subr_bus.c revision 167027
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 167027 2007-02-26 19:28:18Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53#include <sys/interrupt.h>
54
55#include <machine/stdarg.h>
56
57#include <vm/uma.h>
58
59SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61
62/*
63 * Used to attach drivers to devclasses.
64 */
65typedef struct driverlink *driverlink_t;
66struct driverlink {
67	kobj_class_t	driver;
68	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69};
70
71/*
72 * Forward declarations
73 */
74typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76typedef TAILQ_HEAD(device_list, device) device_list_t;
77
78struct devclass {
79	TAILQ_ENTRY(devclass) link;
80	devclass_t	parent;		/* parent in devclass hierarchy */
81	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82	char		*name;
83	device_t	*devices;	/* array of devices indexed by unit */
84	int		maxunit;	/* size of devices array */
85
86	struct sysctl_ctx_list sysctl_ctx;
87	struct sysctl_oid *sysctl_tree;
88};
89
90/**
91 * @brief Implementation of device.
92 */
93struct device {
94	/*
95	 * A device is a kernel object. The first field must be the
96	 * current ops table for the object.
97	 */
98	KOBJ_FIELDS;
99
100	/*
101	 * Device hierarchy.
102	 */
103	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105	device_t	parent;		/**< parent of this device  */
106	device_list_t	children;	/**< list of child devices */
107
108	/*
109	 * Details of this device.
110	 */
111	driver_t	*driver;	/**< current driver */
112	devclass_t	devclass;	/**< current device class */
113	int		unit;		/**< current unit number */
114	char*		nameunit;	/**< name+unit e.g. foodev0 */
115	char*		desc;		/**< driver specific description */
116	int		busy;		/**< count of calls to device_busy() */
117	device_state_t	state;		/**< current device state  */
118	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119	u_short		flags;		/**< internal device flags  */
120#define	DF_ENABLED	1		/* device should be probed/attached */
121#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122#define	DF_WILDCARD	4		/* unit was originally wildcard */
123#define	DF_DESCMALLOCED	8		/* description was malloced */
124#define	DF_QUIET	16		/* don't print verbose attach message */
125#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127#define	DF_REBID	128		/* Can rebid after attach */
128	u_char	order;			/**< order from device_add_child_ordered() */
129	u_char	pad;
130	void	*ivars;			/**< instance variables  */
131	void	*softc;			/**< current driver's variables  */
132
133	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135};
136
137static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139
140#ifdef BUS_DEBUG
141
142static int bus_debug = 1;
143TUNABLE_INT("bus.debug", &bus_debug);
144SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145    "Debug bus code");
146
147#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149#define DRIVERNAME(d)	((d)? d->name : "no driver")
150#define DEVCLANAME(d)	((d)? d->name : "no devclass")
151
152/**
153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154 * prevent syslog from deleting initial spaces
155 */
156#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157
158static void print_device_short(device_t dev, int indent);
159static void print_device(device_t dev, int indent);
160void print_device_tree_short(device_t dev, int indent);
161void print_device_tree(device_t dev, int indent);
162static void print_driver_short(driver_t *driver, int indent);
163static void print_driver(driver_t *driver, int indent);
164static void print_driver_list(driver_list_t drivers, int indent);
165static void print_devclass_short(devclass_t dc, int indent);
166static void print_devclass(devclass_t dc, int indent);
167void print_devclass_list_short(void);
168void print_devclass_list(void);
169
170#else
171/* Make the compiler ignore the function calls */
172#define PDEBUG(a)			/* nop */
173#define DEVICENAME(d)			/* nop */
174#define DRIVERNAME(d)			/* nop */
175#define DEVCLANAME(d)			/* nop */
176
177#define print_device_short(d,i)		/* nop */
178#define print_device(d,i)		/* nop */
179#define print_device_tree_short(d,i)	/* nop */
180#define print_device_tree(d,i)		/* nop */
181#define print_driver_short(d,i)		/* nop */
182#define print_driver(d,i)		/* nop */
183#define print_driver_list(d,i)		/* nop */
184#define print_devclass_short(d,i)	/* nop */
185#define print_devclass(d,i)		/* nop */
186#define print_devclass_list_short()	/* nop */
187#define print_devclass_list()		/* nop */
188#endif
189
190/*
191 * dev sysctl tree
192 */
193
194enum {
195	DEVCLASS_SYSCTL_PARENT,
196};
197
198static int
199devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200{
201	devclass_t dc = (devclass_t)arg1;
202	const char *value;
203
204	switch (arg2) {
205	case DEVCLASS_SYSCTL_PARENT:
206		value = dc->parent ? dc->parent->name : "";
207		break;
208	default:
209		return (EINVAL);
210	}
211	return (SYSCTL_OUT(req, value, strlen(value)));
212}
213
214static void
215devclass_sysctl_init(devclass_t dc)
216{
217
218	if (dc->sysctl_tree != NULL)
219		return;
220	sysctl_ctx_init(&dc->sysctl_ctx);
221	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
222	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
223	    CTLFLAG_RD, 0, "");
224	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
225	    OID_AUTO, "%parent", CTLFLAG_RD,
226	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
227	    "parent class");
228}
229
230enum {
231	DEVICE_SYSCTL_DESC,
232	DEVICE_SYSCTL_DRIVER,
233	DEVICE_SYSCTL_LOCATION,
234	DEVICE_SYSCTL_PNPINFO,
235	DEVICE_SYSCTL_PARENT,
236};
237
238static int
239device_sysctl_handler(SYSCTL_HANDLER_ARGS)
240{
241	device_t dev = (device_t)arg1;
242	const char *value;
243	char *buf;
244	int error;
245
246	buf = NULL;
247	switch (arg2) {
248	case DEVICE_SYSCTL_DESC:
249		value = dev->desc ? dev->desc : "";
250		break;
251	case DEVICE_SYSCTL_DRIVER:
252		value = dev->driver ? dev->driver->name : "";
253		break;
254	case DEVICE_SYSCTL_LOCATION:
255		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
256		bus_child_location_str(dev, buf, 1024);
257		break;
258	case DEVICE_SYSCTL_PNPINFO:
259		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
260		bus_child_pnpinfo_str(dev, buf, 1024);
261		break;
262	case DEVICE_SYSCTL_PARENT:
263		value = dev->parent ? dev->parent->nameunit : "";
264		break;
265	default:
266		return (EINVAL);
267	}
268	error = SYSCTL_OUT(req, value, strlen(value));
269	if (buf != NULL)
270		free(buf, M_BUS);
271	return (error);
272}
273
274static void
275device_sysctl_init(device_t dev)
276{
277	devclass_t dc = dev->devclass;
278
279	if (dev->sysctl_tree != NULL)
280		return;
281	devclass_sysctl_init(dc);
282	sysctl_ctx_init(&dev->sysctl_ctx);
283	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
284	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
285	    dev->nameunit + strlen(dc->name),
286	    CTLFLAG_RD, 0, "");
287	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
288	    OID_AUTO, "%desc", CTLFLAG_RD,
289	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
290	    "device description");
291	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
292	    OID_AUTO, "%driver", CTLFLAG_RD,
293	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
294	    "device driver name");
295	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
296	    OID_AUTO, "%location", CTLFLAG_RD,
297	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
298	    "device location relative to parent");
299	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
300	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
301	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
302	    "device identification");
303	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
304	    OID_AUTO, "%parent", CTLFLAG_RD,
305	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
306	    "parent device");
307}
308
309static void
310device_sysctl_fini(device_t dev)
311{
312	if (dev->sysctl_tree == NULL)
313		return;
314	sysctl_ctx_free(&dev->sysctl_ctx);
315	dev->sysctl_tree = NULL;
316}
317
318/*
319 * /dev/devctl implementation
320 */
321
322/*
323 * This design allows only one reader for /dev/devctl.  This is not desirable
324 * in the long run, but will get a lot of hair out of this implementation.
325 * Maybe we should make this device a clonable device.
326 *
327 * Also note: we specifically do not attach a device to the device_t tree
328 * to avoid potential chicken and egg problems.  One could argue that all
329 * of this belongs to the root node.  One could also further argue that the
330 * sysctl interface that we have not might more properly be an ioctl
331 * interface, but at this stage of the game, I'm not inclined to rock that
332 * boat.
333 *
334 * I'm also not sure that the SIGIO support is done correctly or not, as
335 * I copied it from a driver that had SIGIO support that likely hasn't been
336 * tested since 3.4 or 2.2.8!
337 */
338
339static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
340static int devctl_disable = 0;
341TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
342SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
343    sysctl_devctl_disable, "I", "devctl disable");
344
345static d_open_t		devopen;
346static d_close_t	devclose;
347static d_read_t		devread;
348static d_ioctl_t	devioctl;
349static d_poll_t		devpoll;
350
351static struct cdevsw dev_cdevsw = {
352	.d_version =	D_VERSION,
353	.d_flags =	D_NEEDGIANT,
354	.d_open =	devopen,
355	.d_close =	devclose,
356	.d_read =	devread,
357	.d_ioctl =	devioctl,
358	.d_poll =	devpoll,
359	.d_name =	"devctl",
360};
361
362struct dev_event_info
363{
364	char *dei_data;
365	TAILQ_ENTRY(dev_event_info) dei_link;
366};
367
368TAILQ_HEAD(devq, dev_event_info);
369
370static struct dev_softc
371{
372	int	inuse;
373	int	nonblock;
374	struct mtx mtx;
375	struct cv cv;
376	struct selinfo sel;
377	struct devq devq;
378	struct proc *async_proc;
379} devsoftc;
380
381static struct cdev *devctl_dev;
382
383static void
384devinit(void)
385{
386	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
387	    "devctl");
388	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
389	cv_init(&devsoftc.cv, "dev cv");
390	TAILQ_INIT(&devsoftc.devq);
391}
392
393static int
394devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
395{
396	if (devsoftc.inuse)
397		return (EBUSY);
398	/* move to init */
399	devsoftc.inuse = 1;
400	devsoftc.nonblock = 0;
401	devsoftc.async_proc = NULL;
402	return (0);
403}
404
405static int
406devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
407{
408	devsoftc.inuse = 0;
409	mtx_lock(&devsoftc.mtx);
410	cv_broadcast(&devsoftc.cv);
411	mtx_unlock(&devsoftc.mtx);
412
413	return (0);
414}
415
416/*
417 * The read channel for this device is used to report changes to
418 * userland in realtime.  We are required to free the data as well as
419 * the n1 object because we allocate them separately.  Also note that
420 * we return one record at a time.  If you try to read this device a
421 * character at a time, you will lose the rest of the data.  Listening
422 * programs are expected to cope.
423 */
424static int
425devread(struct cdev *dev, struct uio *uio, int ioflag)
426{
427	struct dev_event_info *n1;
428	int rv;
429
430	mtx_lock(&devsoftc.mtx);
431	while (TAILQ_EMPTY(&devsoftc.devq)) {
432		if (devsoftc.nonblock) {
433			mtx_unlock(&devsoftc.mtx);
434			return (EAGAIN);
435		}
436		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
437		if (rv) {
438			/*
439			 * Need to translate ERESTART to EINTR here? -- jake
440			 */
441			mtx_unlock(&devsoftc.mtx);
442			return (rv);
443		}
444	}
445	n1 = TAILQ_FIRST(&devsoftc.devq);
446	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
447	mtx_unlock(&devsoftc.mtx);
448	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
449	free(n1->dei_data, M_BUS);
450	free(n1, M_BUS);
451	return (rv);
452}
453
454static	int
455devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
456{
457	switch (cmd) {
458
459	case FIONBIO:
460		if (*(int*)data)
461			devsoftc.nonblock = 1;
462		else
463			devsoftc.nonblock = 0;
464		return (0);
465	case FIOASYNC:
466		if (*(int*)data)
467			devsoftc.async_proc = td->td_proc;
468		else
469			devsoftc.async_proc = NULL;
470		return (0);
471
472		/* (un)Support for other fcntl() calls. */
473	case FIOCLEX:
474	case FIONCLEX:
475	case FIONREAD:
476	case FIOSETOWN:
477	case FIOGETOWN:
478	default:
479		break;
480	}
481	return (ENOTTY);
482}
483
484static	int
485devpoll(struct cdev *dev, int events, d_thread_t *td)
486{
487	int	revents = 0;
488
489	mtx_lock(&devsoftc.mtx);
490	if (events & (POLLIN | POLLRDNORM)) {
491		if (!TAILQ_EMPTY(&devsoftc.devq))
492			revents = events & (POLLIN | POLLRDNORM);
493		else
494			selrecord(td, &devsoftc.sel);
495	}
496	mtx_unlock(&devsoftc.mtx);
497
498	return (revents);
499}
500
501/**
502 * @brief Queue data to be read from the devctl device
503 *
504 * Generic interface to queue data to the devctl device.  It is
505 * assumed that @p data is properly formatted.  It is further assumed
506 * that @p data is allocated using the M_BUS malloc type.
507 */
508void
509devctl_queue_data(char *data)
510{
511	struct dev_event_info *n1 = NULL;
512	struct proc *p;
513
514	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
515	if (n1 == NULL)
516		return;
517	n1->dei_data = data;
518	mtx_lock(&devsoftc.mtx);
519	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
520	cv_broadcast(&devsoftc.cv);
521	mtx_unlock(&devsoftc.mtx);
522	selwakeup(&devsoftc.sel);
523	p = devsoftc.async_proc;
524	if (p != NULL) {
525		PROC_LOCK(p);
526		psignal(p, SIGIO);
527		PROC_UNLOCK(p);
528	}
529}
530
531/**
532 * @brief Send a 'notification' to userland, using standard ways
533 */
534void
535devctl_notify(const char *system, const char *subsystem, const char *type,
536    const char *data)
537{
538	int len = 0;
539	char *msg;
540
541	if (system == NULL)
542		return;		/* BOGUS!  Must specify system. */
543	if (subsystem == NULL)
544		return;		/* BOGUS!  Must specify subsystem. */
545	if (type == NULL)
546		return;		/* BOGUS!  Must specify type. */
547	len += strlen(" system=") + strlen(system);
548	len += strlen(" subsystem=") + strlen(subsystem);
549	len += strlen(" type=") + strlen(type);
550	/* add in the data message plus newline. */
551	if (data != NULL)
552		len += strlen(data);
553	len += 3;	/* '!', '\n', and NUL */
554	msg = malloc(len, M_BUS, M_NOWAIT);
555	if (msg == NULL)
556		return;		/* Drop it on the floor */
557	if (data != NULL)
558		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
559		    system, subsystem, type, data);
560	else
561		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
562		    system, subsystem, type);
563	devctl_queue_data(msg);
564}
565
566/*
567 * Common routine that tries to make sending messages as easy as possible.
568 * We allocate memory for the data, copy strings into that, but do not
569 * free it unless there's an error.  The dequeue part of the driver should
570 * free the data.  We don't send data when the device is disabled.  We do
571 * send data, even when we have no listeners, because we wish to avoid
572 * races relating to startup and restart of listening applications.
573 *
574 * devaddq is designed to string together the type of event, with the
575 * object of that event, plus the plug and play info and location info
576 * for that event.  This is likely most useful for devices, but less
577 * useful for other consumers of this interface.  Those should use
578 * the devctl_queue_data() interface instead.
579 */
580static void
581devaddq(const char *type, const char *what, device_t dev)
582{
583	char *data = NULL;
584	char *loc = NULL;
585	char *pnp = NULL;
586	const char *parstr;
587
588	if (devctl_disable)
589		return;
590	data = malloc(1024, M_BUS, M_NOWAIT);
591	if (data == NULL)
592		goto bad;
593
594	/* get the bus specific location of this device */
595	loc = malloc(1024, M_BUS, M_NOWAIT);
596	if (loc == NULL)
597		goto bad;
598	*loc = '\0';
599	bus_child_location_str(dev, loc, 1024);
600
601	/* Get the bus specific pnp info of this device */
602	pnp = malloc(1024, M_BUS, M_NOWAIT);
603	if (pnp == NULL)
604		goto bad;
605	*pnp = '\0';
606	bus_child_pnpinfo_str(dev, pnp, 1024);
607
608	/* Get the parent of this device, or / if high enough in the tree. */
609	if (device_get_parent(dev) == NULL)
610		parstr = ".";	/* Or '/' ? */
611	else
612		parstr = device_get_nameunit(device_get_parent(dev));
613	/* String it all together. */
614	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
615	  parstr);
616	free(loc, M_BUS);
617	free(pnp, M_BUS);
618	devctl_queue_data(data);
619	return;
620bad:
621	free(pnp, M_BUS);
622	free(loc, M_BUS);
623	free(data, M_BUS);
624	return;
625}
626
627/*
628 * A device was added to the tree.  We are called just after it successfully
629 * attaches (that is, probe and attach success for this device).  No call
630 * is made if a device is merely parented into the tree.  See devnomatch
631 * if probe fails.  If attach fails, no notification is sent (but maybe
632 * we should have a different message for this).
633 */
634static void
635devadded(device_t dev)
636{
637	char *pnp = NULL;
638	char *tmp = NULL;
639
640	pnp = malloc(1024, M_BUS, M_NOWAIT);
641	if (pnp == NULL)
642		goto fail;
643	tmp = malloc(1024, M_BUS, M_NOWAIT);
644	if (tmp == NULL)
645		goto fail;
646	*pnp = '\0';
647	bus_child_pnpinfo_str(dev, pnp, 1024);
648	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
649	devaddq("+", tmp, dev);
650fail:
651	if (pnp != NULL)
652		free(pnp, M_BUS);
653	if (tmp != NULL)
654		free(tmp, M_BUS);
655	return;
656}
657
658/*
659 * A device was removed from the tree.  We are called just before this
660 * happens.
661 */
662static void
663devremoved(device_t dev)
664{
665	char *pnp = NULL;
666	char *tmp = NULL;
667
668	pnp = malloc(1024, M_BUS, M_NOWAIT);
669	if (pnp == NULL)
670		goto fail;
671	tmp = malloc(1024, M_BUS, M_NOWAIT);
672	if (tmp == NULL)
673		goto fail;
674	*pnp = '\0';
675	bus_child_pnpinfo_str(dev, pnp, 1024);
676	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
677	devaddq("-", tmp, dev);
678fail:
679	if (pnp != NULL)
680		free(pnp, M_BUS);
681	if (tmp != NULL)
682		free(tmp, M_BUS);
683	return;
684}
685
686/*
687 * Called when there's no match for this device.  This is only called
688 * the first time that no match happens, so we don't keep getitng this
689 * message.  Should that prove to be undesirable, we can change it.
690 * This is called when all drivers that can attach to a given bus
691 * decline to accept this device.  Other errrors may not be detected.
692 */
693static void
694devnomatch(device_t dev)
695{
696	devaddq("?", "", dev);
697}
698
699static int
700sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
701{
702	struct dev_event_info *n1;
703	int dis, error;
704
705	dis = devctl_disable;
706	error = sysctl_handle_int(oidp, &dis, 0, req);
707	if (error || !req->newptr)
708		return (error);
709	mtx_lock(&devsoftc.mtx);
710	devctl_disable = dis;
711	if (dis) {
712		while (!TAILQ_EMPTY(&devsoftc.devq)) {
713			n1 = TAILQ_FIRST(&devsoftc.devq);
714			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
715			free(n1->dei_data, M_BUS);
716			free(n1, M_BUS);
717		}
718	}
719	mtx_unlock(&devsoftc.mtx);
720	return (0);
721}
722
723/* End of /dev/devctl code */
724
725TAILQ_HEAD(,device)	bus_data_devices;
726static int bus_data_generation = 1;
727
728kobj_method_t null_methods[] = {
729	{ 0, 0 }
730};
731
732DEFINE_CLASS(null, null_methods, 0);
733
734/*
735 * Devclass implementation
736 */
737
738static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
739
740
741/**
742 * @internal
743 * @brief Find or create a device class
744 *
745 * If a device class with the name @p classname exists, return it,
746 * otherwise if @p create is non-zero create and return a new device
747 * class.
748 *
749 * If @p parentname is non-NULL, the parent of the devclass is set to
750 * the devclass of that name.
751 *
752 * @param classname	the devclass name to find or create
753 * @param parentname	the parent devclass name or @c NULL
754 * @param create	non-zero to create a devclass
755 */
756static devclass_t
757devclass_find_internal(const char *classname, const char *parentname,
758		       int create)
759{
760	devclass_t dc;
761
762	PDEBUG(("looking for %s", classname));
763	if (!classname)
764		return (NULL);
765
766	TAILQ_FOREACH(dc, &devclasses, link) {
767		if (!strcmp(dc->name, classname))
768			break;
769	}
770
771	if (create && !dc) {
772		PDEBUG(("creating %s", classname));
773		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
774		    M_BUS, M_NOWAIT|M_ZERO);
775		if (!dc)
776			return (NULL);
777		dc->parent = NULL;
778		dc->name = (char*) (dc + 1);
779		strcpy(dc->name, classname);
780		TAILQ_INIT(&dc->drivers);
781		TAILQ_INSERT_TAIL(&devclasses, dc, link);
782
783		bus_data_generation_update();
784	}
785
786	/*
787	 * If a parent class is specified, then set that as our parent so
788	 * that this devclass will support drivers for the parent class as
789	 * well.  If the parent class has the same name don't do this though
790	 * as it creates a cycle that can trigger an infinite loop in
791	 * device_probe_child() if a device exists for which there is no
792	 * suitable driver.
793	 */
794	if (parentname && dc && !dc->parent &&
795	    strcmp(classname, parentname) != 0) {
796		dc->parent = devclass_find_internal(parentname, NULL, FALSE);
797	}
798
799	return (dc);
800}
801
802/**
803 * @brief Create a device class
804 *
805 * If a device class with the name @p classname exists, return it,
806 * otherwise create and return a new device class.
807 *
808 * @param classname	the devclass name to find or create
809 */
810devclass_t
811devclass_create(const char *classname)
812{
813	return (devclass_find_internal(classname, NULL, TRUE));
814}
815
816/**
817 * @brief Find a device class
818 *
819 * If a device class with the name @p classname exists, return it,
820 * otherwise return @c NULL.
821 *
822 * @param classname	the devclass name to find
823 */
824devclass_t
825devclass_find(const char *classname)
826{
827	return (devclass_find_internal(classname, NULL, FALSE));
828}
829
830/**
831 * @brief Add a device driver to a device class
832 *
833 * Add a device driver to a devclass. This is normally called
834 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
835 * all devices in the devclass will be called to allow them to attempt
836 * to re-probe any unmatched children.
837 *
838 * @param dc		the devclass to edit
839 * @param driver	the driver to register
840 */
841int
842devclass_add_driver(devclass_t dc, driver_t *driver)
843{
844	driverlink_t dl;
845	int i;
846
847	PDEBUG(("%s", DRIVERNAME(driver)));
848
849	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
850	if (!dl)
851		return (ENOMEM);
852
853	/*
854	 * Compile the driver's methods. Also increase the reference count
855	 * so that the class doesn't get freed when the last instance
856	 * goes. This means we can safely use static methods and avoids a
857	 * double-free in devclass_delete_driver.
858	 */
859	kobj_class_compile((kobj_class_t) driver);
860
861	/*
862	 * Make sure the devclass which the driver is implementing exists.
863	 */
864	devclass_find_internal(driver->name, NULL, TRUE);
865
866	dl->driver = driver;
867	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
868	driver->refs++;		/* XXX: kobj_mtx */
869
870	/*
871	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
872	 */
873	for (i = 0; i < dc->maxunit; i++)
874		if (dc->devices[i])
875			BUS_DRIVER_ADDED(dc->devices[i], driver);
876
877	bus_data_generation_update();
878	return (0);
879}
880
881/**
882 * @brief Delete a device driver from a device class
883 *
884 * Delete a device driver from a devclass. This is normally called
885 * automatically by DRIVER_MODULE().
886 *
887 * If the driver is currently attached to any devices,
888 * devclass_delete_driver() will first attempt to detach from each
889 * device. If one of the detach calls fails, the driver will not be
890 * deleted.
891 *
892 * @param dc		the devclass to edit
893 * @param driver	the driver to unregister
894 */
895int
896devclass_delete_driver(devclass_t busclass, driver_t *driver)
897{
898	devclass_t dc = devclass_find(driver->name);
899	driverlink_t dl;
900	device_t dev;
901	int i;
902	int error;
903
904	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
905
906	if (!dc)
907		return (0);
908
909	/*
910	 * Find the link structure in the bus' list of drivers.
911	 */
912	TAILQ_FOREACH(dl, &busclass->drivers, link) {
913		if (dl->driver == driver)
914			break;
915	}
916
917	if (!dl) {
918		PDEBUG(("%s not found in %s list", driver->name,
919		    busclass->name));
920		return (ENOENT);
921	}
922
923	/*
924	 * Disassociate from any devices.  We iterate through all the
925	 * devices in the devclass of the driver and detach any which are
926	 * using the driver and which have a parent in the devclass which
927	 * we are deleting from.
928	 *
929	 * Note that since a driver can be in multiple devclasses, we
930	 * should not detach devices which are not children of devices in
931	 * the affected devclass.
932	 */
933	for (i = 0; i < dc->maxunit; i++) {
934		if (dc->devices[i]) {
935			dev = dc->devices[i];
936			if (dev->driver == driver && dev->parent &&
937			    dev->parent->devclass == busclass) {
938				if ((error = device_detach(dev)) != 0)
939					return (error);
940				device_set_driver(dev, NULL);
941			}
942		}
943	}
944
945	TAILQ_REMOVE(&busclass->drivers, dl, link);
946	free(dl, M_BUS);
947
948	/* XXX: kobj_mtx */
949	driver->refs--;
950	if (driver->refs == 0)
951		kobj_class_free((kobj_class_t) driver);
952
953	bus_data_generation_update();
954	return (0);
955}
956
957/**
958 * @brief Quiesces a set of device drivers from a device class
959 *
960 * Quiesce a device driver from a devclass. This is normally called
961 * automatically by DRIVER_MODULE().
962 *
963 * If the driver is currently attached to any devices,
964 * devclass_quiesece_driver() will first attempt to quiesce each
965 * device.
966 *
967 * @param dc		the devclass to edit
968 * @param driver	the driver to unregister
969 */
970int
971devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
972{
973	devclass_t dc = devclass_find(driver->name);
974	driverlink_t dl;
975	device_t dev;
976	int i;
977	int error;
978
979	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
980
981	if (!dc)
982		return (0);
983
984	/*
985	 * Find the link structure in the bus' list of drivers.
986	 */
987	TAILQ_FOREACH(dl, &busclass->drivers, link) {
988		if (dl->driver == driver)
989			break;
990	}
991
992	if (!dl) {
993		PDEBUG(("%s not found in %s list", driver->name,
994		    busclass->name));
995		return (ENOENT);
996	}
997
998	/*
999	 * Quiesce all devices.  We iterate through all the devices in
1000	 * the devclass of the driver and quiesce any which are using
1001	 * the driver and which have a parent in the devclass which we
1002	 * are quiescing.
1003	 *
1004	 * Note that since a driver can be in multiple devclasses, we
1005	 * should not quiesce devices which are not children of
1006	 * devices in the affected devclass.
1007	 */
1008	for (i = 0; i < dc->maxunit; i++) {
1009		if (dc->devices[i]) {
1010			dev = dc->devices[i];
1011			if (dev->driver == driver && dev->parent &&
1012			    dev->parent->devclass == busclass) {
1013				if ((error = device_quiesce(dev)) != 0)
1014					return (error);
1015			}
1016		}
1017	}
1018
1019	return (0);
1020}
1021
1022/**
1023 * @internal
1024 */
1025static driverlink_t
1026devclass_find_driver_internal(devclass_t dc, const char *classname)
1027{
1028	driverlink_t dl;
1029
1030	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1031
1032	TAILQ_FOREACH(dl, &dc->drivers, link) {
1033		if (!strcmp(dl->driver->name, classname))
1034			return (dl);
1035	}
1036
1037	PDEBUG(("not found"));
1038	return (NULL);
1039}
1040
1041/**
1042 * @brief Search a devclass for a driver
1043 *
1044 * This function searches the devclass's list of drivers and returns
1045 * the first driver whose name is @p classname or @c NULL if there is
1046 * no driver of that name.
1047 *
1048 * @param dc		the devclass to search
1049 * @param classname	the driver name to search for
1050 */
1051kobj_class_t
1052devclass_find_driver(devclass_t dc, const char *classname)
1053{
1054	driverlink_t dl;
1055
1056	dl = devclass_find_driver_internal(dc, classname);
1057	if (dl)
1058		return (dl->driver);
1059	return (NULL);
1060}
1061
1062/**
1063 * @brief Return the name of the devclass
1064 */
1065const char *
1066devclass_get_name(devclass_t dc)
1067{
1068	return (dc->name);
1069}
1070
1071/**
1072 * @brief Find a device given a unit number
1073 *
1074 * @param dc		the devclass to search
1075 * @param unit		the unit number to search for
1076 *
1077 * @returns		the device with the given unit number or @c
1078 *			NULL if there is no such device
1079 */
1080device_t
1081devclass_get_device(devclass_t dc, int unit)
1082{
1083	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1084		return (NULL);
1085	return (dc->devices[unit]);
1086}
1087
1088/**
1089 * @brief Find the softc field of a device given a unit number
1090 *
1091 * @param dc		the devclass to search
1092 * @param unit		the unit number to search for
1093 *
1094 * @returns		the softc field of the device with the given
1095 *			unit number or @c NULL if there is no such
1096 *			device
1097 */
1098void *
1099devclass_get_softc(devclass_t dc, int unit)
1100{
1101	device_t dev;
1102
1103	dev = devclass_get_device(dc, unit);
1104	if (!dev)
1105		return (NULL);
1106
1107	return (device_get_softc(dev));
1108}
1109
1110/**
1111 * @brief Get a list of devices in the devclass
1112 *
1113 * An array containing a list of all the devices in the given devclass
1114 * is allocated and returned in @p *devlistp. The number of devices
1115 * in the array is returned in @p *devcountp. The caller should free
1116 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1117 *
1118 * @param dc		the devclass to examine
1119 * @param devlistp	points at location for array pointer return
1120 *			value
1121 * @param devcountp	points at location for array size return value
1122 *
1123 * @retval 0		success
1124 * @retval ENOMEM	the array allocation failed
1125 */
1126int
1127devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1128{
1129	int count, i;
1130	device_t *list;
1131
1132	count = devclass_get_count(dc);
1133	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1134	if (!list)
1135		return (ENOMEM);
1136
1137	count = 0;
1138	for (i = 0; i < dc->maxunit; i++) {
1139		if (dc->devices[i]) {
1140			list[count] = dc->devices[i];
1141			count++;
1142		}
1143	}
1144
1145	*devlistp = list;
1146	*devcountp = count;
1147
1148	return (0);
1149}
1150
1151/**
1152 * @brief Get a list of drivers in the devclass
1153 *
1154 * An array containing a list of pointers to all the drivers in the
1155 * given devclass is allocated and returned in @p *listp.  The number
1156 * of drivers in the array is returned in @p *countp. The caller should
1157 * free the array using @c free(p, M_TEMP).
1158 *
1159 * @param dc		the devclass to examine
1160 * @param listp		gives location for array pointer return value
1161 * @param countp	gives location for number of array elements
1162 *			return value
1163 *
1164 * @retval 0		success
1165 * @retval ENOMEM	the array allocation failed
1166 */
1167int
1168devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1169{
1170	driverlink_t dl;
1171	driver_t **list;
1172	int count;
1173
1174	count = 0;
1175	TAILQ_FOREACH(dl, &dc->drivers, link)
1176		count++;
1177	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1178	if (list == NULL)
1179		return (ENOMEM);
1180
1181	count = 0;
1182	TAILQ_FOREACH(dl, &dc->drivers, link) {
1183		list[count] = dl->driver;
1184		count++;
1185	}
1186	*listp = list;
1187	*countp = count;
1188
1189	return (0);
1190}
1191
1192/**
1193 * @brief Get the number of devices in a devclass
1194 *
1195 * @param dc		the devclass to examine
1196 */
1197int
1198devclass_get_count(devclass_t dc)
1199{
1200	int count, i;
1201
1202	count = 0;
1203	for (i = 0; i < dc->maxunit; i++)
1204		if (dc->devices[i])
1205			count++;
1206	return (count);
1207}
1208
1209/**
1210 * @brief Get the maximum unit number used in a devclass
1211 *
1212 * Note that this is one greater than the highest currently-allocated
1213 * unit.
1214 *
1215 * @param dc		the devclass to examine
1216 */
1217int
1218devclass_get_maxunit(devclass_t dc)
1219{
1220	return (dc->maxunit);
1221}
1222
1223/**
1224 * @brief Find a free unit number in a devclass
1225 *
1226 * This function searches for the first unused unit number greater
1227 * that or equal to @p unit.
1228 *
1229 * @param dc		the devclass to examine
1230 * @param unit		the first unit number to check
1231 */
1232int
1233devclass_find_free_unit(devclass_t dc, int unit)
1234{
1235	if (dc == NULL)
1236		return (unit);
1237	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1238		unit++;
1239	return (unit);
1240}
1241
1242/**
1243 * @brief Set the parent of a devclass
1244 *
1245 * The parent class is normally initialised automatically by
1246 * DRIVER_MODULE().
1247 *
1248 * @param dc		the devclass to edit
1249 * @param pdc		the new parent devclass
1250 */
1251void
1252devclass_set_parent(devclass_t dc, devclass_t pdc)
1253{
1254	dc->parent = pdc;
1255}
1256
1257/**
1258 * @brief Get the parent of a devclass
1259 *
1260 * @param dc		the devclass to examine
1261 */
1262devclass_t
1263devclass_get_parent(devclass_t dc)
1264{
1265	return (dc->parent);
1266}
1267
1268struct sysctl_ctx_list *
1269devclass_get_sysctl_ctx(devclass_t dc)
1270{
1271	return (&dc->sysctl_ctx);
1272}
1273
1274struct sysctl_oid *
1275devclass_get_sysctl_tree(devclass_t dc)
1276{
1277	return (dc->sysctl_tree);
1278}
1279
1280/**
1281 * @internal
1282 * @brief Allocate a unit number
1283 *
1284 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1285 * will do). The allocated unit number is returned in @p *unitp.
1286
1287 * @param dc		the devclass to allocate from
1288 * @param unitp		points at the location for the allocated unit
1289 *			number
1290 *
1291 * @retval 0		success
1292 * @retval EEXIST	the requested unit number is already allocated
1293 * @retval ENOMEM	memory allocation failure
1294 */
1295static int
1296devclass_alloc_unit(devclass_t dc, int *unitp)
1297{
1298	int unit = *unitp;
1299
1300	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1301
1302	/* If we were given a wired unit number, check for existing device */
1303	/* XXX imp XXX */
1304	if (unit != -1) {
1305		if (unit >= 0 && unit < dc->maxunit &&
1306		    dc->devices[unit] != NULL) {
1307			if (bootverbose)
1308				printf("%s: %s%d already exists; skipping it\n",
1309				    dc->name, dc->name, *unitp);
1310			return (EEXIST);
1311		}
1312	} else {
1313		/* Unwired device, find the next available slot for it */
1314		unit = 0;
1315		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1316			unit++;
1317	}
1318
1319	/*
1320	 * We've selected a unit beyond the length of the table, so let's
1321	 * extend the table to make room for all units up to and including
1322	 * this one.
1323	 */
1324	if (unit >= dc->maxunit) {
1325		device_t *newlist;
1326		int newsize;
1327
1328		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1329		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1330		if (!newlist)
1331			return (ENOMEM);
1332		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1333		bzero(newlist + dc->maxunit,
1334		    sizeof(device_t) * (newsize - dc->maxunit));
1335		if (dc->devices)
1336			free(dc->devices, M_BUS);
1337		dc->devices = newlist;
1338		dc->maxunit = newsize;
1339	}
1340	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1341
1342	*unitp = unit;
1343	return (0);
1344}
1345
1346/**
1347 * @internal
1348 * @brief Add a device to a devclass
1349 *
1350 * A unit number is allocated for the device (using the device's
1351 * preferred unit number if any) and the device is registered in the
1352 * devclass. This allows the device to be looked up by its unit
1353 * number, e.g. by decoding a dev_t minor number.
1354 *
1355 * @param dc		the devclass to add to
1356 * @param dev		the device to add
1357 *
1358 * @retval 0		success
1359 * @retval EEXIST	the requested unit number is already allocated
1360 * @retval ENOMEM	memory allocation failure
1361 */
1362static int
1363devclass_add_device(devclass_t dc, device_t dev)
1364{
1365	int buflen, error;
1366
1367	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1368
1369	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1370	if (buflen < 0)
1371		return (ENOMEM);
1372	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1373	if (!dev->nameunit)
1374		return (ENOMEM);
1375
1376	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1377		free(dev->nameunit, M_BUS);
1378		dev->nameunit = NULL;
1379		return (error);
1380	}
1381	dc->devices[dev->unit] = dev;
1382	dev->devclass = dc;
1383	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1384
1385	return (0);
1386}
1387
1388/**
1389 * @internal
1390 * @brief Delete a device from a devclass
1391 *
1392 * The device is removed from the devclass's device list and its unit
1393 * number is freed.
1394
1395 * @param dc		the devclass to delete from
1396 * @param dev		the device to delete
1397 *
1398 * @retval 0		success
1399 */
1400static int
1401devclass_delete_device(devclass_t dc, device_t dev)
1402{
1403	if (!dc || !dev)
1404		return (0);
1405
1406	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1407
1408	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1409		panic("devclass_delete_device: inconsistent device class");
1410	dc->devices[dev->unit] = NULL;
1411	if (dev->flags & DF_WILDCARD)
1412		dev->unit = -1;
1413	dev->devclass = NULL;
1414	free(dev->nameunit, M_BUS);
1415	dev->nameunit = NULL;
1416
1417	return (0);
1418}
1419
1420/**
1421 * @internal
1422 * @brief Make a new device and add it as a child of @p parent
1423 *
1424 * @param parent	the parent of the new device
1425 * @param name		the devclass name of the new device or @c NULL
1426 *			to leave the devclass unspecified
1427 * @parem unit		the unit number of the new device of @c -1 to
1428 *			leave the unit number unspecified
1429 *
1430 * @returns the new device
1431 */
1432static device_t
1433make_device(device_t parent, const char *name, int unit)
1434{
1435	device_t dev;
1436	devclass_t dc;
1437
1438	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1439
1440	if (name) {
1441		dc = devclass_find_internal(name, NULL, TRUE);
1442		if (!dc) {
1443			printf("make_device: can't find device class %s\n",
1444			    name);
1445			return (NULL);
1446		}
1447	} else {
1448		dc = NULL;
1449	}
1450
1451	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1452	if (!dev)
1453		return (NULL);
1454
1455	dev->parent = parent;
1456	TAILQ_INIT(&dev->children);
1457	kobj_init((kobj_t) dev, &null_class);
1458	dev->driver = NULL;
1459	dev->devclass = NULL;
1460	dev->unit = unit;
1461	dev->nameunit = NULL;
1462	dev->desc = NULL;
1463	dev->busy = 0;
1464	dev->devflags = 0;
1465	dev->flags = DF_ENABLED;
1466	dev->order = 0;
1467	if (unit == -1)
1468		dev->flags |= DF_WILDCARD;
1469	if (name) {
1470		dev->flags |= DF_FIXEDCLASS;
1471		if (devclass_add_device(dc, dev)) {
1472			kobj_delete((kobj_t) dev, M_BUS);
1473			return (NULL);
1474		}
1475	}
1476	dev->ivars = NULL;
1477	dev->softc = NULL;
1478
1479	dev->state = DS_NOTPRESENT;
1480
1481	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1482	bus_data_generation_update();
1483
1484	return (dev);
1485}
1486
1487/**
1488 * @internal
1489 * @brief Print a description of a device.
1490 */
1491static int
1492device_print_child(device_t dev, device_t child)
1493{
1494	int retval = 0;
1495
1496	if (device_is_alive(child))
1497		retval += BUS_PRINT_CHILD(dev, child);
1498	else
1499		retval += device_printf(child, " not found\n");
1500
1501	return (retval);
1502}
1503
1504/**
1505 * @brief Create a new device
1506 *
1507 * This creates a new device and adds it as a child of an existing
1508 * parent device. The new device will be added after the last existing
1509 * child with order zero.
1510 *
1511 * @param dev		the device which will be the parent of the
1512 *			new child device
1513 * @param name		devclass name for new device or @c NULL if not
1514 *			specified
1515 * @param unit		unit number for new device or @c -1 if not
1516 *			specified
1517 *
1518 * @returns		the new device
1519 */
1520device_t
1521device_add_child(device_t dev, const char *name, int unit)
1522{
1523	return (device_add_child_ordered(dev, 0, name, unit));
1524}
1525
1526/**
1527 * @brief Create a new device
1528 *
1529 * This creates a new device and adds it as a child of an existing
1530 * parent device. The new device will be added after the last existing
1531 * child with the same order.
1532 *
1533 * @param dev		the device which will be the parent of the
1534 *			new child device
1535 * @param order		a value which is used to partially sort the
1536 *			children of @p dev - devices created using
1537 *			lower values of @p order appear first in @p
1538 *			dev's list of children
1539 * @param name		devclass name for new device or @c NULL if not
1540 *			specified
1541 * @param unit		unit number for new device or @c -1 if not
1542 *			specified
1543 *
1544 * @returns		the new device
1545 */
1546device_t
1547device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1548{
1549	device_t child;
1550	device_t place;
1551
1552	PDEBUG(("%s at %s with order %d as unit %d",
1553	    name, DEVICENAME(dev), order, unit));
1554
1555	child = make_device(dev, name, unit);
1556	if (child == NULL)
1557		return (child);
1558	child->order = order;
1559
1560	TAILQ_FOREACH(place, &dev->children, link) {
1561		if (place->order > order)
1562			break;
1563	}
1564
1565	if (place) {
1566		/*
1567		 * The device 'place' is the first device whose order is
1568		 * greater than the new child.
1569		 */
1570		TAILQ_INSERT_BEFORE(place, child, link);
1571	} else {
1572		/*
1573		 * The new child's order is greater or equal to the order of
1574		 * any existing device. Add the child to the tail of the list.
1575		 */
1576		TAILQ_INSERT_TAIL(&dev->children, child, link);
1577	}
1578
1579	bus_data_generation_update();
1580	return (child);
1581}
1582
1583/**
1584 * @brief Delete a device
1585 *
1586 * This function deletes a device along with all of its children. If
1587 * the device currently has a driver attached to it, the device is
1588 * detached first using device_detach().
1589 *
1590 * @param dev		the parent device
1591 * @param child		the device to delete
1592 *
1593 * @retval 0		success
1594 * @retval non-zero	a unit error code describing the error
1595 */
1596int
1597device_delete_child(device_t dev, device_t child)
1598{
1599	int error;
1600	device_t grandchild;
1601
1602	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1603
1604	/* remove children first */
1605	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1606		error = device_delete_child(child, grandchild);
1607		if (error)
1608			return (error);
1609	}
1610
1611	if ((error = device_detach(child)) != 0)
1612		return (error);
1613	if (child->devclass)
1614		devclass_delete_device(child->devclass, child);
1615	TAILQ_REMOVE(&dev->children, child, link);
1616	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1617	kobj_delete((kobj_t) child, M_BUS);
1618
1619	bus_data_generation_update();
1620	return (0);
1621}
1622
1623/**
1624 * @brief Find a device given a unit number
1625 *
1626 * This is similar to devclass_get_devices() but only searches for
1627 * devices which have @p dev as a parent.
1628 *
1629 * @param dev		the parent device to search
1630 * @param unit		the unit number to search for.  If the unit is -1,
1631 *			return the first child of @p dev which has name
1632 *			@p classname (that is, the one with the lowest unit.)
1633 *
1634 * @returns		the device with the given unit number or @c
1635 *			NULL if there is no such device
1636 */
1637device_t
1638device_find_child(device_t dev, const char *classname, int unit)
1639{
1640	devclass_t dc;
1641	device_t child;
1642
1643	dc = devclass_find(classname);
1644	if (!dc)
1645		return (NULL);
1646
1647	if (unit != -1) {
1648		child = devclass_get_device(dc, unit);
1649		if (child && child->parent == dev)
1650			return (child);
1651	} else {
1652		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1653			child = devclass_get_device(dc, unit);
1654			if (child && child->parent == dev)
1655				return (child);
1656		}
1657	}
1658	return (NULL);
1659}
1660
1661/**
1662 * @internal
1663 */
1664static driverlink_t
1665first_matching_driver(devclass_t dc, device_t dev)
1666{
1667	if (dev->devclass)
1668		return (devclass_find_driver_internal(dc, dev->devclass->name));
1669	return (TAILQ_FIRST(&dc->drivers));
1670}
1671
1672/**
1673 * @internal
1674 */
1675static driverlink_t
1676next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1677{
1678	if (dev->devclass) {
1679		driverlink_t dl;
1680		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1681			if (!strcmp(dev->devclass->name, dl->driver->name))
1682				return (dl);
1683		return (NULL);
1684	}
1685	return (TAILQ_NEXT(last, link));
1686}
1687
1688/**
1689 * @internal
1690 */
1691int
1692device_probe_child(device_t dev, device_t child)
1693{
1694	devclass_t dc;
1695	driverlink_t best = NULL;
1696	driverlink_t dl;
1697	int result, pri = 0;
1698	int hasclass = (child->devclass != 0);
1699
1700	GIANT_REQUIRED;
1701
1702	dc = dev->devclass;
1703	if (!dc)
1704		panic("device_probe_child: parent device has no devclass");
1705
1706	/*
1707	 * If the state is already probed, then return.  However, don't
1708	 * return if we can rebid this object.
1709	 */
1710	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1711		return (0);
1712
1713	for (; dc; dc = dc->parent) {
1714		for (dl = first_matching_driver(dc, child);
1715		     dl;
1716		     dl = next_matching_driver(dc, child, dl)) {
1717			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1718			device_set_driver(child, dl->driver);
1719			if (!hasclass)
1720				device_set_devclass(child, dl->driver->name);
1721
1722			/* Fetch any flags for the device before probing. */
1723			resource_int_value(dl->driver->name, child->unit,
1724			    "flags", &child->devflags);
1725
1726			result = DEVICE_PROBE(child);
1727
1728			/* Reset flags and devclass before the next probe. */
1729			child->devflags = 0;
1730			if (!hasclass)
1731				device_set_devclass(child, NULL);
1732
1733			/*
1734			 * If the driver returns SUCCESS, there can be
1735			 * no higher match for this device.
1736			 */
1737			if (result == 0) {
1738				best = dl;
1739				pri = 0;
1740				break;
1741			}
1742
1743			/*
1744			 * The driver returned an error so it
1745			 * certainly doesn't match.
1746			 */
1747			if (result > 0) {
1748				device_set_driver(child, NULL);
1749				continue;
1750			}
1751
1752			/*
1753			 * A priority lower than SUCCESS, remember the
1754			 * best matching driver. Initialise the value
1755			 * of pri for the first match.
1756			 */
1757			if (best == NULL || result > pri) {
1758				best = dl;
1759				pri = result;
1760				continue;
1761			}
1762		}
1763		/*
1764		 * If we have an unambiguous match in this devclass,
1765		 * don't look in the parent.
1766		 */
1767		if (best && pri == 0)
1768			break;
1769	}
1770
1771	/*
1772	 * If we found a driver, change state and initialise the devclass.
1773	 */
1774	/* XXX What happens if we rebid and got no best? */
1775	if (best) {
1776		/*
1777		 * If this device was atached, and we were asked to
1778		 * rescan, and it is a different driver, then we have
1779		 * to detach the old driver and reattach this new one.
1780		 * Note, we don't have to check for DF_REBID here
1781		 * because if the state is > DS_ALIVE, we know it must
1782		 * be.
1783		 *
1784		 * This assumes that all DF_REBID drivers can have
1785		 * their probe routine called at any time and that
1786		 * they are idempotent as well as completely benign in
1787		 * normal operations.
1788		 *
1789		 * We also have to make sure that the detach
1790		 * succeeded, otherwise we fail the operation (or
1791		 * maybe it should just fail silently?  I'm torn).
1792		 */
1793		if (child->state > DS_ALIVE && best->driver != child->driver)
1794			if ((result = device_detach(dev)) != 0)
1795				return (result);
1796
1797		/* Set the winning driver, devclass, and flags. */
1798		if (!child->devclass)
1799			device_set_devclass(child, best->driver->name);
1800		device_set_driver(child, best->driver);
1801		resource_int_value(best->driver->name, child->unit,
1802		    "flags", &child->devflags);
1803
1804		if (pri < 0) {
1805			/*
1806			 * A bit bogus. Call the probe method again to make
1807			 * sure that we have the right description.
1808			 */
1809			DEVICE_PROBE(child);
1810#if 0
1811			child->flags |= DF_REBID;
1812#endif
1813		} else
1814			child->flags &= ~DF_REBID;
1815		child->state = DS_ALIVE;
1816
1817		bus_data_generation_update();
1818		return (0);
1819	}
1820
1821	return (ENXIO);
1822}
1823
1824/**
1825 * @brief Return the parent of a device
1826 */
1827device_t
1828device_get_parent(device_t dev)
1829{
1830	return (dev->parent);
1831}
1832
1833/**
1834 * @brief Get a list of children of a device
1835 *
1836 * An array containing a list of all the children of the given device
1837 * is allocated and returned in @p *devlistp. The number of devices
1838 * in the array is returned in @p *devcountp. The caller should free
1839 * the array using @c free(p, M_TEMP).
1840 *
1841 * @param dev		the device to examine
1842 * @param devlistp	points at location for array pointer return
1843 *			value
1844 * @param devcountp	points at location for array size return value
1845 *
1846 * @retval 0		success
1847 * @retval ENOMEM	the array allocation failed
1848 */
1849int
1850device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1851{
1852	int count;
1853	device_t child;
1854	device_t *list;
1855
1856	count = 0;
1857	TAILQ_FOREACH(child, &dev->children, link) {
1858		count++;
1859	}
1860
1861	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1862	if (!list)
1863		return (ENOMEM);
1864
1865	count = 0;
1866	TAILQ_FOREACH(child, &dev->children, link) {
1867		list[count] = child;
1868		count++;
1869	}
1870
1871	*devlistp = list;
1872	*devcountp = count;
1873
1874	return (0);
1875}
1876
1877/**
1878 * @brief Return the current driver for the device or @c NULL if there
1879 * is no driver currently attached
1880 */
1881driver_t *
1882device_get_driver(device_t dev)
1883{
1884	return (dev->driver);
1885}
1886
1887/**
1888 * @brief Return the current devclass for the device or @c NULL if
1889 * there is none.
1890 */
1891devclass_t
1892device_get_devclass(device_t dev)
1893{
1894	return (dev->devclass);
1895}
1896
1897/**
1898 * @brief Return the name of the device's devclass or @c NULL if there
1899 * is none.
1900 */
1901const char *
1902device_get_name(device_t dev)
1903{
1904	if (dev != NULL && dev->devclass)
1905		return (devclass_get_name(dev->devclass));
1906	return (NULL);
1907}
1908
1909/**
1910 * @brief Return a string containing the device's devclass name
1911 * followed by an ascii representation of the device's unit number
1912 * (e.g. @c "foo2").
1913 */
1914const char *
1915device_get_nameunit(device_t dev)
1916{
1917	return (dev->nameunit);
1918}
1919
1920/**
1921 * @brief Return the device's unit number.
1922 */
1923int
1924device_get_unit(device_t dev)
1925{
1926	return (dev->unit);
1927}
1928
1929/**
1930 * @brief Return the device's description string
1931 */
1932const char *
1933device_get_desc(device_t dev)
1934{
1935	return (dev->desc);
1936}
1937
1938/**
1939 * @brief Return the device's flags
1940 */
1941u_int32_t
1942device_get_flags(device_t dev)
1943{
1944	return (dev->devflags);
1945}
1946
1947struct sysctl_ctx_list *
1948device_get_sysctl_ctx(device_t dev)
1949{
1950	return (&dev->sysctl_ctx);
1951}
1952
1953struct sysctl_oid *
1954device_get_sysctl_tree(device_t dev)
1955{
1956	return (dev->sysctl_tree);
1957}
1958
1959/**
1960 * @brief Print the name of the device followed by a colon and a space
1961 *
1962 * @returns the number of characters printed
1963 */
1964int
1965device_print_prettyname(device_t dev)
1966{
1967	const char *name = device_get_name(dev);
1968
1969	if (name == 0)
1970		return (printf("unknown: "));
1971	return (printf("%s%d: ", name, device_get_unit(dev)));
1972}
1973
1974/**
1975 * @brief Print the name of the device followed by a colon, a space
1976 * and the result of calling vprintf() with the value of @p fmt and
1977 * the following arguments.
1978 *
1979 * @returns the number of characters printed
1980 */
1981int
1982device_printf(device_t dev, const char * fmt, ...)
1983{
1984	va_list ap;
1985	int retval;
1986
1987	retval = device_print_prettyname(dev);
1988	va_start(ap, fmt);
1989	retval += vprintf(fmt, ap);
1990	va_end(ap);
1991	return (retval);
1992}
1993
1994/**
1995 * @internal
1996 */
1997static void
1998device_set_desc_internal(device_t dev, const char* desc, int copy)
1999{
2000	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2001		free(dev->desc, M_BUS);
2002		dev->flags &= ~DF_DESCMALLOCED;
2003		dev->desc = NULL;
2004	}
2005
2006	if (copy && desc) {
2007		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2008		if (dev->desc) {
2009			strcpy(dev->desc, desc);
2010			dev->flags |= DF_DESCMALLOCED;
2011		}
2012	} else {
2013		/* Avoid a -Wcast-qual warning */
2014		dev->desc = (char *)(uintptr_t) desc;
2015	}
2016
2017	bus_data_generation_update();
2018}
2019
2020/**
2021 * @brief Set the device's description
2022 *
2023 * The value of @c desc should be a string constant that will not
2024 * change (at least until the description is changed in a subsequent
2025 * call to device_set_desc() or device_set_desc_copy()).
2026 */
2027void
2028device_set_desc(device_t dev, const char* desc)
2029{
2030	device_set_desc_internal(dev, desc, FALSE);
2031}
2032
2033/**
2034 * @brief Set the device's description
2035 *
2036 * The string pointed to by @c desc is copied. Use this function if
2037 * the device description is generated, (e.g. with sprintf()).
2038 */
2039void
2040device_set_desc_copy(device_t dev, const char* desc)
2041{
2042	device_set_desc_internal(dev, desc, TRUE);
2043}
2044
2045/**
2046 * @brief Set the device's flags
2047 */
2048void
2049device_set_flags(device_t dev, u_int32_t flags)
2050{
2051	dev->devflags = flags;
2052}
2053
2054/**
2055 * @brief Return the device's softc field
2056 *
2057 * The softc is allocated and zeroed when a driver is attached, based
2058 * on the size field of the driver.
2059 */
2060void *
2061device_get_softc(device_t dev)
2062{
2063	return (dev->softc);
2064}
2065
2066/**
2067 * @brief Set the device's softc field
2068 *
2069 * Most drivers do not need to use this since the softc is allocated
2070 * automatically when the driver is attached.
2071 */
2072void
2073device_set_softc(device_t dev, void *softc)
2074{
2075	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2076		free(dev->softc, M_BUS_SC);
2077	dev->softc = softc;
2078	if (dev->softc)
2079		dev->flags |= DF_EXTERNALSOFTC;
2080	else
2081		dev->flags &= ~DF_EXTERNALSOFTC;
2082}
2083
2084/**
2085 * @brief Get the device's ivars field
2086 *
2087 * The ivars field is used by the parent device to store per-device
2088 * state (e.g. the physical location of the device or a list of
2089 * resources).
2090 */
2091void *
2092device_get_ivars(device_t dev)
2093{
2094
2095	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2096	return (dev->ivars);
2097}
2098
2099/**
2100 * @brief Set the device's ivars field
2101 */
2102void
2103device_set_ivars(device_t dev, void * ivars)
2104{
2105
2106	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2107	dev->ivars = ivars;
2108}
2109
2110/**
2111 * @brief Return the device's state
2112 */
2113device_state_t
2114device_get_state(device_t dev)
2115{
2116	return (dev->state);
2117}
2118
2119/**
2120 * @brief Set the DF_ENABLED flag for the device
2121 */
2122void
2123device_enable(device_t dev)
2124{
2125	dev->flags |= DF_ENABLED;
2126}
2127
2128/**
2129 * @brief Clear the DF_ENABLED flag for the device
2130 */
2131void
2132device_disable(device_t dev)
2133{
2134	dev->flags &= ~DF_ENABLED;
2135}
2136
2137/**
2138 * @brief Increment the busy counter for the device
2139 */
2140void
2141device_busy(device_t dev)
2142{
2143	if (dev->state < DS_ATTACHED)
2144		panic("device_busy: called for unattached device");
2145	if (dev->busy == 0 && dev->parent)
2146		device_busy(dev->parent);
2147	dev->busy++;
2148	dev->state = DS_BUSY;
2149}
2150
2151/**
2152 * @brief Decrement the busy counter for the device
2153 */
2154void
2155device_unbusy(device_t dev)
2156{
2157	if (dev->state != DS_BUSY)
2158		panic("device_unbusy: called for non-busy device %s",
2159		    device_get_nameunit(dev));
2160	dev->busy--;
2161	if (dev->busy == 0) {
2162		if (dev->parent)
2163			device_unbusy(dev->parent);
2164		dev->state = DS_ATTACHED;
2165	}
2166}
2167
2168/**
2169 * @brief Set the DF_QUIET flag for the device
2170 */
2171void
2172device_quiet(device_t dev)
2173{
2174	dev->flags |= DF_QUIET;
2175}
2176
2177/**
2178 * @brief Clear the DF_QUIET flag for the device
2179 */
2180void
2181device_verbose(device_t dev)
2182{
2183	dev->flags &= ~DF_QUIET;
2184}
2185
2186/**
2187 * @brief Return non-zero if the DF_QUIET flag is set on the device
2188 */
2189int
2190device_is_quiet(device_t dev)
2191{
2192	return ((dev->flags & DF_QUIET) != 0);
2193}
2194
2195/**
2196 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2197 */
2198int
2199device_is_enabled(device_t dev)
2200{
2201	return ((dev->flags & DF_ENABLED) != 0);
2202}
2203
2204/**
2205 * @brief Return non-zero if the device was successfully probed
2206 */
2207int
2208device_is_alive(device_t dev)
2209{
2210	return (dev->state >= DS_ALIVE);
2211}
2212
2213/**
2214 * @brief Return non-zero if the device currently has a driver
2215 * attached to it
2216 */
2217int
2218device_is_attached(device_t dev)
2219{
2220	return (dev->state >= DS_ATTACHED);
2221}
2222
2223/**
2224 * @brief Set the devclass of a device
2225 * @see devclass_add_device().
2226 */
2227int
2228device_set_devclass(device_t dev, const char *classname)
2229{
2230	devclass_t dc;
2231	int error;
2232
2233	if (!classname) {
2234		if (dev->devclass)
2235			devclass_delete_device(dev->devclass, dev);
2236		return (0);
2237	}
2238
2239	if (dev->devclass) {
2240		printf("device_set_devclass: device class already set\n");
2241		return (EINVAL);
2242	}
2243
2244	dc = devclass_find_internal(classname, NULL, TRUE);
2245	if (!dc)
2246		return (ENOMEM);
2247
2248	error = devclass_add_device(dc, dev);
2249
2250	bus_data_generation_update();
2251	return (error);
2252}
2253
2254/**
2255 * @brief Set the driver of a device
2256 *
2257 * @retval 0		success
2258 * @retval EBUSY	the device already has a driver attached
2259 * @retval ENOMEM	a memory allocation failure occurred
2260 */
2261int
2262device_set_driver(device_t dev, driver_t *driver)
2263{
2264	if (dev->state >= DS_ATTACHED)
2265		return (EBUSY);
2266
2267	if (dev->driver == driver)
2268		return (0);
2269
2270	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2271		free(dev->softc, M_BUS_SC);
2272		dev->softc = NULL;
2273	}
2274	kobj_delete((kobj_t) dev, NULL);
2275	dev->driver = driver;
2276	if (driver) {
2277		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2278		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2279			dev->softc = malloc(driver->size, M_BUS_SC,
2280			    M_NOWAIT | M_ZERO);
2281			if (!dev->softc) {
2282				kobj_delete((kobj_t) dev, NULL);
2283				kobj_init((kobj_t) dev, &null_class);
2284				dev->driver = NULL;
2285				return (ENOMEM);
2286			}
2287		}
2288	} else {
2289		kobj_init((kobj_t) dev, &null_class);
2290	}
2291
2292	bus_data_generation_update();
2293	return (0);
2294}
2295
2296/**
2297 * @brief Probe a device and attach a driver if possible
2298 *
2299 * This function is the core of the device autoconfiguration
2300 * system. Its purpose is to select a suitable driver for a device and
2301 * then call that driver to initialise the hardware appropriately. The
2302 * driver is selected by calling the DEVICE_PROBE() method of a set of
2303 * candidate drivers and then choosing the driver which returned the
2304 * best value. This driver is then attached to the device using
2305 * device_attach().
2306 *
2307 * The set of suitable drivers is taken from the list of drivers in
2308 * the parent device's devclass. If the device was originally created
2309 * with a specific class name (see device_add_child()), only drivers
2310 * with that name are probed, otherwise all drivers in the devclass
2311 * are probed. If no drivers return successful probe values in the
2312 * parent devclass, the search continues in the parent of that
2313 * devclass (see devclass_get_parent()) if any.
2314 *
2315 * @param dev		the device to initialise
2316 *
2317 * @retval 0		success
2318 * @retval ENXIO	no driver was found
2319 * @retval ENOMEM	memory allocation failure
2320 * @retval non-zero	some other unix error code
2321 */
2322int
2323device_probe_and_attach(device_t dev)
2324{
2325	int error;
2326
2327	GIANT_REQUIRED;
2328
2329	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2330		return (0);
2331
2332	if (!(dev->flags & DF_ENABLED)) {
2333		if (bootverbose && device_get_name(dev) != NULL) {
2334			device_print_prettyname(dev);
2335			printf("not probed (disabled)\n");
2336		}
2337		return (0);
2338	}
2339	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2340		if (!(dev->flags & DF_DONENOMATCH)) {
2341			BUS_PROBE_NOMATCH(dev->parent, dev);
2342			devnomatch(dev);
2343			dev->flags |= DF_DONENOMATCH;
2344		}
2345		return (error);
2346	}
2347	error = device_attach(dev);
2348
2349	return (error);
2350}
2351
2352/**
2353 * @brief Attach a device driver to a device
2354 *
2355 * This function is a wrapper around the DEVICE_ATTACH() driver
2356 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2357 * device's sysctl tree, optionally prints a description of the device
2358 * and queues a notification event for user-based device management
2359 * services.
2360 *
2361 * Normally this function is only called internally from
2362 * device_probe_and_attach().
2363 *
2364 * @param dev		the device to initialise
2365 *
2366 * @retval 0		success
2367 * @retval ENXIO	no driver was found
2368 * @retval ENOMEM	memory allocation failure
2369 * @retval non-zero	some other unix error code
2370 */
2371int
2372device_attach(device_t dev)
2373{
2374	int error;
2375
2376	device_sysctl_init(dev);
2377	if (!device_is_quiet(dev))
2378		device_print_child(dev->parent, dev);
2379	if ((error = DEVICE_ATTACH(dev)) != 0) {
2380		printf("device_attach: %s%d attach returned %d\n",
2381		    dev->driver->name, dev->unit, error);
2382		/* Unset the class; set in device_probe_child */
2383		if (dev->devclass == NULL)
2384			device_set_devclass(dev, NULL);
2385		device_set_driver(dev, NULL);
2386		device_sysctl_fini(dev);
2387		dev->state = DS_NOTPRESENT;
2388		return (error);
2389	}
2390	dev->state = DS_ATTACHED;
2391	devadded(dev);
2392	return (0);
2393}
2394
2395/**
2396 * @brief Detach a driver from a device
2397 *
2398 * This function is a wrapper around the DEVICE_DETACH() driver
2399 * method. If the call to DEVICE_DETACH() succeeds, it calls
2400 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2401 * notification event for user-based device management services and
2402 * cleans up the device's sysctl tree.
2403 *
2404 * @param dev		the device to un-initialise
2405 *
2406 * @retval 0		success
2407 * @retval ENXIO	no driver was found
2408 * @retval ENOMEM	memory allocation failure
2409 * @retval non-zero	some other unix error code
2410 */
2411int
2412device_detach(device_t dev)
2413{
2414	int error;
2415
2416	GIANT_REQUIRED;
2417
2418	PDEBUG(("%s", DEVICENAME(dev)));
2419	if (dev->state == DS_BUSY)
2420		return (EBUSY);
2421	if (dev->state != DS_ATTACHED)
2422		return (0);
2423
2424	if ((error = DEVICE_DETACH(dev)) != 0)
2425		return (error);
2426	devremoved(dev);
2427	device_printf(dev, "detached\n");
2428	if (dev->parent)
2429		BUS_CHILD_DETACHED(dev->parent, dev);
2430
2431	if (!(dev->flags & DF_FIXEDCLASS))
2432		devclass_delete_device(dev->devclass, dev);
2433
2434	dev->state = DS_NOTPRESENT;
2435	device_set_driver(dev, NULL);
2436	device_set_desc(dev, NULL);
2437	device_sysctl_fini(dev);
2438
2439	return (0);
2440}
2441
2442/**
2443 * @brief Tells a driver to quiesce itself.
2444 *
2445 * This function is a wrapper around the DEVICE_QUIESCE() driver
2446 * method. If the call to DEVICE_QUIESCE() succeeds.
2447 *
2448 * @param dev		the device to quiesce
2449 *
2450 * @retval 0		success
2451 * @retval ENXIO	no driver was found
2452 * @retval ENOMEM	memory allocation failure
2453 * @retval non-zero	some other unix error code
2454 */
2455int
2456device_quiesce(device_t dev)
2457{
2458
2459	PDEBUG(("%s", DEVICENAME(dev)));
2460	if (dev->state == DS_BUSY)
2461		return (EBUSY);
2462	if (dev->state != DS_ATTACHED)
2463		return (0);
2464
2465	return (DEVICE_QUIESCE(dev));
2466}
2467
2468/**
2469 * @brief Notify a device of system shutdown
2470 *
2471 * This function calls the DEVICE_SHUTDOWN() driver method if the
2472 * device currently has an attached driver.
2473 *
2474 * @returns the value returned by DEVICE_SHUTDOWN()
2475 */
2476int
2477device_shutdown(device_t dev)
2478{
2479	if (dev->state < DS_ATTACHED)
2480		return (0);
2481	return (DEVICE_SHUTDOWN(dev));
2482}
2483
2484/**
2485 * @brief Set the unit number of a device
2486 *
2487 * This function can be used to override the unit number used for a
2488 * device (e.g. to wire a device to a pre-configured unit number).
2489 */
2490int
2491device_set_unit(device_t dev, int unit)
2492{
2493	devclass_t dc;
2494	int err;
2495
2496	dc = device_get_devclass(dev);
2497	if (unit < dc->maxunit && dc->devices[unit])
2498		return (EBUSY);
2499	err = devclass_delete_device(dc, dev);
2500	if (err)
2501		return (err);
2502	dev->unit = unit;
2503	err = devclass_add_device(dc, dev);
2504	if (err)
2505		return (err);
2506
2507	bus_data_generation_update();
2508	return (0);
2509}
2510
2511/*======================================*/
2512/*
2513 * Some useful method implementations to make life easier for bus drivers.
2514 */
2515
2516/**
2517 * @brief Initialise a resource list.
2518 *
2519 * @param rl		the resource list to initialise
2520 */
2521void
2522resource_list_init(struct resource_list *rl)
2523{
2524	STAILQ_INIT(rl);
2525}
2526
2527/**
2528 * @brief Reclaim memory used by a resource list.
2529 *
2530 * This function frees the memory for all resource entries on the list
2531 * (if any).
2532 *
2533 * @param rl		the resource list to free
2534 */
2535void
2536resource_list_free(struct resource_list *rl)
2537{
2538	struct resource_list_entry *rle;
2539
2540	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2541		if (rle->res)
2542			panic("resource_list_free: resource entry is busy");
2543		STAILQ_REMOVE_HEAD(rl, link);
2544		free(rle, M_BUS);
2545	}
2546}
2547
2548/**
2549 * @brief Add a resource entry.
2550 *
2551 * This function adds a resource entry using the given @p type, @p
2552 * start, @p end and @p count values. A rid value is chosen by
2553 * searching sequentially for the first unused rid starting at zero.
2554 *
2555 * @param rl		the resource list to edit
2556 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2557 * @param start		the start address of the resource
2558 * @param end		the end address of the resource
2559 * @param count		XXX end-start+1
2560 */
2561int
2562resource_list_add_next(struct resource_list *rl, int type, u_long start,
2563    u_long end, u_long count)
2564{
2565	int rid;
2566
2567	rid = 0;
2568	while (resource_list_find(rl, type, rid) != NULL)
2569		rid++;
2570	resource_list_add(rl, type, rid, start, end, count);
2571	return (rid);
2572}
2573
2574/**
2575 * @brief Add or modify a resource entry.
2576 *
2577 * If an existing entry exists with the same type and rid, it will be
2578 * modified using the given values of @p start, @p end and @p
2579 * count. If no entry exists, a new one will be created using the
2580 * given values.  The resource list entry that matches is then returned.
2581 *
2582 * @param rl		the resource list to edit
2583 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2584 * @param rid		the resource identifier
2585 * @param start		the start address of the resource
2586 * @param end		the end address of the resource
2587 * @param count		XXX end-start+1
2588 */
2589struct resource_list_entry *
2590resource_list_add(struct resource_list *rl, int type, int rid,
2591    u_long start, u_long end, u_long count)
2592{
2593	struct resource_list_entry *rle;
2594
2595	rle = resource_list_find(rl, type, rid);
2596	if (!rle) {
2597		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2598		    M_NOWAIT);
2599		if (!rle)
2600			panic("resource_list_add: can't record entry");
2601		STAILQ_INSERT_TAIL(rl, rle, link);
2602		rle->type = type;
2603		rle->rid = rid;
2604		rle->res = NULL;
2605	}
2606
2607	if (rle->res)
2608		panic("resource_list_add: resource entry is busy");
2609
2610	rle->start = start;
2611	rle->end = end;
2612	rle->count = count;
2613	return (rle);
2614}
2615
2616/**
2617 * @brief Find a resource entry by type and rid.
2618 *
2619 * @param rl		the resource list to search
2620 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2621 * @param rid		the resource identifier
2622 *
2623 * @returns the resource entry pointer or NULL if there is no such
2624 * entry.
2625 */
2626struct resource_list_entry *
2627resource_list_find(struct resource_list *rl, int type, int rid)
2628{
2629	struct resource_list_entry *rle;
2630
2631	STAILQ_FOREACH(rle, rl, link) {
2632		if (rle->type == type && rle->rid == rid)
2633			return (rle);
2634	}
2635	return (NULL);
2636}
2637
2638/**
2639 * @brief Delete a resource entry.
2640 *
2641 * @param rl		the resource list to edit
2642 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2643 * @param rid		the resource identifier
2644 */
2645void
2646resource_list_delete(struct resource_list *rl, int type, int rid)
2647{
2648	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2649
2650	if (rle) {
2651		if (rle->res != NULL)
2652			panic("resource_list_delete: resource has not been released");
2653		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2654		free(rle, M_BUS);
2655	}
2656}
2657
2658/**
2659 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2660 *
2661 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2662 * and passing the allocation up to the parent of @p bus. This assumes
2663 * that the first entry of @c device_get_ivars(child) is a struct
2664 * resource_list. This also handles 'passthrough' allocations where a
2665 * child is a remote descendant of bus by passing the allocation up to
2666 * the parent of bus.
2667 *
2668 * Typically, a bus driver would store a list of child resources
2669 * somewhere in the child device's ivars (see device_get_ivars()) and
2670 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2671 * then call resource_list_alloc() to perform the allocation.
2672 *
2673 * @param rl		the resource list to allocate from
2674 * @param bus		the parent device of @p child
2675 * @param child		the device which is requesting an allocation
2676 * @param type		the type of resource to allocate
2677 * @param rid		a pointer to the resource identifier
2678 * @param start		hint at the start of the resource range - pass
2679 *			@c 0UL for any start address
2680 * @param end		hint at the end of the resource range - pass
2681 *			@c ~0UL for any end address
2682 * @param count		hint at the size of range required - pass @c 1
2683 *			for any size
2684 * @param flags		any extra flags to control the resource
2685 *			allocation - see @c RF_XXX flags in
2686 *			<sys/rman.h> for details
2687 *
2688 * @returns		the resource which was allocated or @c NULL if no
2689 *			resource could be allocated
2690 */
2691struct resource *
2692resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2693    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2694{
2695	struct resource_list_entry *rle = NULL;
2696	int passthrough = (device_get_parent(child) != bus);
2697	int isdefault = (start == 0UL && end == ~0UL);
2698
2699	if (passthrough) {
2700		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2701		    type, rid, start, end, count, flags));
2702	}
2703
2704	rle = resource_list_find(rl, type, *rid);
2705
2706	if (!rle)
2707		return (NULL);		/* no resource of that type/rid */
2708
2709	if (rle->res)
2710		panic("resource_list_alloc: resource entry is busy");
2711
2712	if (isdefault) {
2713		start = rle->start;
2714		count = ulmax(count, rle->count);
2715		end = ulmax(rle->end, start + count - 1);
2716	}
2717
2718	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2719	    type, rid, start, end, count, flags);
2720
2721	/*
2722	 * Record the new range.
2723	 */
2724	if (rle->res) {
2725		rle->start = rman_get_start(rle->res);
2726		rle->end = rman_get_end(rle->res);
2727		rle->count = count;
2728	}
2729
2730	return (rle->res);
2731}
2732
2733/**
2734 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2735 *
2736 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2737 * used with resource_list_alloc().
2738 *
2739 * @param rl		the resource list which was allocated from
2740 * @param bus		the parent device of @p child
2741 * @param child		the device which is requesting a release
2742 * @param type		the type of resource to allocate
2743 * @param rid		the resource identifier
2744 * @param res		the resource to release
2745 *
2746 * @retval 0		success
2747 * @retval non-zero	a standard unix error code indicating what
2748 *			error condition prevented the operation
2749 */
2750int
2751resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2752    int type, int rid, struct resource *res)
2753{
2754	struct resource_list_entry *rle = NULL;
2755	int passthrough = (device_get_parent(child) != bus);
2756	int error;
2757
2758	if (passthrough) {
2759		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2760		    type, rid, res));
2761	}
2762
2763	rle = resource_list_find(rl, type, rid);
2764
2765	if (!rle)
2766		panic("resource_list_release: can't find resource");
2767	if (!rle->res)
2768		panic("resource_list_release: resource entry is not busy");
2769
2770	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2771	    type, rid, res);
2772	if (error)
2773		return (error);
2774
2775	rle->res = NULL;
2776	return (0);
2777}
2778
2779/**
2780 * @brief Print a description of resources in a resource list
2781 *
2782 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2783 * The name is printed if at least one resource of the given type is available.
2784 * The format is used to print resource start and end.
2785 *
2786 * @param rl		the resource list to print
2787 * @param name		the name of @p type, e.g. @c "memory"
2788 * @param type		type type of resource entry to print
2789 * @param format	printf(9) format string to print resource
2790 *			start and end values
2791 *
2792 * @returns		the number of characters printed
2793 */
2794int
2795resource_list_print_type(struct resource_list *rl, const char *name, int type,
2796    const char *format)
2797{
2798	struct resource_list_entry *rle;
2799	int printed, retval;
2800
2801	printed = 0;
2802	retval = 0;
2803	/* Yes, this is kinda cheating */
2804	STAILQ_FOREACH(rle, rl, link) {
2805		if (rle->type == type) {
2806			if (printed == 0)
2807				retval += printf(" %s ", name);
2808			else
2809				retval += printf(",");
2810			printed++;
2811			retval += printf(format, rle->start);
2812			if (rle->count > 1) {
2813				retval += printf("-");
2814				retval += printf(format, rle->start +
2815						 rle->count - 1);
2816			}
2817		}
2818	}
2819	return (retval);
2820}
2821
2822/**
2823 * @brief Releases all the resources in a list.
2824 *
2825 * @param rl		The resource list to purge.
2826 *
2827 * @returns		nothing
2828 */
2829void
2830resource_list_purge(struct resource_list *rl)
2831{
2832	struct resource_list_entry *rle;
2833
2834	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2835		if (rle->res)
2836			bus_release_resource(rman_get_device(rle->res),
2837			    rle->type, rle->rid, rle->res);
2838		STAILQ_REMOVE_HEAD(rl, link);
2839		free(rle, M_BUS);
2840	}
2841}
2842
2843device_t
2844bus_generic_add_child(device_t dev, int order, const char *name, int unit)
2845{
2846
2847	return (device_add_child_ordered(dev, order, name, unit));
2848}
2849
2850/**
2851 * @brief Helper function for implementing DEVICE_PROBE()
2852 *
2853 * This function can be used to help implement the DEVICE_PROBE() for
2854 * a bus (i.e. a device which has other devices attached to it). It
2855 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2856 * devclass.
2857 */
2858int
2859bus_generic_probe(device_t dev)
2860{
2861	devclass_t dc = dev->devclass;
2862	driverlink_t dl;
2863
2864	TAILQ_FOREACH(dl, &dc->drivers, link) {
2865		DEVICE_IDENTIFY(dl->driver, dev);
2866	}
2867
2868	return (0);
2869}
2870
2871/**
2872 * @brief Helper function for implementing DEVICE_ATTACH()
2873 *
2874 * This function can be used to help implement the DEVICE_ATTACH() for
2875 * a bus. It calls device_probe_and_attach() for each of the device's
2876 * children.
2877 */
2878int
2879bus_generic_attach(device_t dev)
2880{
2881	device_t child;
2882
2883	TAILQ_FOREACH(child, &dev->children, link) {
2884		device_probe_and_attach(child);
2885	}
2886
2887	return (0);
2888}
2889
2890/**
2891 * @brief Helper function for implementing DEVICE_DETACH()
2892 *
2893 * This function can be used to help implement the DEVICE_DETACH() for
2894 * a bus. It calls device_detach() for each of the device's
2895 * children.
2896 */
2897int
2898bus_generic_detach(device_t dev)
2899{
2900	device_t child;
2901	int error;
2902
2903	if (dev->state != DS_ATTACHED)
2904		return (EBUSY);
2905
2906	TAILQ_FOREACH(child, &dev->children, link) {
2907		if ((error = device_detach(child)) != 0)
2908			return (error);
2909	}
2910
2911	return (0);
2912}
2913
2914/**
2915 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2916 *
2917 * This function can be used to help implement the DEVICE_SHUTDOWN()
2918 * for a bus. It calls device_shutdown() for each of the device's
2919 * children.
2920 */
2921int
2922bus_generic_shutdown(device_t dev)
2923{
2924	device_t child;
2925
2926	TAILQ_FOREACH(child, &dev->children, link) {
2927		device_shutdown(child);
2928	}
2929
2930	return (0);
2931}
2932
2933/**
2934 * @brief Helper function for implementing DEVICE_SUSPEND()
2935 *
2936 * This function can be used to help implement the DEVICE_SUSPEND()
2937 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2938 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2939 * operation is aborted and any devices which were suspended are
2940 * resumed immediately by calling their DEVICE_RESUME() methods.
2941 */
2942int
2943bus_generic_suspend(device_t dev)
2944{
2945	int		error;
2946	device_t	child, child2;
2947
2948	TAILQ_FOREACH(child, &dev->children, link) {
2949		error = DEVICE_SUSPEND(child);
2950		if (error) {
2951			for (child2 = TAILQ_FIRST(&dev->children);
2952			     child2 && child2 != child;
2953			     child2 = TAILQ_NEXT(child2, link))
2954				DEVICE_RESUME(child2);
2955			return (error);
2956		}
2957	}
2958	return (0);
2959}
2960
2961/**
2962 * @brief Helper function for implementing DEVICE_RESUME()
2963 *
2964 * This function can be used to help implement the DEVICE_RESUME() for
2965 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2966 */
2967int
2968bus_generic_resume(device_t dev)
2969{
2970	device_t	child;
2971
2972	TAILQ_FOREACH(child, &dev->children, link) {
2973		DEVICE_RESUME(child);
2974		/* if resume fails, there's nothing we can usefully do... */
2975	}
2976	return (0);
2977}
2978
2979/**
2980 * @brief Helper function for implementing BUS_PRINT_CHILD().
2981 *
2982 * This function prints the first part of the ascii representation of
2983 * @p child, including its name, unit and description (if any - see
2984 * device_set_desc()).
2985 *
2986 * @returns the number of characters printed
2987 */
2988int
2989bus_print_child_header(device_t dev, device_t child)
2990{
2991	int	retval = 0;
2992
2993	if (device_get_desc(child)) {
2994		retval += device_printf(child, "<%s>", device_get_desc(child));
2995	} else {
2996		retval += printf("%s", device_get_nameunit(child));
2997	}
2998
2999	return (retval);
3000}
3001
3002/**
3003 * @brief Helper function for implementing BUS_PRINT_CHILD().
3004 *
3005 * This function prints the last part of the ascii representation of
3006 * @p child, which consists of the string @c " on " followed by the
3007 * name and unit of the @p dev.
3008 *
3009 * @returns the number of characters printed
3010 */
3011int
3012bus_print_child_footer(device_t dev, device_t child)
3013{
3014	return (printf(" on %s\n", device_get_nameunit(dev)));
3015}
3016
3017/**
3018 * @brief Helper function for implementing BUS_PRINT_CHILD().
3019 *
3020 * This function simply calls bus_print_child_header() followed by
3021 * bus_print_child_footer().
3022 *
3023 * @returns the number of characters printed
3024 */
3025int
3026bus_generic_print_child(device_t dev, device_t child)
3027{
3028	int	retval = 0;
3029
3030	retval += bus_print_child_header(dev, child);
3031	retval += bus_print_child_footer(dev, child);
3032
3033	return (retval);
3034}
3035
3036/**
3037 * @brief Stub function for implementing BUS_READ_IVAR().
3038 *
3039 * @returns ENOENT
3040 */
3041int
3042bus_generic_read_ivar(device_t dev, device_t child, int index,
3043    uintptr_t * result)
3044{
3045	return (ENOENT);
3046}
3047
3048/**
3049 * @brief Stub function for implementing BUS_WRITE_IVAR().
3050 *
3051 * @returns ENOENT
3052 */
3053int
3054bus_generic_write_ivar(device_t dev, device_t child, int index,
3055    uintptr_t value)
3056{
3057	return (ENOENT);
3058}
3059
3060/**
3061 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3062 *
3063 * @returns NULL
3064 */
3065struct resource_list *
3066bus_generic_get_resource_list(device_t dev, device_t child)
3067{
3068	return (NULL);
3069}
3070
3071/**
3072 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3073 *
3074 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3075 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3076 * and then calls device_probe_and_attach() for each unattached child.
3077 */
3078void
3079bus_generic_driver_added(device_t dev, driver_t *driver)
3080{
3081	device_t child;
3082
3083	DEVICE_IDENTIFY(driver, dev);
3084	TAILQ_FOREACH(child, &dev->children, link) {
3085		if (child->state == DS_NOTPRESENT ||
3086		    (child->flags & DF_REBID))
3087			device_probe_and_attach(child);
3088	}
3089}
3090
3091/**
3092 * @brief Helper function for implementing BUS_SETUP_INTR().
3093 *
3094 * This simple implementation of BUS_SETUP_INTR() simply calls the
3095 * BUS_SETUP_INTR() method of the parent of @p dev.
3096 */
3097int
3098bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3099    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3100    void **cookiep)
3101{
3102	/* Propagate up the bus hierarchy until someone handles it. */
3103	if (dev->parent)
3104		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3105		    filter, intr, arg, cookiep));
3106	return (EINVAL);
3107}
3108
3109/**
3110 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3111 *
3112 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3113 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3114 */
3115int
3116bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3117    void *cookie)
3118{
3119	/* Propagate up the bus hierarchy until someone handles it. */
3120	if (dev->parent)
3121		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3122	return (EINVAL);
3123}
3124
3125/**
3126 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3127 *
3128 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3129 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3130 */
3131struct resource *
3132bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3133    u_long start, u_long end, u_long count, u_int flags)
3134{
3135	/* Propagate up the bus hierarchy until someone handles it. */
3136	if (dev->parent)
3137		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3138		    start, end, count, flags));
3139	return (NULL);
3140}
3141
3142/**
3143 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3144 *
3145 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3146 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3147 */
3148int
3149bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3150    struct resource *r)
3151{
3152	/* Propagate up the bus hierarchy until someone handles it. */
3153	if (dev->parent)
3154		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3155		    r));
3156	return (EINVAL);
3157}
3158
3159/**
3160 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3161 *
3162 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3163 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3164 */
3165int
3166bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3167    struct resource *r)
3168{
3169	/* Propagate up the bus hierarchy until someone handles it. */
3170	if (dev->parent)
3171		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3172		    r));
3173	return (EINVAL);
3174}
3175
3176/**
3177 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3178 *
3179 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3180 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3181 */
3182int
3183bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3184    int rid, struct resource *r)
3185{
3186	/* Propagate up the bus hierarchy until someone handles it. */
3187	if (dev->parent)
3188		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3189		    r));
3190	return (EINVAL);
3191}
3192
3193/**
3194 * @brief Helper function for implementing BUS_CONFIG_INTR().
3195 *
3196 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3197 * BUS_CONFIG_INTR() method of the parent of @p dev.
3198 */
3199int
3200bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3201    enum intr_polarity pol)
3202{
3203
3204	/* Propagate up the bus hierarchy until someone handles it. */
3205	if (dev->parent)
3206		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3207	return (EINVAL);
3208}
3209
3210/**
3211 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3212 *
3213 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3214 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3215 */
3216bus_dma_tag_t
3217bus_generic_get_dma_tag(device_t dev, device_t child)
3218{
3219
3220	/* Propagate up the bus hierarchy until someone handles it. */
3221	if (dev->parent != NULL)
3222		return (BUS_GET_DMA_TAG(dev->parent, child));
3223	return (NULL);
3224}
3225
3226/**
3227 * @brief Helper function for implementing BUS_GET_RESOURCE().
3228 *
3229 * This implementation of BUS_GET_RESOURCE() uses the
3230 * resource_list_find() function to do most of the work. It calls
3231 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3232 * search.
3233 */
3234int
3235bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3236    u_long *startp, u_long *countp)
3237{
3238	struct resource_list *		rl = NULL;
3239	struct resource_list_entry *	rle = NULL;
3240
3241	rl = BUS_GET_RESOURCE_LIST(dev, child);
3242	if (!rl)
3243		return (EINVAL);
3244
3245	rle = resource_list_find(rl, type, rid);
3246	if (!rle)
3247		return (ENOENT);
3248
3249	if (startp)
3250		*startp = rle->start;
3251	if (countp)
3252		*countp = rle->count;
3253
3254	return (0);
3255}
3256
3257/**
3258 * @brief Helper function for implementing BUS_SET_RESOURCE().
3259 *
3260 * This implementation of BUS_SET_RESOURCE() uses the
3261 * resource_list_add() function to do most of the work. It calls
3262 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3263 * edit.
3264 */
3265int
3266bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3267    u_long start, u_long count)
3268{
3269	struct resource_list *		rl = NULL;
3270
3271	rl = BUS_GET_RESOURCE_LIST(dev, child);
3272	if (!rl)
3273		return (EINVAL);
3274
3275	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3276
3277	return (0);
3278}
3279
3280/**
3281 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3282 *
3283 * This implementation of BUS_DELETE_RESOURCE() uses the
3284 * resource_list_delete() function to do most of the work. It calls
3285 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3286 * edit.
3287 */
3288void
3289bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3290{
3291	struct resource_list *		rl = NULL;
3292
3293	rl = BUS_GET_RESOURCE_LIST(dev, child);
3294	if (!rl)
3295		return;
3296
3297	resource_list_delete(rl, type, rid);
3298
3299	return;
3300}
3301
3302/**
3303 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3304 *
3305 * This implementation of BUS_RELEASE_RESOURCE() uses the
3306 * resource_list_release() function to do most of the work. It calls
3307 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3308 */
3309int
3310bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3311    int rid, struct resource *r)
3312{
3313	struct resource_list *		rl = NULL;
3314
3315	rl = BUS_GET_RESOURCE_LIST(dev, child);
3316	if (!rl)
3317		return (EINVAL);
3318
3319	return (resource_list_release(rl, dev, child, type, rid, r));
3320}
3321
3322/**
3323 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3324 *
3325 * This implementation of BUS_ALLOC_RESOURCE() uses the
3326 * resource_list_alloc() function to do most of the work. It calls
3327 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3328 */
3329struct resource *
3330bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3331    int *rid, u_long start, u_long end, u_long count, u_int flags)
3332{
3333	struct resource_list *		rl = NULL;
3334
3335	rl = BUS_GET_RESOURCE_LIST(dev, child);
3336	if (!rl)
3337		return (NULL);
3338
3339	return (resource_list_alloc(rl, dev, child, type, rid,
3340	    start, end, count, flags));
3341}
3342
3343/**
3344 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3345 *
3346 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3347 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3348 */
3349int
3350bus_generic_child_present(device_t dev, device_t child)
3351{
3352	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3353}
3354
3355/*
3356 * Some convenience functions to make it easier for drivers to use the
3357 * resource-management functions.  All these really do is hide the
3358 * indirection through the parent's method table, making for slightly
3359 * less-wordy code.  In the future, it might make sense for this code
3360 * to maintain some sort of a list of resources allocated by each device.
3361 */
3362
3363int
3364bus_alloc_resources(device_t dev, struct resource_spec *rs,
3365    struct resource **res)
3366{
3367	int i;
3368
3369	for (i = 0; rs[i].type != -1; i++)
3370		res[i] = NULL;
3371	for (i = 0; rs[i].type != -1; i++) {
3372		res[i] = bus_alloc_resource_any(dev,
3373		    rs[i].type, &rs[i].rid, rs[i].flags);
3374		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3375			bus_release_resources(dev, rs, res);
3376			return (ENXIO);
3377		}
3378	}
3379	return (0);
3380}
3381
3382void
3383bus_release_resources(device_t dev, const struct resource_spec *rs,
3384    struct resource **res)
3385{
3386	int i;
3387
3388	for (i = 0; rs[i].type != -1; i++)
3389		if (res[i] != NULL) {
3390			bus_release_resource(
3391			    dev, rs[i].type, rs[i].rid, res[i]);
3392			res[i] = NULL;
3393		}
3394}
3395
3396/**
3397 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3398 *
3399 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3400 * parent of @p dev.
3401 */
3402struct resource *
3403bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3404    u_long count, u_int flags)
3405{
3406	if (dev->parent == NULL)
3407		return (NULL);
3408	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3409	    count, flags));
3410}
3411
3412/**
3413 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3414 *
3415 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3416 * parent of @p dev.
3417 */
3418int
3419bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3420{
3421	if (dev->parent == NULL)
3422		return (EINVAL);
3423	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3424}
3425
3426/**
3427 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3428 *
3429 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3430 * parent of @p dev.
3431 */
3432int
3433bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3434{
3435	if (dev->parent == NULL)
3436		return (EINVAL);
3437	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3438}
3439
3440/**
3441 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3442 *
3443 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3444 * parent of @p dev.
3445 */
3446int
3447bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3448{
3449	if (dev->parent == NULL)
3450		return (EINVAL);
3451	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3452}
3453
3454/**
3455 * @brief Wrapper function for BUS_SETUP_INTR().
3456 *
3457 * This function simply calls the BUS_SETUP_INTR() method of the
3458 * parent of @p dev.
3459 */
3460int
3461bus_setup_intr(device_t dev, struct resource *r, int flags,
3462    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
3463{
3464	int error;
3465
3466	if (dev->parent != NULL) {
3467		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3468		    !debug_mpsafenet)
3469			flags &= ~INTR_MPSAFE;
3470		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3471		    filter, handler, arg, cookiep);
3472		if (error == 0) {
3473			if (handler != NULL && !(flags & INTR_MPSAFE))
3474				device_printf(dev, "[GIANT-LOCKED]\n");
3475			if (bootverbose && (flags & INTR_MPSAFE))
3476				device_printf(dev, "[MPSAFE]\n");
3477			if (filter != NULL) {
3478				if (handler == NULL)
3479					device_printf(dev, "[FILTER]\n");
3480				else
3481					device_printf(dev, "[FILTER+ITHREAD]\n");
3482			} else
3483				device_printf(dev, "[ITHREAD]\n");
3484		}
3485	} else
3486		error = EINVAL;
3487	return (error);
3488}
3489
3490/**
3491 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3492 *
3493 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3494 * parent of @p dev.
3495 */
3496int
3497bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3498{
3499	if (dev->parent == NULL)
3500		return (EINVAL);
3501	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3502}
3503
3504/**
3505 * @brief Wrapper function for BUS_SET_RESOURCE().
3506 *
3507 * This function simply calls the BUS_SET_RESOURCE() method of the
3508 * parent of @p dev.
3509 */
3510int
3511bus_set_resource(device_t dev, int type, int rid,
3512    u_long start, u_long count)
3513{
3514	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3515	    start, count));
3516}
3517
3518/**
3519 * @brief Wrapper function for BUS_GET_RESOURCE().
3520 *
3521 * This function simply calls the BUS_GET_RESOURCE() method of the
3522 * parent of @p dev.
3523 */
3524int
3525bus_get_resource(device_t dev, int type, int rid,
3526    u_long *startp, u_long *countp)
3527{
3528	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3529	    startp, countp));
3530}
3531
3532/**
3533 * @brief Wrapper function for BUS_GET_RESOURCE().
3534 *
3535 * This function simply calls the BUS_GET_RESOURCE() method of the
3536 * parent of @p dev and returns the start value.
3537 */
3538u_long
3539bus_get_resource_start(device_t dev, int type, int rid)
3540{
3541	u_long start, count;
3542	int error;
3543
3544	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3545	    &start, &count);
3546	if (error)
3547		return (0);
3548	return (start);
3549}
3550
3551/**
3552 * @brief Wrapper function for BUS_GET_RESOURCE().
3553 *
3554 * This function simply calls the BUS_GET_RESOURCE() method of the
3555 * parent of @p dev and returns the count value.
3556 */
3557u_long
3558bus_get_resource_count(device_t dev, int type, int rid)
3559{
3560	u_long start, count;
3561	int error;
3562
3563	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3564	    &start, &count);
3565	if (error)
3566		return (0);
3567	return (count);
3568}
3569
3570/**
3571 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3572 *
3573 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3574 * parent of @p dev.
3575 */
3576void
3577bus_delete_resource(device_t dev, int type, int rid)
3578{
3579	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3580}
3581
3582/**
3583 * @brief Wrapper function for BUS_CHILD_PRESENT().
3584 *
3585 * This function simply calls the BUS_CHILD_PRESENT() method of the
3586 * parent of @p dev.
3587 */
3588int
3589bus_child_present(device_t child)
3590{
3591	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3592}
3593
3594/**
3595 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3596 *
3597 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3598 * parent of @p dev.
3599 */
3600int
3601bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3602{
3603	device_t parent;
3604
3605	parent = device_get_parent(child);
3606	if (parent == NULL) {
3607		*buf = '\0';
3608		return (0);
3609	}
3610	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3611}
3612
3613/**
3614 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3615 *
3616 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3617 * parent of @p dev.
3618 */
3619int
3620bus_child_location_str(device_t child, char *buf, size_t buflen)
3621{
3622	device_t parent;
3623
3624	parent = device_get_parent(child);
3625	if (parent == NULL) {
3626		*buf = '\0';
3627		return (0);
3628	}
3629	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3630}
3631
3632/**
3633 * @brief Wrapper function for BUS_GET_DMA_TAG().
3634 *
3635 * This function simply calls the BUS_GET_DMA_TAG() method of the
3636 * parent of @p dev.
3637 */
3638bus_dma_tag_t
3639bus_get_dma_tag(device_t dev)
3640{
3641	device_t parent;
3642
3643	parent = device_get_parent(dev);
3644	if (parent == NULL)
3645		return (NULL);
3646	return (BUS_GET_DMA_TAG(parent, dev));
3647}
3648
3649/* Resume all devices and then notify userland that we're up again. */
3650static int
3651root_resume(device_t dev)
3652{
3653	int error;
3654
3655	error = bus_generic_resume(dev);
3656	if (error == 0)
3657		devctl_notify("kern", "power", "resume", NULL);
3658	return (error);
3659}
3660
3661static int
3662root_print_child(device_t dev, device_t child)
3663{
3664	int	retval = 0;
3665
3666	retval += bus_print_child_header(dev, child);
3667	retval += printf("\n");
3668
3669	return (retval);
3670}
3671
3672static int
3673root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3674    void **cookiep)
3675{
3676	/*
3677	 * If an interrupt mapping gets to here something bad has happened.
3678	 */
3679	panic("root_setup_intr");
3680}
3681
3682/*
3683 * If we get here, assume that the device is permanant and really is
3684 * present in the system.  Removable bus drivers are expected to intercept
3685 * this call long before it gets here.  We return -1 so that drivers that
3686 * really care can check vs -1 or some ERRNO returned higher in the food
3687 * chain.
3688 */
3689static int
3690root_child_present(device_t dev, device_t child)
3691{
3692	return (-1);
3693}
3694
3695static kobj_method_t root_methods[] = {
3696	/* Device interface */
3697	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3698	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3699	KOBJMETHOD(device_resume,	root_resume),
3700
3701	/* Bus interface */
3702	KOBJMETHOD(bus_print_child,	root_print_child),
3703	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3704	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3705	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3706	KOBJMETHOD(bus_child_present,	root_child_present),
3707
3708	{ 0, 0 }
3709};
3710
3711static driver_t root_driver = {
3712	"root",
3713	root_methods,
3714	1,			/* no softc */
3715};
3716
3717device_t	root_bus;
3718devclass_t	root_devclass;
3719
3720static int
3721root_bus_module_handler(module_t mod, int what, void* arg)
3722{
3723	switch (what) {
3724	case MOD_LOAD:
3725		TAILQ_INIT(&bus_data_devices);
3726		kobj_class_compile((kobj_class_t) &root_driver);
3727		root_bus = make_device(NULL, "root", 0);
3728		root_bus->desc = "System root bus";
3729		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3730		root_bus->driver = &root_driver;
3731		root_bus->state = DS_ATTACHED;
3732		root_devclass = devclass_find_internal("root", NULL, FALSE);
3733		devinit();
3734		return (0);
3735
3736	case MOD_SHUTDOWN:
3737		device_shutdown(root_bus);
3738		return (0);
3739	default:
3740		return (EOPNOTSUPP);
3741	}
3742
3743	return (0);
3744}
3745
3746static moduledata_t root_bus_mod = {
3747	"rootbus",
3748	root_bus_module_handler,
3749	0
3750};
3751DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3752
3753/**
3754 * @brief Automatically configure devices
3755 *
3756 * This function begins the autoconfiguration process by calling
3757 * device_probe_and_attach() for each child of the @c root0 device.
3758 */
3759void
3760root_bus_configure(void)
3761{
3762	device_t dev;
3763
3764	PDEBUG(("."));
3765
3766	TAILQ_FOREACH(dev, &root_bus->children, link) {
3767		device_probe_and_attach(dev);
3768	}
3769}
3770
3771/**
3772 * @brief Module handler for registering device drivers
3773 *
3774 * This module handler is used to automatically register device
3775 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3776 * devclass_add_driver() for the driver described by the
3777 * driver_module_data structure pointed to by @p arg
3778 */
3779int
3780driver_module_handler(module_t mod, int what, void *arg)
3781{
3782	int error;
3783	struct driver_module_data *dmd;
3784	devclass_t bus_devclass;
3785	kobj_class_t driver;
3786
3787	dmd = (struct driver_module_data *)arg;
3788	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
3789	error = 0;
3790
3791	switch (what) {
3792	case MOD_LOAD:
3793		if (dmd->dmd_chainevh)
3794			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3795
3796		driver = dmd->dmd_driver;
3797		PDEBUG(("Loading module: driver %s on bus %s",
3798		    DRIVERNAME(driver), dmd->dmd_busname));
3799		error = devclass_add_driver(bus_devclass, driver);
3800		if (error)
3801			break;
3802
3803		/*
3804		 * If the driver has any base classes, make the
3805		 * devclass inherit from the devclass of the driver's
3806		 * first base class. This will allow the system to
3807		 * search for drivers in both devclasses for children
3808		 * of a device using this driver.
3809		 */
3810		if (driver->baseclasses) {
3811			const char *parentname;
3812			parentname = driver->baseclasses[0]->name;
3813			*dmd->dmd_devclass =
3814				devclass_find_internal(driver->name,
3815				    parentname, TRUE);
3816		} else {
3817			*dmd->dmd_devclass =
3818				devclass_find_internal(driver->name, NULL, TRUE);
3819		}
3820		break;
3821
3822	case MOD_UNLOAD:
3823		PDEBUG(("Unloading module: driver %s from bus %s",
3824		    DRIVERNAME(dmd->dmd_driver),
3825		    dmd->dmd_busname));
3826		error = devclass_delete_driver(bus_devclass,
3827		    dmd->dmd_driver);
3828
3829		if (!error && dmd->dmd_chainevh)
3830			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3831		break;
3832	case MOD_QUIESCE:
3833		PDEBUG(("Quiesce module: driver %s from bus %s",
3834		    DRIVERNAME(dmd->dmd_driver),
3835		    dmd->dmd_busname));
3836		error = devclass_quiesce_driver(bus_devclass,
3837		    dmd->dmd_driver);
3838
3839		if (!error && dmd->dmd_chainevh)
3840			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3841		break;
3842	default:
3843		error = EOPNOTSUPP;
3844		break;
3845	}
3846
3847	return (error);
3848}
3849
3850/**
3851 * @brief Enumerate all hinted devices for this bus.
3852 *
3853 * Walks throught he hints for this bus and calls the bus_hinted_child
3854 * routine for each one it fines.  It searches first for the specific
3855 * bus that's being probed for hinted children (eg isa0), and then for
3856 * generic children (eg isa).
3857 *
3858 * @param	dev	bus device to enumerate
3859 */
3860void
3861bus_enumerate_hinted_children(device_t bus)
3862{
3863	int i;
3864	const char *dname, *busname;
3865	int dunit;
3866
3867	/*
3868	 * enumerate all devices on the specific bus
3869	 */
3870	busname = device_get_nameunit(bus);
3871	i = 0;
3872	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3873		BUS_HINTED_CHILD(bus, dname, dunit);
3874
3875	/*
3876	 * and all the generic ones.
3877	 */
3878	busname = device_get_name(bus);
3879	i = 0;
3880	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
3881		BUS_HINTED_CHILD(bus, dname, dunit);
3882}
3883
3884#ifdef BUS_DEBUG
3885
3886/* the _short versions avoid iteration by not calling anything that prints
3887 * more than oneliners. I love oneliners.
3888 */
3889
3890static void
3891print_device_short(device_t dev, int indent)
3892{
3893	if (!dev)
3894		return;
3895
3896	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3897	    dev->unit, dev->desc,
3898	    (dev->parent? "":"no "),
3899	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3900	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3901	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3902	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3903	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3904	    (dev->flags&DF_REBID? "rebiddable,":""),
3905	    (dev->ivars? "":"no "),
3906	    (dev->softc? "":"no "),
3907	    dev->busy));
3908}
3909
3910static void
3911print_device(device_t dev, int indent)
3912{
3913	if (!dev)
3914		return;
3915
3916	print_device_short(dev, indent);
3917
3918	indentprintf(("Parent:\n"));
3919	print_device_short(dev->parent, indent+1);
3920	indentprintf(("Driver:\n"));
3921	print_driver_short(dev->driver, indent+1);
3922	indentprintf(("Devclass:\n"));
3923	print_devclass_short(dev->devclass, indent+1);
3924}
3925
3926void
3927print_device_tree_short(device_t dev, int indent)
3928/* print the device and all its children (indented) */
3929{
3930	device_t child;
3931
3932	if (!dev)
3933		return;
3934
3935	print_device_short(dev, indent);
3936
3937	TAILQ_FOREACH(child, &dev->children, link) {
3938		print_device_tree_short(child, indent+1);
3939	}
3940}
3941
3942void
3943print_device_tree(device_t dev, int indent)
3944/* print the device and all its children (indented) */
3945{
3946	device_t child;
3947
3948	if (!dev)
3949		return;
3950
3951	print_device(dev, indent);
3952
3953	TAILQ_FOREACH(child, &dev->children, link) {
3954		print_device_tree(child, indent+1);
3955	}
3956}
3957
3958static void
3959print_driver_short(driver_t *driver, int indent)
3960{
3961	if (!driver)
3962		return;
3963
3964	indentprintf(("driver %s: softc size = %zd\n",
3965	    driver->name, driver->size));
3966}
3967
3968static void
3969print_driver(driver_t *driver, int indent)
3970{
3971	if (!driver)
3972		return;
3973
3974	print_driver_short(driver, indent);
3975}
3976
3977
3978static void
3979print_driver_list(driver_list_t drivers, int indent)
3980{
3981	driverlink_t driver;
3982
3983	TAILQ_FOREACH(driver, &drivers, link) {
3984		print_driver(driver->driver, indent);
3985	}
3986}
3987
3988static void
3989print_devclass_short(devclass_t dc, int indent)
3990{
3991	if ( !dc )
3992		return;
3993
3994	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3995}
3996
3997static void
3998print_devclass(devclass_t dc, int indent)
3999{
4000	int i;
4001
4002	if ( !dc )
4003		return;
4004
4005	print_devclass_short(dc, indent);
4006	indentprintf(("Drivers:\n"));
4007	print_driver_list(dc->drivers, indent+1);
4008
4009	indentprintf(("Devices:\n"));
4010	for (i = 0; i < dc->maxunit; i++)
4011		if (dc->devices[i])
4012			print_device(dc->devices[i], indent+1);
4013}
4014
4015void
4016print_devclass_list_short(void)
4017{
4018	devclass_t dc;
4019
4020	printf("Short listing of devclasses, drivers & devices:\n");
4021	TAILQ_FOREACH(dc, &devclasses, link) {
4022		print_devclass_short(dc, 0);
4023	}
4024}
4025
4026void
4027print_devclass_list(void)
4028{
4029	devclass_t dc;
4030
4031	printf("Full listing of devclasses, drivers & devices:\n");
4032	TAILQ_FOREACH(dc, &devclasses, link) {
4033		print_devclass(dc, 0);
4034	}
4035}
4036
4037#endif
4038
4039/*
4040 * User-space access to the device tree.
4041 *
4042 * We implement a small set of nodes:
4043 *
4044 * hw.bus			Single integer read method to obtain the
4045 *				current generation count.
4046 * hw.bus.devices		Reads the entire device tree in flat space.
4047 * hw.bus.rman			Resource manager interface
4048 *
4049 * We might like to add the ability to scan devclasses and/or drivers to
4050 * determine what else is currently loaded/available.
4051 */
4052
4053static int
4054sysctl_bus(SYSCTL_HANDLER_ARGS)
4055{
4056	struct u_businfo	ubus;
4057
4058	ubus.ub_version = BUS_USER_VERSION;
4059	ubus.ub_generation = bus_data_generation;
4060
4061	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4062}
4063SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4064    "bus-related data");
4065
4066static int
4067sysctl_devices(SYSCTL_HANDLER_ARGS)
4068{
4069	int			*name = (int *)arg1;
4070	u_int			namelen = arg2;
4071	int			index;
4072	struct device		*dev;
4073	struct u_device		udev;	/* XXX this is a bit big */
4074	int			error;
4075
4076	if (namelen != 2)
4077		return (EINVAL);
4078
4079	if (bus_data_generation_check(name[0]))
4080		return (EINVAL);
4081
4082	index = name[1];
4083
4084	/*
4085	 * Scan the list of devices, looking for the requested index.
4086	 */
4087	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4088		if (index-- == 0)
4089			break;
4090	}
4091	if (dev == NULL)
4092		return (ENOENT);
4093
4094	/*
4095	 * Populate the return array.
4096	 */
4097	bzero(&udev, sizeof(udev));
4098	udev.dv_handle = (uintptr_t)dev;
4099	udev.dv_parent = (uintptr_t)dev->parent;
4100	if (dev->nameunit != NULL)
4101		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4102	if (dev->desc != NULL)
4103		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4104	if (dev->driver != NULL && dev->driver->name != NULL)
4105		strlcpy(udev.dv_drivername, dev->driver->name,
4106		    sizeof(udev.dv_drivername));
4107	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4108	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4109	udev.dv_devflags = dev->devflags;
4110	udev.dv_flags = dev->flags;
4111	udev.dv_state = dev->state;
4112	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4113	return (error);
4114}
4115
4116SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4117    "system device tree");
4118
4119int
4120bus_data_generation_check(int generation)
4121{
4122	if (generation != bus_data_generation)
4123		return (1);
4124
4125	/* XXX generate optimised lists here? */
4126	return (0);
4127}
4128
4129void
4130bus_data_generation_update(void)
4131{
4132	bus_data_generation++;
4133}
4134
4135int
4136bus_free_resource(device_t dev, int type, struct resource *r)
4137{
4138	if (r == NULL)
4139		return (0);
4140	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4141}
4142