl_ctx_list sysctl_ctx;
87	struct sysctl_oid *sysctl_tree;
88};
89
90/**
91 * @brief Implementation of device.
92 */
93struct device {
94	/*
95	 * A device is a kernel object. The first field must be the
96	 * current ops table for the object.
97	 */
98	KOBJ_FIELDS;
99
100	/*
101	 * Device hierarchy.
102	 */
103	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105	device_t	parent;		/**< parent of this device  */
106	device_list_t	children;	/**< list of child devices */
107
108	/*
109	 * Details of this device.
110	 */
111	driver_t	*driver;	/**< current driver */
112	devclass_t	devclass;	/**< current device class */
113	int		unit;		/**< current unit number */
114	char*		nameunit;	/**< name+unit e.g. foodev0 */
115	char*		desc;		/**< driver specific description */
116	int		busy;		/**< count of calls to device_busy() */
117	device_state_t	state;		/**< current device state  */
118	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119	u_short		flags;		/**< internal device flags  */
120#define	DF_ENABLED	1		/* device should be probed/attached */
121#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122#define	DF_WILDCARD	4		/* unit was originally wildcard */
123#define	DF_DESCMALLOCED	8		/* description was malloced */
124#define	DF_QUIET	16		/* don't print verbose attach message */
125#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127#define	DF_REBID	128		/* Can rebid after attach */
128	u_char	order;			/**< order from device_add_child_ordered() */
129	u_char	pad;
130	void	*ivars;			/**< instance variables  */
131	void	*softc;			/**< current driver's variables  */
132
133	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135};
136
137static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139
140#ifdef BUS_DEBUG
141
142static int bus_debug = 1;
143TUNABLE_INT("bus.debug", &bus_debug);
144SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145    "Debug bus code");
146
147#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149#define DRIVERNAME(d)	((d)? d->name : "no driver")
150#define DEVCLANAME(d)	((d)? d->name : "no devclass")
151
152/**
153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154 * prevent syslog from deleting initial spaces
155 */
156#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157
158static void print_device_short(device_t dev, int indent);
159static void print_device(device_t dev, int indent);
160void print_device_tree_short(device_t dev, int indent);
161void print_device_tree(device_t dev, int indent);
162static void print_driver_short(driver_t *driver, int indent);
163static void print_driver(driver_t *driver, int indent);
164static void print_driver_list(driver_list_t drivers, int indent);
165static void print_devclass_short(devclass_t dc, int indent);
166static void print_devclass(devclass_t dc, int indent);
167void print_devclass_list_short(void);
168void print_devclass_list(void);
169
170#else
171/* Make the compiler ignore the function calls */
172#define PDEBUG(a)			/* nop */
173#define DEVICENAME(d)			/* nop */
174#define DRIVERNAME(d)			/* nop */
175#define DEVCLANAME(d)			/* nop */
176
177#define print_device_short(d,i)		/* nop */
178#define print_device(d,i)		/* nop */
179#define print_device_tree_short(d,i)	/* nop */
180#define print_device_tree(d,i)		/* nop */
181#define print_driver_short(d,i)		/* nop */
182#define print_driver(d,i)		/* nop */
183#define print_driver_list(d,i)		/* nop */
184#define print_devclass_short(d,i)	/* nop */
185#define print_devclass(d,i)		/* nop */
186#define print_devclass_list_short()	/* nop */
187#define print_devclass_list()		/* nop */
188#endif
189
190/*
191 * dev sysctl tree
192 */
193
194enum {
195	DEVCLASS_SYSCTL_PARENT,
196};
197
198static int
199devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200{
201	devclass_t dc = (devclass_t)arg1;
202	const char *value;
203
204	switch (arg2) {
205	case DEVCLASS_SYSCTL_PARENT:
206		value = dc->parent ? dc->parent->name : "";
207		break;
208	default:
209		return (EINVAL);
210	}
211	return (SYSCTL_OUT(req, value, strlen(value)));
212}
213
214static void
215devclass_sysctl_init(devclass_t dc)
216{
217
218	if (dc->sysctl_tree != NULL)
219		return;
220	sysctl_ctx_init(&dc->sysctl_ctx);
221	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
222	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
223	    CTLFLAG_RD, 0, "");
224	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
225	    OID_AUTO, "%parent", CTLFLAG_RD,
226	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
227	    "parent class");
228}
229
230enum {
231	DEVICE_SYSCTL_DESC,
232	DEVICE_SYSCTL_DRIVER,
233	DEVICE_SYSCTL_LOCATION,
234	DEVICE_SYSCTL_PNPINFO,
235	DEVICE_SYSCTL_PARENT,
236};
237
238static int
239device_sysctl_handler(SYSCTL_HANDLER_ARGS)
240{
241	device_t dev = (device_t)arg1;
242	const char *value;
243	char *buf;
244	int error;
245
246	buf = NULL;
247	switch (arg2) {
248	case DEVICE_SYSCTL_DESC:
249		value = dev->desc ? dev->desc : "";
250		break;
251	case DEVICE_SYSCTL_DRIVER:
252		value = dev->driver ? dev->driver->name : "";
253		break;
254	case DEVICE_SYSCTL_LOCATION:
255		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
256		bus_child_location_str(dev, buf, 1024);
257		break;
258	case DEVICE_SYSCTL_PNPINFO:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_pnpinfo_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PARENT:
263		value = dev->parent ? dev->parent->nameunit : "";
264		break;
265	default:
266		return (EINVAL);
267	}
268	error = SYSCTL_OUT(req, value, strlen(value));
269	if (buf != NULL)
270		free(buf, M_BUS);
271	return (error);
272}
273
274static void
275device_sysctl_init(device_t dev)
276{
277	devclass_t dc = dev->devclass;
278
279	if (dev->sysctl_tree != NULL)
280		return;
281	devclass_sysctl_init(dc);
282	sysctl_ctx_init(&dev->sysctl_ctx);
283	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
284	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
285	    dev->nameunit + strlen(dc->name),
286	    CTLFLAG_RD, 0, "");
287	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
288	    OID_AUTO, "%desc", CTLFLAG_RD,
289	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
290	    "device description");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%driver", CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
294	    "device driver name");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%location", CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
298	    "device location relative to parent");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
302	    "device identification");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%parent", CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
306	    "parent device");
307}
308
309static void
310device_sysctl_update(device_t dev)
311{
312	devclass_t dc = dev->devclass;
313
314	if (dev->sysctl_tree == NULL)
315		return;
316	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
317}
318
319static void
320device_sysctl_fini(device_t dev)
321{
322	if (dev->sysctl_tree == NULL)
323		return;
324	sysctl_ctx_free(&dev->sysctl_ctx);
325	dev->sysctl_tree = NULL;
326}
327
328/*
329 * /dev/devctl implementation
330 */
331
332/*
333 * This design allows only one reader for /dev/devctl.  This is not desirable
334 * in the long run, but will get a lot of hair out of this implementation.
335 * Maybe we should make this device a clonable device.
336 *
337 * Also note: we specifically do not attach a device to the device_t tree
338 * to avoid potential chicken and egg problems.  One could argue that all
339 * of this belongs to the root node.  One could also further argue that the
340 * sysctl interface that we have not might more properly be an ioctl
341 * interface, but at this stage of the game, I'm not inclined to rock that
342 * boat.
343 *
344 * I'm also not sure that the SIGIO support is done correctly or not, as
345 * I copied it from a driver that had SIGIO support that likely hasn't been
346 * tested since 3.4 or 2.2.8!
347 */
348
349static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
350static int devctl_disable = 0;
351TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
352SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
353    sysctl_devctl_disable, "I", "devctl disable");
354
355static d_open_t		devopen;
356static d_close_t	devclose;
357static d_read_t		devread;
358static d_ioctl_t	devioctl;
359static d_poll_t		devpoll;
360
361static struct cdevsw dev_cdevsw = {
362	.d_version =	D_VERSION,
363	.d_flags =	D_NEEDGIANT,
364	.d_open =	devopen,
365	.d_close =	devclose,
366	.d_read =	devread,
367	.d_ioctl =	devioctl,
368	.d_poll =	devpoll,
369	.d_name =	"devctl",
370};
371
372struct dev_event_info
373{
374	char *dei_data;
375	TAILQ_ENTRY(dev_event_info) dei_link;
376};
377
378TAILQ_HEAD(devq, dev_event_info);
379
380static struct dev_softc
381{
382	int	inuse;
383	int	nonblock;
384	struct mtx mtx;
385	struct cv cv;
386	struct selinfo sel;
387	struct devq devq;
388	struct proc *async_proc;
389} devsoftc;
390
391static struct cdev *devctl_dev;
392
393static void
394devinit(void)
395{
396	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
397	    "devctl");
398	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
399	cv_init(&devsoftc.cv, "dev cv");
400	TAILQ_INIT(&devsoftc.devq);
401}
402
403static int
404devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
405{
406	if (devsoftc.inuse)
407		return (EBUSY);
408	/* move to init */
409	devsoftc.inuse = 1;
410	devsoftc.nonblock = 0;
411	devsoftc.async_proc = NULL;
412	return (0);
413}
414
415static int
416devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
417{
418	devsoftc.inuse = 0;
419	mtx_lock(&devsoftc.mtx);
420	cv_broadcast(&devsoftc.cv);
421	mtx_unlock(&devsoftc.mtx);
422
423	return (0);
424}
425
426/*
427 * The read channel for this device is used to report changes to
428 * userland in realtime.  We are required to free the data as well as
429 * the n1 object because we allocate them separately.  Also note that
430 * we return one record at a time.  If you try to read this device a
431 * character at a time, you will lose the rest of the data.  Listening
432 * programs are expected to cope.
433 */
434static int
435devread(struct cdev *dev, struct uio *uio, int ioflag)
436{
437	struct dev_event_info *n1;
438	int rv;
439
440	mtx_lock(&devsoftc.mtx);
441	while (TAILQ_EMPTY(&devsoftc.devq)) {
442		if (devsoftc.nonblock) {
443			mtx_unlock(&devsoftc.mtx);
444			return (EAGAIN);
445		}
446		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
447		if (rv) {
448			/*
449			 * Need to translate ERESTART to EINTR here? -- jake
450			 */
451			mtx_unlock(&devsoftc.mtx);
452			return (rv);
453		}
454	}
455	n1 = TAILQ_FIRST(&devsoftc.devq);
456	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
457	mtx_unlock(&devsoftc.mtx);
458	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
459	free(n1->dei_data, M_BUS);
460	free(n1, M_BUS);
461	return (rv);
462}
463
464static	int
465devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
466{
467	switch (cmd) {
468
469	case FIONBIO:
470		if (*(int*)data)
471			devsoftc.nonblock = 1;
472		else
473			devsoftc.nonblock = 0;
474		return (0);
475	case FIOASYNC:
476		if (*(int*)data)
477			devsoftc.async_proc = td->td_proc;
478		else
479			devsoftc.async_proc = NULL;
480		return (0);
481
482		/* (un)Support for other fcntl() calls. */
483	case FIOCLEX:
484	case FIONCLEX:
485	case FIONREAD:
486	case FIOSETOWN:
487	case FIOGETOWN:
488	default:
489		break;
490	}
491	return (ENOTTY);
492}
493
494static	int
495devpoll(struct cdev *dev, int events, d_thread_t *td)
496{
497	int	revents = 0;
498
499	mtx_lock(&devsoftc.mtx);
500	if (events & (POLLIN | POLLRDNORM)) {
501		if (!TAILQ_EMPTY(&devsoftc.devq))
502			revents = events & (POLLIN | POLLRDNORM);
503		else
504			selrecord(td, &devsoftc.sel);
505	}
506	mtx_unlock(&devsoftc.mtx);
507
508	return (revents);
509}
510
511/**
512 * @brief Return whether the userland process is running
513 */
514boolean_t
515devctl_process_running(void)
516{
517	return (devsoftc.inuse == 1);
518}
519
520/**
521 * @brief Queue data to be read from the devctl device
522 *
523 * Generic interface to queue data to the devctl device.  It is
524 * assumed that @p data is properly formatted.  It is further assumed
525 * that @p data is allocated using the M_BUS malloc type.
526 */
527void
528devctl_queue_data(char *data)
529{
530	struct dev_event_info *n1 = NULL;
531	struct proc *p;
532
533	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
534	if (n1 == NULL)
535		return;
536	n1->dei_data = data;
537	mtx_lock(&devsoftc.mtx);
538	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
539	cv_broadcast(&devsoftc.cv);
540	mtx_unlock(&devsoftc.mtx);
541	selwakeup(&devsoftc.sel);
542	p = devsoftc.async_proc;
543	if (p != NULL) {
544		PROC_LOCK(p);
545		psignal(p, SIGIO);
546		PROC_UNLOCK(p);
547	}
548}
549
550/**
551 * @brief Send a 'notification' to userland, using standard ways
552 */
553void
554devctl_notify(const char *system, const char *subsystem, const char *type,
555    const char *data)
556{
557	int len = 0;
558	char *msg;
559
560	if (system == NULL)
561		return;		/* BOGUS!  Must specify system. */
562	if (subsystem == NULL)
563		return;		/* BOGUS!  Must specify subsystem. */
564	if (type == NULL)
565		return;		/* BOGUS!  Must specify type. */
566	len += strlen(" system=") + strlen(system);
567	len += strlen(" subsystem=") + strlen(subsystem);
568	len += strlen(" type=") + strlen(type);
569	/* add in the data message plus newline. */
570	if (data != NULL)
571		len += strlen(data);
572	len += 3;	/* '!', '\n', and NUL */
573	msg = malloc(len, M_BUS, M_NOWAIT);
574	if (msg == NULL)
575		return;		/* Drop it on the floor */
576	if (data != NULL)
577		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
578		    system, subsystem, type, data);
579	else
580		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
581		    system, subsystem, type);
582	devctl_queue_data(msg);
583}
584
585/*
586 * Common routine that tries to make sending messages as easy as possible.
587 * We allocate memory for the data, copy strings into that, but do not
588 * free it unless there's an error.  The dequeue part of the driver should
589 * free the data.  We don't send data when the device is disabled.  We do
590 * send data, even when we have no listeners, because we wish to avoid
591 * races relating to startup and restart of listening applications.
592 *
593 * devaddq is designed to string together the type of event, with the
594 * object of that event, plus the plug and play info and location info
595 * for that event.  This is likely most useful for devices, but less
596 * useful for other consumers of this interface.  Those should use
597 * the devctl_queue_data() interface instead.
598 */
599static void
600devaddq(const char *type, const char *what, device_t dev)
601{
602	char *data = NULL;
603	char *loc = NULL;
604	char *pnp = NULL;
605	const char *parstr;
606
607	if (devctl_disable)
608		return;
609	data = malloc(1024, M_BUS, M_NOWAIT);
610	if (data == NULL)
611		goto bad;
612
613	/* get the bus specific location of this device */
614	loc = malloc(1024, M_BUS, M_NOWAIT);
615	if (loc == NULL)
616		goto bad;
617	*loc = '\0';
618	bus_child_location_str(dev, loc, 1024);
619
620	/* Get the bus specific pnp info of this device */
621	pnp = malloc(1024, M_BUS, M_NOWAIT);
622	if (pnp == NULL)
623		goto bad;
624	*pnp = '\0';
625	bus_child_pnpinfo_str(dev, pnp, 1024);
626
627	/* Get the parent of this device, or / if high enough in the tree. */
628	if (device_get_parent(dev) == NULL)
629		parstr = ".";	/* Or '/' ? */
630	else
631		parstr = device_get_nameunit(device_get_parent(dev));
632	/* String it all together. */
633	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
634	  parstr);
635	free(loc, M_BUS);
636	free(pnp, M_BUS);
637	devctl_queue_data(data);
638	return;
639bad:
640	free(pnp, M_BUS);
641	free(loc, M_BUS);
642	free(data, M_BUS);
643	return;
644}
645
646/*
647 * A device was added to the tree.  We are called just after it successfully
648 * attaches (that is, probe and attach success for this device).  No call
649 * is made if a device is merely parented into the tree.  See devnomatch
650 * if probe fails.  If attach fails, no notification is sent (but maybe
651 * we should have a different message for this).
652 */
653static void
654devadded(device_t dev)
655{
656	char *pnp = NULL;
657	char *tmp = NULL;
658
659	pnp = malloc(1024, M_BUS, M_NOWAIT);
660	if (pnp == NULL)
661		goto fail;
662	tmp = malloc(1024, M_BUS, M_NOWAIT);
663	if (tmp == NULL)
664		goto fail;
665	*pnp = '\0';
666	bus_child_pnpinfo_str(dev, pnp, 1024);
667	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
668	devaddq("+", tmp, dev);
669fail:
670	if (pnp != NULL)
671		free(pnp, M_BUS);
672	if (tmp != NULL)
673		free(tmp, M_BUS);
674	return;
675}
676
677/*
678 * A device was removed from the tree.  We are called just before this
679 * happens.
680 */
681static void
682devremoved(device_t dev)
683{
684	char *pnp = NULL;
685	char *tmp = NULL;
686
687	pnp = malloc(1024, M_BUS, M_NOWAIT);
688	if (pnp == NULL)
689		goto fail;
690	tmp = malloc(1024, M_BUS, M_NOWAIT);
691	if (tmp == NULL)
692		goto fail;
693	*pnp = '\0';
694	bus_child_pnpinfo_str(dev, pnp, 1024);
695	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
696	devaddq("-", tmp, dev);
697fail:
698	if (pnp != NULL)
699		free(pnp, M_BUS);
700	if (tmp != NULL)
701		free(tmp, M_BUS);
702	return;
703}
704
705/*
706 * Called when there's no match for this device.  This is only called
707 * the first time that no match happens, so we don't keep getitng this
708 * message.  Should that prove to be undesirable, we can change it.
709 * This is called when all drivers that can attach to a given bus
710 * decline to accept this device.  Other errrors may not be detected.
711 */
712static void
713devnomatch(device_t dev)
714{
715	devaddq("?", "", dev);
716}
717
718static int
719sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
720{
721	struct dev_event_info *n1;
722	int dis, error;
723
724	dis = devctl_disable;
725	error = sysctl_handle_int(oidp, &dis, 0, req);
726	if (error || !req->newptr)
727		return (error);
728	mtx_lock(&devsoftc.mtx);
729	devctl_disable = dis;
730	if (dis) {
731		while (!TAILQ_EMPTY(&devsoftc.devq)) {
732			n1 = TAILQ_FIRST(&devsoftc.devq);
733			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
734			free(n1->dei_data, M_BUS);
735			free(n1, M_BUS);
736		}
737	}
738	mtx_unlock(&devsoftc.mtx);
739	return (0);
740}
741
742/* End of /dev/devctl code */
743
744TAILQ_HEAD(,device)	bus_data_devices;
745static int bus_data_generation = 1;
746
747kobj_method_t null_methods[] = {
748	{ 0, 0 }
749};
750
751DEFINE_CLASS(null, null_methods, 0);
752
753/*
754 * Devclass implementation
755 */
756
757static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
758
759
760/**
761 * @internal
762 * @brief Find or create a device class
763 *
764 * If a device class with the name @p classname exists, return it,
765 * otherwise if @p create is non-zero create and return a new device
766 * class.
767 *
768 * If @p parentname is non-NULL, the parent of the devclass is set to
769 * the devclass of that name.
770 *
771 * @param classname	the devclass name to find or create
772 * @param parentname	the parent devclass name or @c NULL
773 * @param create	non-zero to create a devclass
774 */
775static devclass_t
776devclass_find_internal(const char *classname, const char *parentname,
777		       int create)
778{
779	devclass_t dc;
780
781	PDEBUG(("looking for %s", classname));
782	if (!classname)
783		return (NULL);
784
785	TAILQ_FOREACH(dc, &devclasses, link) {
786		if (!strcmp(dc->name, classname))
787			break;
788	}
789
790	if (create && !dc) {
791		PDEBUG(("creating %s", classname));
792		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
793		    M_BUS, M_NOWAIT|M_ZERO);
794		if (!dc)
795			return (NULL);
796		dc->parent = NULL;
797		dc->name = (char*) (dc + 1);
798		strcpy(dc->name, classname);
799		TAILQ_INIT(&dc->drivers);
800		TAILQ_INSERT_TAIL(&devclasses, dc, link);
801
802		bus_data_generation_update();
803	}
804
805	/*
806	 * If a parent class is specified, then set that as our parent so
807	 * that this devclass will support drivers for the parent class as
808	 * well.  If the parent class has the same name don't do this though
809	 * as it creates a cycle that can trigger an infinite loop in
810	 * device_probe_child() if a device exists for which there is no
811	 * suitable driver.
812	 */
813	if (parentname && dc && !dc->parent &&
814	    strcmp(classname, parentname) != 0) {
815		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
816	}
817
818	return (dc);
819}
820
821/**
822 * @brief Create a device class
823 *
824 * If a device class with the name @p classname exists, return it,
825 * otherwise create and return a new device class.
826 *
827 * @param classname	the devclass name to find or create
828 */
829devclass_t
830devclass_create(const char *classname)
831{
832	return (devclass_find_internal(classname, NULL, TRUE));
833}
834
835/**
836 * @brief Find a device class
837 *
838 * If a device class with the name @p classname exists, return it,
839 * otherwise return @c NULL.
840 *
841 * @param classname	the devclass name to find
842 */
843devclass_t
844devclass_find(const char *classname)
845{
846	return (devclass_find_internal(classname, NULL, FALSE));
847}
848
849/**
850 * @brief Add a device driver to a device class
851 *
852 * Add a device driver to a devclass. This is normally called
853 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
854 * all devices in the devclass will be called to allow them to attempt
855 * to re-probe any unmatched children.
856 *
857 * @param dc		the devclass to edit
858 * @param driver	the driver to register
859 */
860int
861devclass_add_driver(devclass_t dc, driver_t *driver)
862{
863	driverlink_t dl;
864	int i;
865
866	PDEBUG(("%s", DRIVERNAME(driver)));
867
868	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
869	if (!dl)
870		return (ENOMEM);
871
872	/*
873	 * Compile the driver's methods. Also increase the reference count
874	 * so that the class doesn't get freed when the last instance
875	 * goes. This means we can safely use static methods and avoids a
876	 * double-free in devclass_delete_driver.
877	 */
878	kobj_class_compile((kobj_class_t) driver);
879
880	/*
881	 * Make sure the devclass which the driver is implementing exists.
882	 */
883	devclass_find_internal(driver->name, NULL, TRUE);
884
885	dl->driver = driver;
886	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
887	driver->refs++;		/* XXX: kobj_mtx */
888
889	/*
890	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
891	 */
892	for (i = 0; i < dc->maxunit; i++)
893		if (dc->devices[i])
894			BUS_DRIVER_ADDED(dc->devices[i], driver);
895
896	bus_data_generation_update();
897	return (0);
898}
899
900/**
901 * @brief Delete a device driver from a device class
902 *
903 * Delete a device driver from a devclass. This is normally called
904 * automatically by DRIVER_MODULE().
905 *
906 * If the driver is currently attached to any devices,
907 * devclass_delete_driver() will first attempt to detach from each
908 * device. If one of the detach calls fails, the driver will not be
909 * deleted.
910 *
911 * @param dc		the devclass to edit
912 * @param driver	the driver to unregister
913 */
914int
915devclass_delete_driver(devclass_t busclass, driver_t *driver)
916{
917	devclass_t dc = devclass_find(driver->name);
918	driverlink_t dl;
919	device_t dev;
920	int i;
921	int error;
922
923	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
924
925	if (!dc)
926		return (0);
927
928	/*
929	 * Find the link structure in the bus' list of drivers.
930	 */
931	TAILQ_FOREACH(dl, &busclass->drivers, link) {
932		if (dl->driver == driver)
933			break;
934	}
935
936	if (!dl) {
937		PDEBUG(("%s not found in %s list", driver->name,
938		    busclass->name));
939		return (ENOENT);
940	}
941
942	/*
943	 * Disassociate from any devices.  We iterate through all the
944	 * devices in the devclass of the driver and detach any which are
945	 * using the driver and which have a parent in the devclass which
946	 * we are deleting from.
947	 *
948	 * Note that since a driver can be in multiple devclasses, we
949	 * should not detach devices which are not children of devices in
950	 * the affected devclass.
951	 */
952	for (i = 0; i < dc->maxunit; i++) {
953		if (dc->devices[i]) {
954			dev = dc->devices[i];
955			if (dev->driver == driver && dev->parent &&
956			    dev->parent->devclass == busclass) {
957				if ((error = device_detach(dev)) != 0)
958					return (error);
959				device_set_driver(dev, NULL);
960			}
961		}
962	}
963
964	TAILQ_REMOVE(&busclass->drivers, dl, link);
965	free(dl, M_BUS);
966
967	/* XXX: kobj_mtx */
968	driver->refs--;
969	if (driver->refs == 0)
970		kobj_class_free((kobj_class_t) driver);
971
972	bus_data_generation_update();
973	return (0);
974}
975
976/**
977 * @brief Quiesces a set of device drivers from a device class
978 *
979 * Quiesce a device driver from a devclass. This is normally called
980 * automatically by DRIVER_MODULE().
981 *
982 * If the driver is currently attached to any devices,
983 * devclass_quiesece_driver() will first attempt to quiesce each
984 * device.
985 *
986 * @param dc		the devclass to edit
987 * @param driver	the driver to unregister
988 */
989int
990devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
991{
992	devclass_t dc = devclass_find(driver->name);
993	driverlink_t dl;
994	device_t dev;
995	int i;
996	int error;
997
998	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
999
1000	if (!dc)
1001		return (0);
1002
1003	/*
1004	 * Find the link structure in the bus' list of drivers.
1005	 */
1006	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1007		if (dl->driver == driver)
1008			break;
1009	}
1010
1011	if (!dl) {
1012		PDEBUG(("%s not found in %s list", driver->name,
1013		    busclass->name));
1014		return (ENOENT);
1015	}
1016
1017	/*
1018	 * Quiesce all devices.  We iterate through all the devices in
1019	 * the devclass of the driver and quiesce any which are using
1020	 * the driver and which have a parent in the devclass which we
1021	 * are quiescing.
1022	 *
1023	 * Note that since a driver can be in multiple devclasses, we
1024	 * should not quiesce devices which are not children of
1025	 * devices in the affected devclass.
1026	 */
1027	for (i = 0; i < dc->maxunit; i++) {
1028		if (dc->devices[i]) {
1029			dev = dc->devices[i];
1030			if (dev->driver == driver && dev->parent &&
1031			    dev->parent->devclass == busclass) {
1032				if ((error = device_quiesce(dev)) != 0)
1033					return (error);
1034			}
1035		}
1036	}
1037
1038	return (0);
1039}
1040
1041/**
1042 * @internal
1043 */
1044static driverlink_t
1045devclass_find_driver_internal(devclass_t dc, const char *classname)
1046{
1047	driverlink_t dl;
1048
1049	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1050
1051	TAILQ_FOREACH(dl, &dc->drivers, link) {
1052		if (!strcmp(dl->driver->name, classname))
1053			return (dl);
1054	}
1055
1056	PDEBUG(("not found"));
1057	return (NULL);
1058}
1059
1060/**
1061 * @brief Search a devclass for a driver
1062 *
1063 * This function searches the devclass's list of drivers and returns
1064 * the first driver whose name is @p classname or @c NULL if there is
1065 * no driver of that name.
1066 *
1067 * @param dc		the devclass to search
1068 * @param classname	the driver name to search for
1069 */
1070kobj_class_t
1071devclass_find_driver(devclass_t dc, const char *classname)
1072{
1073	driverlink_t dl;
1074
1075	dl = devclass_find_driver_internal(dc, classname);
1076	if (dl)
1077		return (dl->driver);
1078	return (NULL);
1079}
1080
1081/**
1082 * @brief Return the name of the devclass
1083 */
1084const char *
1085devclass_get_name(devclass_t dc)
1086{
1087	return (dc->name);
1088}
1089
1090/**
1091 * @brief Find a device given a unit number
1092 *
1093 * @param dc		the devclass to search
1094 * @param unit		the unit number to search for
1095 *
1096 * @returns		the device with the given unit number or @c
1097 *			NULL if there is no such device
1098 */
1099device_t
1100devclass_get_device(devclass_t dc, int unit)
1101{
1102	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1103		return (NULL);
1104	return (dc->devices[unit]);
1105}
1106
1107/**
1108 * @brief Find the softc field of a device given a unit number
1109 *
1110 * @param dc		the devclass to search
1111 * @param unit		the unit number to search for
1112 *
1113 * @returns		the softc field of the device with the given
1114 *			unit number or @c NULL if there is no such
1115 *			device
1116 */
1117void *
1118devclass_get_softc(devclass_t dc, int unit)
1119{
1120	device_t dev;
1121
1122	dev = devclass_get_device(dc, unit);
1123	if (!dev)
1124		return (NULL);
1125
1126	return (device_get_softc(dev));
1127}
1128
1129/**
1130 * @brief Get a list of devices in the devclass
1131 *
1132 * An array containing a list of all the devices in the given devclass
1133 * is allocated and returned in @p *devlistp. The number of devices
1134 * in the array is returned in @p *devcountp. The caller should free
1135 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1136 *
1137 * @param dc		the devclass to examine
1138 * @param devlistp	points at location for array pointer return
1139 *			value
1140 * @param devcountp	points at location for array size return value
1141 *
1142 * @retval 0		success
1143 * @retval ENOMEM	the array allocation failed
1144 */
1145int
1146devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1147{
1148	int count, i;
1149	device_t *list;
1150
1151	count = devclass_get_count(dc);
1152	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1153	if (!list)
1154		return (ENOMEM);
1155
1156	count = 0;
1157	for (i = 0; i < dc->maxunit; i++) {
1158		if (dc->devices[i]) {
1159			list[count] = dc->devices[i];
1160			count++;
1161		}
1162	}
1163
1164	*devlistp = list;
1165	*devcountp = count;
1166
1167	return (0);
1168}
1169
1170/**
1171 * @brief Get a list of drivers in the devclass
1172 *
1173 * An array containing a list of pointers to all the drivers in the
1174 * given devclass is allocated and returned in @p *listp.  The number
1175 * of drivers in the array is returned in @p *countp. The caller should
1176 * free the array using @c free(p, M_TEMP).
1177 *
1178 * @param dc		the devclass to examine
1179 * @param listp		gives location for array pointer return value
1180 * @param countp	gives location for number of array elements
1181 *			return value
1182 *
1183 * @retval 0		success
1184 * @retval ENOMEM	the array allocation failed
1185 */
1186int
1187devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1188{
1189	driverlink_t dl;
1190	driver_t **list;
1191	int count;
1192
1193	count = 0;
1194	TAILQ_FOREACH(dl, &dc->drivers, link)
1195		count++;
1196	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1197	if (list == NULL)
1198		return (ENOMEM);
1199
1200	count = 0;
1201	TAILQ_FOREACH(dl, &dc->drivers, link) {
1202		list[count] = dl->driver;
1203		count++;
1204	}
1205	*listp = list;
1206	*countp = count;
1207
1208	return (0);
1209}
1210
1211/**
1212 * @brief Get the number of devices in a devclass
1213 *
1214 * @param dc		the devclass to examine
1215 */
1216int
1217devclass_get_count(devclass_t dc)
1218{
1219	int count, i;
1220
1221	count = 0;
1222	for (i = 0; i < dc->maxunit; i++)
1223		if (dc->devices[i])
1224			count++;
1225	return (count);
1226}
1227
1228/**
1229 * @brief Get the maximum unit number used in a devclass
1230 *
1231 * Note that this is one greater than the highest currently-allocated
1232 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1233 * that not even the devclass has been allocated yet.
1234 *
1235 * @param dc		the devclass to examine
1236 */
1237int
1238devclass_get_maxunit(devclass_t dc)
1239{
1240	if (dc == NULL)
1241		return (-1);
1242	return (dc->maxunit);
1243}
1244
1245/**
1246 * @brief Find a free unit number in a devclass
1247 *
1248 * This function searches for the first unused unit number greater
1249 * that or equal to @p unit.
1250 *
1251 * @param dc		the devclass to examine
1252 * @param unit		the first unit number to check
1253 */
1254int
1255devclass_find_free_unit(devclass_t dc, int unit)
1256{
1257	if (dc == NULL)
1258		return (unit);
1259	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1260		unit++;
1261	return (unit);
1262}
1263
1264/**
1265 * @brief Set the parent of a devclass
1266 *
1267 * The parent class is normally initialised automatically by
1268 * DRIVER_MODULE().
1269 *
1270 * @param dc		the devclass to edit
1271 * @param pdc		the new parent devclass
1272 */
1273void
1274devclass_set_parent(devclass_t dc, devclass_t pdc)
1275{
1276	dc->parent = pdc;
1277}
1278
1279/**
1280 * @brief Get the parent of a devclass
1281 *
1282 * @param dc		the devclass to examine
1283 */
1284devclass_t
1285devclass_get_parent(devclass_t dc)
1286{
1287	return (dc->parent);
1288}
1289
1290struct sysctl_ctx_list *
1291devclass_get_sysctl_ctx(devclass_t dc)
1292{
1293	return (&dc->sysctl_ctx);
1294}
1295
1296struct sysctl_oid *
1297devclass_get_sysctl_tree(devclass_t dc)
1298{
1299	return (dc->sysctl_tree);
1300}
1301
1302/**
1303 * @internal
1304 * @brief Allocate a unit number
1305 *
1306 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1307 * will do). The allocated unit number is returned in @p *unitp.
1308
1309 * @param dc		the devclass to allocate from
1310 * @param unitp		points at the location for the allocated unit
1311 *			number
1312 *
1313 * @retval 0		success
1314 * @retval EEXIST	the requested unit number is already allocated
1315 * @retval ENOMEM	memory allocation failure
1316 */
1317static int
1318devclass_alloc_unit(devclass_t dc, int *unitp)
1319{
1320	int unit = *unitp;
1321
1322	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1323
1324	/* If we were given a wired unit number, check for existing device */
1325	/* XXX imp XXX */
1326	if (unit != -1) {
1327		if (unit >= 0 && unit < dc->maxunit &&
1328		    dc->devices[unit] != NULL) {
1329			if (bootverbose)
1330				printf("%s: %s%d already exists; skipping it\n",
1331				    dc->name, dc->name, *unitp);
1332			return (EEXIST);
1333		}
1334	} else {
1335		/* Unwired device, find the next available slot for it */
1336		unit = 0;
1337		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1338			unit++;
1339	}
1340
1341	/*
1342	 * We've selected a unit beyond the length of the table, so let's
1343	 * extend the table to make room for all units up to and including
1344	 * this one.
1345	 */
1346	if (unit >= dc->maxunit) {
1347		device_t *newlist;
1348		int newsize;
1349
1350		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1351		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1352		if (!newlist)
1353			return (ENOMEM);
1354		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1355		bzero(newlist + dc->maxunit,
1356		    sizeof(device_t) * (newsize - dc->maxunit));
1357		if (dc->devices)
1358			free(dc->devices, M_BUS);
1359		dc->devices = newlist;
1360		dc->maxunit = newsize;
1361	}
1362	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1363
1364	*unitp = unit;
1365	return (0);
1366}
1367
1368/**
1369 * @internal
1370 * @brief Add a device to a devclass
1371 *
1372 * A unit number is allocated for the device (using the device's
1373 * preferred unit number if any) and the device is registered in the
1374 * devclass. This allows the device to be looked up by its unit
1375 * number, e.g. by decoding a dev_t minor number.
1376 *
1377 * @param dc		the devclass to add to
1378 * @param dev		the device to add
1379 *
1380 * @retval 0		success
1381 * @retval EEXIST	the requested unit number is already allocated
1382 * @retval ENOMEM	memory allocation failure
1383 */
1384static int
1385devclass_add_device(devclass_t dc, device_t dev)
1386{
1387	int buflen, error;
1388
1389	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1390
1391	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1392	if (buflen < 0)
1393		return (ENOMEM);
1394	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1395	if (!dev->nameunit)
1396		return (ENOMEM);
1397
1398	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1399		free(dev->nameunit, M_BUS);
1400		dev->nameunit = NULL;
1401		return (error);
1402	}
1403	dc->devices[dev->unit] = dev;
1404	dev->devclass = dc;
1405	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1406
1407	return (0);
1408}
1409
1410/**
1411 * @internal
1412 * @brief Delete a device from a devclass
1413 *
1414 * The device is removed from the devclass's device list and its unit
1415 * number is freed.
1416
1417 * @param dc		the devclass to delete from
1418 * @param dev		the device to delete
1419 *
1420 * @retval 0		success
1421 */
1422static int
1423devclass_delete_device(devclass_t dc, device_t dev)
1424{
1425	if (!dc || !dev)
1426		return (0);
1427
1428	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1429
1430	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1431		panic("devclass_delete_device: inconsistent device class");
1432	dc->devices[dev->unit] = NULL;
1433	if (dev->flags & DF_WILDCARD)
1434		dev->unit = -1;
1435	dev->devclass = NULL;
1436	free(dev->nameunit, M_BUS);
1437	dev->nameunit = NULL;
1438
1439	return (0);
1440}
1441
1442/**
1443 * @internal
1444 * @brief Make a new device and add it as a child of @p parent
1445 *
1446 * @param parent	the parent of the new device
1447 * @param name		the devclass name of the new device or @c NULL
1448 *			to leave the devclass unspecified
1449 * @parem unit		the unit number of the new device of @c -1 to
1450 *			leave the unit number unspecified
1451 *
1452 * @returns the new device
1453 */
1454static device_t
1455make_device(device_t parent, const char *name, int unit)
1456{
1457	device_t dev;
1458	devclass_t dc;
1459
1460	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1461
1462	if (name) {
1463		dc = devclass_find_internal(name, NULL, TRUE);
1464		if (!dc) {
1465			printf("make_device: can't find device class %s\n",
1466			    name);
1467			return (NULL);
1468		}
1469	} else {
1470		dc = NULL;
1471	}
1472
1473	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1474	if (!dev)
1475		return (NULL);
1476
1477	dev->parent = parent;
1478	TAILQ_INIT(&dev->children);
1479	kobj_init((kobj_t) dev, &null_class);
1480	dev->driver = NULL;
1481	dev->devclass = NULL;
1482	dev->unit = unit;
1483	dev->nameunit = NULL;
1484	dev->desc = NULL;
1485	dev->busy = 0;
1486	dev->devflags = 0;
1487	dev->flags = DF_ENABLED;
1488	dev->order = 0;
1489	if (unit == -1)
1490		dev->flags |= DF_WILDCARD;
1491	if (name) {
1492		dev->flags |= DF_FIXEDCLASS;
1493		if (devclass_add_device(dc, dev)) {
1494			kobj_delete((kobj_t) dev, M_BUS);
1495			return (NULL);
1496		}
1497	}
1498	dev->ivars = NULL;
1499	dev->softc = NULL;
1500
1501	dev->state = DS_NOTPRESENT;
1502
1503	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1504	bus_data_generation_update();
1505
1506	return (dev);
1507}
1508
1509/**
1510 * @internal
1511 * @brief Print a description of a device.
1512 */
1513static int
1514device_print_child(device_t dev, device_t child)
1515{
1516	int retval = 0;
1517
1518	if (device_is_alive(child))
1519		retval += BUS_PRINT_CHILD(dev, child);
1520	else
1521		retval += device_printf(child, " not found\n");
1522
1523	return (retval);
1524}
1525
1526/**
1527 * @brief Create a new device
1528 *
1529 * This creates a new device and adds it as a child of an existing
1530 * parent device. The new device will be added after the last existing
1531 * child with order zero.
1532 *
1533 * @param dev		the device which will be the parent of the
1534 *			new child device
1535 * @param name		devclass name for new device or @c NULL if not
1536 *			specified
1537 * @param unit		unit number for new device or @c -1 if not
1538 *			specified
1539 *
1540 * @returns		the new device
1541 */
1542device_t
1543device_add_child(device_t dev, const char *name, int unit)
1544{
1545	return (device_add_child_ordered(dev, 0, name, unit));
1546}
1547
1548/**
1549 * @brief Create a new device
1550 *
1551 * This creates a new device and adds it as a child of an existing
1552 * parent device. The new device will be added after the last existing
1553 * child with the same order.
1554 *
1555 * @param dev		the device which will be the parent of the
1556 *			new child device
1557 * @param order		a value which is used to partially sort the
1558 *			children of @p dev - devices created using
1559 *			lower values of @p order appear first in @p
1560 *			dev's list of children
1561 * @param name		devclass name for new device or @c NULL if not
1562 *			specified
1563 * @param unit		unit number for new device or @c -1 if not
1564 *			specified
1565 *
1566 * @returns		the new device
1567 */
1568device_t
1569device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1570{
1571	device_t child;
1572	device_t place;
1573
1574	PDEBUG(("%s at %s with order %d as unit %d",
1575	    name, DEVICENAME(dev), order, unit));
1576
1577	child = make_device(dev, name, unit);
1578	if (child == NULL)
1579		return (child);
1580	child->order = order;
1581
1582	TAILQ_FOREACH(place, &dev->children, link) {
1583		if (place->order > order)
1584			break;
1585	}
1586
1587	if (place) {
1588		/*
1589		 * The device 'place' is the first device whose order is
1590		 * greater than the new child.
1591		 */
1592		TAILQ_INSERT_BEFORE(place, child, link);
1593	} else {
1594		/*
1595		 * The new child's order is greater or equal to the order of
1596		 * any existing device. Add the child to the tail of the list.
1597		 */
1598		TAILQ_INSERT_TAIL(&dev->children, child, link);
1599	}
1600
1601	bus_data_generation_update();
1602	return (child);
1603}
1604
1605/**
1606 * @brief Delete a device
1607 *
1608 * This function deletes a device along with all of its children. If
1609 * the device currently has a driver attached to it, the device is
1610 * detached first using device_detach().
1611 *
1612 * @param dev		the parent device
1613 * @param child		the device to delete
1614 *
1615 * @retval 0		success
1616 * @retval non-zero	a unit error code describing the error
1617 */
1618int
1619device_delete_child(device_t dev, device_t child)
1620{
1621	int error;
1622	device_t grandchild;
1623
1624	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1625
1626	/* remove children first */
1627	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1628		error = device_delete_child(child, grandchild);
1629		if (error)
1630			return (error);
1631	}
1632
1633	if ((error = device_detach(child)) != 0)
1634		return (error);
1635	if (child->devclass)
1636		devclass_delete_device(child->devclass, child);
1637	TAILQ_REMOVE(&dev->children, child, link);
1638	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1639	kobj_delete((kobj_t) child, M_BUS);
1640
1641	bus_data_generation_update();
1642	return (0);
1643}
1644
1645/**
1646 * @brief Find a device given a unit number
1647 *
1648 * This is similar to devclass_get_devices() but only searches for
1649 * devices which have @p dev as a parent.
1650 *
1651 * @param dev		the parent device to search
1652 * @param unit		the unit number to search for.  If the unit is -1,
1653 *			return the first child of @p dev which has name
1654 *			@p classname (that is, the one with the lowest unit.)
1655 *
1656 * @returns		the device with the given unit number or @c
1657 *			NULL if there is no such device
1658 */
1659device_t
1660device_find_child(device_t dev, const char *classname, int unit)
1661{
1662	devclass_t dc;
1663	device_t child;
1664
1665	dc = devclass_find(classname);
1666	if (!dc)
1667		return (NULL);
1668
1669	if (unit != -1) {
1670		child = devclass_get_device(dc, unit);
1671		if (child && child->parent == dev)
1672			return (child);
1673	} else {
1674		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1675			child = devclass_get_device(dc, unit);
1676			if (child && child->parent == dev)
1677				return (child);
1678		}
1679	}
1680	return (NULL);
1681}
1682
1683/**
1684 * @internal
1685 */
1686static driverlink_t
1687first_matching_driver(devclass_t dc, device_t dev)
1688{
1689	if (dev->devclass)
1690		return (devclass_find_driver_internal(dc, dev->devclass->name));
1691	return (TAILQ_FIRST(&dc->drivers));
1692}
1693
1694/**
1695 * @internal
1696 */
1697static driverlink_t
1698next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1699{
1700	if (dev->devclass) {
1701		driverlink_t dl;
1702		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1703			if (!strcmp(dev->devclass->name, dl->driver->name))
1704				return (dl);
1705		return (NULL);
1706	}
1707	return (TAILQ_NEXT(last, link));
1708}
1709
1710/**
1711 * @internal
1712 */
1713int
1714device_probe_child(device_t dev, device_t child)
1715{
1716	devclass_t dc;
1717	driverlink_t best = NULL;
1718	driverlink_t dl;
1719	int result, pri = 0;
1720	int hasclass = (child->devclass != 0);
1721
1722	GIANT_REQUIRED;
1723
1724	dc = dev->devclass;
1725	if (!dc)
1726		panic("device_probe_child: parent device has no devclass");
1727
1728	/*
1729	 * If the state is already probed, then return.  However, don't
1730	 * return if we can rebid this object.
1731	 */
1732	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1733		return (0);
1734
1735	for (; dc; dc = dc->parent) {
1736		for (dl = first_matching_driver(dc, child);
1737		     dl;
1738		     dl = next_matching_driver(dc, child, dl)) {
1739			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1740			device_set_driver(child, dl->driver);
1741			if (!hasclass)
1742				device_set_devclass(child, dl->driver->name);
1743
1744			/* Fetch any flags for the device before probing. */
1745			resource_int_value(dl->driver->name, child->unit,
1746			    "flags", &child->devflags);
1747
1748			result = DEVICE_PROBE(child);
1749
1750			/* Reset flags and devclass before the next probe. */
1751			child->devflags = 0;
1752			if (!hasclass)
1753				device_set_devclass(child, NULL);
1754
1755			/*
1756			 * If the driver returns SUCCESS, there can be
1757			 * no higher match for this device.
1758			 */
1759			if (result == 0) {
1760				best = dl;
1761				pri = 0;
1762				break;
1763			}
1764
1765			/*
1766			 * The driver returned an error so it
1767			 * certainly doesn't match.
1768			 */
1769			if (result > 0) {
1770				device_set_driver(child, NULL);
1771				continue;
1772			}
1773
1774			/*
1775			 * A priority lower than SUCCESS, remember the
1776			 * best matching driver. Initialise the value
1777			 * of pri for the first match.
1778			 */
1779			if (best == NULL || result > pri) {
1780				/*
1781				 * Probes that return BUS_PROBE_NOWILDCARD
1782				 * or lower only match when they are set
1783				 * in stone by the parent bus.
1784				 */
1785				if (result <= BUS_PROBE_NOWILDCARD &&
1786				    child->flags & DF_WILDCARD)
1787					continue;
1788				best = dl;
1789				pri = result;
1790				continue;
1791			}
1792		}
1793		/*
1794		 * If we have an unambiguous match in this devclass,
1795		 * don't look in the parent.
1796		 */
1797		if (best && pri == 0)
1798			break;
1799	}
1800
1801	/*
1802	 * If we found a driver, change state and initialise the devclass.
1803	 */
1804	/* XXX What happens if we rebid and got no best? */
1805	if (best) {
1806		/*
1807		 * If this device was atached, and we were asked to
1808		 * rescan, and it is a different driver, then we have
1809		 * to detach the old driver and reattach this new one.
1810		 * Note, we don't have to check for DF_REBID here
1811		 * because if the state is > DS_ALIVE, we know it must
1812		 * be.
1813		 *
1814		 * This assumes that all DF_REBID drivers can have
1815		 * their probe routine called at any time and that
1816		 * they are idempotent as well as completely benign in
1817		 * normal operations.
1818		 *
1819		 * We also have to make sure that the detach
1820		 * succeeded, otherwise we fail the operation (or
1821		 * maybe it should just fail silently?  I'm torn).
1822		 */
1823		if (child->state > DS_ALIVE && best->driver != child->driver)
1824			if ((result = device_detach(dev)) != 0)
1825				return (result);
1826
1827		/* Set the winning driver, devclass, and flags. */
1828		if (!child->devclass)
1829			device_set_devclass(child, best->driver->name);
1830		device_set_driver(child, best->driver);
1831		resource_int_value(best->driver->name, child->unit,
1832		    "flags", &child->devflags);
1833
1834		if (pri < 0) {
1835			/*
1836			 * A bit bogus. Call the probe method again to make
1837			 * sure that we have the right description.
1838			 */
1839			DEVICE_PROBE(child);
1840#if 0
1841			child->flags |= DF_REBID;
1842#endif
1843		} else
1844			child->flags &= ~DF_REBID;
1845		child->state = DS_ALIVE;
1846
1847		bus_data_generation_update();
1848		return (0);
1849	}
1850
1851	return (ENXIO);
1852}
1853
1854/**
1855 * @brief Return the parent of a device
1856 */
1857device_t
1858device_get_parent(device_t dev)
1859{
1860	return (dev->parent);
1861}
1862
1863/**
1864 * @brief Get a list of children of a device
1865 *
1866 * An array containing a list of all the children of the given device
1867 * is allocated and returned in @p *devlistp. The number of devices
1868 * in the array is returned in @p *devcountp. The caller should free
1869 * the array using @c free(p, M_TEMP).
1870 *
1871 * @param dev		the device to examine
1872 * @param devlistp	points at location for array pointer return
1873 *			value
1874 * @param devcountp	points at location for array size return value
1875 *
1876 * @retval 0		success
1877 * @retval ENOMEM	the array allocation failed
1878 */
1879int
1880device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1881{
1882	int count;
1883	device_t child;
1884	device_t *list;
1885
1886	count = 0;
1887	TAILQ_FOREACH(child, &dev->children, link) {
1888		count++;
1889	}
1890
1891	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1892	if (!list)
1893		return (ENOMEM);
1894
1895	count = 0;
1896	TAILQ_FOREACH(child, &dev->children, link) {
1897		list[count] = child;
1898		count++;
1899	}
1900
1901	*devlistp = list;
1902	*devcountp = count;
1903
1904	return (0);
1905}
1906
1907/**
1908 * @brief Return the current driver for the device or @c NULL if there
1909 * is no driver currently attached
1910 */
1911driver_t *
1912device_get_driver(device_t dev)
1913{
1914	return (dev->driver);
1915}
1916
1917/**
1918 * @brief Return the current devclass for the device or @c NULL if
1919 * there is none.
1920 */
1921devclass_t
1922device_get_devclass(device_t dev)
1923{
1924	return (dev->devclass);
1925}
1926
1927/**
1928 * @brief Return the name of the device's devclass or @c NULL if there
1929 * is none.
1930 */
1931const char *
1932device_get_name(device_t dev)
1933{
1934	if (dev != NULL && dev->devclass)
1935		return (devclass_get_name(dev->devclass));
1936	return (NULL);
1937}
1938
1939/**
1940 * @brief Return a string containing the device's devclass name
1941 * followed by an ascii representation of the device's unit number
1942 * (e.g. @c "foo2").
1943 */
1944const char *
1945device_get_nameunit(device_t dev)
1946{
1947	return (dev->nameunit);
1948}
1949
1950/**
1951 * @brief Return the device's unit number.
1952 */
1953int
1954device_get_unit(device_t dev)
1955{
1956	return (dev->unit);
1957}
1958
1959/**
1960 * @brief Return the device's description string
1961 */
1962const char *
1963device_get_desc(device_t dev)
1964{
1965	return (dev->desc);
1966}
1967
1968/**
1969 * @brief Return the device's flags
1970 */
1971u_int32_t
1972device_get_flags(device_t dev)
1973{
1974	return (dev->devflags);
1975}
1976
1977struct sysctl_ctx_list *
1978device_get_sysctl_ctx(device_t dev)
1979{
1980	return (&dev->sysctl_ctx);
1981}
1982
1983struct sysctl_oid *
1984device_get_sysctl_tree(device_t dev)
1985{
1986	return (dev->sysctl_tree);
1987}
1988
1989/**
1990 * @brief Print the name of the device followed by a colon and a space
1991 *
1992 * @returns the number of characters printed
1993 */
1994int
1995device_print_prettyname(device_t dev)
1996{
1997	const char *name = device_get_name(dev);
1998
1999	if (name == 0)
2000		return (printf("unknown: "));
2001	return (printf("%s%d: ", name, device_get_unit(dev)));
2002}
2003
2004/**
2005 * @brief Print the name of the device followed by a colon, a space
2006 * and the result of calling vprintf() with the value of @p fmt and
2007 * the following arguments.
2008 *
2009 * @returns the number of characters printed
2010 */
2011int
2012device_printf(device_t dev, const char * fmt, ...)
2013{
2014	va_list ap;
2015	int retval;
2016
2017	retval = device_print_prettyname(dev);
2018	va_start(ap, fmt);
2019	retval += vprintf(fmt, ap);
2020	va_end(ap);
2021	return (retval);
2022}
2023
2024/**
2025 * @internal
2026 */
2027static void
2028device_set_desc_internal(device_t dev, const char* desc, int copy)
2029{
2030	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2031		free(dev->desc, M_BUS);
2032		dev->flags &= ~DF_DESCMALLOCED;
2033		dev->desc = NULL;
2034	}
2035
2036	if (copy && desc) {
2037		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2038		if (dev->desc) {
2039			strcpy(dev->desc, desc);
2040			dev->flags |= DF_DESCMALLOCED;
2041		}
2042	} else {
2043		/* Avoid a -Wcast-qual warning */
2044		dev->desc = (char *)(uintptr_t) desc;
2045	}
2046
2047	bus_data_generation_update();
2048}
2049
2050/**
2051 * @brief Set the device's description
2052 *
2053 * The value of @c desc should be a string constant that will not
2054 * change (at least until the description is changed in a subsequent
2055 * call to device_set_desc() or device_set_desc_copy()).
2056 */
2057void
2058device_set_desc(device_t dev, const char* desc)
2059{
2060	device_set_desc_internal(dev, desc, FALSE);
2061}
2062
2063/**
2064 * @brief Set the device's description
2065 *
2066 * The string pointed to by @c desc is copied. Use this function if
2067 * the device description is generated, (e.g. with sprintf()).
2068 */
2069void
2070device_set_desc_copy(device_t dev, const char* desc)
2071{
2072	device_set_desc_internal(dev, desc, TRUE);
2073}
2074
2075/**
2076 * @brief Set the device's flags
2077 */
2078void
2079device_set_flags(device_t dev, u_int32_t flags)
2080{
2081	dev->devflags = flags;
2082}
2083
2084/**
2085 * @brief Return the device's softc field
2086 *
2087 * The softc is allocated and zeroed when a driver is attached, based
2088 * on the size field of the driver.
2089 */
2090void *
2091device_get_softc(device_t dev)
2092{
2093	return (dev->softc);
2094}
2095
2096/**
2097 * @brief Set the device's softc field
2098 *
2099 * Most drivers do not need to use this since the softc is allocated
2100 * automatically when the driver is attached.
2101 */
2102void
2103device_set_softc(device_t dev, void *softc)
2104{
2105	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2106		free(dev->softc, M_BUS_SC);
2107	dev->softc = softc;
2108	if (dev->softc)
2109		dev->flags |= DF_EXTERNALSOFTC;
2110	else
2111		dev->flags &= ~DF_EXTERNALSOFTC;
2112}
2113
2114/**
2115 * @brief Get the device's ivars field
2116 *
2117 * The ivars field is used by the parent device to store per-device
2118 * state (e.g. the physical location of the device or a list of
2119 * resources).
2120 */
2121void *
2122device_get_ivars(device_t dev)
2123{
2124
2125	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2126	return (dev->ivars);
2127}
2128
2129/**
2130 * @brief Set the device's ivars field
2131 */
2132void
2133device_set_ivars(device_t dev, void * ivars)
2134{
2135
2136	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2137	dev->ivars = ivars;
2138}
2139
2140/**
2141 * @brief Return the device's state
2142 */
2143device_state_t
2144device_get_state(device_t dev)
2145{
2146	return (dev->state);
2147}
2148
2149/**
2150 * @brief Set the DF_ENABLED flag for the device
2151 */
2152void
2153device_enable(device_t dev)
2154{
2155	dev->flags |= DF_ENABLED;
2156}
2157
2158/**
2159 * @brief Clear the DF_ENABLED flag for the device
2160 */
2161void
2162device_disable(device_t dev)
2163{
2164	dev->flags &= ~DF_ENABLED;
2165}
2166
2167/**
2168 * @brief Increment the busy counter for the device
2169 */
2170void
2171device_busy(device_t dev)
2172{
2173	if (dev->state < DS_ATTACHED)
2174		panic("device_busy: called for unattached device");
2175	if (dev->busy == 0 && dev->parent)
2176		device_busy(dev->parent);
2177	dev->busy++;
2178	dev->state = DS_BUSY;
2179}
2180
2181/**
2182 * @brief Decrement the busy counter for the device
2183 */
2184void
2185device_unbusy(device_t dev)
2186{
2187	if (dev->state != DS_BUSY)
2188		panic("device_unbusy: called for non-busy device %s",
2189		    device_get_nameunit(dev));
2190	dev->busy--;
2191	if (dev->busy == 0) {
2192		if (dev->parent)
2193			device_unbusy(dev->parent);
2194		dev->state = DS_ATTACHED;
2195	}
2196}
2197
2198/**
2199 * @brief Set the DF_QUIET flag for the device
2200 */
2201void
2202device_quiet(device_t dev)
2203{
2204	dev->flags |= DF_QUIET;
2205}
2206
2207/**
2208 * @brief Clear the DF_QUIET flag for the device
2209 */
2210void
2211device_verbose(device_t dev)
2212{
2213	dev->flags &= ~DF_QUIET;
2214}
2215
2216/**
2217 * @brief Return non-zero if the DF_QUIET flag is set on the device
2218 */
2219int
2220device_is_quiet(device_t dev)
2221{
2222	return ((dev->flags & DF_QUIET) != 0);
2223}
2224
2225/**
2226 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2227 */
2228int
2229device_is_enabled(device_t dev)
2230{
2231	return ((dev->flags & DF_ENABLED) != 0);
2232}
2233
2234/**
2235 * @brief Return non-zero if the device was successfully probed
2236 */
2237int
2238device_is_alive(device_t dev)
2239{
2240	return (dev->state >= DS_ALIVE);
2241}
2242
2243/**
2244 * @brief Return non-zero if the device currently has a driver
2245 * attached to it
2246 */
2247int
2248device_is_attached(device_t dev)
2249{
2250	return (dev->state >= DS_ATTACHED);
2251}
2252
2253/**
2254 * @brief Set the devclass of a device
2255 * @see devclass_add_device().
2256 */
2257int
2258device_set_devclass(device_t dev, const char *classname)
2259{
2260	devclass_t dc;
2261	int error;
2262
2263	if (!classname) {
2264		if (dev->devclass)
2265			devclass_delete_device(dev->devclass, dev);
2266		return (0);
2267	}
2268
2269	if (dev->devclass) {
2270		printf("device_set_devclass: device class already set\n");
2271		return (EINVAL);
2272	}
2273
2274	dc = devclass_find_internal(classname, NULL, TRUE);
2275	if (!dc)
2276		return (ENOMEM);
2277
2278	error = devclass_add_device(dc, dev);
2279
2280	bus_data_generation_update();
2281	return (error);
2282}
2283
2284/**
2285 * @brief Set the driver of a device
2286 *
2287 * @retval 0		success
2288 * @retval EBUSY	the device already has a driver attached
2289 * @retval ENOMEM	a memory allocation failure occurred
2290 */
2291int
2292device_set_driver(device_t dev, driver_t *driver)
2293{
2294	if (dev->state >= DS_ATTACHED)
2295		return (EBUSY);
2296
2297	if (dev->driver == driver)
2298		return (0);
2299
2300	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2301		free(dev->softc, M_BUS_SC);
2302		dev->softc = NULL;
2303	}
2304	kobj_delete((kobj_t) dev, NULL);
2305	dev->driver = driver;
2306	if (driver) {
2307		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2308		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2309			dev->softc = malloc(driver->size, M_BUS_SC,
2310			    M_NOWAIT | M_ZERO);
2311			if (!dev->softc) {
2312				kobj_delete((kobj_t) dev, NULL);
2313				kobj_init((kobj_t) dev, &null_class);
2314				dev->driver = NULL;
2315				return (ENOMEM);
2316			}
2317		}
2318	} else {
2319		kobj_init((kobj_t) dev, &null_class);
2320	}
2321
2322	bus_data_generation_update();
2323	return (0);
2324}
2325
2326/**
2327 * @brief Probe a device and attach a driver if possible
2328 *
2329 * This function is the core of the device autoconfiguration
2330 * system. Its purpose is to select a suitable driver for a device and
2331 * then call that driver to initialise the hardware appropriately. The
2332 * driver is selected by calling the DEVICE_PROBE() method of a set of
2333 * candidate drivers and then choosing the driver which returned the
2334 * best value. This driver is then attached to the device using
2335 * device_attach().
2336 *
2337 * The set of suitable drivers is taken from the list of drivers in
2338 * the parent device's devclass. If the device was originally created
2339 * with a specific class name (see device_add_child()), only drivers
2340 * with that name are probed, otherwise all drivers in the devclass
2341 * are probed. If no drivers return successful probe values in the
2342 * parent devclass, the search continues in the parent of that
2343 * devclass (see devclass_get_parent()) if any.
2344 *
2345 * @param dev		the device to initialise
2346 *
2347 * @retval 0		success
2348 * @retval ENXIO	no driver was found
2349 * @retval ENOMEM	memory allocation failure
2350 * @retval non-zero	some other unix error code
2351 */
2352int
2353device_probe_and_attach(device_t dev)
2354{
2355	int error;
2356
2357	GIANT_REQUIRED;
2358
2359	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2360		return (0);
2361
2362	if (!(dev->flags & DF_ENABLED)) {
2363		if (bootverbose && device_get_name(dev) != NULL) {
2364			device_print_prettyname(dev);
2365			printf("not probed (disabled)\n");
2366		}
2367		return (0);
2368	}
2369	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2370		if (!(dev->flags & DF_DONENOMATCH)) {
2371			BUS_PROBE_NOMATCH(dev->parent, dev);
2372			devnomatch(dev);
2373			dev->flags |= DF_DONENOMATCH;
2374		}
2375		return (error);
2376	}
2377	error = device_attach(dev);
2378
2379	return (error);
2380}
2381
2382/**
2383 * @brief Attach a device driver to a device
2384 *
2385 * This function is a wrapper around the DEVICE_ATTACH() driver
2386 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2387 * device's sysctl tree, optionally prints a description of the device
2388 * and queues a notification event for user-based device management
2389 * services.
2390 *
2391 * Normally this function is only called internally from
2392 * device_probe_and_attach().
2393 *
2394 * @param dev		the device to initialise
2395 *
2396 * @retval 0		success
2397 * @retval ENXIO	no driver was found
2398 * @retval ENOMEM	memory allocation failure
2399 * @retval non-zero	some other unix error code
2400 */
2401int
2402device_attach(device_t dev)
2403{
2404	int error;
2405
2406	device_sysctl_init(dev);
2407	if (!device_is_quiet(dev))
2408		device_print_child(dev->parent, dev);
2409	if ((error = DEVICE_ATTACH(dev)) != 0) {
2410		printf("device_attach: %s%d attach returned %d\n",
2411		    dev->driver->name, dev->unit, error);
2412		/* Unset the class; set in device_probe_child */
2413		if (dev->devclass == NULL)
2414			device_set_devclass(dev, NULL);
2415		device_set_driver(dev, NULL);
2416		device_sysctl_fini(dev);
2417		dev->state = DS_NOTPRESENT;
2418		return (error);
2419	}
2420	device_sysctl_update(dev);
2421	dev->state = DS_ATTACHED;
2422	devadded(dev);
2423	return (0);
2424}
2425
2426/**
2427 * @brief Detach a driver from a device
2428 *
2429 * This function is a wrapper around the DEVICE_DETACH() driver
2430 * method. If the call to DEVICE_DETACH() succeeds, it calls
2431 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2432 * notification event for user-based device management services and
2433 * cleans up the device's sysctl tree.
2434 *
2435 * @param dev		the device to un-initialise
2436 *
2437 * @retval 0		success
2438 * @retval ENXIO	no driver was found
2439 * @retval ENOMEM	memory allocation failure
2440 * @retval non-zero	some other unix error code
2441 */
2442int
2443device_detach(device_t dev)
2444{
2445	int error;
2446
2447	GIANT_REQUIRED;
2448
2449	PDEBUG(("%s", DEVICENAME(dev)));
2450	if (dev->state == DS_BUSY)
2451		return (EBUSY);
2452	if (dev->state != DS_ATTACHED)
2453		return (0);
2454
2455	if ((error = DEVICE_DETACH(dev)) != 0)
2456		return (error);
2457	devremoved(dev);
2458	device_printf(dev, "detached\n");
2459	if (dev->parent)
2460		BUS_CHILD_DETACHED(dev->parent, dev);
2461
2462	if (!(dev->flags & DF_FIXEDCLASS))
2463		devclass_delete_device(dev->devclass, dev);
2464
2465	dev->state = DS_NOTPRESENT;
2466	device_set_driver(dev, NULL);
2467	device_set_desc(dev, NULL);
2468	device_sysctl_fini(dev);
2469
2470	return (0);
2471}
2472
2473/**
2474 * @brief Tells a driver to quiesce itself.
2475 *
2476 * This function is a wrapper around the DEVICE_QUIESCE() driver
2477 * method. If the call to DEVICE_QUIESCE() succeeds.
2478 *
2479 * @param dev		the device to quiesce
2480 *
2481 * @retval 0		success
2482 * @retval ENXIO	no driver was found
2483 * @retval ENOMEM	memory allocation failure
2484 * @retval non-zero	some other unix error code
2485 */
2486int
2487device_quiesce(device_t dev)
2488{
2489
2490	PDEBUG(("%s", DEVICENAME(dev)));
2491	if (dev->state == DS_BUSY)
2492		return (EBUSY);
2493	if (dev->state != DS_ATTACHED)
2494		return (0);
2495
2496	return (DEVICE_QUIESCE(dev));
2497}
2498
2499/**
2500 * @brief Notify a device of system shutdown
2501 *
2502 * This function calls the DEVICE_SHUTDOWN() driver method if the
2503 * device currently has an attached driver.
2504 *
2505 * @returns the value returned by DEVICE_SHUTDOWN()
2506 */
2507int
2508device_shutdown(device_t dev)
2509{
2510	if (dev->state < DS_ATTACHED)
2511		return (0);
2512	return (DEVICE_SHUTDOWN(dev));
2513}
2514
2515/**
2516 * @brief Set the unit number of a device
2517 *
2518 * This function can be used to override the unit number used for a
2519 * device (e.g. to wire a device to a pre-configured unit number).
2520 */
2521int
2522device_set_unit(device_t dev, int unit)
2523{
2524	devclass_t dc;
2525	int err;
2526
2527	dc = device_get_devclass(dev);
2528	if (unit < dc->maxunit && dc->devices[unit])
2529		return (EBUSY);
2530	err = devclass_delete_device(dc, dev);
2531	if (err)
2532		return (err);
2533	dev->unit = unit;
2534	err = devclass_add_device(dc, dev);
2535	if (err)
2536		return (err);
2537
2538	bus_data_generation_update();
2539	return (0);
2540}
2541
2542/*======================================*/
2543/*
2544 * Some useful method implementations to make life easier for bus drivers.
2545 */
2546
2547/**
2548 * @brief Initialise a resource list.
2549 *
2550 * @param rl		the resource list to initialise
2551 */
2552void
2553resource_list_init(struct resource_list *rl)
2554{
2555	STAILQ_INIT(rl);
2556}
2557
2558/**
2559 * @brief Reclaim memory used by a resource list.
2560 *
2561 * This function frees the memory for all resource entries on the list
2562 * (if any).
2563 *
2564 * @param rl		the resource list to free
2565 */
2566void
2567resource_list_free(struct resource_list *rl)
2568{
2569	struct resource_list_entry *rle;
2570
2571	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2572		if (rle->res)
2573			panic("resource_list_free: resource entry is busy");
2574		STAILQ_REMOVE_HEAD(rl, link);
2575		free(rle, M_BUS);
2576	}
2577}
2578
2579/**
2580 * @brief Add a resource entry.
2581 *
2582 * This function adds a resource entry using the given @p type, @p
2583 * start, @p end and @p count values. A rid value is chosen by
2584 * searching sequentially for the first unused rid starting at zero.
2585 *
2586 * @param rl		the resource list to edit
2587 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2588 * @param start		the start address of the resource
2589 * @param end		the end address of the resource
2590 * @param count		XXX end-start+1
2591 */
2592int
2593resource_list_add_next(struct resource_list *rl, int type, u_long start,
2594    u_long end, u_long count)
2595{
2596	int rid;
2597
2598	rid = 0;
2599	while (resource_list_find(rl, type, rid) != NULL)
2600		rid++;
2601	resource_list_add(rl, type, rid, start, end, count);
2602	return (rid);
2603}
2604
2605/**
2606 * @brief Add or modify a resource entry.
2607 *
2608 * If an existing entry exists with the same type and rid, it will be
2609 * modified using the given values of @p start, @p end and @p
2610 * count. If no entry exists, a new one will be created using the
2611 * given values.  The resource list entry that matches is then returned.
2612 *
2613 * @param rl		the resource list to edit
2614 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2615 * @param rid		the resource identifier
2616 * @param start		the start address of the resource
2617 * @param end		the end address of the resource
2618 * @param count		XXX end-start+1
2619 */
2620struct resource_list_entry *
2621resource_list_add(struct resource_list *rl, int type, int rid,
2622    u_long start, u_long end, u_long count)
2623{
2624	struct resource_list_entry *rle;
2625
2626	rle = resource_list_find(rl, type, rid);
2627	if (!rle) {
2628		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2629		    M_NOWAIT);
2630		if (!rle)
2631			panic("resource_list_add: can't record entry");
2632		STAILQ_INSERT_TAIL(rl, rle, link);
2633		rle->type = type;
2634		rle->rid = rid;
2635		rle->res = NULL;
2636	}
2637
2638	if (rle->res)
2639		panic("resource_list_add: resource entry is busy");
2640
2641	rle->start = start;
2642	rle->end = end;
2643	rle->count = count;
2644	return (rle);
2645}
2646
2647/**
2648 * @brief Find a resource entry by type and rid.
2649 *
2650 * @param rl		the resource list to search
2651 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2652 * @param rid		the resource identifier
2653 *
2654 * @returns the resource entry pointer or NULL if there is no such
2655 * entry.
2656 */
2657struct resource_list_entry *
2658resource_list_find(struct resource_list *rl, int type, int rid)
2659{
2660	struct resource_list_entry *rle;
2661
2662	STAILQ_FOREACH(rle, rl, link) {
2663		if (rle->type == type && rle->rid == rid)
2664			return (rle);
2665	}
2666	return (NULL);
2667}
2668
2669/**
2670 * @brief Delete a resource entry.
2671 *
2672 * @param rl		the resource list to edit
2673 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2674 * @param rid		the resource identifier
2675 */
2676void
2677resource_list_delete(struct resource_list *rl, int type, int rid)
2678{
2679	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2680
2681	if (rle) {
2682		if (rle->res != NULL)
2683			panic("resource_list_delete: resource has not been released");
2684		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2685		free(rle, M_BUS);
2686	}
2687}
2688
2689/**
2690 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2691 *
2692 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2693 * and passing the allocation up to the parent of @p bus. This assumes
2694 * that the first entry of @c device_get_ivars(child) is a struct
2695 * resource_list. This also handles 'passthrough' allocations where a
2696 * child is a remote descendant of bus by passing the allocation up to
2697 * the parent of bus.
2698 *
2699 * Typically, a bus driver would store a list of child resources
2700 * somewhere in the child device's ivars (see device_get_ivars()) and
2701 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2702 * then call resource_list_alloc() to perform the allocation.
2703 *
2704 * @param rl		the resource list to allocate from
2705 * @param bus		the parent device of @p child
2706 * @param child		the device which is requesting an allocation
2707 * @param type		the type of resource to allocate
2708 * @param rid		a pointer to the resource identifier
2709 * @param start		hint at the start of the resource range - pass
2710 *			@c 0UL for any start address
2711 * @param end		hint at the end of the resource range - pass
2712 *			@c ~0UL for any end address
2713 * @param count		hint at the size of range required - pass @c 1
2714 *			for any size
2715 * @param flags		any extra flags to control the resource
2716 *			allocation - see @c RF_XXX flags in
2717 *			<sys/rman.h> for details
2718 *
2719 * @returns		the resource which was allocated or @c NULL if no
2720 *			resource could be allocated
2721 */
2722struct resource *
2723resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2724    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2725{
2726	struct resource_list_entry *rle = NULL;
2727	int passthrough = (device_get_parent(child) != bus);
2728	int isdefault = (start == 0UL && end == ~0UL);
2729
2730	if (passthrough) {
2731		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2732		    type, rid, start, end, count, flags));
2733	}
2734
2735	rle = resource_list_find(rl, type, *rid);
2736
2737	if (!rle)
2738		return (NULL);		/* no resource of that type/rid */
2739
2740	if (rle->res)
2741		panic("resource_list_alloc: resource entry is busy");
2742
2743	if (isdefault) {
2744		start = rle->start;
2745		count = ulmax(count, rle->count);
2746		end = ulmax(rle->end, start + count - 1);
2747	}
2748
2749	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2750	    type, rid, start, end, count, flags);
2751
2752	/*
2753	 * Record the new range.
2754	 */
2755	if (rle->res) {
2756		rle->start = rman_get_start(rle->res);
2757		rle->end = rman_get_end(rle->res);
2758		rle->count = count;
2759	}
2760
2761	return (rle->res);
2762}
2763
2764/**
2765 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2766 *
2767 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2768 * used with resource_list_alloc().
2769 *
2770 * @param rl		the resource list which was allocated from
2771 * @param bus		the parent device of @p child
2772 * @param child		the device which is requesting a release
2773 * @param type		the type of resource to allocate
2774 * @param rid		the resource identifier
2775 * @param res		the resource to release
2776 *
2777 * @retval 0		success
2778 * @retval non-zero	a standard unix error code indicating what
2779 *			error condition prevented the operation
2780 */
2781int
2782resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2783    int type, int rid, struct resource *res)
2784{
2785	struct resource_list_entry *rle = NULL;
2786	int passthrough = (device_get_parent(child) != bus);
2787	int error;
2788
2789	if (passthrough) {
2790		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2791		    type, rid, res));
2792	}
2793
2794	rle = resource_list_find(rl, type, rid);
2795
2796	if (!rle)
2797		panic("resource_list_release: can't find resource");
2798	if (!rle->res)
2799		panic("resource_list_release: resource entry is not busy");
2800
2801	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2802	    type, rid, res);
2803	if (error)
2804		return (error);
2805
2806	rle->res = NULL;
2807	return (0);
2808}
2809
2810/**
2811 * @brief Print a description of resources in a resource list
2812 *
2813 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2814 * The name is printed if at least one resource of the given type is available.
2815 * The format is used to print resource start and end.
2816 *
2817 * @param rl		the resource list to print
2818 * @param name		the name of @p type, e.g. @c "memory"
2819 * @param type		type type of resource entry to print
2820 * @param format	printf(9) format string to print resource
2821 *			start and end values
2822 *
2823 * @returns		the number of characters printed
2824 */
2825int
2826resource_list_print_type(struct resource_list *rl, const char *name, int type,
2827    const char *format)
2828{
2829	struct resource_list_entry *rle;
2830	int printed, retval;
2831
2832	printed = 0;
2833	retval = 0;
2834	/* Yes, this is kinda cheating */
2835	STAILQ_FOREACH(rle, rl, link) {
2836		if (rle->type == type) {
2837			if (printed == 0)
2838				retval += printf(" %s ", name);
2839			else
2840				retval += printf(",");
2841			printed++;
2842			retval += printf(format, rle->start);
2843			if (rle->count > 1) {
2844				retval += printf("-");
2845				retval += printf(format, rle->start +
2846						 rle->count - 1);
2847			}
2848		}
2849	}
2850	return (retval);
2851}
2852
2853/**
2854 * @brief Releases all the resources in a list.
2855 *
2856 * @param rl		The resource list to purge.
2857 *
2858 * @returns		nothing
2859 */
2860void
2861resource_list_purge(struct resource_list *rl)
2862{
2863	struct resource_list_entry *rle;
2864
2865	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2866		if (rle->res)
2867			bus_release_resource(rman_get_device(rle->res),
2868			    rle->type, rle->rid, rle->res);
2869		STAILQ_REMOVE_HEAD(rl, link);
2870		free(rle, M_BUS);
2871	}
2872}
2873
2874device_t
2875bus_generic_add_child(device_t dev, int order, const char *name, int unit)
2876{
2877
2878	return (device_add_child_ordered(dev, order, name, unit));
2879}
2880
2881/**
2882 * @brief Helper function for implementing DEVICE_PROBE()
2883 *
2884 * This function can be used to help implement the DEVICE_PROBE() for
2885 * a bus (i.e. a device which has other devices attached to it). It
2886 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2887 * devclass.
2888 */
2889int
2890bus_generic_probe(device_t dev)
2891{
2892	devclass_t dc = dev->devclass;
2893	driverlink_t dl;
2894
2895	TAILQ_FOREACH(dl, &dc->drivers, link) {
2896		DEVICE_IDENTIFY(dl->driver, dev);
2897	}
2898
2899	return (0);
2900}
2901
2902/**
2903 * @brief Helper function for implementing DEVICE_ATTACH()
2904 *
2905 * This function can be used to help implement the DEVICE_ATTACH() for
2906 * a bus. It calls device_probe_and_attach() for each of the device's
2907 * children.
2908 */
2909int
2910bus_generic_attach(device_t dev)
2911{
2912	device_t child;
2913
2914	TAILQ_FOREACH(child, &dev->children, link) {
2915		device_probe_and_attach(child);
2916	}
2917
2918	return (0);
2919}
2920
2921/**
2922 * @brief Helper function for implementing DEVICE_DETACH()
2923 *
2924 * This function can be used to help implement the DEVICE_DETACH() for
2925 * a bus. It calls device_detach() for each of the device's
2926 * children.
2927 */
2928int
2929bus_generic_detach(device_t dev)
2930{
2931	device_t child;
2932	int error;
2933
2934	if (dev->state != DS_ATTACHED)
2935		return (EBUSY);
2936
2937	TAILQ_FOREACH(child, &dev->children, link) {
2938		if ((error = device_detach(child)) != 0)
2939			return (error);
2940	}
2941
2942	return (0);
2943}
2944
2945/**
2946 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2947 *
2948 * This function can be used to help implement the DEVICE_SHUTDOWN()
2949 * for a bus. It calls device_shutdown() for each of the device's
2950 * children.
2951 */
2952int
2953bus_generic_shutdown(device_t dev)
2954{
2955	device_t child;
2956
2957	TAILQ_FOREACH(child, &dev->children, link) {
2958		device_shutdown(child);
2959	}
2960
2961	return (0);
2962}
2963
2964/**
2965 * @brief Helper function for implementing DEVICE_SUSPEND()
2966 *
2967 * This function can be used to help implement the DEVICE_SUSPEND()
2968 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2969 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2970 * operation is aborted and any devices which were suspended are
2971 * resumed immediately by calling their DEVICE_RESUME() methods.
2972 */
2973int
2974bus_generic_suspend(device_t dev)
2975{
2976	int		error;
2977	device_t	child, child2;
2978
2979	TAILQ_FOREACH(child, &dev->children, link) {
2980		error = DEVICE_SUSPEND(child);
2981		if (error) {
2982			for (child2 = TAILQ_FIRST(&dev->children);
2983			     child2 && child2 != child;
2984			     child2 = TAILQ_NEXT(child2, link))
2985				DEVICE_RESUME(child2);
2986			return (error);
2987		}
2988	}
2989	return (0);
2990}
2991
2992/**
2993 * @brief Helper function for implementing DEVICE_RESUME()
2994 *
2995 * This function can be used to help implement the DEVICE_RESUME() for
2996 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2997 */
2998int
2999bus_generic_resume(device_t dev)
3000{
3001	device_t	child;
3002
3003	TAILQ_FOREACH(child, &dev->children, link) {
3004		DEVICE_RESUME(child);
3005		/* if resume fails, there's nothing we can usefully do... */
3006	}
3007	return (0);
3008}
3009
3010/**
3011 * @brief Helper function for implementing BUS_PRINT_CHILD().
3012 *
3013 * This function prints the first part of the ascii representation of
3014 * @p child, including its name, unit and description (if any - see
3015 * device_set_desc()).
3016 *
3017 * @returns the number of characters printed
3018 */
3019int
3020bus_print_child_header(device_t dev, device_t child)
3021{
3022	int	retval = 0;
3023
3024	if (device_get_desc(child)) {
3025		retval += device_printf(child, "<%s>", device_get_desc(child));
3026	} else {
3027		retval += printf("%s", device_get_nameunit(child));
3028	}
3029
3030	return (retval);
3031}
3032
3033/**
3034 * @brief Helper function for implementing BUS_PRINT_CHILD().
3035 *
3036 * This function prints the last part of the ascii representation of
3037 * @p child, which consists of the string @c " on " followed by the
3038 * name and unit of the @p dev.
3039 *
3040 * @returns the number of characters printed
3041 */
3042int
3043bus_print_child_footer(device_t dev, device_t child)
3044{
3045	return (printf(" on %s\n", device_get_nameunit(dev)));
3046}
3047
3048/**
3049 * @brief Helper function for implementing BUS_PRINT_CHILD().
3050 *
3051 * This function simply calls bus_print_child_header() followed by
3052 * bus_print_child_footer().
3053 *
3054 * @returns the number of characters printed
3055 */
3056int
3057bus_generic_print_child(device_t dev, device_t child)
3058{
3059	int	retval = 0;
3060
3061	retval += bus_print_child_header(dev, child);
3062	retval += bus_print_child_footer(dev, child);
3063
3064	return (retval);
3065}
3066
3067/**
3068 * @brief Stub function for implementing BUS_READ_IVAR().
3069 *
3070 * @returns ENOENT
3071 */
3072int
3073bus_generic_read_ivar(device_t dev, device_t child, int index,
3074    uintptr_t * result)
3075{
3076	return (ENOENT);
3077}
3078
3079/**
3080 * @brief Stub function for implementing BUS_WRITE_IVAR().
3081 *
3082 * @returns ENOENT
3083 */
3084int
3085bus_generic_write_ivar(device_t dev, device_t child, int index,
3086    uintptr_t value)
3087{
3088	return (ENOENT);
3089}
3090
3091/**
3092 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3093 *
3094 * @returns NULL
3095 */
3096struct resource_list *
3097bus_generic_get_resource_list(device_t dev, device_t child)
3098{
3099	return (NULL);
3100}
3101
3102/**
3103 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3104 *
3105 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3106 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3107 * and then calls device_probe_and_attach() for each unattached child.
3108 */
3109void
3110bus_generic_driver_added(device_t dev, driver_t *driver)
3111{
3112	device_t child;
3113
3114	DEVICE_IDENTIFY(driver, dev);
3115	TAILQ_FOREACH(child, &dev->children, link) {
3116		if (child->state == DS_NOTPRESENT ||
3117		    (child->flags & DF_REBID))
3118			device_probe_and_attach(child);
3119	}
3120}
3121
3122/**
3123 * @brief Helper function for implementing BUS_SETUP_INTR().
3124 *
3125 * This simple implementation of BUS_SETUP_INTR() simply calls the
3126 * BUS_SETUP_INTR() method of the parent of @p dev.
3127 */
3128int
3129bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3130    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3131    void **cookiep)
3132{
3133	/* Propagate up the bus hierarchy until someone handles it. */
3134	if (dev->parent)
3135		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3136		    filter, intr, arg, cookiep));
3137	return (EINVAL);
3138}
3139
3140/**
3141 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3142 *
3143 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3144 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3145 */
3146int
3147bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3148    void *cookie)
3149{
3150	/* Propagate up the bus hierarchy until someone handles it. */
3151	if (dev->parent)
3152		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3153	return (EINVAL);
3154}
3155
3156/**
3157 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3158 *
3159 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3160 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3161 */
3162struct resource *
3163bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3164    u_long start, u_long end, u_long count, u_int flags)
3165{
3166	/* Propagate up the bus hierarchy until someone handles it. */
3167	if (dev->parent)
3168		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3169		    start, end, count, flags));
3170	return (NULL);
3171}
3172
3173/**
3174 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3175 *
3176 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3177 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3178 */
3179int
3180bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3181    struct resource *r)
3182{
3183	/* Propagate up the bus hierarchy until someone handles it. */
3184	if (dev->parent)
3185		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3186		    r));
3187	return (EINVAL);
3188}
3189
3190/**
3191 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3192 *
3193 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3194 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3195 */
3196int
3197bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3198    struct resource *r)
3199{
3200	/* Propagate up the bus hierarchy until someone handles it. */
3201	if (dev->parent)
3202		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3203		    r));
3204	return (EINVAL);
3205}
3206
3207/**
3208 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3209 *
3210 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3211 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3212 */
3213int
3214bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3215    int rid, struct resource *r)
3216{
3217	/* Propagate up the bus hierarchy until someone handles it. */
3218	if (dev->parent)
3219		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3220		    r));
3221	return (EINVAL);
3222}
3223
3224/**
3225 * @brief Helper function for implementing BUS_BIND_INTR().
3226 *
3227 * This simple implementation of BUS_BIND_INTR() simply calls the
3228 * BUS_BIND_INTR() method of the parent of @p dev.
3229 */
3230int
3231bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3232    int cpu)
3233{
3234
3235	/* Propagate up the bus hierarchy until someone handles it. */
3236	if (dev->parent)
3237		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3238	return (EINVAL);
3239}
3240
3241/**
3242 * @brief Helper function for implementing BUS_CONFIG_INTR().
3243 *
3244 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3245 * BUS_CONFIG_INTR() method of the parent of @p dev.
3246 */
3247int
3248bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3249    enum intr_polarity pol)
3250{
3251
3252	/* Propagate up the bus hierarchy until someone handles it. */
3253	if (dev->parent)
3254		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3255	return (EINVAL);
3256}
3257
3258/**
3259 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3260 *
3261 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3262 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3263 */
3264bus_dma_tag_t
3265bus_generic_get_dma_tag(device_t dev, device_t child)
3266{
3267
3268	/* Propagate up the bus hierarchy until someone handles it. */
3269	if (dev->parent != NULL)
3270		return (BUS_GET_DMA_TAG(dev->parent, child));
3271	return (NULL);
3272}
3273
3274/**
3275 * @brief Helper function for implementing BUS_GET_RESOURCE().
3276 *
3277 * This implementation of BUS_GET_RESOURCE() uses the
3278 * resource_list_find() function to do most of the work. It calls
3279 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3280 * search.
3281 */
3282int
3283bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3284    u_long *startp, u_long *countp)
3285{
3286	struct resource_list *		rl = NULL;
3287	struct resource_list_entry *	rle = NULL;
3288
3289	rl = BUS_GET_RESOURCE_LIST(dev, child);
3290	if (!rl)
3291		return (EINVAL);
3292
3293	rle = resource_list_find(rl, type, rid);
3294	if (!rle)
3295		return (ENOENT);
3296
3297	if (startp)
3298		*startp = rle->start;
3299	if (countp)
3300		*countp = rle->count;
3301
3302	return (0);
3303}
3304
3305/**
3306 * @brief Helper function for implementing BUS_SET_RESOURCE().
3307 *
3308 * This implementation of BUS_SET_RESOURCE() uses the
3309 * resource_list_add() function to do most of the work. It calls
3310 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3311 * edit.
3312 */
3313int
3314bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3315    u_long start, u_long count)
3316{
3317	struct resource_list *		rl = NULL;
3318
3319	rl = BUS_GET_RESOURCE_LIST(dev, child);
3320	if (!rl)
3321		return (EINVAL);
3322
3323	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3324
3325	return (0);
3326}
3327
3328/**
3329 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3330 *
3331 * This implementation of BUS_DELETE_RESOURCE() uses the
3332 * resource_list_delete() function to do most of the work. It calls
3333 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3334 * edit.
3335 */
3336void
3337bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3338{
3339	struct resource_list *		rl = NULL;
3340
3341	rl = BUS_GET_RESOURCE_LIST(dev, child);
3342	if (!rl)
3343		return;
3344
3345	resource_list_delete(rl, type, rid);
3346
3347	return;
3348}
3349
3350/**
3351 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3352 *
3353 * This implementation of BUS_RELEASE_RESOURCE() uses the
3354 * resource_list_release() function to do most of the work. It calls
3355 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3356 */
3357int
3358bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3359    int rid, struct resource *r)
3360{
3361	struct resource_list *		rl = NULL;
3362
3363	rl = BUS_GET_RESOURCE_LIST(dev, child);
3364	if (!rl)
3365		return (EINVAL);
3366
3367	return (resource_list_release(rl, dev, child, type, rid, r));
3368}
3369
3370/**
3371 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3372 *
3373 * This implementation of BUS_ALLOC_RESOURCE() uses the
3374 * resource_list_alloc() function to do most of the work. It calls
3375 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3376 */
3377struct resource *
3378bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3379    int *rid, u_long start, u_long end, u_long count, u_int flags)
3380{
3381	struct resource_list *		rl = NULL;
3382
3383	rl = BUS_GET_RESOURCE_LIST(dev, child);
3384	if (!rl)
3385		return (NULL);
3386
3387	return (resource_list_alloc(rl, dev, child, type, rid,
3388	    start, end, count, flags));
3389}
3390
3391/**
3392 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3393 *
3394 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3395 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3396 */
3397int
3398bus_generic_child_present(device_t dev, device_t child)
3399{
3400	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3401}
3402
3403/*
3404 * Some convenience functions to make it easier for drivers to use the
3405 * resource-management functions.  All these really do is hide the
3406 * indirection through the parent's method table, making for slightly
3407 * less-wordy code.  In the future, it might make sense for this code
3408 * to maintain some sort of a list of resources allocated by each device.
3409 */
3410
3411int
3412bus_alloc_resources(device_t dev, struct resource_spec *rs,
3413    struct resource **res)
3414{
3415	int i;
3416
3417	for (i = 0; rs[i].type != -1; i++)
3418		res[i] = NULL;
3419	for (i = 0; rs[i].type != -1; i++) {
3420		res[i] = bus_alloc_resource_any(dev,
3421		    rs[i].type, &rs[i].rid, rs[i].flags);
3422		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3423			bus_release_resources(dev, rs, res);
3424			return (ENXIO);
3425		}
3426	}
3427	return (0);
3428}
3429
3430void
3431bus_release_resources(device_t dev, const struct resource_spec *rs,
3432    struct resource **res)
3433{
3434	int i;
3435
3436	for (i = 0; rs[i].type != -1; i++)
3437		if (res[i] != NULL) {
3438			bus_release_resource(
3439			    dev, rs[i].type, rs[i].rid, res[i]);
3440			res[i] = NULL;
3441		}
3442}
3443
3444/**
3445 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3446 *
3447 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3448 * parent of @p dev.
3449 */
3450struct resource *
3451bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3452    u_long count, u_int flags)
3453{
3454	if (dev->parent == NULL)
3455		return (NULL);
3456	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3457	    count, flags));
3458}
3459
3460/**
3461 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3462 *
3463 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3464 * parent of @p dev.
3465 */
3466int
3467bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3468{
3469	if (dev->parent == NULL)
3470		return (EINVAL);
3471	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3472}
3473
3474/**
3475 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3476 *
3477 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3478 * parent of @p dev.
3479 */
3480int
3481bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3482{
3483	if (dev->parent == NULL)
3484		return (EINVAL);
3485	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3486}
3487
3488/**
3489 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3490 *
3491 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3492 * parent of @p dev.
3493 */
3494int
3495bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3496{
3497	if (dev->parent == NULL)
3498		return (EINVAL);
3499	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3500}
3501
3502/**
3503 * @brief Wrapper function for BUS_SETUP_INTR().
3504 *
3505 * This function simply calls the BUS_SETUP_INTR() method of the
3506 * parent of @p dev.
3507 */
3508int
3509bus_setup_intr(device_t dev, struct resource *r, int flags,
3510    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3511{
3512	int error;
3513
3514	if (dev->parent == NULL)
3515		return (EINVAL);
3516	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
3517	    arg, cookiep);
3518	if (error != 0)
3519		return (error);
3520	if (handler != NULL && !(flags & INTR_MPSAFE))
3521		device_printf(dev, "[GIANT-LOCKED]\n");
3522	if (bootverbose && (flags & INTR_MPSAFE))
3523		device_printf(dev, "[MPSAFE]\n");
3524	if (filter != NULL) {
3525		if (handler == NULL)
3526			device_printf(dev, "[FILTER]\n");
3527		else
3528			device_printf(dev, "[FILTER+ITHREAD]\n");
3529	} else
3530		device_printf(dev, "[ITHREAD]\n");
3531	return (0);
3532}
3533
3534/**
3535 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3536 *
3537 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3538 * parent of @p dev.
3539 */
3540int
3541bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3542{
3543	if (dev->parent == NULL)
3544		return (EINVAL);
3545	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3546}
3547
3548/**
3549 * @brief Wrapper function for BUS_BIND_INTR().
3550 *
3551 * This function simply calls the BUS_BIND_INTR() method of the
3552 * parent of @p dev.
3553 */
3554int
3555bus_bind_intr(device_t dev, struct resource *r, int cpu)
3556{
3557	if (dev->parent == NULL)
3558		return (EINVAL);
3559	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
3560}
3561
3562/**
3563 * @brief Wrapper function for BUS_SET_RESOURCE().
3564 *
3565 * This function simply calls the BUS_SET_RESOURCE() method of the
3566 * parent of @p dev.
3567 */
3568int
3569bus_set_resource(device_t dev, int type, int rid,
3570    u_long start, u_long count)
3571{
3572	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3573	    start, count));
3574}
3575
3576/**
3577 * @brief Wrapper function for BUS_GET_RESOURCE().
3578 *
3579 * This function simply calls the BUS_GET_RESOURCE() method of the
3580 * parent of @p dev.
3581 */
3582int
3583bus_get_resource(device_t dev, int type, int rid,
3584    u_long *startp, u_long *countp)
3585{
3586	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3587	    startp, countp));
3588}
3589
3590/**
3591 * @brief Wrapper function for BUS_GET_RESOURCE().
3592 *
3593 * This function simply calls the BUS_GET_RESOURCE() method of the
3594 * parent of @p dev and returns the start value.
3595 */
3596u_long
3597bus_get_resource_start(device_t dev, int type, int rid)
3598{
3599	u_long start, count;
3600	int error;
3601
3602	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3603	    &start, &count);
3604	if (error)
3605		return (0);
3606	return (start);
3607}
3608
3609/**
3610 * @brief Wrapper function for BUS_GET_RESOURCE().
3611 *
3612 * This function simply calls the BUS_GET_RESOURCE() method of the
3613 * parent of @p dev and returns the count value.
3614 */
3615u_long
3616bus_get_resource_count(device_t dev, int type, int rid)
3617{
3618	u_long start, count;
3619	int error;
3620
3621	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3622	    &start, &count);
3623	if (error)
3624		return (0);
3625	return (count);
3626}
3627
3628/**
3629 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3630 *
3631 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3632 * parent of @p dev.
3633 */
3634void
3635bus_delete_resource(device_t dev, int type, int rid)
3636{
3637	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3638}
3639
3640/**
3641 * @brief Wrapper function for BUS_CHILD_PRESENT().
3642 *
3643 * This function simply calls the BUS_CHILD_PRESENT() method of the
3644 * parent of @p dev.
3645 */
3646int
3647bus_child_present(device_t child)
3648{
3649	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3650}
3651
3652/**
3653 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3654 *
3655 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3656 * parent of @p dev.
3657 */
3658int
3659bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3660{
3661	device_t parent;
3662
3663	parent = device_get_parent(child);
3664	if (parent == NULL) {
3665		*buf = '\0';
3666		return (0);
3667	}
3668	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3669}
3670
3671/**
3672 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3673 *
3674 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3675 * parent of @p dev.
3676 */
3677int
3678bus_child_location_str(device_t child, char *buf, size_t buflen)
3679{
3680	device_t parent;
3681
3682	parent = device_get_parent(child);
3683	if (parent == NULL) {
3684		*buf = '\0';
3685		return (0);
3686	}
3687	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3688}
3689
3690/**
3691 * @brief Wrapper function for BUS_GET_DMA_TAG().
3692 *
3693 * This function simply calls the BUS_GET_DMA_TAG() method of the
3694 * parent of @p dev.
3695 */
3696bus_dma_tag_t
3697bus_get_dma_tag(device_t dev)
3698{
3699	device_t parent;
3700
3701	parent = device_get_parent(dev);
3702	if (parent == NULL)
3703		return (NULL);
3704	return (BUS_GET_DMA_TAG(parent, dev));
3705}
3706
3707/* Resume all devices and then notify userland that we're up again. */
3708static int
3709root_resume(device_t dev)
3710{
3711	int error;
3712
3713	error = bus_generic_resume(dev);
3714	if (error == 0)
3715		devctl_notify("kern", "power", "resume", NULL);
3716	return (error);
3717}
3718
3719static int
3720root_print_child(device_t dev, device_t child)
3721{
3722	int	retval = 0;
3723
3724	retval += bus_print_child_header(dev, child);
3725	retval += printf("\n");
3726
3727	return (retval);
3728}
3729
3730static int
3731root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3732    void **cookiep)
3733{
3734	/*
3735	 * If an interrupt mapping gets to here something bad has happened.
3736	 */
3737	panic("root_setup_intr");
3738}
3739
3740/*
3741 * If we get here, assume that the device is permanant and really is
3742 * present in the system.  Removable bus drivers are expected to intercept
3743 * this call long before it gets here.  We return -1 so that drivers that
3744 * really care can check vs -1 or some ERRNO returned higher in the food
3745 * chain.
3746 */
3747static int
3748root_child_present(device_t dev, device_t child)
3749{
3750	return (-1);
3751}
3752
3753static kobj_method_t root_methods[] = {
3754	/* Device interface */
3755	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3756	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3757	KOBJMETHOD(device_resume,	root_resume),
3758
3759	/* Bus interface */
3760	KOBJMETHOD(bus_print_child,	root_print_child),
3761	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3762	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3763	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3764	KOBJMETHOD(bus_child_present,	root_child_present),
3765
3766	{ 0, 0 }
3767};
3768
3769static driver_t root_driver = {
3770	"root",
3771	root_methods,
3772	1,			/* no softc */
3773};
3774
3775device_t	root_bus;
3776devclass_t	root_devclass;
3777
3778static int
3779root_bus_module_handler(module_t mod, int what, void* arg)
3780{
3781	switch (what) {
3782	case MOD_LOAD:
3783		TAILQ_INIT(&bus_data_devices);
3784		kobj_class_compile((kobj_class_t) &root_driver);
3785		root_bus = make_device(NULL, "root", 0);
3786		root_bus->desc = "System root bus";
3787		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3788		root_bus->driver = &root_driver;
3789		root_bus->state = DS_ATTACHED;
3790		root_devclass = devclass_find_internal("root", NULL, FALSE);
3791		devinit();
3792		return (0);
3793
3794	case MOD_SHUTDOWN:
3795		device_shutdown(root_bus);
3796		return (0);
3797	default:
3798		return (EOPNOTSUPP);
3799	}
3800
3801	return (0);
3802}
3803
3804static moduledata_t root_bus_mod = {
3805	"rootbus",
3806	root_bus_module_handler,
3807	0
3808};
3809DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3810
3811/**
3812 * @brief Automatically configure devices
3813 *
3814 * This function begins the autoconfiguration process by calling
3815 * device_probe_and_attach() for each child of the @c root0 device.
3816 */
3817void
3818root_bus_configure(void)
3819{
3820	device_t dev;
3821
3822	PDEBUG(("."));
3823
3824	TAILQ_FOREACH(dev, &root_bus->children, link) {
3825		device_probe_and_attach(dev);
3826	}
3827}
3828
3829/**
3830 * @brief Module handler for registering device drivers
3831 *
3832 * This module handler is used to automatically register device
3833 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3834 * devclass_add_driver() for the driver described by the
3835 * driver_module_data structure pointed to by @p arg
3836 */
3837int
3838driver_module_handler(module_t mod, int what, void *arg)
3839{
3840	int error;
3841	struct driver_module_data *dmd;
3842	devclass_t bus_devclass;
3843	kobj_class_t driver;
3844
3845	dmd = (struct driver_module_data *)arg;
3846	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3847	error = 0;
3848
3849	switch (what) {
3850	case MOD_LOAD:
3851		if (dmd->dmd_chainevh)
3852			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3853
3854		driver = dmd->dmd_driver;
3855		PDEBUG(("Loading module: driver %s on bus %s",
3856		    DRIVERNAME(driver), dmd->dmd_busname));
3857		error = devclass_add_driver(bus_devclass, driver);
3858		if (error)
3859			break;
3860
3861		/*
3862		 * If the driver has any base classes, make the
3863		 * devclass inherit from the devclass of the driver's
3864		 * first base class. This will allow the system to
3865		 * search for drivers in both devclasses for children
3866		 * of a device using this driver.
3867		 */
3868		if (driver->baseclasses) {
3869			const char *parentname;
3870			parentname = driver->baseclasses[0]->name;
3871			*dmd->dmd_devclass =
3872				devclass_find_internal(driver->name,
3873				    parentname, TRUE);
3874		} else {
3875			*dmd->dmd_devclass =
3876				devclass_find_internal(driver->name, NULL, TRUE);
3877		}
3878		break;
3879
3880	case MOD_UNLOAD:
3881		PDEBUG(("Unloading module: driver %s from bus %s",
3882		    DRIVERNAME(dmd->dmd_driver),
3883		    dmd->dmd_busname));
3884		error = devclass_delete_driver(bus_devclass,
3885		    dmd->dmd_driver);
3886
3887		if (!error && dmd->dmd_chainevh)
3888			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3889		break;
3890	case MOD_QUIESCE:
3891		PDEBUG(("Quiesce module: driver %s from bus %s",
3892		    DRIVERNAME(dmd->dmd_driver),
3893		    dmd->dmd_busname));
3894		error = devclass_quiesce_driver(bus_devclass,
3895		    dmd->dmd_driver);
3896
3897		if (!error && dmd->dmd_chainevh)
3898			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3899		break;
3900	default:
3901		error = EOPNOTSUPP;
3902		break;
3903	}
3904
3905	return (error);
3906}
3907
3908/**
3909 * @brief Enumerate all hinted devices for this bus.
3910 *
3911 * Walks through the hints for this bus and calls the bus_hinted_child
3912 * routine for each one it fines.  It searches first for the specific
3913 * bus that's being probed for hinted children (eg isa0), and then for
3914 * generic children (eg isa).
3915 *
3916 * @param	dev	bus device to enumerate
3917 */
3918void
3919bus_enumerate_hinted_children(device_t bus)
3920{
3921	int i;
3922	const char *dname, *busname;
3923	int dunit;
3924
3925	/*
3926	 * enumerate all devices on the specific bus
3927	 */
3928	busname = device_get_nameunit(bus);
3929	i = 0;
3930	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3931		BUS_HINTED_CHILD(bus, dname, dunit);
3932
3933	/*
3934	 * and all the generic ones.
3935	 */
3936	busname = device_get_name(bus);
3937	i = 0;
3938	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3939		BUS_HINTED_CHILD(bus, dname, dunit);
3940}
3941
3942#ifdef BUS_DEBUG
3943
3944/* the _short versions avoid iteration by not calling anything that prints
3945 * more than oneliners. I love oneliners.
3946 */
3947
3948static void
3949print_device_short(device_t dev, int indent)
3950{
3951	if (!dev)
3952		return;
3953
3954	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3955	    dev->unit, dev->desc,
3956	    (dev->parent? "":"no "),
3957	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3958	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3959	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3960	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3961	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3962	    (dev->flags&DF_REBID? "rebiddable,":""),
3963	    (dev->ivars? "":"no "),
3964	    (dev->softc? "":"no "),
3965	    dev->busy));
3966}
3967
3968static void
3969print_device(device_t dev, int indent)
3970{
3971	if (!dev)
3972		return;
3973
3974	print_device_short(dev, indent);
3975
3976	indentprintf(("Parent:\n"));
3977	print_device_short(dev->parent, indent+1);
3978	indentprintf(("Driver:\n"));
3979	print_driver_short(dev->driver, indent+1);
3980	indentprintf(("Devclass:\n"));
3981	print_devclass_short(dev->devclass, indent+1);
3982}
3983
3984void
3985print_device_tree_short(device_t dev, int indent)
3986/* print the device and all its children (indented) */
3987{
3988	device_t child;
3989
3990	if (!dev)
3991		return;
3992
3993	print_device_short(dev, indent);
3994
3995	TAILQ_FOREACH(child, &dev->children, link) {
3996		print_device_tree_short(child, indent+1);
3997	}
3998}
3999
4000void
4001print_device_tree(device_t dev, int indent)
4002/* print the device and all its children (indented) */
4003{
4004	device_t child;
4005
4006	if (!dev)
4007		return;
4008
4009	print_device(dev, indent);
4010
4011	TAILQ_FOREACH(child, &dev->children, link) {
4012		print_device_tree(child, indent+1);
4013	}
4014}
4015
4016static void
4017print_driver_short(driver_t *driver, int indent)
4018{
4019	if (!driver)
4020		return;
4021
4022	indentprintf(("driver %s: softc size = %zd\n",
4023	    driver->name, driver->size));
4024}
4025
4026static void
4027print_driver(driver_t *driver, int indent)
4028{
4029	if (!driver)
4030		return;
4031
4032	print_driver_short(driver, indent);
4033}
4034
4035
4036static void
4037print_driver_list(driver_list_t drivers, int indent)
4038{
4039	driverlink_t driver;
4040
4041	TAILQ_FOREACH(driver, &drivers, link) {
4042		print_driver(driver->driver, indent);
4043	}
4044}
4045
4046static void
4047print_devclass_short(devclass_t dc, int indent)
4048{
4049	if ( !dc )
4050		return;
4051
4052	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4053}
4054
4055static void
4056print_devclass(devclass_t dc, int indent)
4057{
4058	int i;
4059
4060	if ( !dc )
4061		return;
4062
4063	print_devclass_short(dc, indent);
4064	indentprintf(("Drivers:\n"));
4065	print_driver_list(dc->drivers, indent+1);
4066
4067	indentprintf(("Devices:\n"));
4068	for (i = 0; i < dc->maxunit; i++)
4069		if (dc->devices[i])
4070			print_device(dc->devices[i], indent+1);
4071}
4072
4073void
4074print_devclass_list_short(void)
4075{
4076	devclass_t dc;
4077
4078	printf("Short listing of devclasses, drivers & devices:\n");
4079	TAILQ_FOREACH(dc, &devclasses, link) {
4080		print_devclass_short(dc, 0);
4081	}
4082}
4083
4084void
4085print_devclass_list(void)
4086{
4087	devclass_t dc;
4088
4089	printf("Full listing of devclasses, drivers & devices:\n");
4090	TAILQ_FOREACH(dc, &devclasses, link) {
4091		print_devclass(dc, 0);
4092	}
4093}
4094
4095#endif
4096
4097/*
4098 * User-space access to the device tree.
4099 *
4100 * We implement a small set of nodes:
4101 *
4102 * hw.bus			Single integer read method to obtain the
4103 *				current generation count.
4104 * hw.bus.devices		Reads the entire device tree in flat space.
4105 * hw.bus.rman			Resource manager interface
4106 *
4107 * We might like to add the ability to scan devclasses and/or drivers to
4108 * determine what else is currently loaded/available.
4109 */
4110
4111static int
4112sysctl_bus(SYSCTL_HANDLER_ARGS)
4113{
4114	struct u_businfo	ubus;
4115
4116	ubus.ub_version = BUS_USER_VERSION;
4117	ubus.ub_generation = bus_data_generation;
4118
4119	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4120}
4121SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4122    "bus-related data");
4123
4124static int
4125sysctl_devices(SYSCTL_HANDLER_ARGS)
4126{
4127	int			*name = (int *)arg1;
4128	u_int			namelen = arg2;
4129	int			index;
4130	struct device		*dev;
4131	struct u_device		udev;	/* XXX this is a bit big */
4132	int			error;
4133
4134	if (namelen != 2)
4135		return (EINVAL);
4136
4137	if (bus_data_generation_check(name[0]))
4138		return (EINVAL);
4139
4140	index = name[1];
4141
4142	/*
4143	 * Scan the list of devices, looking for the requested index.
4144	 */
4145	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4146		if (index-- == 0)
4147			break;
4148	}
4149	if (dev == NULL)
4150		return (ENOENT);
4151
4152	/*
4153	 * Populate the return array.
4154	 */
4155	bzero(&udev, sizeof(udev));
4156	udev.dv_handle = (uintptr_t)dev;
4157	udev.dv_parent = (uintptr_t)dev->parent;
4158	if (dev->nameunit != NULL)
4159		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4160	if (dev->desc != NULL)
4161		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4162	if (dev->driver != NULL && dev->driver->name != NULL)
4163		strlcpy(udev.dv_drivername, dev->driver->name,
4164		    sizeof(udev.dv_drivername));
4165	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4166	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4167	udev.dv_devflags = dev->devflags;
4168	udev.dv_flags = dev->flags;
4169	udev.dv_state = dev->state;
4170	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4171	return (error);
4172}
4173
4174SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4175    "system device tree");
4176
4177int
4178bus_data_generation_check(int generation)
4179{
4180	if (generation != bus_data_generation)
4181		return (1);
4182
4183	/* XXX generate optimised lists here? */
4184	return (0);
4185}
4186
4187void
4188bus_data_generation_update(void)
4189{
4190	bus_data_generation++;
4191}
4192
4193int
4194bus_free_resource(device_t dev, int type, struct resource *r)
4195{
4196	if (r == NULL)
4197		return (0);
4198	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4199}
4200