subr_bus.c revision 174794
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 174794 2007-12-19 22:05:07Z imp $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53#include <sys/interrupt.h>
54
55#include <machine/stdarg.h>
56
57#include <vm/uma.h>
58
59SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61
62/*
63 * Used to attach drivers to devclasses.
64 */
65typedef struct driverlink *driverlink_t;
66struct driverlink {
67	kobj_class_t	driver;
68	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69};
70
71/*
72 * Forward declarations
73 */
74typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76typedef TAILQ_HEAD(device_list, device) device_list_t;
77
78struct devclass {
79	TAILQ_ENTRY(devclass) link;
80	devclass_t	parent;		/* parent in devclass hierarchy */
81	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82	char		*name;
83	device_t	*devices;	/* array of devices indexed by unit */
84	int		maxunit;	/* size of devices array */
85
86	struct sysctl_ctx_list sysctl_ctx;
87	struct sysctl_oid *sysctl_tree;
88};
89
90/**
91 * @brief Implementation of device.
92 */
93struct device {
94	/*
95	 * A device is a kernel object. The first field must be the
96	 * current ops table for the object.
97	 */
98	KOBJ_FIELDS;
99
100	/*
101	 * Device hierarchy.
102	 */
103	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105	device_t	parent;		/**< parent of this device  */
106	device_list_t	children;	/**< list of child devices */
107
108	/*
109	 * Details of this device.
110	 */
111	driver_t	*driver;	/**< current driver */
112	devclass_t	devclass;	/**< current device class */
113	int		unit;		/**< current unit number */
114	char*		nameunit;	/**< name+unit e.g. foodev0 */
115	char*		desc;		/**< driver specific description */
116	int		busy;		/**< count of calls to device_busy() */
117	device_state_t	state;		/**< current device state  */
118	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119	u_short		flags;		/**< internal device flags  */
120#define	DF_ENABLED	1		/* device should be probed/attached */
121#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122#define	DF_WILDCARD	4		/* unit was originally wildcard */
123#define	DF_DESCMALLOCED	8		/* description was malloced */
124#define	DF_QUIET	16		/* don't print verbose attach message */
125#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127#define	DF_REBID	128		/* Can rebid after attach */
128	u_char	order;			/**< order from device_add_child_ordered() */
129	u_char	pad;
130	void	*ivars;			/**< instance variables  */
131	void	*softc;			/**< current driver's variables  */
132
133	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135};
136
137static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139
140#ifdef BUS_DEBUG
141
142static int bus_debug = 1;
143TUNABLE_INT("bus.debug", &bus_debug);
144SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145    "Debug bus code");
146
147#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149#define DRIVERNAME(d)	((d)? d->name : "no driver")
150#define DEVCLANAME(d)	((d)? d->name : "no devclass")
151
152/**
153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154 * prevent syslog from deleting initial spaces
155 */
156#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157
158static void print_device_short(device_t dev, int indent);
159static void print_device(device_t dev, int indent);
160void print_device_tree_short(device_t dev, int indent);
161void print_device_tree(device_t dev, int indent);
162static void print_driver_short(driver_t *driver, int indent);
163static void print_driver(driver_t *driver, int indent);
164static void print_driver_list(driver_list_t drivers, int indent);
165static void print_devclass_short(devclass_t dc, int indent);
166static void print_devclass(devclass_t dc, int indent);
167void print_devclass_list_short(void);
168void print_devclass_list(void);
169
170#else
171/* Make the compiler ignore the function calls */
172#define PDEBUG(a)			/* nop */
173#define DEVICENAME(d)			/* nop */
174#define DRIVERNAME(d)			/* nop */
175#define DEVCLANAME(d)			/* nop */
176
177#define print_device_short(d,i)		/* nop */
178#define print_device(d,i)		/* nop */
179#define print_device_tree_short(d,i)	/* nop */
180#define print_device_tree(d,i)		/* nop */
181#define print_driver_short(d,i)		/* nop */
182#define print_driver(d,i)		/* nop */
183#define print_driver_list(d,i)		/* nop */
184#define print_devclass_short(d,i)	/* nop */
185#define print_devclass(d,i)		/* nop */
186#define print_devclass_list_short()	/* nop */
187#define print_devclass_list()		/* nop */
188#endif
189
190/*
191 * dev sysctl tree
192 */
193
194enum {
195	DEVCLASS_SYSCTL_PARENT,
196};
197
198static int
199devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200{
201	devclass_t dc = (devclass_t)arg1;
202	const char *value;
203
204	switch (arg2) {
205	case DEVCLASS_SYSCTL_PARENT:
206		value = dc->parent ? dc->parent->name : "";
207		break;
208	default:
209		return (EINVAL);
210	}
211	return (SYSCTL_OUT(req, value, strlen(value)));
212}
213
214static void
215devclass_sysctl_init(devclass_t dc)
216{
217
218	if (dc->sysctl_tree != NULL)
219		return;
220	sysctl_ctx_init(&dc->sysctl_ctx);
221	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
222	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
223	    CTLFLAG_RD, 0, "");
224	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
225	    OID_AUTO, "%parent", CTLFLAG_RD,
226	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
227	    "parent class");
228}
229
230enum {
231	DEVICE_SYSCTL_DESC,
232	DEVICE_SYSCTL_DRIVER,
233	DEVICE_SYSCTL_LOCATION,
234	DEVICE_SYSCTL_PNPINFO,
235	DEVICE_SYSCTL_PARENT,
236};
237
238static int
239device_sysctl_handler(SYSCTL_HANDLER_ARGS)
240{
241	device_t dev = (device_t)arg1;
242	const char *value;
243	char *buf;
244	int error;
245
246	buf = NULL;
247	switch (arg2) {
248	case DEVICE_SYSCTL_DESC:
249		value = dev->desc ? dev->desc : "";
250		break;
251	case DEVICE_SYSCTL_DRIVER:
252		value = dev->driver ? dev->driver->name : "";
253		break;
254	case DEVICE_SYSCTL_LOCATION:
255		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
256		bus_child_location_str(dev, buf, 1024);
257		break;
258	case DEVICE_SYSCTL_PNPINFO:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_pnpinfo_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PARENT:
263		value = dev->parent ? dev->parent->nameunit : "";
264		break;
265	default:
266		return (EINVAL);
267	}
268	error = SYSCTL_OUT(req, value, strlen(value));
269	if (buf != NULL)
270		free(buf, M_BUS);
271	return (error);
272}
273
274static void
275device_sysctl_init(device_t dev)
276{
277	devclass_t dc = dev->devclass;
278
279	if (dev->sysctl_tree != NULL)
280		return;
281	devclass_sysctl_init(dc);
282	sysctl_ctx_init(&dev->sysctl_ctx);
283	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
284	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
285	    dev->nameunit + strlen(dc->name),
286	    CTLFLAG_RD, 0, "");
287	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
288	    OID_AUTO, "%desc", CTLFLAG_RD,
289	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
290	    "device description");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%driver", CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
294	    "device driver name");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%location", CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
298	    "device location relative to parent");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
302	    "device identification");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%parent", CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
306	    "parent device");
307}
308
309static void
310device_sysctl_update(device_t dev)
311{
312	devclass_t dc = dev->devclass;
313
314	if (dev->sysctl_tree == NULL)
315		return;
316	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
317}
318
319static void
320device_sysctl_fini(device_t dev)
321{
322	if (dev->sysctl_tree == NULL)
323		return;
324	sysctl_ctx_free(&dev->sysctl_ctx);
325	dev->sysctl_tree = NULL;
326}
327
328/*
329 * /dev/devctl implementation
330 */
331
332/*
333 * This design allows only one reader for /dev/devctl.  This is not desirable
334 * in the long run, but will get a lot of hair out of this implementation.
335 * Maybe we should make this device a clonable device.
336 *
337 * Also note: we specifically do not attach a device to the device_t tree
338 * to avoid potential chicken and egg problems.  One could argue that all
339 * of this belongs to the root node.  One could also further argue that the
340 * sysctl interface that we have not might more properly be an ioctl
341 * interface, but at this stage of the game, I'm not inclined to rock that
342 * boat.
343 *
344 * I'm also not sure that the SIGIO support is done correctly or not, as
345 * I copied it from a driver that had SIGIO support that likely hasn't been
346 * tested since 3.4 or 2.2.8!
347 */
348
349static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
350static int devctl_disable = 0;
351TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
352SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
353    sysctl_devctl_disable, "I", "devctl disable");
354
355static d_open_t		devopen;
356static d_close_t	devclose;
357static d_read_t		devread;
358static d_ioctl_t	devioctl;
359static d_poll_t		devpoll;
360
361static struct cdevsw dev_cdevsw = {
362	.d_version =	D_VERSION,
363	.d_flags =	D_NEEDGIANT,
364	.d_open =	devopen,
365	.d_close =	devclose,
366	.d_read =	devread,
367	.d_ioctl =	devioctl,
368	.d_poll =	devpoll,
369	.d_name =	"devctl",
370};
371
372struct dev_event_info
373{
374	char *dei_data;
375	TAILQ_ENTRY(dev_event_info) dei_link;
376};
377
378TAILQ_HEAD(devq, dev_event_info);
379
380static struct dev_softc
381{
382	int	inuse;
383	int	nonblock;
384	struct mtx mtx;
385	struct cv cv;
386	struct selinfo sel;
387	struct devq devq;
388	struct proc *async_proc;
389} devsoftc;
390
391static struct cdev *devctl_dev;
392
393static void
394devinit(void)
395{
396	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
397	    "devctl");
398	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
399	cv_init(&devsoftc.cv, "dev cv");
400	TAILQ_INIT(&devsoftc.devq);
401}
402
403static int
404devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
405{
406	if (devsoftc.inuse)
407		return (EBUSY);
408	/* move to init */
409	devsoftc.inuse = 1;
410	devsoftc.nonblock = 0;
411	devsoftc.async_proc = NULL;
412	return (0);
413}
414
415static int
416devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
417{
418	devsoftc.inuse = 0;
419	mtx_lock(&devsoftc.mtx);
420	cv_broadcast(&devsoftc.cv);
421	mtx_unlock(&devsoftc.mtx);
422
423	return (0);
424}
425
426/*
427 * The read channel for this device is used to report changes to
428 * userland in realtime.  We are required to free the data as well as
429 * the n1 object because we allocate them separately.  Also note that
430 * we return one record at a time.  If you try to read this device a
431 * character at a time, you will lose the rest of the data.  Listening
432 * programs are expected to cope.
433 */
434static int
435devread(struct cdev *dev, struct uio *uio, int ioflag)
436{
437	struct dev_event_info *n1;
438	int rv;
439
440	mtx_lock(&devsoftc.mtx);
441	while (TAILQ_EMPTY(&devsoftc.devq)) {
442		if (devsoftc.nonblock) {
443			mtx_unlock(&devsoftc.mtx);
444			return (EAGAIN);
445		}
446		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
447		if (rv) {
448			/*
449			 * Need to translate ERESTART to EINTR here? -- jake
450			 */
451			mtx_unlock(&devsoftc.mtx);
452			return (rv);
453		}
454	}
455	n1 = TAILQ_FIRST(&devsoftc.devq);
456	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
457	mtx_unlock(&devsoftc.mtx);
458	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
459	free(n1->dei_data, M_BUS);
460	free(n1, M_BUS);
461	return (rv);
462}
463
464static	int
465devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
466{
467	switch (cmd) {
468
469	case FIONBIO:
470		if (*(int*)data)
471			devsoftc.nonblock = 1;
472		else
473			devsoftc.nonblock = 0;
474		return (0);
475	case FIOASYNC:
476		if (*(int*)data)
477			devsoftc.async_proc = td->td_proc;
478		else
479			devsoftc.async_proc = NULL;
480		return (0);
481
482		/* (un)Support for other fcntl() calls. */
483	case FIOCLEX:
484	case FIONCLEX:
485	case FIONREAD:
486	case FIOSETOWN:
487	case FIOGETOWN:
488	default:
489		break;
490	}
491	return (ENOTTY);
492}
493
494static	int
495devpoll(struct cdev *dev, int events, d_thread_t *td)
496{
497	int	revents = 0;
498
499	mtx_lock(&devsoftc.mtx);
500	if (events & (POLLIN | POLLRDNORM)) {
501		if (!TAILQ_EMPTY(&devsoftc.devq))
502			revents = events & (POLLIN | POLLRDNORM);
503		else
504			selrecord(td, &devsoftc.sel);
505	}
506	mtx_unlock(&devsoftc.mtx);
507
508	return (revents);
509}
510
511/**
512 * @brief Queue data to be read from the devctl device
513 *
514 * Generic interface to queue data to the devctl device.  It is
515 * assumed that @p data is properly formatted.  It is further assumed
516 * that @p data is allocated using the M_BUS malloc type.
517 */
518void
519devctl_queue_data(char *data)
520{
521	struct dev_event_info *n1 = NULL;
522	struct proc *p;
523
524	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
525	if (n1 == NULL)
526		return;
527	n1->dei_data = data;
528	mtx_lock(&devsoftc.mtx);
529	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
530	cv_broadcast(&devsoftc.cv);
531	mtx_unlock(&devsoftc.mtx);
532	selwakeup(&devsoftc.sel);
533	p = devsoftc.async_proc;
534	if (p != NULL) {
535		PROC_LOCK(p);
536		psignal(p, SIGIO);
537		PROC_UNLOCK(p);
538	}
539}
540
541/**
542 * @brief Send a 'notification' to userland, using standard ways
543 */
544void
545devctl_notify(const char *system, const char *subsystem, const char *type,
546    const char *data)
547{
548	int len = 0;
549	char *msg;
550
551	if (system == NULL)
552		return;		/* BOGUS!  Must specify system. */
553	if (subsystem == NULL)
554		return;		/* BOGUS!  Must specify subsystem. */
555	if (type == NULL)
556		return;		/* BOGUS!  Must specify type. */
557	len += strlen(" system=") + strlen(system);
558	len += strlen(" subsystem=") + strlen(subsystem);
559	len += strlen(" type=") + strlen(type);
560	/* add in the data message plus newline. */
561	if (data != NULL)
562		len += strlen(data);
563	len += 3;	/* '!', '\n', and NUL */
564	msg = malloc(len, M_BUS, M_NOWAIT);
565	if (msg == NULL)
566		return;		/* Drop it on the floor */
567	if (data != NULL)
568		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
569		    system, subsystem, type, data);
570	else
571		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
572		    system, subsystem, type);
573	devctl_queue_data(msg);
574}
575
576/*
577 * Common routine that tries to make sending messages as easy as possible.
578 * We allocate memory for the data, copy strings into that, but do not
579 * free it unless there's an error.  The dequeue part of the driver should
580 * free the data.  We don't send data when the device is disabled.  We do
581 * send data, even when we have no listeners, because we wish to avoid
582 * races relating to startup and restart of listening applications.
583 *
584 * devaddq is designed to string together the type of event, with the
585 * object of that event, plus the plug and play info and location info
586 * for that event.  This is likely most useful for devices, but less
587 * useful for other consumers of this interface.  Those should use
588 * the devctl_queue_data() interface instead.
589 */
590static void
591devaddq(const char *type, const char *what, device_t dev)
592{
593	char *data = NULL;
594	char *loc = NULL;
595	char *pnp = NULL;
596	const char *parstr;
597
598	if (devctl_disable)
599		return;
600	data = malloc(1024, M_BUS, M_NOWAIT);
601	if (data == NULL)
602		goto bad;
603
604	/* get the bus specific location of this device */
605	loc = malloc(1024, M_BUS, M_NOWAIT);
606	if (loc == NULL)
607		goto bad;
608	*loc = '\0';
609	bus_child_location_str(dev, loc, 1024);
610
611	/* Get the bus specific pnp info of this device */
612	pnp = malloc(1024, M_BUS, M_NOWAIT);
613	if (pnp == NULL)
614		goto bad;
615	*pnp = '\0';
616	bus_child_pnpinfo_str(dev, pnp, 1024);
617
618	/* Get the parent of this device, or / if high enough in the tree. */
619	if (device_get_parent(dev) == NULL)
620		parstr = ".";	/* Or '/' ? */
621	else
622		parstr = device_get_nameunit(device_get_parent(dev));
623	/* String it all together. */
624	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
625	  parstr);
626	free(loc, M_BUS);
627	free(pnp, M_BUS);
628	devctl_queue_data(data);
629	return;
630bad:
631	free(pnp, M_BUS);
632	free(loc, M_BUS);
633	free(data, M_BUS);
634	return;
635}
636
637/*
638 * A device was added to the tree.  We are called just after it successfully
639 * attaches (that is, probe and attach success for this device).  No call
640 * is made if a device is merely parented into the tree.  See devnomatch
641 * if probe fails.  If attach fails, no notification is sent (but maybe
642 * we should have a different message for this).
643 */
644static void
645devadded(device_t dev)
646{
647	char *pnp = NULL;
648	char *tmp = NULL;
649
650	pnp = malloc(1024, M_BUS, M_NOWAIT);
651	if (pnp == NULL)
652		goto fail;
653	tmp = malloc(1024, M_BUS, M_NOWAIT);
654	if (tmp == NULL)
655		goto fail;
656	*pnp = '\0';
657	bus_child_pnpinfo_str(dev, pnp, 1024);
658	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
659	devaddq("+", tmp, dev);
660fail:
661	if (pnp != NULL)
662		free(pnp, M_BUS);
663	if (tmp != NULL)
664		free(tmp, M_BUS);
665	return;
666}
667
668/*
669 * A device was removed from the tree.  We are called just before this
670 * happens.
671 */
672static void
673devremoved(device_t dev)
674{
675	char *pnp = NULL;
676	char *tmp = NULL;
677
678	pnp = malloc(1024, M_BUS, M_NOWAIT);
679	if (pnp == NULL)
680		goto fail;
681	tmp = malloc(1024, M_BUS, M_NOWAIT);
682	if (tmp == NULL)
683		goto fail;
684	*pnp = '\0';
685	bus_child_pnpinfo_str(dev, pnp, 1024);
686	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
687	devaddq("-", tmp, dev);
688fail:
689	if (pnp != NULL)
690		free(pnp, M_BUS);
691	if (tmp != NULL)
692		free(tmp, M_BUS);
693	return;
694}
695
696/*
697 * Called when there's no match for this device.  This is only called
698 * the first time that no match happens, so we don't keep getitng this
699 * message.  Should that prove to be undesirable, we can change it.
700 * This is called when all drivers that can attach to a given bus
701 * decline to accept this device.  Other errrors may not be detected.
702 */
703static void
704devnomatch(device_t dev)
705{
706	devaddq("?", "", dev);
707}
708
709static int
710sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
711{
712	struct dev_event_info *n1;
713	int dis, error;
714
715	dis = devctl_disable;
716	error = sysctl_handle_int(oidp, &dis, 0, req);
717	if (error || !req->newptr)
718		return (error);
719	mtx_lock(&devsoftc.mtx);
720	devctl_disable = dis;
721	if (dis) {
722		while (!TAILQ_EMPTY(&devsoftc.devq)) {
723			n1 = TAILQ_FIRST(&devsoftc.devq);
724			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
725			free(n1->dei_data, M_BUS);
726			free(n1, M_BUS);
727		}
728	}
729	mtx_unlock(&devsoftc.mtx);
730	return (0);
731}
732
733/* End of /dev/devctl code */
734
735TAILQ_HEAD(,device)	bus_data_devices;
736static int bus_data_generation = 1;
737
738kobj_method_t null_methods[] = {
739	{ 0, 0 }
740};
741
742DEFINE_CLASS(null, null_methods, 0);
743
744/*
745 * Devclass implementation
746 */
747
748static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
749
750
751/**
752 * @internal
753 * @brief Find or create a device class
754 *
755 * If a device class with the name @p classname exists, return it,
756 * otherwise if @p create is non-zero create and return a new device
757 * class.
758 *
759 * If @p parentname is non-NULL, the parent of the devclass is set to
760 * the devclass of that name.
761 *
762 * @param classname	the devclass name to find or create
763 * @param parentname	the parent devclass name or @c NULL
764 * @param create	non-zero to create a devclass
765 */
766static devclass_t
767devclass_find_internal(const char *classname, const char *parentname,
768		       int create)
769{
770	devclass_t dc;
771
772	PDEBUG(("looking for %s", classname));
773	if (!classname)
774		return (NULL);
775
776	TAILQ_FOREACH(dc, &devclasses, link) {
777		if (!strcmp(dc->name, classname))
778			break;
779	}
780
781	if (create && !dc) {
782		PDEBUG(("creating %s", classname));
783		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
784		    M_BUS, M_NOWAIT|M_ZERO);
785		if (!dc)
786			return (NULL);
787		dc->parent = NULL;
788		dc->name = (char*) (dc + 1);
789		strcpy(dc->name, classname);
790		TAILQ_INIT(&dc->drivers);
791		TAILQ_INSERT_TAIL(&devclasses, dc, link);
792
793		bus_data_generation_update();
794	}
795
796	/*
797	 * If a parent class is specified, then set that as our parent so
798	 * that this devclass will support drivers for the parent class as
799	 * well.  If the parent class has the same name don't do this though
800	 * as it creates a cycle that can trigger an infinite loop in
801	 * device_probe_child() if a device exists for which there is no
802	 * suitable driver.
803	 */
804	if (parentname && dc && !dc->parent &&
805	    strcmp(classname, parentname) != 0) {
806		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
807	}
808
809	return (dc);
810}
811
812/**
813 * @brief Create a device class
814 *
815 * If a device class with the name @p classname exists, return it,
816 * otherwise create and return a new device class.
817 *
818 * @param classname	the devclass name to find or create
819 */
820devclass_t
821devclass_create(const char *classname)
822{
823	return (devclass_find_internal(classname, NULL, TRUE));
824}
825
826/**
827 * @brief Find a device class
828 *
829 * If a device class with the name @p classname exists, return it,
830 * otherwise return @c NULL.
831 *
832 * @param classname	the devclass name to find
833 */
834devclass_t
835devclass_find(const char *classname)
836{
837	return (devclass_find_internal(classname, NULL, FALSE));
838}
839
840/**
841 * @brief Add a device driver to a device class
842 *
843 * Add a device driver to a devclass. This is normally called
844 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
845 * all devices in the devclass will be called to allow them to attempt
846 * to re-probe any unmatched children.
847 *
848 * @param dc		the devclass to edit
849 * @param driver	the driver to register
850 */
851int
852devclass_add_driver(devclass_t dc, driver_t *driver)
853{
854	driverlink_t dl;
855	int i;
856
857	PDEBUG(("%s", DRIVERNAME(driver)));
858
859	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
860	if (!dl)
861		return (ENOMEM);
862
863	/*
864	 * Compile the driver's methods. Also increase the reference count
865	 * so that the class doesn't get freed when the last instance
866	 * goes. This means we can safely use static methods and avoids a
867	 * double-free in devclass_delete_driver.
868	 */
869	kobj_class_compile((kobj_class_t) driver);
870
871	/*
872	 * Make sure the devclass which the driver is implementing exists.
873	 */
874	devclass_find_internal(driver->name, NULL, TRUE);
875
876	dl->driver = driver;
877	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
878	driver->refs++;		/* XXX: kobj_mtx */
879
880	/*
881	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
882	 */
883	for (i = 0; i < dc->maxunit; i++)
884		if (dc->devices[i])
885			BUS_DRIVER_ADDED(dc->devices[i], driver);
886
887	bus_data_generation_update();
888	return (0);
889}
890
891/**
892 * @brief Delete a device driver from a device class
893 *
894 * Delete a device driver from a devclass. This is normally called
895 * automatically by DRIVER_MODULE().
896 *
897 * If the driver is currently attached to any devices,
898 * devclass_delete_driver() will first attempt to detach from each
899 * device. If one of the detach calls fails, the driver will not be
900 * deleted.
901 *
902 * @param dc		the devclass to edit
903 * @param driver	the driver to unregister
904 */
905int
906devclass_delete_driver(devclass_t busclass, driver_t *driver)
907{
908	devclass_t dc = devclass_find(driver->name);
909	driverlink_t dl;
910	device_t dev;
911	int i;
912	int error;
913
914	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
915
916	if (!dc)
917		return (0);
918
919	/*
920	 * Find the link structure in the bus' list of drivers.
921	 */
922	TAILQ_FOREACH(dl, &busclass->drivers, link) {
923		if (dl->driver == driver)
924			break;
925	}
926
927	if (!dl) {
928		PDEBUG(("%s not found in %s list", driver->name,
929		    busclass->name));
930		return (ENOENT);
931	}
932
933	/*
934	 * Disassociate from any devices.  We iterate through all the
935	 * devices in the devclass of the driver and detach any which are
936	 * using the driver and which have a parent in the devclass which
937	 * we are deleting from.
938	 *
939	 * Note that since a driver can be in multiple devclasses, we
940	 * should not detach devices which are not children of devices in
941	 * the affected devclass.
942	 */
943	for (i = 0; i < dc->maxunit; i++) {
944		if (dc->devices[i]) {
945			dev = dc->devices[i];
946			if (dev->driver == driver && dev->parent &&
947			    dev->parent->devclass == busclass) {
948				if ((error = device_detach(dev)) != 0)
949					return (error);
950				device_set_driver(dev, NULL);
951			}
952		}
953	}
954
955	TAILQ_REMOVE(&busclass->drivers, dl, link);
956	free(dl, M_BUS);
957
958	/* XXX: kobj_mtx */
959	driver->refs--;
960	if (driver->refs == 0)
961		kobj_class_free((kobj_class_t) driver);
962
963	bus_data_generation_update();
964	return (0);
965}
966
967/**
968 * @brief Quiesces a set of device drivers from a device class
969 *
970 * Quiesce a device driver from a devclass. This is normally called
971 * automatically by DRIVER_MODULE().
972 *
973 * If the driver is currently attached to any devices,
974 * devclass_quiesece_driver() will first attempt to quiesce each
975 * device.
976 *
977 * @param dc		the devclass to edit
978 * @param driver	the driver to unregister
979 */
980int
981devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
982{
983	devclass_t dc = devclass_find(driver->name);
984	driverlink_t dl;
985	device_t dev;
986	int i;
987	int error;
988
989	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
990
991	if (!dc)
992		return (0);
993
994	/*
995	 * Find the link structure in the bus' list of drivers.
996	 */
997	TAILQ_FOREACH(dl, &busclass->drivers, link) {
998		if (dl->driver == driver)
999			break;
1000	}
1001
1002	if (!dl) {
1003		PDEBUG(("%s not found in %s list", driver->name,
1004		    busclass->name));
1005		return (ENOENT);
1006	}
1007
1008	/*
1009	 * Quiesce all devices.  We iterate through all the devices in
1010	 * the devclass of the driver and quiesce any which are using
1011	 * the driver and which have a parent in the devclass which we
1012	 * are quiescing.
1013	 *
1014	 * Note that since a driver can be in multiple devclasses, we
1015	 * should not quiesce devices which are not children of
1016	 * devices in the affected devclass.
1017	 */
1018	for (i = 0; i < dc->maxunit; i++) {
1019		if (dc->devices[i]) {
1020			dev = dc->devices[i];
1021			if (dev->driver == driver && dev->parent &&
1022			    dev->parent->devclass == busclass) {
1023				if ((error = device_quiesce(dev)) != 0)
1024					return (error);
1025			}
1026		}
1027	}
1028
1029	return (0);
1030}
1031
1032/**
1033 * @internal
1034 */
1035static driverlink_t
1036devclass_find_driver_internal(devclass_t dc, const char *classname)
1037{
1038	driverlink_t dl;
1039
1040	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1041
1042	TAILQ_FOREACH(dl, &dc->drivers, link) {
1043		if (!strcmp(dl->driver->name, classname))
1044			return (dl);
1045	}
1046
1047	PDEBUG(("not found"));
1048	return (NULL);
1049}
1050
1051/**
1052 * @brief Search a devclass for a driver
1053 *
1054 * This function searches the devclass's list of drivers and returns
1055 * the first driver whose name is @p classname or @c NULL if there is
1056 * no driver of that name.
1057 *
1058 * @param dc		the devclass to search
1059 * @param classname	the driver name to search for
1060 */
1061kobj_class_t
1062devclass_find_driver(devclass_t dc, const char *classname)
1063{
1064	driverlink_t dl;
1065
1066	dl = devclass_find_driver_internal(dc, classname);
1067	if (dl)
1068		return (dl->driver);
1069	return (NULL);
1070}
1071
1072/**
1073 * @brief Return the name of the devclass
1074 */
1075const char *
1076devclass_get_name(devclass_t dc)
1077{
1078	return (dc->name);
1079}
1080
1081/**
1082 * @brief Find a device given a unit number
1083 *
1084 * @param dc		the devclass to search
1085 * @param unit		the unit number to search for
1086 *
1087 * @returns		the device with the given unit number or @c
1088 *			NULL if there is no such device
1089 */
1090device_t
1091devclass_get_device(devclass_t dc, int unit)
1092{
1093	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1094		return (NULL);
1095	return (dc->devices[unit]);
1096}
1097
1098/**
1099 * @brief Find the softc field of a device given a unit number
1100 *
1101 * @param dc		the devclass to search
1102 * @param unit		the unit number to search for
1103 *
1104 * @returns		the softc field of the device with the given
1105 *			unit number or @c NULL if there is no such
1106 *			device
1107 */
1108void *
1109devclass_get_softc(devclass_t dc, int unit)
1110{
1111	device_t dev;
1112
1113	dev = devclass_get_device(dc, unit);
1114	if (!dev)
1115		return (NULL);
1116
1117	return (device_get_softc(dev));
1118}
1119
1120/**
1121 * @brief Get a list of devices in the devclass
1122 *
1123 * An array containing a list of all the devices in the given devclass
1124 * is allocated and returned in @p *devlistp. The number of devices
1125 * in the array is returned in @p *devcountp. The caller should free
1126 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1127 *
1128 * @param dc		the devclass to examine
1129 * @param devlistp	points at location for array pointer return
1130 *			value
1131 * @param devcountp	points at location for array size return value
1132 *
1133 * @retval 0		success
1134 * @retval ENOMEM	the array allocation failed
1135 */
1136int
1137devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1138{
1139	int count, i;
1140	device_t *list;
1141
1142	count = devclass_get_count(dc);
1143	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1144	if (!list)
1145		return (ENOMEM);
1146
1147	count = 0;
1148	for (i = 0; i < dc->maxunit; i++) {
1149		if (dc->devices[i]) {
1150			list[count] = dc->devices[i];
1151			count++;
1152		}
1153	}
1154
1155	*devlistp = list;
1156	*devcountp = count;
1157
1158	return (0);
1159}
1160
1161/**
1162 * @brief Get a list of drivers in the devclass
1163 *
1164 * An array containing a list of pointers to all the drivers in the
1165 * given devclass is allocated and returned in @p *listp.  The number
1166 * of drivers in the array is returned in @p *countp. The caller should
1167 * free the array using @c free(p, M_TEMP).
1168 *
1169 * @param dc		the devclass to examine
1170 * @param listp		gives location for array pointer return value
1171 * @param countp	gives location for number of array elements
1172 *			return value
1173 *
1174 * @retval 0		success
1175 * @retval ENOMEM	the array allocation failed
1176 */
1177int
1178devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1179{
1180	driverlink_t dl;
1181	driver_t **list;
1182	int count;
1183
1184	count = 0;
1185	TAILQ_FOREACH(dl, &dc->drivers, link)
1186		count++;
1187	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1188	if (list == NULL)
1189		return (ENOMEM);
1190
1191	count = 0;
1192	TAILQ_FOREACH(dl, &dc->drivers, link) {
1193		list[count] = dl->driver;
1194		count++;
1195	}
1196	*listp = list;
1197	*countp = count;
1198
1199	return (0);
1200}
1201
1202/**
1203 * @brief Get the number of devices in a devclass
1204 *
1205 * @param dc		the devclass to examine
1206 */
1207int
1208devclass_get_count(devclass_t dc)
1209{
1210	int count, i;
1211
1212	count = 0;
1213	for (i = 0; i < dc->maxunit; i++)
1214		if (dc->devices[i])
1215			count++;
1216	return (count);
1217}
1218
1219/**
1220 * @brief Get the maximum unit number used in a devclass
1221 *
1222 * Note that this is one greater than the highest currently-allocated
1223 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1224 * that not even the devclass has been allocated yet.
1225 *
1226 * @param dc		the devclass to examine
1227 */
1228int
1229devclass_get_maxunit(devclass_t dc)
1230{
1231	if (dc == NULL)
1232		return (-1);
1233	return (dc->maxunit);
1234}
1235
1236/**
1237 * @brief Find a free unit number in a devclass
1238 *
1239 * This function searches for the first unused unit number greater
1240 * that or equal to @p unit.
1241 *
1242 * @param dc		the devclass to examine
1243 * @param unit		the first unit number to check
1244 */
1245int
1246devclass_find_free_unit(devclass_t dc, int unit)
1247{
1248	if (dc == NULL)
1249		return (unit);
1250	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1251		unit++;
1252	return (unit);
1253}
1254
1255/**
1256 * @brief Set the parent of a devclass
1257 *
1258 * The parent class is normally initialised automatically by
1259 * DRIVER_MODULE().
1260 *
1261 * @param dc		the devclass to edit
1262 * @param pdc		the new parent devclass
1263 */
1264void
1265devclass_set_parent(devclass_t dc, devclass_t pdc)
1266{
1267	dc->parent = pdc;
1268}
1269
1270/**
1271 * @brief Get the parent of a devclass
1272 *
1273 * @param dc		the devclass to examine
1274 */
1275devclass_t
1276devclass_get_parent(devclass_t dc)
1277{
1278	return (dc->parent);
1279}
1280
1281struct sysctl_ctx_list *
1282devclass_get_sysctl_ctx(devclass_t dc)
1283{
1284	return (&dc->sysctl_ctx);
1285}
1286
1287struct sysctl_oid *
1288devclass_get_sysctl_tree(devclass_t dc)
1289{
1290	return (dc->sysctl_tree);
1291}
1292
1293/**
1294 * @internal
1295 * @brief Allocate a unit number
1296 *
1297 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1298 * will do). The allocated unit number is returned in @p *unitp.
1299
1300 * @param dc		the devclass to allocate from
1301 * @param unitp		points at the location for the allocated unit
1302 *			number
1303 *
1304 * @retval 0		success
1305 * @retval EEXIST	the requested unit number is already allocated
1306 * @retval ENOMEM	memory allocation failure
1307 */
1308static int
1309devclass_alloc_unit(devclass_t dc, int *unitp)
1310{
1311	int unit = *unitp;
1312
1313	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1314
1315	/* If we were given a wired unit number, check for existing device */
1316	/* XXX imp XXX */
1317	if (unit != -1) {
1318		if (unit >= 0 && unit < dc->maxunit &&
1319		    dc->devices[unit] != NULL) {
1320			if (bootverbose)
1321				printf("%s: %s%d already exists; skipping it\n",
1322				    dc->name, dc->name, *unitp);
1323			return (EEXIST);
1324		}
1325	} else {
1326		/* Unwired device, find the next available slot for it */
1327		unit = 0;
1328		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1329			unit++;
1330	}
1331
1332	/*
1333	 * We've selected a unit beyond the length of the table, so let's
1334	 * extend the table to make room for all units up to and including
1335	 * this one.
1336	 */
1337	if (unit >= dc->maxunit) {
1338		device_t *newlist;
1339		int newsize;
1340
1341		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1342		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1343		if (!newlist)
1344			return (ENOMEM);
1345		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1346		bzero(newlist + dc->maxunit,
1347		    sizeof(device_t) * (newsize - dc->maxunit));
1348		if (dc->devices)
1349			free(dc->devices, M_BUS);
1350		dc->devices = newlist;
1351		dc->maxunit = newsize;
1352	}
1353	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1354
1355	*unitp = unit;
1356	return (0);
1357}
1358
1359/**
1360 * @internal
1361 * @brief Add a device to a devclass
1362 *
1363 * A unit number is allocated for the device (using the device's
1364 * preferred unit number if any) and the device is registered in the
1365 * devclass. This allows the device to be looked up by its unit
1366 * number, e.g. by decoding a dev_t minor number.
1367 *
1368 * @param dc		the devclass to add to
1369 * @param dev		the device to add
1370 *
1371 * @retval 0		success
1372 * @retval EEXIST	the requested unit number is already allocated
1373 * @retval ENOMEM	memory allocation failure
1374 */
1375static int
1376devclass_add_device(devclass_t dc, device_t dev)
1377{
1378	int buflen, error;
1379
1380	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1381
1382	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1383	if (buflen < 0)
1384		return (ENOMEM);
1385	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1386	if (!dev->nameunit)
1387		return (ENOMEM);
1388
1389	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1390		free(dev->nameunit, M_BUS);
1391		dev->nameunit = NULL;
1392		return (error);
1393	}
1394	dc->devices[dev->unit] = dev;
1395	dev->devclass = dc;
1396	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1397
1398	return (0);
1399}
1400
1401/**
1402 * @internal
1403 * @brief Delete a device from a devclass
1404 *
1405 * The device is removed from the devclass's device list and its unit
1406 * number is freed.
1407
1408 * @param dc		the devclass to delete from
1409 * @param dev		the device to delete
1410 *
1411 * @retval 0		success
1412 */
1413static int
1414devclass_delete_device(devclass_t dc, device_t dev)
1415{
1416	if (!dc || !dev)
1417		return (0);
1418
1419	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1420
1421	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1422		panic("devclass_delete_device: inconsistent device class");
1423	dc->devices[dev->unit] = NULL;
1424	if (dev->flags & DF_WILDCARD)
1425		dev->unit = -1;
1426	dev->devclass = NULL;
1427	free(dev->nameunit, M_BUS);
1428	dev->nameunit = NULL;
1429
1430	return (0);
1431}
1432
1433/**
1434 * @internal
1435 * @brief Make a new device and add it as a child of @p parent
1436 *
1437 * @param parent	the parent of the new device
1438 * @param name		the devclass name of the new device or @c NULL
1439 *			to leave the devclass unspecified
1440 * @parem unit		the unit number of the new device of @c -1 to
1441 *			leave the unit number unspecified
1442 *
1443 * @returns the new device
1444 */
1445static device_t
1446make_device(device_t parent, const char *name, int unit)
1447{
1448	device_t dev;
1449	devclass_t dc;
1450
1451	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1452
1453	if (name) {
1454		dc = devclass_find_internal(name, NULL, TRUE);
1455		if (!dc) {
1456			printf("make_device: can't find device class %s\n",
1457			    name);
1458			return (NULL);
1459		}
1460	} else {
1461		dc = NULL;
1462	}
1463
1464	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1465	if (!dev)
1466		return (NULL);
1467
1468	dev->parent = parent;
1469	TAILQ_INIT(&dev->children);
1470	kobj_init((kobj_t) dev, &null_class);
1471	dev->driver = NULL;
1472	dev->devclass = NULL;
1473	dev->unit = unit;
1474	dev->nameunit = NULL;
1475	dev->desc = NULL;
1476	dev->busy = 0;
1477	dev->devflags = 0;
1478	dev->flags = DF_ENABLED;
1479	dev->order = 0;
1480	if (unit == -1)
1481		dev->flags |= DF_WILDCARD;
1482	if (name) {
1483		dev->flags |= DF_FIXEDCLASS;
1484		if (devclass_add_device(dc, dev)) {
1485			kobj_delete((kobj_t) dev, M_BUS);
1486			return (NULL);
1487		}
1488	}
1489	dev->ivars = NULL;
1490	dev->softc = NULL;
1491
1492	dev->state = DS_NOTPRESENT;
1493
1494	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1495	bus_data_generation_update();
1496
1497	return (dev);
1498}
1499
1500/**
1501 * @internal
1502 * @brief Print a description of a device.
1503 */
1504static int
1505device_print_child(device_t dev, device_t child)
1506{
1507	int retval = 0;
1508
1509	if (device_is_alive(child))
1510		retval += BUS_PRINT_CHILD(dev, child);
1511	else
1512		retval += device_printf(child, " not found\n");
1513
1514	return (retval);
1515}
1516
1517/**
1518 * @brief Create a new device
1519 *
1520 * This creates a new device and adds it as a child of an existing
1521 * parent device. The new device will be added after the last existing
1522 * child with order zero.
1523 *
1524 * @param dev		the device which will be the parent of the
1525 *			new child device
1526 * @param name		devclass name for new device or @c NULL if not
1527 *			specified
1528 * @param unit		unit number for new device or @c -1 if not
1529 *			specified
1530 *
1531 * @returns		the new device
1532 */
1533device_t
1534device_add_child(device_t dev, const char *name, int unit)
1535{
1536	return (device_add_child_ordered(dev, 0, name, unit));
1537}
1538
1539/**
1540 * @brief Create a new device
1541 *
1542 * This creates a new device and adds it as a child of an existing
1543 * parent device. The new device will be added after the last existing
1544 * child with the same order.
1545 *
1546 * @param dev		the device which will be the parent of the
1547 *			new child device
1548 * @param order		a value which is used to partially sort the
1549 *			children of @p dev - devices created using
1550 *			lower values of @p order appear first in @p
1551 *			dev's list of children
1552 * @param name		devclass name for new device or @c NULL if not
1553 *			specified
1554 * @param unit		unit number for new device or @c -1 if not
1555 *			specified
1556 *
1557 * @returns		the new device
1558 */
1559device_t
1560device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1561{
1562	device_t child;
1563	device_t place;
1564
1565	PDEBUG(("%s at %s with order %d as unit %d",
1566	    name, DEVICENAME(dev), order, unit));
1567
1568	child = make_device(dev, name, unit);
1569	if (child == NULL)
1570		return (child);
1571	child->order = order;
1572
1573	TAILQ_FOREACH(place, &dev->children, link) {
1574		if (place->order > order)
1575			break;
1576	}
1577
1578	if (place) {
1579		/*
1580		 * The device 'place' is the first device whose order is
1581		 * greater than the new child.
1582		 */
1583		TAILQ_INSERT_BEFORE(place, child, link);
1584	} else {
1585		/*
1586		 * The new child's order is greater or equal to the order of
1587		 * any existing device. Add the child to the tail of the list.
1588		 */
1589		TAILQ_INSERT_TAIL(&dev->children, child, link);
1590	}
1591
1592	bus_data_generation_update();
1593	return (child);
1594}
1595
1596/**
1597 * @brief Delete a device
1598 *
1599 * This function deletes a device along with all of its children. If
1600 * the device currently has a driver attached to it, the device is
1601 * detached first using device_detach().
1602 *
1603 * @param dev		the parent device
1604 * @param child		the device to delete
1605 *
1606 * @retval 0		success
1607 * @retval non-zero	a unit error code describing the error
1608 */
1609int
1610device_delete_child(device_t dev, device_t child)
1611{
1612	int error;
1613	device_t grandchild;
1614
1615	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1616
1617	/* remove children first */
1618	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1619		error = device_delete_child(child, grandchild);
1620		if (error)
1621			return (error);
1622	}
1623
1624	if ((error = device_detach(child)) != 0)
1625		return (error);
1626	if (child->devclass)
1627		devclass_delete_device(child->devclass, child);
1628	TAILQ_REMOVE(&dev->children, child, link);
1629	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1630	kobj_delete((kobj_t) child, M_BUS);
1631
1632	bus_data_generation_update();
1633	return (0);
1634}
1635
1636/**
1637 * @brief Find a device given a unit number
1638 *
1639 * This is similar to devclass_get_devices() but only searches for
1640 * devices which have @p dev as a parent.
1641 *
1642 * @param dev		the parent device to search
1643 * @param unit		the unit number to search for.  If the unit is -1,
1644 *			return the first child of @p dev which has name
1645 *			@p classname (that is, the one with the lowest unit.)
1646 *
1647 * @returns		the device with the given unit number or @c
1648 *			NULL if there is no such device
1649 */
1650device_t
1651device_find_child(device_t dev, const char *classname, int unit)
1652{
1653	devclass_t dc;
1654	device_t child;
1655
1656	dc = devclass_find(classname);
1657	if (!dc)
1658		return (NULL);
1659
1660	if (unit != -1) {
1661		child = devclass_get_device(dc, unit);
1662		if (child && child->parent == dev)
1663			return (child);
1664	} else {
1665		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1666			child = devclass_get_device(dc, unit);
1667			if (child && child->parent == dev)
1668				return (child);
1669		}
1670	}
1671	return (NULL);
1672}
1673
1674/**
1675 * @internal
1676 */
1677static driverlink_t
1678first_matching_driver(devclass_t dc, device_t dev)
1679{
1680	if (dev->devclass)
1681		return (devclass_find_driver_internal(dc, dev->devclass->name));
1682	return (TAILQ_FIRST(&dc->drivers));
1683}
1684
1685/**
1686 * @internal
1687 */
1688static driverlink_t
1689next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1690{
1691	if (dev->devclass) {
1692		driverlink_t dl;
1693		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1694			if (!strcmp(dev->devclass->name, dl->driver->name))
1695				return (dl);
1696		return (NULL);
1697	}
1698	return (TAILQ_NEXT(last, link));
1699}
1700
1701/**
1702 * @internal
1703 */
1704int
1705device_probe_child(device_t dev, device_t child)
1706{
1707	devclass_t dc;
1708	driverlink_t best = NULL;
1709	driverlink_t dl;
1710	int result, pri = 0;
1711	int hasclass = (child->devclass != 0);
1712
1713	GIANT_REQUIRED;
1714
1715	dc = dev->devclass;
1716	if (!dc)
1717		panic("device_probe_child: parent device has no devclass");
1718
1719	/*
1720	 * If the state is already probed, then return.  However, don't
1721	 * return if we can rebid this object.
1722	 */
1723	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1724		return (0);
1725
1726	for (; dc; dc = dc->parent) {
1727		for (dl = first_matching_driver(dc, child);
1728		     dl;
1729		     dl = next_matching_driver(dc, child, dl)) {
1730			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1731			device_set_driver(child, dl->driver);
1732			if (!hasclass)
1733				device_set_devclass(child, dl->driver->name);
1734
1735			/* Fetch any flags for the device before probing. */
1736			resource_int_value(dl->driver->name, child->unit,
1737			    "flags", &child->devflags);
1738
1739			result = DEVICE_PROBE(child);
1740
1741			/* Reset flags and devclass before the next probe. */
1742			child->devflags = 0;
1743			if (!hasclass)
1744				device_set_devclass(child, NULL);
1745
1746			/*
1747			 * If the driver returns SUCCESS, there can be
1748			 * no higher match for this device.
1749			 */
1750			if (result == 0) {
1751				best = dl;
1752				pri = 0;
1753				break;
1754			}
1755
1756			/*
1757			 * The driver returned an error so it
1758			 * certainly doesn't match.
1759			 */
1760			if (result > 0) {
1761				device_set_driver(child, NULL);
1762				continue;
1763			}
1764
1765			/*
1766			 * A priority lower than SUCCESS, remember the
1767			 * best matching driver. Initialise the value
1768			 * of pri for the first match.
1769			 */
1770			if (best == NULL || result > pri) {
1771				best = dl;
1772				pri = result;
1773				continue;
1774			}
1775		}
1776		/*
1777		 * If we have an unambiguous match in this devclass,
1778		 * don't look in the parent.
1779		 */
1780		if (best && pri == 0)
1781			break;
1782	}
1783
1784	/*
1785	 * If we found a driver, change state and initialise the devclass.
1786	 */
1787	/* XXX What happens if we rebid and got no best? */
1788	if (best) {
1789		/*
1790		 * If this device was atached, and we were asked to
1791		 * rescan, and it is a different driver, then we have
1792		 * to detach the old driver and reattach this new one.
1793		 * Note, we don't have to check for DF_REBID here
1794		 * because if the state is > DS_ALIVE, we know it must
1795		 * be.
1796		 *
1797		 * This assumes that all DF_REBID drivers can have
1798		 * their probe routine called at any time and that
1799		 * they are idempotent as well as completely benign in
1800		 * normal operations.
1801		 *
1802		 * We also have to make sure that the detach
1803		 * succeeded, otherwise we fail the operation (or
1804		 * maybe it should just fail silently?  I'm torn).
1805		 */
1806		if (child->state > DS_ALIVE && best->driver != child->driver)
1807			if ((result = device_detach(dev)) != 0)
1808				return (result);
1809
1810		/* Set the winning driver, devclass, and flags. */
1811		if (!child->devclass)
1812			device_set_devclass(child, best->driver->name);
1813		device_set_driver(child, best->driver);
1814		resource_int_value(best->driver->name, child->unit,
1815		    "flags", &child->devflags);
1816
1817		if (pri < 0) {
1818			/*
1819			 * A bit bogus. Call the probe method again to make
1820			 * sure that we have the right description.
1821			 */
1822			DEVICE_PROBE(child);
1823#if 0
1824			child->flags |= DF_REBID;
1825#endif
1826		} else
1827			child->flags &= ~DF_REBID;
1828		child->state = DS_ALIVE;
1829
1830		bus_data_generation_update();
1831		return (0);
1832	}
1833
1834	return (ENXIO);
1835}
1836
1837/**
1838 * @brief Return the parent of a device
1839 */
1840device_t
1841device_get_parent(device_t dev)
1842{
1843	return (dev->parent);
1844}
1845
1846/**
1847 * @brief Get a list of children of a device
1848 *
1849 * An array containing a list of all the children of the given device
1850 * is allocated and returned in @p *devlistp. The number of devices
1851 * in the array is returned in @p *devcountp. The caller should free
1852 * the array using @c free(p, M_TEMP).
1853 *
1854 * @param dev		the device to examine
1855 * @param devlistp	points at location for array pointer return
1856 *			value
1857 * @param devcountp	points at location for array size return value
1858 *
1859 * @retval 0		success
1860 * @retval ENOMEM	the array allocation failed
1861 */
1862int
1863device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1864{
1865	int count;
1866	device_t child;
1867	device_t *list;
1868
1869	count = 0;
1870	TAILQ_FOREACH(child, &dev->children, link) {
1871		count++;
1872	}
1873
1874	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1875	if (!list)
1876		return (ENOMEM);
1877
1878	count = 0;
1879	TAILQ_FOREACH(child, &dev->children, link) {
1880		list[count] = child;
1881		count++;
1882	}
1883
1884	*devlistp = list;
1885	*devcountp = count;
1886
1887	return (0);
1888}
1889
1890/**
1891 * @brief Return the current driver for the device or @c NULL if there
1892 * is no driver currently attached
1893 */
1894driver_t *
1895device_get_driver(device_t dev)
1896{
1897	return (dev->driver);
1898}
1899
1900/**
1901 * @brief Return the current devclass for the device or @c NULL if
1902 * there is none.
1903 */
1904devclass_t
1905device_get_devclass(device_t dev)
1906{
1907	return (dev->devclass);
1908}
1909
1910/**
1911 * @brief Return the name of the device's devclass or @c NULL if there
1912 * is none.
1913 */
1914const char *
1915device_get_name(device_t dev)
1916{
1917	if (dev != NULL && dev->devclass)
1918		return (devclass_get_name(dev->devclass));
1919	return (NULL);
1920}
1921
1922/**
1923 * @brief Return a string containing the device's devclass name
1924 * followed by an ascii representation of the device's unit number
1925 * (e.g. @c "foo2").
1926 */
1927const char *
1928device_get_nameunit(device_t dev)
1929{
1930	return (dev->nameunit);
1931}
1932
1933/**
1934 * @brief Return the device's unit number.
1935 */
1936int
1937device_get_unit(device_t dev)
1938{
1939	return (dev->unit);
1940}
1941
1942/**
1943 * @brief Return the device's description string
1944 */
1945const char *
1946device_get_desc(device_t dev)
1947{
1948	return (dev->desc);
1949}
1950
1951/**
1952 * @brief Return the device's flags
1953 */
1954u_int32_t
1955device_get_flags(device_t dev)
1956{
1957	return (dev->devflags);
1958}
1959
1960struct sysctl_ctx_list *
1961device_get_sysctl_ctx(device_t dev)
1962{
1963	return (&dev->sysctl_ctx);
1964}
1965
1966struct sysctl_oid *
1967device_get_sysctl_tree(device_t dev)
1968{
1969	return (dev->sysctl_tree);
1970}
1971
1972/**
1973 * @brief Print the name of the device followed by a colon and a space
1974 *
1975 * @returns the number of characters printed
1976 */
1977int
1978device_print_prettyname(device_t dev)
1979{
1980	const char *name = device_get_name(dev);
1981
1982	if (name == 0)
1983		return (printf("unknown: "));
1984	return (printf("%s%d: ", name, device_get_unit(dev)));
1985}
1986
1987/**
1988 * @brief Print the name of the device followed by a colon, a space
1989 * and the result of calling vprintf() with the value of @p fmt and
1990 * the following arguments.
1991 *
1992 * @returns the number of characters printed
1993 */
1994int
1995device_printf(device_t dev, const char * fmt, ...)
1996{
1997	va_list ap;
1998	int retval;
1999
2000	retval = device_print_prettyname(dev);
2001	va_start(ap, fmt);
2002	retval += vprintf(fmt, ap);
2003	va_end(ap);
2004	return (retval);
2005}
2006
2007/**
2008 * @internal
2009 */
2010static void
2011device_set_desc_internal(device_t dev, const char* desc, int copy)
2012{
2013	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2014		free(dev->desc, M_BUS);
2015		dev->flags &= ~DF_DESCMALLOCED;
2016		dev->desc = NULL;
2017	}
2018
2019	if (copy && desc) {
2020		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2021		if (dev->desc) {
2022			strcpy(dev->desc, desc);
2023			dev->flags |= DF_DESCMALLOCED;
2024		}
2025	} else {
2026		/* Avoid a -Wcast-qual warning */
2027		dev->desc = (char *)(uintptr_t) desc;
2028	}
2029
2030	bus_data_generation_update();
2031}
2032
2033/**
2034 * @brief Set the device's description
2035 *
2036 * The value of @c desc should be a string constant that will not
2037 * change (at least until the description is changed in a subsequent
2038 * call to device_set_desc() or device_set_desc_copy()).
2039 */
2040void
2041device_set_desc(device_t dev, const char* desc)
2042{
2043	device_set_desc_internal(dev, desc, FALSE);
2044}
2045
2046/**
2047 * @brief Set the device's description
2048 *
2049 * The string pointed to by @c desc is copied. Use this function if
2050 * the device description is generated, (e.g. with sprintf()).
2051 */
2052void
2053device_set_desc_copy(device_t dev, const char* desc)
2054{
2055	device_set_desc_internal(dev, desc, TRUE);
2056}
2057
2058/**
2059 * @brief Set the device's flags
2060 */
2061void
2062device_set_flags(device_t dev, u_int32_t flags)
2063{
2064	dev->devflags = flags;
2065}
2066
2067/**
2068 * @brief Return the device's softc field
2069 *
2070 * The softc is allocated and zeroed when a driver is attached, based
2071 * on the size field of the driver.
2072 */
2073void *
2074device_get_softc(device_t dev)
2075{
2076	return (dev->softc);
2077}
2078
2079/**
2080 * @brief Set the device's softc field
2081 *
2082 * Most drivers do not need to use this since the softc is allocated
2083 * automatically when the driver is attached.
2084 */
2085void
2086device_set_softc(device_t dev, void *softc)
2087{
2088	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2089		free(dev->softc, M_BUS_SC);
2090	dev->softc = softc;
2091	if (dev->softc)
2092		dev->flags |= DF_EXTERNALSOFTC;
2093	else
2094		dev->flags &= ~DF_EXTERNALSOFTC;
2095}
2096
2097/**
2098 * @brief Get the device's ivars field
2099 *
2100 * The ivars field is used by the parent device to store per-device
2101 * state (e.g. the physical location of the device or a list of
2102 * resources).
2103 */
2104void *
2105device_get_ivars(device_t dev)
2106{
2107
2108	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2109	return (dev->ivars);
2110}
2111
2112/**
2113 * @brief Set the device's ivars field
2114 */
2115void
2116device_set_ivars(device_t dev, void * ivars)
2117{
2118
2119	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2120	dev->ivars = ivars;
2121}
2122
2123/**
2124 * @brief Return the device's state
2125 */
2126device_state_t
2127device_get_state(device_t dev)
2128{
2129	return (dev->state);
2130}
2131
2132/**
2133 * @brief Set the DF_ENABLED flag for the device
2134 */
2135void
2136device_enable(device_t dev)
2137{
2138	dev->flags |= DF_ENABLED;
2139}
2140
2141/**
2142 * @brief Clear the DF_ENABLED flag for the device
2143 */
2144void
2145device_disable(device_t dev)
2146{
2147	dev->flags &= ~DF_ENABLED;
2148}
2149
2150/**
2151 * @brief Increment the busy counter for the device
2152 */
2153void
2154device_busy(device_t dev)
2155{
2156	if (dev->state < DS_ATTACHED)
2157		panic("device_busy: called for unattached device");
2158	if (dev->busy == 0 && dev->parent)
2159		device_busy(dev->parent);
2160	dev->busy++;
2161	dev->state = DS_BUSY;
2162}
2163
2164/**
2165 * @brief Decrement the busy counter for the device
2166 */
2167void
2168device_unbusy(device_t dev)
2169{
2170	if (dev->state != DS_BUSY)
2171		panic("device_unbusy: called for non-busy device %s",
2172		    device_get_nameunit(dev));
2173	dev->busy--;
2174	if (dev->busy == 0) {
2175		if (dev->parent)
2176			device_unbusy(dev->parent);
2177		dev->state = DS_ATTACHED;
2178	}
2179}
2180
2181/**
2182 * @brief Set the DF_QUIET flag for the device
2183 */
2184void
2185device_quiet(device_t dev)
2186{
2187	dev->flags |= DF_QUIET;
2188}
2189
2190/**
2191 * @brief Clear the DF_QUIET flag for the device
2192 */
2193void
2194device_verbose(device_t dev)
2195{
2196	dev->flags &= ~DF_QUIET;
2197}
2198
2199/**
2200 * @brief Return non-zero if the DF_QUIET flag is set on the device
2201 */
2202int
2203device_is_quiet(device_t dev)
2204{
2205	return ((dev->flags & DF_QUIET) != 0);
2206}
2207
2208/**
2209 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2210 */
2211int
2212device_is_enabled(device_t dev)
2213{
2214	return ((dev->flags & DF_ENABLED) != 0);
2215}
2216
2217/**
2218 * @brief Return non-zero if the device was successfully probed
2219 */
2220int
2221device_is_alive(device_t dev)
2222{
2223	return (dev->state >= DS_ALIVE);
2224}
2225
2226/**
2227 * @brief Return non-zero if the device currently has a driver
2228 * attached to it
2229 */
2230int
2231device_is_attached(device_t dev)
2232{
2233	return (dev->state >= DS_ATTACHED);
2234}
2235
2236/**
2237 * @brief Set the devclass of a device
2238 * @see devclass_add_device().
2239 */
2240int
2241device_set_devclass(device_t dev, const char *classname)
2242{
2243	devclass_t dc;
2244	int error;
2245
2246	if (!classname) {
2247		if (dev->devclass)
2248			devclass_delete_device(dev->devclass, dev);
2249		return (0);
2250	}
2251
2252	if (dev->devclass) {
2253		printf("device_set_devclass: device class already set\n");
2254		return (EINVAL);
2255	}
2256
2257	dc = devclass_find_internal(classname, NULL, TRUE);
2258	if (!dc)
2259		return (ENOMEM);
2260
2261	error = devclass_add_device(dc, dev);
2262
2263	bus_data_generation_update();
2264	return (error);
2265}
2266
2267/**
2268 * @brief Set the driver of a device
2269 *
2270 * @retval 0		success
2271 * @retval EBUSY	the device already has a driver attached
2272 * @retval ENOMEM	a memory allocation failure occurred
2273 */
2274int
2275device_set_driver(device_t dev, driver_t *driver)
2276{
2277	if (dev->state >= DS_ATTACHED)
2278		return (EBUSY);
2279
2280	if (dev->driver == driver)
2281		return (0);
2282
2283	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2284		free(dev->softc, M_BUS_SC);
2285		dev->softc = NULL;
2286	}
2287	kobj_delete((kobj_t) dev, NULL);
2288	dev->driver = driver;
2289	if (driver) {
2290		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2291		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2292			dev->softc = malloc(driver->size, M_BUS_SC,
2293			    M_NOWAIT | M_ZERO);
2294			if (!dev->softc) {
2295				kobj_delete((kobj_t) dev, NULL);
2296				kobj_init((kobj_t) dev, &null_class);
2297				dev->driver = NULL;
2298				return (ENOMEM);
2299			}
2300		}
2301	} else {
2302		kobj_init((kobj_t) dev, &null_class);
2303	}
2304
2305	bus_data_generation_update();
2306	return (0);
2307}
2308
2309/**
2310 * @brief Probe a device and attach a driver if possible
2311 *
2312 * This function is the core of the device autoconfiguration
2313 * system. Its purpose is to select a suitable driver for a device and
2314 * then call that driver to initialise the hardware appropriately. The
2315 * driver is selected by calling the DEVICE_PROBE() method of a set of
2316 * candidate drivers and then choosing the driver which returned the
2317 * best value. This driver is then attached to the device using
2318 * device_attach().
2319 *
2320 * The set of suitable drivers is taken from the list of drivers in
2321 * the parent device's devclass. If the device was originally created
2322 * with a specific class name (see device_add_child()), only drivers
2323 * with that name are probed, otherwise all drivers in the devclass
2324 * are probed. If no drivers return successful probe values in the
2325 * parent devclass, the search continues in the parent of that
2326 * devclass (see devclass_get_parent()) if any.
2327 *
2328 * @param dev		the device to initialise
2329 *
2330 * @retval 0		success
2331 * @retval ENXIO	no driver was found
2332 * @retval ENOMEM	memory allocation failure
2333 * @retval non-zero	some other unix error code
2334 */
2335int
2336device_probe_and_attach(device_t dev)
2337{
2338	int error;
2339
2340	GIANT_REQUIRED;
2341
2342	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2343		return (0);
2344
2345	if (!(dev->flags & DF_ENABLED)) {
2346		if (bootverbose && device_get_name(dev) != NULL) {
2347			device_print_prettyname(dev);
2348			printf("not probed (disabled)\n");
2349		}
2350		return (0);
2351	}
2352	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2353		if (!(dev->flags & DF_DONENOMATCH)) {
2354			BUS_PROBE_NOMATCH(dev->parent, dev);
2355			devnomatch(dev);
2356			dev->flags |= DF_DONENOMATCH;
2357		}
2358		return (error);
2359	}
2360	error = device_attach(dev);
2361
2362	return (error);
2363}
2364
2365/**
2366 * @brief Attach a device driver to a device
2367 *
2368 * This function is a wrapper around the DEVICE_ATTACH() driver
2369 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2370 * device's sysctl tree, optionally prints a description of the device
2371 * and queues a notification event for user-based device management
2372 * services.
2373 *
2374 * Normally this function is only called internally from
2375 * device_probe_and_attach().
2376 *
2377 * @param dev		the device to initialise
2378 *
2379 * @retval 0		success
2380 * @retval ENXIO	no driver was found
2381 * @retval ENOMEM	memory allocation failure
2382 * @retval non-zero	some other unix error code
2383 */
2384int
2385device_attach(device_t dev)
2386{
2387	int error;
2388
2389	device_sysctl_init(dev);
2390	if (!device_is_quiet(dev))
2391		device_print_child(dev->parent, dev);
2392	if ((error = DEVICE_ATTACH(dev)) != 0) {
2393		printf("device_attach: %s%d attach returned %d\n",
2394		    dev->driver->name, dev->unit, error);
2395		/* Unset the class; set in device_probe_child */
2396		if (dev->devclass == NULL)
2397			device_set_devclass(dev, NULL);
2398		device_set_driver(dev, NULL);
2399		device_sysctl_fini(dev);
2400		dev->state = DS_NOTPRESENT;
2401		return (error);
2402	}
2403	device_sysctl_update(dev);
2404	dev->state = DS_ATTACHED;
2405	devadded(dev);
2406	return (0);
2407}
2408
2409/**
2410 * @brief Detach a driver from a device
2411 *
2412 * This function is a wrapper around the DEVICE_DETACH() driver
2413 * method. If the call to DEVICE_DETACH() succeeds, it calls
2414 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2415 * notification event for user-based device management services and
2416 * cleans up the device's sysctl tree.
2417 *
2418 * @param dev		the device to un-initialise
2419 *
2420 * @retval 0		success
2421 * @retval ENXIO	no driver was found
2422 * @retval ENOMEM	memory allocation failure
2423 * @retval non-zero	some other unix error code
2424 */
2425int
2426device_detach(device_t dev)
2427{
2428	int error;
2429
2430	GIANT_REQUIRED;
2431
2432	PDEBUG(("%s", DEVICENAME(dev)));
2433	if (dev->state == DS_BUSY)
2434		return (EBUSY);
2435	if (dev->state != DS_ATTACHED)
2436		return (0);
2437
2438	if ((error = DEVICE_DETACH(dev)) != 0)
2439		return (error);
2440	devremoved(dev);
2441	device_printf(dev, "detached\n");
2442	if (dev->parent)
2443		BUS_CHILD_DETACHED(dev->parent, dev);
2444
2445	if (!(dev->flags & DF_FIXEDCLASS))
2446		devclass_delete_device(dev->devclass, dev);
2447
2448	dev->state = DS_NOTPRESENT;
2449	device_set_driver(dev, NULL);
2450	device_set_desc(dev, NULL);
2451	device_sysctl_fini(dev);
2452
2453	return (0);
2454}
2455
2456/**
2457 * @brief Tells a driver to quiesce itself.
2458 *
2459 * This function is a wrapper around the DEVICE_QUIESCE() driver
2460 * method. If the call to DEVICE_QUIESCE() succeeds.
2461 *
2462 * @param dev		the device to quiesce
2463 *
2464 * @retval 0		success
2465 * @retval ENXIO	no driver was found
2466 * @retval ENOMEM	memory allocation failure
2467 * @retval non-zero	some other unix error code
2468 */
2469int
2470device_quiesce(device_t dev)
2471{
2472
2473	PDEBUG(("%s", DEVICENAME(dev)));
2474	if (dev->state == DS_BUSY)
2475		return (EBUSY);
2476	if (dev->state != DS_ATTACHED)
2477		return (0);
2478
2479	return (DEVICE_QUIESCE(dev));
2480}
2481
2482/**
2483 * @brief Notify a device of system shutdown
2484 *
2485 * This function calls the DEVICE_SHUTDOWN() driver method if the
2486 * device currently has an attached driver.
2487 *
2488 * @returns the value returned by DEVICE_SHUTDOWN()
2489 */
2490int
2491device_shutdown(device_t dev)
2492{
2493	if (dev->state < DS_ATTACHED)
2494		return (0);
2495	return (DEVICE_SHUTDOWN(dev));
2496}
2497
2498/**
2499 * @brief Set the unit number of a device
2500 *
2501 * This function can be used to override the unit number used for a
2502 * device (e.g. to wire a device to a pre-configured unit number).
2503 */
2504int
2505device_set_unit(device_t dev, int unit)
2506{
2507	devclass_t dc;
2508	int err;
2509
2510	dc = device_get_devclass(dev);
2511	if (unit < dc->maxunit && dc->devices[unit])
2512		return (EBUSY);
2513	err = devclass_delete_device(dc, dev);
2514	if (err)
2515		return (err);
2516	dev->unit = unit;
2517	err = devclass_add_device(dc, dev);
2518	if (err)
2519		return (err);
2520
2521	bus_data_generation_update();
2522	return (0);
2523}
2524
2525/*======================================*/
2526/*
2527 * Some useful method implementations to make life easier for bus drivers.
2528 */
2529
2530/**
2531 * @brief Initialise a resource list.
2532 *
2533 * @param rl		the resource list to initialise
2534 */
2535void
2536resource_list_init(struct resource_list *rl)
2537{
2538	STAILQ_INIT(rl);
2539}
2540
2541/**
2542 * @brief Reclaim memory used by a resource list.
2543 *
2544 * This function frees the memory for all resource entries on the list
2545 * (if any).
2546 *
2547 * @param rl		the resource list to free
2548 */
2549void
2550resource_list_free(struct resource_list *rl)
2551{
2552	struct resource_list_entry *rle;
2553
2554	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2555		if (rle->res)
2556			panic("resource_list_free: resource entry is busy");
2557		STAILQ_REMOVE_HEAD(rl, link);
2558		free(rle, M_BUS);
2559	}
2560}
2561
2562/**
2563 * @brief Add a resource entry.
2564 *
2565 * This function adds a resource entry using the given @p type, @p
2566 * start, @p end and @p count values. A rid value is chosen by
2567 * searching sequentially for the first unused rid starting at zero.
2568 *
2569 * @param rl		the resource list to edit
2570 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2571 * @param start		the start address of the resource
2572 * @param end		the end address of the resource
2573 * @param count		XXX end-start+1
2574 */
2575int
2576resource_list_add_next(struct resource_list *rl, int type, u_long start,
2577    u_long end, u_long count)
2578{
2579	int rid;
2580
2581	rid = 0;
2582	while (resource_list_find(rl, type, rid) != NULL)
2583		rid++;
2584	resource_list_add(rl, type, rid, start, end, count);
2585	return (rid);
2586}
2587
2588/**
2589 * @brief Add or modify a resource entry.
2590 *
2591 * If an existing entry exists with the same type and rid, it will be
2592 * modified using the given values of @p start, @p end and @p
2593 * count. If no entry exists, a new one will be created using the
2594 * given values.  The resource list entry that matches is then returned.
2595 *
2596 * @param rl		the resource list to edit
2597 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2598 * @param rid		the resource identifier
2599 * @param start		the start address of the resource
2600 * @param end		the end address of the resource
2601 * @param count		XXX end-start+1
2602 */
2603struct resource_list_entry *
2604resource_list_add(struct resource_list *rl, int type, int rid,
2605    u_long start, u_long end, u_long count)
2606{
2607	struct resource_list_entry *rle;
2608
2609	rle = resource_list_find(rl, type, rid);
2610	if (!rle) {
2611		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2612		    M_NOWAIT);
2613		if (!rle)
2614			panic("resource_list_add: can't record entry");
2615		STAILQ_INSERT_TAIL(rl, rle, link);
2616		rle->type = type;
2617		rle->rid = rid;
2618		rle->res = NULL;
2619	}
2620
2621	if (rle->res)
2622		panic("resource_list_add: resource entry is busy");
2623
2624	rle->start = start;
2625	rle->end = end;
2626	rle->count = count;
2627	return (rle);
2628}
2629
2630/**
2631 * @brief Find a resource entry by type and rid.
2632 *
2633 * @param rl		the resource list to search
2634 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2635 * @param rid		the resource identifier
2636 *
2637 * @returns the resource entry pointer or NULL if there is no such
2638 * entry.
2639 */
2640struct resource_list_entry *
2641resource_list_find(struct resource_list *rl, int type, int rid)
2642{
2643	struct resource_list_entry *rle;
2644
2645	STAILQ_FOREACH(rle, rl, link) {
2646		if (rle->type == type && rle->rid == rid)
2647			return (rle);
2648	}
2649	return (NULL);
2650}
2651
2652/**
2653 * @brief Delete a resource entry.
2654 *
2655 * @param rl		the resource list to edit
2656 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2657 * @param rid		the resource identifier
2658 */
2659void
2660resource_list_delete(struct resource_list *rl, int type, int rid)
2661{
2662	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2663
2664	if (rle) {
2665		if (rle->res != NULL)
2666			panic("resource_list_delete: resource has not been released");
2667		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2668		free(rle, M_BUS);
2669	}
2670}
2671
2672/**
2673 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2674 *
2675 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2676 * and passing the allocation up to the parent of @p bus. This assumes
2677 * that the first entry of @c device_get_ivars(child) is a struct
2678 * resource_list. This also handles 'passthrough' allocations where a
2679 * child is a remote descendant of bus by passing the allocation up to
2680 * the parent of bus.
2681 *
2682 * Typically, a bus driver would store a list of child resources
2683 * somewhere in the child device's ivars (see device_get_ivars()) and
2684 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2685 * then call resource_list_alloc() to perform the allocation.
2686 *
2687 * @param rl		the resource list to allocate from
2688 * @param bus		the parent device of @p child
2689 * @param child		the device which is requesting an allocation
2690 * @param type		the type of resource to allocate
2691 * @param rid		a pointer to the resource identifier
2692 * @param start		hint at the start of the resource range - pass
2693 *			@c 0UL for any start address
2694 * @param end		hint at the end of the resource range - pass
2695 *			@c ~0UL for any end address
2696 * @param count		hint at the size of range required - pass @c 1
2697 *			for any size
2698 * @param flags		any extra flags to control the resource
2699 *			allocation - see @c RF_XXX flags in
2700 *			<sys/rman.h> for details
2701 *
2702 * @returns		the resource which was allocated or @c NULL if no
2703 *			resource could be allocated
2704 */
2705struct resource *
2706resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2707    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2708{
2709	struct resource_list_entry *rle = NULL;
2710	int passthrough = (device_get_parent(child) != bus);
2711	int isdefault = (start == 0UL && end == ~0UL);
2712
2713	if (passthrough) {
2714		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2715		    type, rid, start, end, count, flags));
2716	}
2717
2718	rle = resource_list_find(rl, type, *rid);
2719
2720	if (!rle)
2721		return (NULL);		/* no resource of that type/rid */
2722
2723	if (rle->res)
2724		panic("resource_list_alloc: resource entry is busy");
2725
2726	if (isdefault) {
2727		start = rle->start;
2728		count = ulmax(count, rle->count);
2729		end = ulmax(rle->end, start + count - 1);
2730	}
2731
2732	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2733	    type, rid, start, end, count, flags);
2734
2735	/*
2736	 * Record the new range.
2737	 */
2738	if (rle->res) {
2739		rle->start = rman_get_start(rle->res);
2740		rle->end = rman_get_end(rle->res);
2741		rle->count = count;
2742	}
2743
2744	return (rle->res);
2745}
2746
2747/**
2748 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2749 *
2750 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2751 * used with resource_list_alloc().
2752 *
2753 * @param rl		the resource list which was allocated from
2754 * @param bus		the parent device of @p child
2755 * @param child		the device which is requesting a release
2756 * @param type		the type of resource to allocate
2757 * @param rid		the resource identifier
2758 * @param res		the resource to release
2759 *
2760 * @retval 0		success
2761 * @retval non-zero	a standard unix error code indicating what
2762 *			error condition prevented the operation
2763 */
2764int
2765resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2766    int type, int rid, struct resource *res)
2767{
2768	struct resource_list_entry *rle = NULL;
2769	int passthrough = (device_get_parent(child) != bus);
2770	int error;
2771
2772	if (passthrough) {
2773		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2774		    type, rid, res));
2775	}
2776
2777	rle = resource_list_find(rl, type, rid);
2778
2779	if (!rle)
2780		panic("resource_list_release: can't find resource");
2781	if (!rle->res)
2782		panic("resource_list_release: resource entry is not busy");
2783
2784	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2785	    type, rid, res);
2786	if (error)
2787		return (error);
2788
2789	rle->res = NULL;
2790	return (0);
2791}
2792
2793/**
2794 * @brief Print a description of resources in a resource list
2795 *
2796 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2797 * The name is printed if at least one resource of the given type is available.
2798 * The format is used to print resource start and end.
2799 *
2800 * @param rl		the resource list to print
2801 * @param name		the name of @p type, e.g. @c "memory"
2802 * @param type		type type of resource entry to print
2803 * @param format	printf(9) format string to print resource
2804 *			start and end values
2805 *
2806 * @returns		the number of characters printed
2807 */
2808int
2809resource_list_print_type(struct resource_list *rl, const char *name, int type,
2810    const char *format)
2811{
2812	struct resource_list_entry *rle;
2813	int printed, retval;
2814
2815	printed = 0;
2816	retval = 0;
2817	/* Yes, this is kinda cheating */
2818	STAILQ_FOREACH(rle, rl, link) {
2819		if (rle->type == type) {
2820			if (printed == 0)
2821				retval += printf(" %s ", name);
2822			else
2823				retval += printf(",");
2824			printed++;
2825			retval += printf(format, rle->start);
2826			if (rle->count > 1) {
2827				retval += printf("-");
2828				retval += printf(format, rle->start +
2829						 rle->count - 1);
2830			}
2831		}
2832	}
2833	return (retval);
2834}
2835
2836/**
2837 * @brief Releases all the resources in a list.
2838 *
2839 * @param rl		The resource list to purge.
2840 *
2841 * @returns		nothing
2842 */
2843void
2844resource_list_purge(struct resource_list *rl)
2845{
2846	struct resource_list_entry *rle;
2847
2848	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2849		if (rle->res)
2850			bus_release_resource(rman_get_device(rle->res),
2851			    rle->type, rle->rid, rle->res);
2852		STAILQ_REMOVE_HEAD(rl, link);
2853		free(rle, M_BUS);
2854	}
2855}
2856
2857device_t
2858bus_generic_add_child(device_t dev, int order, const char *name, int unit)
2859{
2860
2861	return (device_add_child_ordered(dev, order, name, unit));
2862}
2863
2864/**
2865 * @brief Helper function for implementing DEVICE_PROBE()
2866 *
2867 * This function can be used to help implement the DEVICE_PROBE() for
2868 * a bus (i.e. a device which has other devices attached to it). It
2869 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2870 * devclass.
2871 */
2872int
2873bus_generic_probe(device_t dev)
2874{
2875	devclass_t dc = dev->devclass;
2876	driverlink_t dl;
2877
2878	TAILQ_FOREACH(dl, &dc->drivers, link) {
2879		DEVICE_IDENTIFY(dl->driver, dev);
2880	}
2881
2882	return (0);
2883}
2884
2885/**
2886 * @brief Helper function for implementing DEVICE_ATTACH()
2887 *
2888 * This function can be used to help implement the DEVICE_ATTACH() for
2889 * a bus. It calls device_probe_and_attach() for each of the device's
2890 * children.
2891 */
2892int
2893bus_generic_attach(device_t dev)
2894{
2895	device_t child;
2896
2897	TAILQ_FOREACH(child, &dev->children, link) {
2898		device_probe_and_attach(child);
2899	}
2900
2901	return (0);
2902}
2903
2904/**
2905 * @brief Helper function for implementing DEVICE_DETACH()
2906 *
2907 * This function can be used to help implement the DEVICE_DETACH() for
2908 * a bus. It calls device_detach() for each of the device's
2909 * children.
2910 */
2911int
2912bus_generic_detach(device_t dev)
2913{
2914	device_t child;
2915	int error;
2916
2917	if (dev->state != DS_ATTACHED)
2918		return (EBUSY);
2919
2920	TAILQ_FOREACH(child, &dev->children, link) {
2921		if ((error = device_detach(child)) != 0)
2922			return (error);
2923	}
2924
2925	return (0);
2926}
2927
2928/**
2929 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2930 *
2931 * This function can be used to help implement the DEVICE_SHUTDOWN()
2932 * for a bus. It calls device_shutdown() for each of the device's
2933 * children.
2934 */
2935int
2936bus_generic_shutdown(device_t dev)
2937{
2938	device_t child;
2939
2940	TAILQ_FOREACH(child, &dev->children, link) {
2941		device_shutdown(child);
2942	}
2943
2944	return (0);
2945}
2946
2947/**
2948 * @brief Helper function for implementing DEVICE_SUSPEND()
2949 *
2950 * This function can be used to help implement the DEVICE_SUSPEND()
2951 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2952 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2953 * operation is aborted and any devices which were suspended are
2954 * resumed immediately by calling their DEVICE_RESUME() methods.
2955 */
2956int
2957bus_generic_suspend(device_t dev)
2958{
2959	int		error;
2960	device_t	child, child2;
2961
2962	TAILQ_FOREACH(child, &dev->children, link) {
2963		error = DEVICE_SUSPEND(child);
2964		if (error) {
2965			for (child2 = TAILQ_FIRST(&dev->children);
2966			     child2 && child2 != child;
2967			     child2 = TAILQ_NEXT(child2, link))
2968				DEVICE_RESUME(child2);
2969			return (error);
2970		}
2971	}
2972	return (0);
2973}
2974
2975/**
2976 * @brief Helper function for implementing DEVICE_RESUME()
2977 *
2978 * This function can be used to help implement the DEVICE_RESUME() for
2979 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2980 */
2981int
2982bus_generic_resume(device_t dev)
2983{
2984	device_t	child;
2985
2986	TAILQ_FOREACH(child, &dev->children, link) {
2987		DEVICE_RESUME(child);
2988		/* if resume fails, there's nothing we can usefully do... */
2989	}
2990	return (0);
2991}
2992
2993/**
2994 * @brief Helper function for implementing BUS_PRINT_CHILD().
2995 *
2996 * This function prints the first part of the ascii representation of
2997 * @p child, including its name, unit and description (if any - see
2998 * device_set_desc()).
2999 *
3000 * @returns the number of characters printed
3001 */
3002int
3003bus_print_child_header(device_t dev, device_t child)
3004{
3005	int	retval = 0;
3006
3007	if (device_get_desc(child)) {
3008		retval += device_printf(child, "<%s>", device_get_desc(child));
3009	} else {
3010		retval += printf("%s", device_get_nameunit(child));
3011	}
3012
3013	return (retval);
3014}
3015
3016/**
3017 * @brief Helper function for implementing BUS_PRINT_CHILD().
3018 *
3019 * This function prints the last part of the ascii representation of
3020 * @p child, which consists of the string @c " on " followed by the
3021 * name and unit of the @p dev.
3022 *
3023 * @returns the number of characters printed
3024 */
3025int
3026bus_print_child_footer(device_t dev, device_t child)
3027{
3028	return (printf(" on %s\n", device_get_nameunit(dev)));
3029}
3030
3031/**
3032 * @brief Helper function for implementing BUS_PRINT_CHILD().
3033 *
3034 * This function simply calls bus_print_child_header() followed by
3035 * bus_print_child_footer().
3036 *
3037 * @returns the number of characters printed
3038 */
3039int
3040bus_generic_print_child(device_t dev, device_t child)
3041{
3042	int	retval = 0;
3043
3044	retval += bus_print_child_header(dev, child);
3045	retval += bus_print_child_footer(dev, child);
3046
3047	return (retval);
3048}
3049
3050/**
3051 * @brief Stub function for implementing BUS_READ_IVAR().
3052 *
3053 * @returns ENOENT
3054 */
3055int
3056bus_generic_read_ivar(device_t dev, device_t child, int index,
3057    uintptr_t * result)
3058{
3059	return (ENOENT);
3060}
3061
3062/**
3063 * @brief Stub function for implementing BUS_WRITE_IVAR().
3064 *
3065 * @returns ENOENT
3066 */
3067int
3068bus_generic_write_ivar(device_t dev, device_t child, int index,
3069    uintptr_t value)
3070{
3071	return (ENOENT);
3072}
3073
3074/**
3075 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3076 *
3077 * @returns NULL
3078 */
3079struct resource_list *
3080bus_generic_get_resource_list(device_t dev, device_t child)
3081{
3082	return (NULL);
3083}
3084
3085/**
3086 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3087 *
3088 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3089 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3090 * and then calls device_probe_and_attach() for each unattached child.
3091 */
3092void
3093bus_generic_driver_added(device_t dev, driver_t *driver)
3094{
3095	device_t child;
3096
3097	DEVICE_IDENTIFY(driver, dev);
3098	TAILQ_FOREACH(child, &dev->children, link) {
3099		if (child->state == DS_NOTPRESENT ||
3100		    (child->flags & DF_REBID))
3101			device_probe_and_attach(child);
3102	}
3103}
3104
3105/**
3106 * @brief Helper function for implementing BUS_SETUP_INTR().
3107 *
3108 * This simple implementation of BUS_SETUP_INTR() simply calls the
3109 * BUS_SETUP_INTR() method of the parent of @p dev.
3110 */
3111int
3112bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3113    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3114    void **cookiep)
3115{
3116	/* Propagate up the bus hierarchy until someone handles it. */
3117	if (dev->parent)
3118		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3119		    filter, intr, arg, cookiep));
3120	return (EINVAL);
3121}
3122
3123/**
3124 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3125 *
3126 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3127 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3128 */
3129int
3130bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3131    void *cookie)
3132{
3133	/* Propagate up the bus hierarchy until someone handles it. */
3134	if (dev->parent)
3135		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3136	return (EINVAL);
3137}
3138
3139/**
3140 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3141 *
3142 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3143 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3144 */
3145struct resource *
3146bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3147    u_long start, u_long end, u_long count, u_int flags)
3148{
3149	/* Propagate up the bus hierarchy until someone handles it. */
3150	if (dev->parent)
3151		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3152		    start, end, count, flags));
3153	return (NULL);
3154}
3155
3156/**
3157 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3158 *
3159 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3160 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3161 */
3162int
3163bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3164    struct resource *r)
3165{
3166	/* Propagate up the bus hierarchy until someone handles it. */
3167	if (dev->parent)
3168		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3169		    r));
3170	return (EINVAL);
3171}
3172
3173/**
3174 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3175 *
3176 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3177 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3178 */
3179int
3180bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3181    struct resource *r)
3182{
3183	/* Propagate up the bus hierarchy until someone handles it. */
3184	if (dev->parent)
3185		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3186		    r));
3187	return (EINVAL);
3188}
3189
3190/**
3191 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3192 *
3193 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3194 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3195 */
3196int
3197bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3198    int rid, struct resource *r)
3199{
3200	/* Propagate up the bus hierarchy until someone handles it. */
3201	if (dev->parent)
3202		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3203		    r));
3204	return (EINVAL);
3205}
3206
3207/**
3208 * @brief Helper function for implementing BUS_CONFIG_INTR().
3209 *
3210 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3211 * BUS_CONFIG_INTR() method of the parent of @p dev.
3212 */
3213int
3214bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3215    enum intr_polarity pol)
3216{
3217
3218	/* Propagate up the bus hierarchy until someone handles it. */
3219	if (dev->parent)
3220		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3221	return (EINVAL);
3222}
3223
3224/**
3225 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3226 *
3227 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3228 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3229 */
3230bus_dma_tag_t
3231bus_generic_get_dma_tag(device_t dev, device_t child)
3232{
3233
3234	/* Propagate up the bus hierarchy until someone handles it. */
3235	if (dev->parent != NULL)
3236		return (BUS_GET_DMA_TAG(dev->parent, child));
3237	return (NULL);
3238}
3239
3240/**
3241 * @brief Helper function for implementing BUS_GET_RESOURCE().
3242 *
3243 * This implementation of BUS_GET_RESOURCE() uses the
3244 * resource_list_find() function to do most of the work. It calls
3245 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3246 * search.
3247 */
3248int
3249bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3250    u_long *startp, u_long *countp)
3251{
3252	struct resource_list *		rl = NULL;
3253	struct resource_list_entry *	rle = NULL;
3254
3255	rl = BUS_GET_RESOURCE_LIST(dev, child);
3256	if (!rl)
3257		return (EINVAL);
3258
3259	rle = resource_list_find(rl, type, rid);
3260	if (!rle)
3261		return (ENOENT);
3262
3263	if (startp)
3264		*startp = rle->start;
3265	if (countp)
3266		*countp = rle->count;
3267
3268	return (0);
3269}
3270
3271/**
3272 * @brief Helper function for implementing BUS_SET_RESOURCE().
3273 *
3274 * This implementation of BUS_SET_RESOURCE() uses the
3275 * resource_list_add() function to do most of the work. It calls
3276 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3277 * edit.
3278 */
3279int
3280bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3281    u_long start, u_long count)
3282{
3283	struct resource_list *		rl = NULL;
3284
3285	rl = BUS_GET_RESOURCE_LIST(dev, child);
3286	if (!rl)
3287		return (EINVAL);
3288
3289	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3290
3291	return (0);
3292}
3293
3294/**
3295 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3296 *
3297 * This implementation of BUS_DELETE_RESOURCE() uses the
3298 * resource_list_delete() function to do most of the work. It calls
3299 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3300 * edit.
3301 */
3302void
3303bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3304{
3305	struct resource_list *		rl = NULL;
3306
3307	rl = BUS_GET_RESOURCE_LIST(dev, child);
3308	if (!rl)
3309		return;
3310
3311	resource_list_delete(rl, type, rid);
3312
3313	return;
3314}
3315
3316/**
3317 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3318 *
3319 * This implementation of BUS_RELEASE_RESOURCE() uses the
3320 * resource_list_release() function to do most of the work. It calls
3321 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3322 */
3323int
3324bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3325    int rid, struct resource *r)
3326{
3327	struct resource_list *		rl = NULL;
3328
3329	rl = BUS_GET_RESOURCE_LIST(dev, child);
3330	if (!rl)
3331		return (EINVAL);
3332
3333	return (resource_list_release(rl, dev, child, type, rid, r));
3334}
3335
3336/**
3337 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3338 *
3339 * This implementation of BUS_ALLOC_RESOURCE() uses the
3340 * resource_list_alloc() function to do most of the work. It calls
3341 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3342 */
3343struct resource *
3344bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3345    int *rid, u_long start, u_long end, u_long count, u_int flags)
3346{
3347	struct resource_list *		rl = NULL;
3348
3349	rl = BUS_GET_RESOURCE_LIST(dev, child);
3350	if (!rl)
3351		return (NULL);
3352
3353	return (resource_list_alloc(rl, dev, child, type, rid,
3354	    start, end, count, flags));
3355}
3356
3357/**
3358 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3359 *
3360 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3361 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3362 */
3363int
3364bus_generic_child_present(device_t dev, device_t child)
3365{
3366	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3367}
3368
3369/*
3370 * Some convenience functions to make it easier for drivers to use the
3371 * resource-management functions.  All these really do is hide the
3372 * indirection through the parent's method table, making for slightly
3373 * less-wordy code.  In the future, it might make sense for this code
3374 * to maintain some sort of a list of resources allocated by each device.
3375 */
3376
3377int
3378bus_alloc_resources(device_t dev, struct resource_spec *rs,
3379    struct resource **res)
3380{
3381	int i;
3382
3383	for (i = 0; rs[i].type != -1; i++)
3384		res[i] = NULL;
3385	for (i = 0; rs[i].type != -1; i++) {
3386		res[i] = bus_alloc_resource_any(dev,
3387		    rs[i].type, &rs[i].rid, rs[i].flags);
3388		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3389			bus_release_resources(dev, rs, res);
3390			return (ENXIO);
3391		}
3392	}
3393	return (0);
3394}
3395
3396void
3397bus_release_resources(device_t dev, const struct resource_spec *rs,
3398    struct resource **res)
3399{
3400	int i;
3401
3402	for (i = 0; rs[i].type != -1; i++)
3403		if (res[i] != NULL) {
3404			bus_release_resource(
3405			    dev, rs[i].type, rs[i].rid, res[i]);
3406			res[i] = NULL;
3407		}
3408}
3409
3410/**
3411 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3412 *
3413 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3414 * parent of @p dev.
3415 */
3416struct resource *
3417bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3418    u_long count, u_int flags)
3419{
3420	if (dev->parent == NULL)
3421		return (NULL);
3422	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3423	    count, flags));
3424}
3425
3426/**
3427 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3428 *
3429 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3430 * parent of @p dev.
3431 */
3432int
3433bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3434{
3435	if (dev->parent == NULL)
3436		return (EINVAL);
3437	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3438}
3439
3440/**
3441 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3442 *
3443 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3444 * parent of @p dev.
3445 */
3446int
3447bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3448{
3449	if (dev->parent == NULL)
3450		return (EINVAL);
3451	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3452}
3453
3454/**
3455 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3456 *
3457 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3458 * parent of @p dev.
3459 */
3460int
3461bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3462{
3463	if (dev->parent == NULL)
3464		return (EINVAL);
3465	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3466}
3467
3468/**
3469 * @brief Wrapper function for BUS_SETUP_INTR().
3470 *
3471 * This function simply calls the BUS_SETUP_INTR() method of the
3472 * parent of @p dev.
3473 */
3474int
3475bus_setup_intr(device_t dev, struct resource *r, int flags,
3476    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3477{
3478	int error;
3479
3480	if (dev->parent != NULL) {
3481		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3482		    filter, handler, arg, cookiep);
3483		if (error == 0) {
3484			if (handler != NULL && !(flags & INTR_MPSAFE))
3485				device_printf(dev, "[GIANT-LOCKED]\n");
3486			if (bootverbose && (flags & INTR_MPSAFE))
3487				device_printf(dev, "[MPSAFE]\n");
3488			if (filter != NULL) {
3489				if (handler == NULL)
3490					device_printf(dev, "[FILTER]\n");
3491				else
3492					device_printf(dev, "[FILTER+ITHREAD]\n");
3493			} else
3494				device_printf(dev, "[ITHREAD]\n");
3495		}
3496	} else
3497		error = EINVAL;
3498	return (error);
3499}
3500
3501/**
3502 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3503 *
3504 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3505 * parent of @p dev.
3506 */
3507int
3508bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3509{
3510	if (dev->parent == NULL)
3511		return (EINVAL);
3512	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3513}
3514
3515/**
3516 * @brief Wrapper function for BUS_SET_RESOURCE().
3517 *
3518 * This function simply calls the BUS_SET_RESOURCE() method of the
3519 * parent of @p dev.
3520 */
3521int
3522bus_set_resource(device_t dev, int type, int rid,
3523    u_long start, u_long count)
3524{
3525	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3526	    start, count));
3527}
3528
3529/**
3530 * @brief Wrapper function for BUS_GET_RESOURCE().
3531 *
3532 * This function simply calls the BUS_GET_RESOURCE() method of the
3533 * parent of @p dev.
3534 */
3535int
3536bus_get_resource(device_t dev, int type, int rid,
3537    u_long *startp, u_long *countp)
3538{
3539	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3540	    startp, countp));
3541}
3542
3543/**
3544 * @brief Wrapper function for BUS_GET_RESOURCE().
3545 *
3546 * This function simply calls the BUS_GET_RESOURCE() method of the
3547 * parent of @p dev and returns the start value.
3548 */
3549u_long
3550bus_get_resource_start(device_t dev, int type, int rid)
3551{
3552	u_long start, count;
3553	int error;
3554
3555	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3556	    &start, &count);
3557	if (error)
3558		return (0);
3559	return (start);
3560}
3561
3562/**
3563 * @brief Wrapper function for BUS_GET_RESOURCE().
3564 *
3565 * This function simply calls the BUS_GET_RESOURCE() method of the
3566 * parent of @p dev and returns the count value.
3567 */
3568u_long
3569bus_get_resource_count(device_t dev, int type, int rid)
3570{
3571	u_long start, count;
3572	int error;
3573
3574	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3575	    &start, &count);
3576	if (error)
3577		return (0);
3578	return (count);
3579}
3580
3581/**
3582 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3583 *
3584 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3585 * parent of @p dev.
3586 */
3587void
3588bus_delete_resource(device_t dev, int type, int rid)
3589{
3590	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3591}
3592
3593/**
3594 * @brief Wrapper function for BUS_CHILD_PRESENT().
3595 *
3596 * This function simply calls the BUS_CHILD_PRESENT() method of the
3597 * parent of @p dev.
3598 */
3599int
3600bus_child_present(device_t child)
3601{
3602	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3603}
3604
3605/**
3606 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3607 *
3608 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3609 * parent of @p dev.
3610 */
3611int
3612bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3613{
3614	device_t parent;
3615
3616	parent = device_get_parent(child);
3617	if (parent == NULL) {
3618		*buf = '\0';
3619		return (0);
3620	}
3621	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3622}
3623
3624/**
3625 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3626 *
3627 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3628 * parent of @p dev.
3629 */
3630int
3631bus_child_location_str(device_t child, char *buf, size_t buflen)
3632{
3633	device_t parent;
3634
3635	parent = device_get_parent(child);
3636	if (parent == NULL) {
3637		*buf = '\0';
3638		return (0);
3639	}
3640	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3641}
3642
3643/**
3644 * @brief Wrapper function for BUS_GET_DMA_TAG().
3645 *
3646 * This function simply calls the BUS_GET_DMA_TAG() method of the
3647 * parent of @p dev.
3648 */
3649bus_dma_tag_t
3650bus_get_dma_tag(device_t dev)
3651{
3652	device_t parent;
3653
3654	parent = device_get_parent(dev);
3655	if (parent == NULL)
3656		return (NULL);
3657	return (BUS_GET_DMA_TAG(parent, dev));
3658}
3659
3660/* Resume all devices and then notify userland that we're up again. */
3661static int
3662root_resume(device_t dev)
3663{
3664	int error;
3665
3666	error = bus_generic_resume(dev);
3667	if (error == 0)
3668		devctl_notify("kern", "power", "resume", NULL);
3669	return (error);
3670}
3671
3672static int
3673root_print_child(device_t dev, device_t child)
3674{
3675	int	retval = 0;
3676
3677	retval += bus_print_child_header(dev, child);
3678	retval += printf("\n");
3679
3680	return (retval);
3681}
3682
3683static int
3684root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3685    void **cookiep)
3686{
3687	/*
3688	 * If an interrupt mapping gets to here something bad has happened.
3689	 */
3690	panic("root_setup_intr");
3691}
3692
3693/*
3694 * If we get here, assume that the device is permanant and really is
3695 * present in the system.  Removable bus drivers are expected to intercept
3696 * this call long before it gets here.  We return -1 so that drivers that
3697 * really care can check vs -1 or some ERRNO returned higher in the food
3698 * chain.
3699 */
3700static int
3701root_child_present(device_t dev, device_t child)
3702{
3703	return (-1);
3704}
3705
3706static kobj_method_t root_methods[] = {
3707	/* Device interface */
3708	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3709	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3710	KOBJMETHOD(device_resume,	root_resume),
3711
3712	/* Bus interface */
3713	KOBJMETHOD(bus_print_child,	root_print_child),
3714	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3715	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3716	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3717	KOBJMETHOD(bus_child_present,	root_child_present),
3718
3719	{ 0, 0 }
3720};
3721
3722static driver_t root_driver = {
3723	"root",
3724	root_methods,
3725	1,			/* no softc */
3726};
3727
3728device_t	root_bus;
3729devclass_t	root_devclass;
3730
3731static int
3732root_bus_module_handler(module_t mod, int what, void* arg)
3733{
3734	switch (what) {
3735	case MOD_LOAD:
3736		TAILQ_INIT(&bus_data_devices);
3737		kobj_class_compile((kobj_class_t) &root_driver);
3738		root_bus = make_device(NULL, "root", 0);
3739		root_bus->desc = "System root bus";
3740		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3741		root_bus->driver = &root_driver;
3742		root_bus->state = DS_ATTACHED;
3743		root_devclass = devclass_find_internal("root", NULL, FALSE);
3744		devinit();
3745		return (0);
3746
3747	case MOD_SHUTDOWN:
3748		device_shutdown(root_bus);
3749		return (0);
3750	default:
3751		return (EOPNOTSUPP);
3752	}
3753
3754	return (0);
3755}
3756
3757static moduledata_t root_bus_mod = {
3758	"rootbus",
3759	root_bus_module_handler,
3760	0
3761};
3762DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3763
3764/**
3765 * @brief Automatically configure devices
3766 *
3767 * This function begins the autoconfiguration process by calling
3768 * device_probe_and_attach() for each child of the @c root0 device.
3769 */
3770void
3771root_bus_configure(void)
3772{
3773	device_t dev;
3774
3775	PDEBUG(("."));
3776
3777	TAILQ_FOREACH(dev, &root_bus->children, link) {
3778		device_probe_and_attach(dev);
3779	}
3780}
3781
3782/**
3783 * @brief Module handler for registering device drivers
3784 *
3785 * This module handler is used to automatically register device
3786 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3787 * devclass_add_driver() for the driver described by the
3788 * driver_module_data structure pointed to by @p arg
3789 */
3790int
3791driver_module_handler(module_t mod, int what, void *arg)
3792{
3793	int error;
3794	struct driver_module_data *dmd;
3795	devclass_t bus_devclass;
3796	kobj_class_t driver;
3797
3798	dmd = (struct driver_module_data *)arg;
3799	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3800	error = 0;
3801
3802	switch (what) {
3803	case MOD_LOAD:
3804		if (dmd->dmd_chainevh)
3805			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3806
3807		driver = dmd->dmd_driver;
3808		PDEBUG(("Loading module: driver %s on bus %s",
3809		    DRIVERNAME(driver), dmd->dmd_busname));
3810		error = devclass_add_driver(bus_devclass, driver);
3811		if (error)
3812			break;
3813
3814		/*
3815		 * If the driver has any base classes, make the
3816		 * devclass inherit from the devclass of the driver's
3817		 * first base class. This will allow the system to
3818		 * search for drivers in both devclasses for children
3819		 * of a device using this driver.
3820		 */
3821		if (driver->baseclasses) {
3822			const char *parentname;
3823			parentname = driver->baseclasses[0]->name;
3824			*dmd->dmd_devclass =
3825				devclass_find_internal(driver->name,
3826				    parentname, TRUE);
3827		} else {
3828			*dmd->dmd_devclass =
3829				devclass_find_internal(driver->name, NULL, TRUE);
3830		}
3831		break;
3832
3833	case MOD_UNLOAD:
3834		PDEBUG(("Unloading module: driver %s from bus %s",
3835		    DRIVERNAME(dmd->dmd_driver),
3836		    dmd->dmd_busname));
3837		error = devclass_delete_driver(bus_devclass,
3838		    dmd->dmd_driver);
3839
3840		if (!error && dmd->dmd_chainevh)
3841			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3842		break;
3843	case MOD_QUIESCE:
3844		PDEBUG(("Quiesce module: driver %s from bus %s",
3845		    DRIVERNAME(dmd->dmd_driver),
3846		    dmd->dmd_busname));
3847		error = devclass_quiesce_driver(bus_devclass,
3848		    dmd->dmd_driver);
3849
3850		if (!error && dmd->dmd_chainevh)
3851			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3852		break;
3853	default:
3854		error = EOPNOTSUPP;
3855		break;
3856	}
3857
3858	return (error);
3859}
3860
3861/**
3862 * @brief Enumerate all hinted devices for this bus.
3863 *
3864 * Walks through the hints for this bus and calls the bus_hinted_child
3865 * routine for each one it fines.  It searches first for the specific
3866 * bus that's being probed for hinted children (eg isa0), and then for
3867 * generic children (eg isa).
3868 *
3869 * @param	dev	bus device to enumerate
3870 */
3871void
3872bus_enumerate_hinted_children(device_t bus)
3873{
3874	int i;
3875	const char *dname, *busname;
3876	int dunit;
3877
3878	/*
3879	 * enumerate all devices on the specific bus
3880	 */
3881	busname = device_get_nameunit(bus);
3882	i = 0;
3883	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3884		BUS_HINTED_CHILD(bus, dname, dunit);
3885
3886	/*
3887	 * and all the generic ones.
3888	 */
3889	busname = device_get_name(bus);
3890	i = 0;
3891	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3892		BUS_HINTED_CHILD(bus, dname, dunit);
3893}
3894
3895#ifdef BUS_DEBUG
3896
3897/* the _short versions avoid iteration by not calling anything that prints
3898 * more than oneliners. I love oneliners.
3899 */
3900
3901static void
3902print_device_short(device_t dev, int indent)
3903{
3904	if (!dev)
3905		return;
3906
3907	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3908	    dev->unit, dev->desc,
3909	    (dev->parent? "":"no "),
3910	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3911	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3912	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3913	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3914	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3915	    (dev->flags&DF_REBID? "rebiddable,":""),
3916	    (dev->ivars? "":"no "),
3917	    (dev->softc? "":"no "),
3918	    dev->busy));
3919}
3920
3921static void
3922print_device(device_t dev, int indent)
3923{
3924	if (!dev)
3925		return;
3926
3927	print_device_short(dev, indent);
3928
3929	indentprintf(("Parent:\n"));
3930	print_device_short(dev->parent, indent+1);
3931	indentprintf(("Driver:\n"));
3932	print_driver_short(dev->driver, indent+1);
3933	indentprintf(("Devclass:\n"));
3934	print_devclass_short(dev->devclass, indent+1);
3935}
3936
3937void
3938print_device_tree_short(device_t dev, int indent)
3939/* print the device and all its children (indented) */
3940{
3941	device_t child;
3942
3943	if (!dev)
3944		return;
3945
3946	print_device_short(dev, indent);
3947
3948	TAILQ_FOREACH(child, &dev->children, link) {
3949		print_device_tree_short(child, indent+1);
3950	}
3951}
3952
3953void
3954print_device_tree(device_t dev, int indent)
3955/* print the device and all its children (indented) */
3956{
3957	device_t child;
3958
3959	if (!dev)
3960		return;
3961
3962	print_device(dev, indent);
3963
3964	TAILQ_FOREACH(child, &dev->children, link) {
3965		print_device_tree(child, indent+1);
3966	}
3967}
3968
3969static void
3970print_driver_short(driver_t *driver, int indent)
3971{
3972	if (!driver)
3973		return;
3974
3975	indentprintf(("driver %s: softc size = %zd\n",
3976	    driver->name, driver->size));
3977}
3978
3979static void
3980print_driver(driver_t *driver, int indent)
3981{
3982	if (!driver)
3983		return;
3984
3985	print_driver_short(driver, indent);
3986}
3987
3988
3989static void
3990print_driver_list(driver_list_t drivers, int indent)
3991{
3992	driverlink_t driver;
3993
3994	TAILQ_FOREACH(driver, &drivers, link) {
3995		print_driver(driver->driver, indent);
3996	}
3997}
3998
3999static void
4000print_devclass_short(devclass_t dc, int indent)
4001{
4002	if ( !dc )
4003		return;
4004
4005	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4006}
4007
4008static void
4009print_devclass(devclass_t dc, int indent)
4010{
4011	int i;
4012
4013	if ( !dc )
4014		return;
4015
4016	print_devclass_short(dc, indent);
4017	indentprintf(("Drivers:\n"));
4018	print_driver_list(dc->drivers, indent+1);
4019
4020	indentprintf(("Devices:\n"));
4021	for (i = 0; i < dc->maxunit; i++)
4022		if (dc->devices[i])
4023			print_device(dc->devices[i], indent+1);
4024}
4025
4026void
4027print_devclass_list_short(void)
4028{
4029	devclass_t dc;
4030
4031	printf("Short listing of devclasses, drivers & devices:\n");
4032	TAILQ_FOREACH(dc, &devclasses, link) {
4033		print_devclass_short(dc, 0);
4034	}
4035}
4036
4037void
4038print_devclass_list(void)
4039{
4040	devclass_t dc;
4041
4042	printf("Full listing of devclasses, drivers & devices:\n");
4043	TAILQ_FOREACH(dc, &devclasses, link) {
4044		print_devclass(dc, 0);
4045	}
4046}
4047
4048#endif
4049
4050/*
4051 * User-space access to the device tree.
4052 *
4053 * We implement a small set of nodes:
4054 *
4055 * hw.bus			Single integer read method to obtain the
4056 *				current generation count.
4057 * hw.bus.devices		Reads the entire device tree in flat space.
4058 * hw.bus.rman			Resource manager interface
4059 *
4060 * We might like to add the ability to scan devclasses and/or drivers to
4061 * determine what else is currently loaded/available.
4062 */
4063
4064static int
4065sysctl_bus(SYSCTL_HANDLER_ARGS)
4066{
4067	struct u_businfo	ubus;
4068
4069	ubus.ub_version = BUS_USER_VERSION;
4070	ubus.ub_generation = bus_data_generation;
4071
4072	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4073}
4074SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4075    "bus-related data");
4076
4077static int
4078sysctl_devices(SYSCTL_HANDLER_ARGS)
4079{
4080	int			*name = (int *)arg1;
4081	u_int			namelen = arg2;
4082	int			index;
4083	struct device		*dev;
4084	struct u_device		udev;	/* XXX this is a bit big */
4085	int			error;
4086
4087	if (namelen != 2)
4088		return (EINVAL);
4089
4090	if (bus_data_generation_check(name[0]))
4091		return (EINVAL);
4092
4093	index = name[1];
4094
4095	/*
4096	 * Scan the list of devices, looking for the requested index.
4097	 */
4098	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4099		if (index-- == 0)
4100			break;
4101	}
4102	if (dev == NULL)
4103		return (ENOENT);
4104
4105	/*
4106	 * Populate the return array.
4107	 */
4108	bzero(&udev, sizeof(udev));
4109	udev.dv_handle = (uintptr_t)dev;
4110	udev.dv_parent = (uintptr_t)dev->parent;
4111	if (dev->nameunit != NULL)
4112		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4113	if (dev->desc != NULL)
4114		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4115	if (dev->driver != NULL && dev->driver->name != NULL)
4116		strlcpy(udev.dv_drivername, dev->driver->name,
4117		    sizeof(udev.dv_drivername));
4118	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4119	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4120	udev.dv_devflags = dev->devflags;
4121	udev.dv_flags = dev->flags;
4122	udev.dv_state = dev->state;
4123	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4124	return (error);
4125}
4126
4127SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4128    "system device tree");
4129
4130int
4131bus_data_generation_check(int generation)
4132{
4133	if (generation != bus_data_generation)
4134		return (1);
4135
4136	/* XXX generate optimised lists here? */
4137	return (0);
4138}
4139
4140void
4141bus_data_generation_update(void)
4142{
4143	bus_data_generation++;
4144}
4145
4146int
4147bus_free_resource(device_t dev, int type, struct resource *r)
4148{
4149	if (r == NULL)
4150		return (0);
4151	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4152}
4153