subr_bus.c revision 154598
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 154598 2006-01-20 21:59:13Z jhb $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53
54#include <machine/stdarg.h>
55
56#include <vm/uma.h>
57
58SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
59SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
60
61/*
62 * Used to attach drivers to devclasses.
63 */
64typedef struct driverlink *driverlink_t;
65struct driverlink {
66	kobj_class_t	driver;
67	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
68};
69
70/*
71 * Forward declarations
72 */
73typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
74typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
75typedef TAILQ_HEAD(device_list, device) device_list_t;
76
77struct devclass {
78	TAILQ_ENTRY(devclass) link;
79	devclass_t	parent;		/* parent in devclass hierarchy */
80	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
81	char		*name;
82	device_t	*devices;	/* array of devices indexed by unit */
83	int		maxunit;	/* size of devices array */
84
85	struct sysctl_ctx_list sysctl_ctx;
86	struct sysctl_oid *sysctl_tree;
87};
88
89/**
90 * @brief Implementation of device.
91 */
92struct device {
93	/*
94	 * A device is a kernel object. The first field must be the
95	 * current ops table for the object.
96	 */
97	KOBJ_FIELDS;
98
99	/*
100	 * Device hierarchy.
101	 */
102	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
103	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
104	device_t	parent;		/**< parent of this device  */
105	device_list_t	children;	/**< list of child devices */
106
107	/*
108	 * Details of this device.
109	 */
110	driver_t	*driver;	/**< current driver */
111	devclass_t	devclass;	/**< current device class */
112	int		unit;		/**< current unit number */
113	char*		nameunit;	/**< name+unit e.g. foodev0 */
114	char*		desc;		/**< driver specific description */
115	int		busy;		/**< count of calls to device_busy() */
116	device_state_t	state;		/**< current device state  */
117	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
118	u_short		flags;		/**< internal device flags  */
119#define	DF_ENABLED	1		/* device should be probed/attached */
120#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
121#define	DF_WILDCARD	4		/* unit was originally wildcard */
122#define	DF_DESCMALLOCED	8		/* description was malloced */
123#define	DF_QUIET	16		/* don't print verbose attach message */
124#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
125#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
126#define	DF_REBID	128		/* Can rebid after attach */
127	u_char	order;			/**< order from device_add_child_ordered() */
128	u_char	pad;
129	void	*ivars;			/**< instance variables  */
130	void	*softc;			/**< current driver's variables  */
131
132	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
133	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
134};
135
136static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
137static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
138
139#ifdef BUS_DEBUG
140
141static int bus_debug = 1;
142TUNABLE_INT("bus.debug", &bus_debug);
143SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
144    "Debug bus code");
145
146#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
147#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
148#define DRIVERNAME(d)	((d)? d->name : "no driver")
149#define DEVCLANAME(d)	((d)? d->name : "no devclass")
150
151/**
152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
153 * prevent syslog from deleting initial spaces
154 */
155#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
156
157static void print_device_short(device_t dev, int indent);
158static void print_device(device_t dev, int indent);
159void print_device_tree_short(device_t dev, int indent);
160void print_device_tree(device_t dev, int indent);
161static void print_driver_short(driver_t *driver, int indent);
162static void print_driver(driver_t *driver, int indent);
163static void print_driver_list(driver_list_t drivers, int indent);
164static void print_devclass_short(devclass_t dc, int indent);
165static void print_devclass(devclass_t dc, int indent);
166void print_devclass_list_short(void);
167void print_devclass_list(void);
168
169#else
170/* Make the compiler ignore the function calls */
171#define PDEBUG(a)			/* nop */
172#define DEVICENAME(d)			/* nop */
173#define DRIVERNAME(d)			/* nop */
174#define DEVCLANAME(d)			/* nop */
175
176#define print_device_short(d,i)		/* nop */
177#define print_device(d,i)		/* nop */
178#define print_device_tree_short(d,i)	/* nop */
179#define print_device_tree(d,i)		/* nop */
180#define print_driver_short(d,i)		/* nop */
181#define print_driver(d,i)		/* nop */
182#define print_driver_list(d,i)		/* nop */
183#define print_devclass_short(d,i)	/* nop */
184#define print_devclass(d,i)		/* nop */
185#define print_devclass_list_short()	/* nop */
186#define print_devclass_list()		/* nop */
187#endif
188
189/*
190 * dev sysctl tree
191 */
192
193enum {
194	DEVCLASS_SYSCTL_PARENT,
195};
196
197static int
198devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
199{
200	devclass_t dc = (devclass_t)arg1;
201	const char *value;
202
203	switch (arg2) {
204	case DEVCLASS_SYSCTL_PARENT:
205		value = dc->parent ? dc->parent->name : "";
206		break;
207	default:
208		return (EINVAL);
209	}
210	return (SYSCTL_OUT(req, value, strlen(value)));
211}
212
213static void
214devclass_sysctl_init(devclass_t dc)
215{
216
217	if (dc->sysctl_tree != NULL)
218		return;
219	sysctl_ctx_init(&dc->sysctl_ctx);
220	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
221	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
222	    CTLFLAG_RD, 0, "");
223	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
224	    OID_AUTO, "%parent", CTLFLAG_RD,
225	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
226	    "parent class");
227}
228
229enum {
230	DEVICE_SYSCTL_DESC,
231	DEVICE_SYSCTL_DRIVER,
232	DEVICE_SYSCTL_LOCATION,
233	DEVICE_SYSCTL_PNPINFO,
234	DEVICE_SYSCTL_PARENT,
235};
236
237static int
238device_sysctl_handler(SYSCTL_HANDLER_ARGS)
239{
240	device_t dev = (device_t)arg1;
241	const char *value;
242	char *buf;
243	int error;
244
245	buf = NULL;
246	switch (arg2) {
247	case DEVICE_SYSCTL_DESC:
248		value = dev->desc ? dev->desc : "";
249		break;
250	case DEVICE_SYSCTL_DRIVER:
251		value = dev->driver ? dev->driver->name : "";
252		break;
253	case DEVICE_SYSCTL_LOCATION:
254		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
255		bus_child_location_str(dev, buf, 1024);
256		break;
257	case DEVICE_SYSCTL_PNPINFO:
258		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
259		bus_child_pnpinfo_str(dev, buf, 1024);
260		break;
261	case DEVICE_SYSCTL_PARENT:
262		value = dev->parent ? dev->parent->nameunit : "";
263		break;
264	default:
265		return (EINVAL);
266	}
267	error = SYSCTL_OUT(req, value, strlen(value));
268	if (buf != NULL)
269		free(buf, M_BUS);
270	return (error);
271}
272
273static void
274device_sysctl_init(device_t dev)
275{
276	devclass_t dc = dev->devclass;
277
278	if (dev->sysctl_tree != NULL)
279		return;
280	devclass_sysctl_init(dc);
281	sysctl_ctx_init(&dev->sysctl_ctx);
282	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
283	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
284	    dev->nameunit + strlen(dc->name),
285	    CTLFLAG_RD, 0, "");
286	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
287	    OID_AUTO, "%desc", CTLFLAG_RD,
288	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
289	    "device description");
290	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
291	    OID_AUTO, "%driver", CTLFLAG_RD,
292	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
293	    "device driver name");
294	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
295	    OID_AUTO, "%location", CTLFLAG_RD,
296	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
297	    "device location relative to parent");
298	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
300	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
301	    "device identification");
302	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303	    OID_AUTO, "%parent", CTLFLAG_RD,
304	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
305	    "parent device");
306}
307
308static void
309device_sysctl_fini(device_t dev)
310{
311	if (dev->sysctl_tree == NULL)
312		return;
313	sysctl_ctx_free(&dev->sysctl_ctx);
314	dev->sysctl_tree = NULL;
315}
316
317/*
318 * /dev/devctl implementation
319 */
320
321/*
322 * This design allows only one reader for /dev/devctl.  This is not desirable
323 * in the long run, but will get a lot of hair out of this implementation.
324 * Maybe we should make this device a clonable device.
325 *
326 * Also note: we specifically do not attach a device to the device_t tree
327 * to avoid potential chicken and egg problems.  One could argue that all
328 * of this belongs to the root node.  One could also further argue that the
329 * sysctl interface that we have not might more properly be an ioctl
330 * interface, but at this stage of the game, I'm not inclined to rock that
331 * boat.
332 *
333 * I'm also not sure that the SIGIO support is done correctly or not, as
334 * I copied it from a driver that had SIGIO support that likely hasn't been
335 * tested since 3.4 or 2.2.8!
336 */
337
338static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
339static int devctl_disable = 0;
340TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
341SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
342    sysctl_devctl_disable, "I", "devctl disable");
343
344static d_open_t		devopen;
345static d_close_t	devclose;
346static d_read_t		devread;
347static d_ioctl_t	devioctl;
348static d_poll_t		devpoll;
349
350static struct cdevsw dev_cdevsw = {
351	.d_version =	D_VERSION,
352	.d_flags =	D_NEEDGIANT,
353	.d_open =	devopen,
354	.d_close =	devclose,
355	.d_read =	devread,
356	.d_ioctl =	devioctl,
357	.d_poll =	devpoll,
358	.d_name =	"devctl",
359};
360
361struct dev_event_info
362{
363	char *dei_data;
364	TAILQ_ENTRY(dev_event_info) dei_link;
365};
366
367TAILQ_HEAD(devq, dev_event_info);
368
369static struct dev_softc
370{
371	int	inuse;
372	int	nonblock;
373	struct mtx mtx;
374	struct cv cv;
375	struct selinfo sel;
376	struct devq devq;
377	struct proc *async_proc;
378} devsoftc;
379
380static struct cdev *devctl_dev;
381
382static void
383devinit(void)
384{
385	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
386	    "devctl");
387	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
388	cv_init(&devsoftc.cv, "dev cv");
389	TAILQ_INIT(&devsoftc.devq);
390}
391
392static int
393devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
394{
395	if (devsoftc.inuse)
396		return (EBUSY);
397	/* move to init */
398	devsoftc.inuse = 1;
399	devsoftc.nonblock = 0;
400	devsoftc.async_proc = NULL;
401	return (0);
402}
403
404static int
405devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
406{
407	devsoftc.inuse = 0;
408	mtx_lock(&devsoftc.mtx);
409	cv_broadcast(&devsoftc.cv);
410	mtx_unlock(&devsoftc.mtx);
411
412	return (0);
413}
414
415/*
416 * The read channel for this device is used to report changes to
417 * userland in realtime.  We are required to free the data as well as
418 * the n1 object because we allocate them separately.  Also note that
419 * we return one record at a time.  If you try to read this device a
420 * character at a time, you will loose the rest of the data.  Listening
421 * programs are expected to cope.
422 */
423static int
424devread(struct cdev *dev, struct uio *uio, int ioflag)
425{
426	struct dev_event_info *n1;
427	int rv;
428
429	mtx_lock(&devsoftc.mtx);
430	while (TAILQ_EMPTY(&devsoftc.devq)) {
431		if (devsoftc.nonblock) {
432			mtx_unlock(&devsoftc.mtx);
433			return (EAGAIN);
434		}
435		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
436		if (rv) {
437			/*
438			 * Need to translate ERESTART to EINTR here? -- jake
439			 */
440			mtx_unlock(&devsoftc.mtx);
441			return (rv);
442		}
443	}
444	n1 = TAILQ_FIRST(&devsoftc.devq);
445	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
446	mtx_unlock(&devsoftc.mtx);
447	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
448	free(n1->dei_data, M_BUS);
449	free(n1, M_BUS);
450	return (rv);
451}
452
453static	int
454devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
455{
456	switch (cmd) {
457
458	case FIONBIO:
459		if (*(int*)data)
460			devsoftc.nonblock = 1;
461		else
462			devsoftc.nonblock = 0;
463		return (0);
464	case FIOASYNC:
465		if (*(int*)data)
466			devsoftc.async_proc = td->td_proc;
467		else
468			devsoftc.async_proc = NULL;
469		return (0);
470
471		/* (un)Support for other fcntl() calls. */
472	case FIOCLEX:
473	case FIONCLEX:
474	case FIONREAD:
475	case FIOSETOWN:
476	case FIOGETOWN:
477	default:
478		break;
479	}
480	return (ENOTTY);
481}
482
483static	int
484devpoll(struct cdev *dev, int events, d_thread_t *td)
485{
486	int	revents = 0;
487
488	mtx_lock(&devsoftc.mtx);
489	if (events & (POLLIN | POLLRDNORM)) {
490		if (!TAILQ_EMPTY(&devsoftc.devq))
491			revents = events & (POLLIN | POLLRDNORM);
492		else
493			selrecord(td, &devsoftc.sel);
494	}
495	mtx_unlock(&devsoftc.mtx);
496
497	return (revents);
498}
499
500/**
501 * @brief Queue data to be read from the devctl device
502 *
503 * Generic interface to queue data to the devctl device.  It is
504 * assumed that @p data is properly formatted.  It is further assumed
505 * that @p data is allocated using the M_BUS malloc type.
506 */
507void
508devctl_queue_data(char *data)
509{
510	struct dev_event_info *n1 = NULL;
511	struct proc *p;
512
513	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
514	if (n1 == NULL)
515		return;
516	n1->dei_data = data;
517	mtx_lock(&devsoftc.mtx);
518	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
519	cv_broadcast(&devsoftc.cv);
520	mtx_unlock(&devsoftc.mtx);
521	selwakeup(&devsoftc.sel);
522	p = devsoftc.async_proc;
523	if (p != NULL) {
524		PROC_LOCK(p);
525		psignal(p, SIGIO);
526		PROC_UNLOCK(p);
527	}
528}
529
530/**
531 * @brief Send a 'notification' to userland, using standard ways
532 */
533void
534devctl_notify(const char *system, const char *subsystem, const char *type,
535    const char *data)
536{
537	int len = 0;
538	char *msg;
539
540	if (system == NULL)
541		return;		/* BOGUS!  Must specify system. */
542	if (subsystem == NULL)
543		return;		/* BOGUS!  Must specify subsystem. */
544	if (type == NULL)
545		return;		/* BOGUS!  Must specify type. */
546	len += strlen(" system=") + strlen(system);
547	len += strlen(" subsystem=") + strlen(subsystem);
548	len += strlen(" type=") + strlen(type);
549	/* add in the data message plus newline. */
550	if (data != NULL)
551		len += strlen(data);
552	len += 3;	/* '!', '\n', and NUL */
553	msg = malloc(len, M_BUS, M_NOWAIT);
554	if (msg == NULL)
555		return;		/* Drop it on the floor */
556	if (data != NULL)
557		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
558		    system, subsystem, type, data);
559	else
560		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
561		    system, subsystem, type);
562	devctl_queue_data(msg);
563}
564
565/*
566 * Common routine that tries to make sending messages as easy as possible.
567 * We allocate memory for the data, copy strings into that, but do not
568 * free it unless there's an error.  The dequeue part of the driver should
569 * free the data.  We don't send data when the device is disabled.  We do
570 * send data, even when we have no listeners, because we wish to avoid
571 * races relating to startup and restart of listening applications.
572 *
573 * devaddq is designed to string together the type of event, with the
574 * object of that event, plus the plug and play info and location info
575 * for that event.  This is likely most useful for devices, but less
576 * useful for other consumers of this interface.  Those should use
577 * the devctl_queue_data() interface instead.
578 */
579static void
580devaddq(const char *type, const char *what, device_t dev)
581{
582	char *data = NULL;
583	char *loc = NULL;
584	char *pnp = NULL;
585	const char *parstr;
586
587	if (devctl_disable)
588		return;
589	data = malloc(1024, M_BUS, M_NOWAIT);
590	if (data == NULL)
591		goto bad;
592
593	/* get the bus specific location of this device */
594	loc = malloc(1024, M_BUS, M_NOWAIT);
595	if (loc == NULL)
596		goto bad;
597	*loc = '\0';
598	bus_child_location_str(dev, loc, 1024);
599
600	/* Get the bus specific pnp info of this device */
601	pnp = malloc(1024, M_BUS, M_NOWAIT);
602	if (pnp == NULL)
603		goto bad;
604	*pnp = '\0';
605	bus_child_pnpinfo_str(dev, pnp, 1024);
606
607	/* Get the parent of this device, or / if high enough in the tree. */
608	if (device_get_parent(dev) == NULL)
609		parstr = ".";	/* Or '/' ? */
610	else
611		parstr = device_get_nameunit(device_get_parent(dev));
612	/* String it all together. */
613	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
614	  parstr);
615	free(loc, M_BUS);
616	free(pnp, M_BUS);
617	devctl_queue_data(data);
618	return;
619bad:
620	free(pnp, M_BUS);
621	free(loc, M_BUS);
622	free(data, M_BUS);
623	return;
624}
625
626/*
627 * A device was added to the tree.  We are called just after it successfully
628 * attaches (that is, probe and attach success for this device).  No call
629 * is made if a device is merely parented into the tree.  See devnomatch
630 * if probe fails.  If attach fails, no notification is sent (but maybe
631 * we should have a different message for this).
632 */
633static void
634devadded(device_t dev)
635{
636	char *pnp = NULL;
637	char *tmp = NULL;
638
639	pnp = malloc(1024, M_BUS, M_NOWAIT);
640	if (pnp == NULL)
641		goto fail;
642	tmp = malloc(1024, M_BUS, M_NOWAIT);
643	if (tmp == NULL)
644		goto fail;
645	*pnp = '\0';
646	bus_child_pnpinfo_str(dev, pnp, 1024);
647	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
648	devaddq("+", tmp, dev);
649fail:
650	if (pnp != NULL)
651		free(pnp, M_BUS);
652	if (tmp != NULL)
653		free(tmp, M_BUS);
654	return;
655}
656
657/*
658 * A device was removed from the tree.  We are called just before this
659 * happens.
660 */
661static void
662devremoved(device_t dev)
663{
664	char *pnp = NULL;
665	char *tmp = NULL;
666
667	pnp = malloc(1024, M_BUS, M_NOWAIT);
668	if (pnp == NULL)
669		goto fail;
670	tmp = malloc(1024, M_BUS, M_NOWAIT);
671	if (tmp == NULL)
672		goto fail;
673	*pnp = '\0';
674	bus_child_pnpinfo_str(dev, pnp, 1024);
675	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
676	devaddq("-", tmp, dev);
677fail:
678	if (pnp != NULL)
679		free(pnp, M_BUS);
680	if (tmp != NULL)
681		free(tmp, M_BUS);
682	return;
683}
684
685/*
686 * Called when there's no match for this device.  This is only called
687 * the first time that no match happens, so we don't keep getitng this
688 * message.  Should that prove to be undesirable, we can change it.
689 * This is called when all drivers that can attach to a given bus
690 * decline to accept this device.  Other errrors may not be detected.
691 */
692static void
693devnomatch(device_t dev)
694{
695	devaddq("?", "", dev);
696}
697
698static int
699sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
700{
701	struct dev_event_info *n1;
702	int dis, error;
703
704	dis = devctl_disable;
705	error = sysctl_handle_int(oidp, &dis, 0, req);
706	if (error || !req->newptr)
707		return (error);
708	mtx_lock(&devsoftc.mtx);
709	devctl_disable = dis;
710	if (dis) {
711		while (!TAILQ_EMPTY(&devsoftc.devq)) {
712			n1 = TAILQ_FIRST(&devsoftc.devq);
713			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
714			free(n1->dei_data, M_BUS);
715			free(n1, M_BUS);
716		}
717	}
718	mtx_unlock(&devsoftc.mtx);
719	return (0);
720}
721
722/* End of /dev/devctl code */
723
724TAILQ_HEAD(,device)	bus_data_devices;
725static int bus_data_generation = 1;
726
727kobj_method_t null_methods[] = {
728	{ 0, 0 }
729};
730
731DEFINE_CLASS(null, null_methods, 0);
732
733/*
734 * Devclass implementation
735 */
736
737static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
738
739
740/**
741 * @internal
742 * @brief Find or create a device class
743 *
744 * If a device class with the name @p classname exists, return it,
745 * otherwise if @p create is non-zero create and return a new device
746 * class.
747 *
748 * If @p parentname is non-NULL, the parent of the devclass is set to
749 * the devclass of that name.
750 *
751 * @param classname	the devclass name to find or create
752 * @param parentname	the parent devclass name or @c NULL
753 * @param create	non-zero to create a devclass
754 */
755static devclass_t
756devclass_find_internal(const char *classname, const char *parentname,
757		       int create)
758{
759	devclass_t dc;
760
761	PDEBUG(("looking for %s", classname));
762	if (!classname)
763		return (NULL);
764
765	TAILQ_FOREACH(dc, &devclasses, link) {
766		if (!strcmp(dc->name, classname))
767			break;
768	}
769
770	if (create && !dc) {
771		PDEBUG(("creating %s", classname));
772		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
773		    M_BUS, M_NOWAIT|M_ZERO);
774		if (!dc)
775			return (NULL);
776		dc->parent = NULL;
777		dc->name = (char*) (dc + 1);
778		strcpy(dc->name, classname);
779		TAILQ_INIT(&dc->drivers);
780		TAILQ_INSERT_TAIL(&devclasses, dc, link);
781
782		bus_data_generation_update();
783	}
784
785	/*
786	 * If a parent class is specified, then set that as our parent so
787	 * that this devclass will support drivers for the parent class as
788	 * well.  If the parent class has the same name don't do this though
789	 * as it creates a cycle that can trigger an infinite loop in
790	 * device_probe_child() if a device exists for which there is no
791	 * suitable driver.
792	 */
793	if (parentname && dc && !dc->parent &&
794	    strcmp(classname, parentname) != 0) {
795		dc->parent = devclass_find_internal(parentname, 0, FALSE);
796	}
797
798	return (dc);
799}
800
801/**
802 * @brief Create a device class
803 *
804 * If a device class with the name @p classname exists, return it,
805 * otherwise create and return a new device class.
806 *
807 * @param classname	the devclass name to find or create
808 */
809devclass_t
810devclass_create(const char *classname)
811{
812	return (devclass_find_internal(classname, 0, TRUE));
813}
814
815/**
816 * @brief Find a device class
817 *
818 * If a device class with the name @p classname exists, return it,
819 * otherwise return @c NULL.
820 *
821 * @param classname	the devclass name to find
822 */
823devclass_t
824devclass_find(const char *classname)
825{
826	return (devclass_find_internal(classname, 0, FALSE));
827}
828
829/**
830 * @brief Add a device driver to a device class
831 *
832 * Add a device driver to a devclass. This is normally called
833 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
834 * all devices in the devclass will be called to allow them to attempt
835 * to re-probe any unmatched children.
836 *
837 * @param dc		the devclass to edit
838 * @param driver	the driver to register
839 */
840int
841devclass_add_driver(devclass_t dc, driver_t *driver)
842{
843	driverlink_t dl;
844	int i;
845
846	PDEBUG(("%s", DRIVERNAME(driver)));
847
848	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
849	if (!dl)
850		return (ENOMEM);
851
852	/*
853	 * Compile the driver's methods. Also increase the reference count
854	 * so that the class doesn't get freed when the last instance
855	 * goes. This means we can safely use static methods and avoids a
856	 * double-free in devclass_delete_driver.
857	 */
858	kobj_class_compile((kobj_class_t) driver);
859
860	/*
861	 * Make sure the devclass which the driver is implementing exists.
862	 */
863	devclass_find_internal(driver->name, 0, TRUE);
864
865	dl->driver = driver;
866	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
867	driver->refs++;		/* XXX: kobj_mtx */
868
869	/*
870	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
871	 */
872	for (i = 0; i < dc->maxunit; i++)
873		if (dc->devices[i])
874			BUS_DRIVER_ADDED(dc->devices[i], driver);
875
876	bus_data_generation_update();
877	return (0);
878}
879
880/**
881 * @brief Delete a device driver from a device class
882 *
883 * Delete a device driver from a devclass. This is normally called
884 * automatically by DRIVER_MODULE().
885 *
886 * If the driver is currently attached to any devices,
887 * devclass_delete_driver() will first attempt to detach from each
888 * device. If one of the detach calls fails, the driver will not be
889 * deleted.
890 *
891 * @param dc		the devclass to edit
892 * @param driver	the driver to unregister
893 */
894int
895devclass_delete_driver(devclass_t busclass, driver_t *driver)
896{
897	devclass_t dc = devclass_find(driver->name);
898	driverlink_t dl;
899	device_t dev;
900	int i;
901	int error;
902
903	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
904
905	if (!dc)
906		return (0);
907
908	/*
909	 * Find the link structure in the bus' list of drivers.
910	 */
911	TAILQ_FOREACH(dl, &busclass->drivers, link) {
912		if (dl->driver == driver)
913			break;
914	}
915
916	if (!dl) {
917		PDEBUG(("%s not found in %s list", driver->name,
918		    busclass->name));
919		return (ENOENT);
920	}
921
922	/*
923	 * Disassociate from any devices.  We iterate through all the
924	 * devices in the devclass of the driver and detach any which are
925	 * using the driver and which have a parent in the devclass which
926	 * we are deleting from.
927	 *
928	 * Note that since a driver can be in multiple devclasses, we
929	 * should not detach devices which are not children of devices in
930	 * the affected devclass.
931	 */
932	for (i = 0; i < dc->maxunit; i++) {
933		if (dc->devices[i]) {
934			dev = dc->devices[i];
935			if (dev->driver == driver && dev->parent &&
936			    dev->parent->devclass == busclass) {
937				if ((error = device_detach(dev)) != 0)
938					return (error);
939				device_set_driver(dev, NULL);
940			}
941		}
942	}
943
944	TAILQ_REMOVE(&busclass->drivers, dl, link);
945	free(dl, M_BUS);
946
947	/* XXX: kobj_mtx */
948	driver->refs--;
949	if (driver->refs == 0)
950		kobj_class_free((kobj_class_t) driver);
951
952	bus_data_generation_update();
953	return (0);
954}
955
956/**
957 * @brief Quiesces a set of device drivers from a device class
958 *
959 * Quiesce a device driver from a devclass. This is normally called
960 * automatically by DRIVER_MODULE().
961 *
962 * If the driver is currently attached to any devices,
963 * devclass_quiesece_driver() will first attempt to quiesce each
964 * device.
965 *
966 * @param dc		the devclass to edit
967 * @param driver	the driver to unregister
968 */
969int
970devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
971{
972	devclass_t dc = devclass_find(driver->name);
973	driverlink_t dl;
974	device_t dev;
975	int i;
976	int error;
977
978	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
979
980	if (!dc)
981		return (0);
982
983	/*
984	 * Find the link structure in the bus' list of drivers.
985	 */
986	TAILQ_FOREACH(dl, &busclass->drivers, link) {
987		if (dl->driver == driver)
988			break;
989	}
990
991	if (!dl) {
992		PDEBUG(("%s not found in %s list", driver->name,
993		    busclass->name));
994		return (ENOENT);
995	}
996
997	/*
998	 * Quiesce all devices.  We iterate through all the devices in
999	 * the devclass of the driver and quiesce any which are using
1000	 * the driver and which have a parent in the devclass which we
1001	 * are quiescing.
1002	 *
1003	 * Note that since a driver can be in multiple devclasses, we
1004	 * should not quiesce devices which are not children of
1005	 * devices in the affected devclass.
1006	 */
1007	for (i = 0; i < dc->maxunit; i++) {
1008		if (dc->devices[i]) {
1009			dev = dc->devices[i];
1010			if (dev->driver == driver && dev->parent &&
1011			    dev->parent->devclass == busclass) {
1012				if ((error = device_quiesce(dev)) != 0)
1013					return (error);
1014			}
1015		}
1016	}
1017
1018	return (0);
1019}
1020
1021/**
1022 * @internal
1023 */
1024static driverlink_t
1025devclass_find_driver_internal(devclass_t dc, const char *classname)
1026{
1027	driverlink_t dl;
1028
1029	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1030
1031	TAILQ_FOREACH(dl, &dc->drivers, link) {
1032		if (!strcmp(dl->driver->name, classname))
1033			return (dl);
1034	}
1035
1036	PDEBUG(("not found"));
1037	return (NULL);
1038}
1039
1040/**
1041 * @brief Search a devclass for a driver
1042 *
1043 * This function searches the devclass's list of drivers and returns
1044 * the first driver whose name is @p classname or @c NULL if there is
1045 * no driver of that name.
1046 *
1047 * @param dc		the devclass to search
1048 * @param classname	the driver name to search for
1049 */
1050kobj_class_t
1051devclass_find_driver(devclass_t dc, const char *classname)
1052{
1053	driverlink_t dl;
1054
1055	dl = devclass_find_driver_internal(dc, classname);
1056	if (dl)
1057		return (dl->driver);
1058	return (NULL);
1059}
1060
1061/**
1062 * @brief Return the name of the devclass
1063 */
1064const char *
1065devclass_get_name(devclass_t dc)
1066{
1067	return (dc->name);
1068}
1069
1070/**
1071 * @brief Find a device given a unit number
1072 *
1073 * @param dc		the devclass to search
1074 * @param unit		the unit number to search for
1075 *
1076 * @returns		the device with the given unit number or @c
1077 *			NULL if there is no such device
1078 */
1079device_t
1080devclass_get_device(devclass_t dc, int unit)
1081{
1082	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1083		return (NULL);
1084	return (dc->devices[unit]);
1085}
1086
1087/**
1088 * @brief Find the softc field of a device given a unit number
1089 *
1090 * @param dc		the devclass to search
1091 * @param unit		the unit number to search for
1092 *
1093 * @returns		the softc field of the device with the given
1094 *			unit number or @c NULL if there is no such
1095 *			device
1096 */
1097void *
1098devclass_get_softc(devclass_t dc, int unit)
1099{
1100	device_t dev;
1101
1102	dev = devclass_get_device(dc, unit);
1103	if (!dev)
1104		return (NULL);
1105
1106	return (device_get_softc(dev));
1107}
1108
1109/**
1110 * @brief Get a list of devices in the devclass
1111 *
1112 * An array containing a list of all the devices in the given devclass
1113 * is allocated and returned in @p *devlistp. The number of devices
1114 * in the array is returned in @p *devcountp. The caller should free
1115 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1116 *
1117 * @param dc		the devclass to examine
1118 * @param devlistp	points at location for array pointer return
1119 *			value
1120 * @param devcountp	points at location for array size return value
1121 *
1122 * @retval 0		success
1123 * @retval ENOMEM	the array allocation failed
1124 */
1125int
1126devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1127{
1128	int count, i;
1129	device_t *list;
1130
1131	count = devclass_get_count(dc);
1132	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1133	if (!list)
1134		return (ENOMEM);
1135
1136	count = 0;
1137	for (i = 0; i < dc->maxunit; i++) {
1138		if (dc->devices[i]) {
1139			list[count] = dc->devices[i];
1140			count++;
1141		}
1142	}
1143
1144	*devlistp = list;
1145	*devcountp = count;
1146
1147	return (0);
1148}
1149
1150/**
1151 * @brief Get a list of drivers in the devclass
1152 *
1153 * An array containing a list of pointers to all the drivers in the
1154 * given devclass is allocated and returned in @p *listp.  The number
1155 * of drivers in the array is returned in @p *countp. The caller should
1156 * free the array using @c free(p, M_TEMP).
1157 *
1158 * @param dc		the devclass to examine
1159 * @param listp		gives location for array pointer return value
1160 * @param countp	gives location for number of array elements
1161 *			return value
1162 *
1163 * @retval 0		success
1164 * @retval ENOMEM	the array allocation failed
1165 */
1166int
1167devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1168{
1169	driverlink_t dl;
1170	driver_t **list;
1171	int count;
1172
1173	count = 0;
1174	TAILQ_FOREACH(dl, &dc->drivers, link)
1175		count++;
1176	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1177	if (list == NULL)
1178		return (ENOMEM);
1179
1180	count = 0;
1181	TAILQ_FOREACH(dl, &dc->drivers, link) {
1182		list[count] = dl->driver;
1183		count++;
1184	}
1185	*listp = list;
1186	*countp = count;
1187
1188	return (0);
1189}
1190
1191/**
1192 * @brief Get the number of devices in a devclass
1193 *
1194 * @param dc		the devclass to examine
1195 */
1196int
1197devclass_get_count(devclass_t dc)
1198{
1199	int count, i;
1200
1201	count = 0;
1202	for (i = 0; i < dc->maxunit; i++)
1203		if (dc->devices[i])
1204			count++;
1205	return (count);
1206}
1207
1208/**
1209 * @brief Get the maximum unit number used in a devclass
1210 *
1211 * Note that this is one greater than the highest currently-allocated
1212 * unit.
1213 *
1214 * @param dc		the devclass to examine
1215 */
1216int
1217devclass_get_maxunit(devclass_t dc)
1218{
1219	return (dc->maxunit);
1220}
1221
1222/**
1223 * @brief Find a free unit number in a devclass
1224 *
1225 * This function searches for the first unused unit number greater
1226 * that or equal to @p unit.
1227 *
1228 * @param dc		the devclass to examine
1229 * @param unit		the first unit number to check
1230 */
1231int
1232devclass_find_free_unit(devclass_t dc, int unit)
1233{
1234	if (dc == NULL)
1235		return (unit);
1236	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1237		unit++;
1238	return (unit);
1239}
1240
1241/**
1242 * @brief Set the parent of a devclass
1243 *
1244 * The parent class is normally initialised automatically by
1245 * DRIVER_MODULE().
1246 *
1247 * @param dc		the devclass to edit
1248 * @param pdc		the new parent devclass
1249 */
1250void
1251devclass_set_parent(devclass_t dc, devclass_t pdc)
1252{
1253	dc->parent = pdc;
1254}
1255
1256/**
1257 * @brief Get the parent of a devclass
1258 *
1259 * @param dc		the devclass to examine
1260 */
1261devclass_t
1262devclass_get_parent(devclass_t dc)
1263{
1264	return (dc->parent);
1265}
1266
1267struct sysctl_ctx_list *
1268devclass_get_sysctl_ctx(devclass_t dc)
1269{
1270	return (&dc->sysctl_ctx);
1271}
1272
1273struct sysctl_oid *
1274devclass_get_sysctl_tree(devclass_t dc)
1275{
1276	return (dc->sysctl_tree);
1277}
1278
1279/**
1280 * @internal
1281 * @brief Allocate a unit number
1282 *
1283 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1284 * will do). The allocated unit number is returned in @p *unitp.
1285
1286 * @param dc		the devclass to allocate from
1287 * @param unitp		points at the location for the allocated unit
1288 *			number
1289 *
1290 * @retval 0		success
1291 * @retval EEXIST	the requested unit number is already allocated
1292 * @retval ENOMEM	memory allocation failure
1293 */
1294static int
1295devclass_alloc_unit(devclass_t dc, int *unitp)
1296{
1297	int unit = *unitp;
1298
1299	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1300
1301	/* If we were given a wired unit number, check for existing device */
1302	/* XXX imp XXX */
1303	if (unit != -1) {
1304		if (unit >= 0 && unit < dc->maxunit &&
1305		    dc->devices[unit] != NULL) {
1306			if (bootverbose)
1307				printf("%s: %s%d already exists; skipping it\n",
1308				    dc->name, dc->name, *unitp);
1309			return (EEXIST);
1310		}
1311	} else {
1312		/* Unwired device, find the next available slot for it */
1313		unit = 0;
1314		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1315			unit++;
1316	}
1317
1318	/*
1319	 * We've selected a unit beyond the length of the table, so let's
1320	 * extend the table to make room for all units up to and including
1321	 * this one.
1322	 */
1323	if (unit >= dc->maxunit) {
1324		device_t *newlist;
1325		int newsize;
1326
1327		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1328		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1329		if (!newlist)
1330			return (ENOMEM);
1331		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1332		bzero(newlist + dc->maxunit,
1333		    sizeof(device_t) * (newsize - dc->maxunit));
1334		if (dc->devices)
1335			free(dc->devices, M_BUS);
1336		dc->devices = newlist;
1337		dc->maxunit = newsize;
1338	}
1339	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1340
1341	*unitp = unit;
1342	return (0);
1343}
1344
1345/**
1346 * @internal
1347 * @brief Add a device to a devclass
1348 *
1349 * A unit number is allocated for the device (using the device's
1350 * preferred unit number if any) and the device is registered in the
1351 * devclass. This allows the device to be looked up by its unit
1352 * number, e.g. by decoding a dev_t minor number.
1353 *
1354 * @param dc		the devclass to add to
1355 * @param dev		the device to add
1356 *
1357 * @retval 0		success
1358 * @retval EEXIST	the requested unit number is already allocated
1359 * @retval ENOMEM	memory allocation failure
1360 */
1361static int
1362devclass_add_device(devclass_t dc, device_t dev)
1363{
1364	int buflen, error;
1365
1366	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1367
1368	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1369	if (buflen < 0)
1370		return (ENOMEM);
1371	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1372	if (!dev->nameunit)
1373		return (ENOMEM);
1374
1375	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1376		free(dev->nameunit, M_BUS);
1377		dev->nameunit = NULL;
1378		return (error);
1379	}
1380	dc->devices[dev->unit] = dev;
1381	dev->devclass = dc;
1382	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1383
1384	return (0);
1385}
1386
1387/**
1388 * @internal
1389 * @brief Delete a device from a devclass
1390 *
1391 * The device is removed from the devclass's device list and its unit
1392 * number is freed.
1393
1394 * @param dc		the devclass to delete from
1395 * @param dev		the device to delete
1396 *
1397 * @retval 0		success
1398 */
1399static int
1400devclass_delete_device(devclass_t dc, device_t dev)
1401{
1402	if (!dc || !dev)
1403		return (0);
1404
1405	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1406
1407	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1408		panic("devclass_delete_device: inconsistent device class");
1409	dc->devices[dev->unit] = NULL;
1410	if (dev->flags & DF_WILDCARD)
1411		dev->unit = -1;
1412	dev->devclass = NULL;
1413	free(dev->nameunit, M_BUS);
1414	dev->nameunit = NULL;
1415
1416	return (0);
1417}
1418
1419/**
1420 * @internal
1421 * @brief Make a new device and add it as a child of @p parent
1422 *
1423 * @param parent	the parent of the new device
1424 * @param name		the devclass name of the new device or @c NULL
1425 *			to leave the devclass unspecified
1426 * @parem unit		the unit number of the new device of @c -1 to
1427 *			leave the unit number unspecified
1428 *
1429 * @returns the new device
1430 */
1431static device_t
1432make_device(device_t parent, const char *name, int unit)
1433{
1434	device_t dev;
1435	devclass_t dc;
1436
1437	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1438
1439	if (name) {
1440		dc = devclass_find_internal(name, 0, TRUE);
1441		if (!dc) {
1442			printf("make_device: can't find device class %s\n",
1443			    name);
1444			return (NULL);
1445		}
1446	} else {
1447		dc = NULL;
1448	}
1449
1450	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1451	if (!dev)
1452		return (NULL);
1453
1454	dev->parent = parent;
1455	TAILQ_INIT(&dev->children);
1456	kobj_init((kobj_t) dev, &null_class);
1457	dev->driver = NULL;
1458	dev->devclass = NULL;
1459	dev->unit = unit;
1460	dev->nameunit = NULL;
1461	dev->desc = NULL;
1462	dev->busy = 0;
1463	dev->devflags = 0;
1464	dev->flags = DF_ENABLED;
1465	dev->order = 0;
1466	if (unit == -1)
1467		dev->flags |= DF_WILDCARD;
1468	if (name) {
1469		dev->flags |= DF_FIXEDCLASS;
1470		if (devclass_add_device(dc, dev)) {
1471			kobj_delete((kobj_t) dev, M_BUS);
1472			return (NULL);
1473		}
1474	}
1475	dev->ivars = NULL;
1476	dev->softc = NULL;
1477
1478	dev->state = DS_NOTPRESENT;
1479
1480	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1481	bus_data_generation_update();
1482
1483	return (dev);
1484}
1485
1486/**
1487 * @internal
1488 * @brief Print a description of a device.
1489 */
1490static int
1491device_print_child(device_t dev, device_t child)
1492{
1493	int retval = 0;
1494
1495	if (device_is_alive(child))
1496		retval += BUS_PRINT_CHILD(dev, child);
1497	else
1498		retval += device_printf(child, " not found\n");
1499
1500	return (retval);
1501}
1502
1503/**
1504 * @brief Create a new device
1505 *
1506 * This creates a new device and adds it as a child of an existing
1507 * parent device. The new device will be added after the last existing
1508 * child with order zero.
1509 *
1510 * @param dev		the device which will be the parent of the
1511 *			new child device
1512 * @param name		devclass name for new device or @c NULL if not
1513 *			specified
1514 * @param unit		unit number for new device or @c -1 if not
1515 *			specified
1516 *
1517 * @returns		the new device
1518 */
1519device_t
1520device_add_child(device_t dev, const char *name, int unit)
1521{
1522	return (device_add_child_ordered(dev, 0, name, unit));
1523}
1524
1525/**
1526 * @brief Create a new device
1527 *
1528 * This creates a new device and adds it as a child of an existing
1529 * parent device. The new device will be added after the last existing
1530 * child with the same order.
1531 *
1532 * @param dev		the device which will be the parent of the
1533 *			new child device
1534 * @param order		a value which is used to partially sort the
1535 *			children of @p dev - devices created using
1536 *			lower values of @p order appear first in @p
1537 *			dev's list of children
1538 * @param name		devclass name for new device or @c NULL if not
1539 *			specified
1540 * @param unit		unit number for new device or @c -1 if not
1541 *			specified
1542 *
1543 * @returns		the new device
1544 */
1545device_t
1546device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1547{
1548	device_t child;
1549	device_t place;
1550
1551	PDEBUG(("%s at %s with order %d as unit %d",
1552	    name, DEVICENAME(dev), order, unit));
1553
1554	child = make_device(dev, name, unit);
1555	if (child == NULL)
1556		return (child);
1557	child->order = order;
1558
1559	TAILQ_FOREACH(place, &dev->children, link) {
1560		if (place->order > order)
1561			break;
1562	}
1563
1564	if (place) {
1565		/*
1566		 * The device 'place' is the first device whose order is
1567		 * greater than the new child.
1568		 */
1569		TAILQ_INSERT_BEFORE(place, child, link);
1570	} else {
1571		/*
1572		 * The new child's order is greater or equal to the order of
1573		 * any existing device. Add the child to the tail of the list.
1574		 */
1575		TAILQ_INSERT_TAIL(&dev->children, child, link);
1576	}
1577
1578	bus_data_generation_update();
1579	return (child);
1580}
1581
1582/**
1583 * @brief Delete a device
1584 *
1585 * This function deletes a device along with all of its children. If
1586 * the device currently has a driver attached to it, the device is
1587 * detached first using device_detach().
1588 *
1589 * @param dev		the parent device
1590 * @param child		the device to delete
1591 *
1592 * @retval 0		success
1593 * @retval non-zero	a unit error code describing the error
1594 */
1595int
1596device_delete_child(device_t dev, device_t child)
1597{
1598	int error;
1599	device_t grandchild;
1600
1601	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1602
1603	/* remove children first */
1604	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1605		error = device_delete_child(child, grandchild);
1606		if (error)
1607			return (error);
1608	}
1609
1610	if ((error = device_detach(child)) != 0)
1611		return (error);
1612	if (child->devclass)
1613		devclass_delete_device(child->devclass, child);
1614	TAILQ_REMOVE(&dev->children, child, link);
1615	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1616	kobj_delete((kobj_t) child, M_BUS);
1617
1618	bus_data_generation_update();
1619	return (0);
1620}
1621
1622/**
1623 * @brief Find a device given a unit number
1624 *
1625 * This is similar to devclass_get_devices() but only searches for
1626 * devices which have @p dev as a parent.
1627 *
1628 * @param dev		the parent device to search
1629 * @param unit		the unit number to search for.  If the unit is -1,
1630 *			return the first child of @p dev which has name
1631 *			@p classname (that is, the one with the lowest unit.)
1632 *
1633 * @returns		the device with the given unit number or @c
1634 *			NULL if there is no such device
1635 */
1636device_t
1637device_find_child(device_t dev, const char *classname, int unit)
1638{
1639	devclass_t dc;
1640	device_t child;
1641
1642	dc = devclass_find(classname);
1643	if (!dc)
1644		return (NULL);
1645
1646	if (unit != -1) {
1647		child = devclass_get_device(dc, unit);
1648		if (child && child->parent == dev)
1649			return (child);
1650	} else {
1651		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1652			child = devclass_get_device(dc, unit);
1653			if (child && child->parent == dev)
1654				return (child);
1655		}
1656	}
1657	return (NULL);
1658}
1659
1660/**
1661 * @internal
1662 */
1663static driverlink_t
1664first_matching_driver(devclass_t dc, device_t dev)
1665{
1666	if (dev->devclass)
1667		return (devclass_find_driver_internal(dc, dev->devclass->name));
1668	return (TAILQ_FIRST(&dc->drivers));
1669}
1670
1671/**
1672 * @internal
1673 */
1674static driverlink_t
1675next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1676{
1677	if (dev->devclass) {
1678		driverlink_t dl;
1679		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1680			if (!strcmp(dev->devclass->name, dl->driver->name))
1681				return (dl);
1682		return (NULL);
1683	}
1684	return (TAILQ_NEXT(last, link));
1685}
1686
1687/**
1688 * @internal
1689 */
1690int
1691device_probe_child(device_t dev, device_t child)
1692{
1693	devclass_t dc;
1694	driverlink_t best = 0;
1695	driverlink_t dl;
1696	int result, pri = 0;
1697	int hasclass = (child->devclass != 0);
1698
1699	GIANT_REQUIRED;
1700
1701	dc = dev->devclass;
1702	if (!dc)
1703		panic("device_probe_child: parent device has no devclass");
1704
1705	/*
1706	 * If the state is already probed, then return.  However, don't
1707	 * return if we can rebid this object.
1708	 */
1709	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1710		return (0);
1711
1712	for (; dc; dc = dc->parent) {
1713		for (dl = first_matching_driver(dc, child);
1714		     dl;
1715		     dl = next_matching_driver(dc, child, dl)) {
1716			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1717			device_set_driver(child, dl->driver);
1718			if (!hasclass)
1719				device_set_devclass(child, dl->driver->name);
1720
1721			/* Fetch any flags for the device before probing. */
1722			resource_int_value(dl->driver->name, child->unit,
1723			    "flags", &child->devflags);
1724
1725			result = DEVICE_PROBE(child);
1726
1727			/* Reset flags and devclass before the next probe. */
1728			child->devflags = 0;
1729			if (!hasclass)
1730				device_set_devclass(child, 0);
1731
1732			/*
1733			 * If the driver returns SUCCESS, there can be
1734			 * no higher match for this device.
1735			 */
1736			if (result == 0) {
1737				best = dl;
1738				pri = 0;
1739				break;
1740			}
1741
1742			/*
1743			 * The driver returned an error so it
1744			 * certainly doesn't match.
1745			 */
1746			if (result > 0) {
1747				device_set_driver(child, 0);
1748				continue;
1749			}
1750
1751			/*
1752			 * A priority lower than SUCCESS, remember the
1753			 * best matching driver. Initialise the value
1754			 * of pri for the first match.
1755			 */
1756			if (best == 0 || result > pri) {
1757				best = dl;
1758				pri = result;
1759				continue;
1760			}
1761		}
1762		/*
1763		 * If we have an unambiguous match in this devclass,
1764		 * don't look in the parent.
1765		 */
1766		if (best && pri == 0)
1767			break;
1768	}
1769
1770	/*
1771	 * If we found a driver, change state and initialise the devclass.
1772	 */
1773	/* XXX What happens if we rebid and got no best? */
1774	if (best) {
1775		/*
1776		 * If this device was atached, and we were asked to
1777		 * rescan, and it is a different driver, then we have
1778		 * to detach the old driver and reattach this new one.
1779		 * Note, we don't have to check for DF_REBID here
1780		 * because if the state is > DS_ALIVE, we know it must
1781		 * be.
1782		 *
1783		 * This assumes that all DF_REBID drivers can have
1784		 * their probe routine called at any time and that
1785		 * they are idempotent as well as completely benign in
1786		 * normal operations.
1787		 *
1788		 * We also have to make sure that the detach
1789		 * succeeded, otherwise we fail the operation (or
1790		 * maybe it should just fail silently?  I'm torn).
1791		 */
1792		if (child->state > DS_ALIVE && best->driver != child->driver)
1793			if ((result = device_detach(dev)) != 0)
1794				return (result);
1795
1796		/* Set the winning driver, devclass, and flags. */
1797		if (!child->devclass)
1798			device_set_devclass(child, best->driver->name);
1799		device_set_driver(child, best->driver);
1800		resource_int_value(best->driver->name, child->unit,
1801		    "flags", &child->devflags);
1802
1803		if (pri < 0) {
1804			/*
1805			 * A bit bogus. Call the probe method again to make
1806			 * sure that we have the right description.
1807			 */
1808			DEVICE_PROBE(child);
1809#if 0
1810			child->flags |= DF_REBID;
1811#endif
1812		} else
1813			child->flags &= ~DF_REBID;
1814		child->state = DS_ALIVE;
1815
1816		bus_data_generation_update();
1817		return (0);
1818	}
1819
1820	return (ENXIO);
1821}
1822
1823/**
1824 * @brief Return the parent of a device
1825 */
1826device_t
1827device_get_parent(device_t dev)
1828{
1829	return (dev->parent);
1830}
1831
1832/**
1833 * @brief Get a list of children of a device
1834 *
1835 * An array containing a list of all the children of the given device
1836 * is allocated and returned in @p *devlistp. The number of devices
1837 * in the array is returned in @p *devcountp. The caller should free
1838 * the array using @c free(p, M_TEMP).
1839 *
1840 * @param dev		the device to examine
1841 * @param devlistp	points at location for array pointer return
1842 *			value
1843 * @param devcountp	points at location for array size return value
1844 *
1845 * @retval 0		success
1846 * @retval ENOMEM	the array allocation failed
1847 */
1848int
1849device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1850{
1851	int count;
1852	device_t child;
1853	device_t *list;
1854
1855	count = 0;
1856	TAILQ_FOREACH(child, &dev->children, link) {
1857		count++;
1858	}
1859
1860	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1861	if (!list)
1862		return (ENOMEM);
1863
1864	count = 0;
1865	TAILQ_FOREACH(child, &dev->children, link) {
1866		list[count] = child;
1867		count++;
1868	}
1869
1870	*devlistp = list;
1871	*devcountp = count;
1872
1873	return (0);
1874}
1875
1876/**
1877 * @brief Return the current driver for the device or @c NULL if there
1878 * is no driver currently attached
1879 */
1880driver_t *
1881device_get_driver(device_t dev)
1882{
1883	return (dev->driver);
1884}
1885
1886/**
1887 * @brief Return the current devclass for the device or @c NULL if
1888 * there is none.
1889 */
1890devclass_t
1891device_get_devclass(device_t dev)
1892{
1893	return (dev->devclass);
1894}
1895
1896/**
1897 * @brief Return the name of the device's devclass or @c NULL if there
1898 * is none.
1899 */
1900const char *
1901device_get_name(device_t dev)
1902{
1903	if (dev != NULL && dev->devclass)
1904		return (devclass_get_name(dev->devclass));
1905	return (NULL);
1906}
1907
1908/**
1909 * @brief Return a string containing the device's devclass name
1910 * followed by an ascii representation of the device's unit number
1911 * (e.g. @c "foo2").
1912 */
1913const char *
1914device_get_nameunit(device_t dev)
1915{
1916	return (dev->nameunit);
1917}
1918
1919/**
1920 * @brief Return the device's unit number.
1921 */
1922int
1923device_get_unit(device_t dev)
1924{
1925	return (dev->unit);
1926}
1927
1928/**
1929 * @brief Return the device's description string
1930 */
1931const char *
1932device_get_desc(device_t dev)
1933{
1934	return (dev->desc);
1935}
1936
1937/**
1938 * @brief Return the device's flags
1939 */
1940u_int32_t
1941device_get_flags(device_t dev)
1942{
1943	return (dev->devflags);
1944}
1945
1946struct sysctl_ctx_list *
1947device_get_sysctl_ctx(device_t dev)
1948{
1949	return (&dev->sysctl_ctx);
1950}
1951
1952struct sysctl_oid *
1953device_get_sysctl_tree(device_t dev)
1954{
1955	return (dev->sysctl_tree);
1956}
1957
1958/**
1959 * @brief Print the name of the device followed by a colon and a space
1960 *
1961 * @returns the number of characters printed
1962 */
1963int
1964device_print_prettyname(device_t dev)
1965{
1966	const char *name = device_get_name(dev);
1967
1968	if (name == 0)
1969		return (printf("unknown: "));
1970	return (printf("%s%d: ", name, device_get_unit(dev)));
1971}
1972
1973/**
1974 * @brief Print the name of the device followed by a colon, a space
1975 * and the result of calling vprintf() with the value of @p fmt and
1976 * the following arguments.
1977 *
1978 * @returns the number of characters printed
1979 */
1980int
1981device_printf(device_t dev, const char * fmt, ...)
1982{
1983	va_list ap;
1984	int retval;
1985
1986	retval = device_print_prettyname(dev);
1987	va_start(ap, fmt);
1988	retval += vprintf(fmt, ap);
1989	va_end(ap);
1990	return (retval);
1991}
1992
1993/**
1994 * @internal
1995 */
1996static void
1997device_set_desc_internal(device_t dev, const char* desc, int copy)
1998{
1999	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2000		free(dev->desc, M_BUS);
2001		dev->flags &= ~DF_DESCMALLOCED;
2002		dev->desc = NULL;
2003	}
2004
2005	if (copy && desc) {
2006		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2007		if (dev->desc) {
2008			strcpy(dev->desc, desc);
2009			dev->flags |= DF_DESCMALLOCED;
2010		}
2011	} else {
2012		/* Avoid a -Wcast-qual warning */
2013		dev->desc = (char *)(uintptr_t) desc;
2014	}
2015
2016	bus_data_generation_update();
2017}
2018
2019/**
2020 * @brief Set the device's description
2021 *
2022 * The value of @c desc should be a string constant that will not
2023 * change (at least until the description is changed in a subsequent
2024 * call to device_set_desc() or device_set_desc_copy()).
2025 */
2026void
2027device_set_desc(device_t dev, const char* desc)
2028{
2029	device_set_desc_internal(dev, desc, FALSE);
2030}
2031
2032/**
2033 * @brief Set the device's description
2034 *
2035 * The string pointed to by @c desc is copied. Use this function if
2036 * the device description is generated, (e.g. with sprintf()).
2037 */
2038void
2039device_set_desc_copy(device_t dev, const char* desc)
2040{
2041	device_set_desc_internal(dev, desc, TRUE);
2042}
2043
2044/**
2045 * @brief Set the device's flags
2046 */
2047void
2048device_set_flags(device_t dev, u_int32_t flags)
2049{
2050	dev->devflags = flags;
2051}
2052
2053/**
2054 * @brief Return the device's softc field
2055 *
2056 * The softc is allocated and zeroed when a driver is attached, based
2057 * on the size field of the driver.
2058 */
2059void *
2060device_get_softc(device_t dev)
2061{
2062	return (dev->softc);
2063}
2064
2065/**
2066 * @brief Set the device's softc field
2067 *
2068 * Most drivers do not need to use this since the softc is allocated
2069 * automatically when the driver is attached.
2070 */
2071void
2072device_set_softc(device_t dev, void *softc)
2073{
2074	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2075		free(dev->softc, M_BUS_SC);
2076	dev->softc = softc;
2077	if (dev->softc)
2078		dev->flags |= DF_EXTERNALSOFTC;
2079	else
2080		dev->flags &= ~DF_EXTERNALSOFTC;
2081}
2082
2083/**
2084 * @brief Get the device's ivars field
2085 *
2086 * The ivars field is used by the parent device to store per-device
2087 * state (e.g. the physical location of the device or a list of
2088 * resources).
2089 */
2090void *
2091device_get_ivars(device_t dev)
2092{
2093
2094	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2095	return (dev->ivars);
2096}
2097
2098/**
2099 * @brief Set the device's ivars field
2100 */
2101void
2102device_set_ivars(device_t dev, void * ivars)
2103{
2104
2105	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2106	dev->ivars = ivars;
2107}
2108
2109/**
2110 * @brief Return the device's state
2111 */
2112device_state_t
2113device_get_state(device_t dev)
2114{
2115	return (dev->state);
2116}
2117
2118/**
2119 * @brief Set the DF_ENABLED flag for the device
2120 */
2121void
2122device_enable(device_t dev)
2123{
2124	dev->flags |= DF_ENABLED;
2125}
2126
2127/**
2128 * @brief Clear the DF_ENABLED flag for the device
2129 */
2130void
2131device_disable(device_t dev)
2132{
2133	dev->flags &= ~DF_ENABLED;
2134}
2135
2136/**
2137 * @brief Increment the busy counter for the device
2138 */
2139void
2140device_busy(device_t dev)
2141{
2142	if (dev->state < DS_ATTACHED)
2143		panic("device_busy: called for unattached device");
2144	if (dev->busy == 0 && dev->parent)
2145		device_busy(dev->parent);
2146	dev->busy++;
2147	dev->state = DS_BUSY;
2148}
2149
2150/**
2151 * @brief Decrement the busy counter for the device
2152 */
2153void
2154device_unbusy(device_t dev)
2155{
2156	if (dev->state != DS_BUSY)
2157		panic("device_unbusy: called for non-busy device %s",
2158		    device_get_nameunit(dev));
2159	dev->busy--;
2160	if (dev->busy == 0) {
2161		if (dev->parent)
2162			device_unbusy(dev->parent);
2163		dev->state = DS_ATTACHED;
2164	}
2165}
2166
2167/**
2168 * @brief Set the DF_QUIET flag for the device
2169 */
2170void
2171device_quiet(device_t dev)
2172{
2173	dev->flags |= DF_QUIET;
2174}
2175
2176/**
2177 * @brief Clear the DF_QUIET flag for the device
2178 */
2179void
2180device_verbose(device_t dev)
2181{
2182	dev->flags &= ~DF_QUIET;
2183}
2184
2185/**
2186 * @brief Return non-zero if the DF_QUIET flag is set on the device
2187 */
2188int
2189device_is_quiet(device_t dev)
2190{
2191	return ((dev->flags & DF_QUIET) != 0);
2192}
2193
2194/**
2195 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2196 */
2197int
2198device_is_enabled(device_t dev)
2199{
2200	return ((dev->flags & DF_ENABLED) != 0);
2201}
2202
2203/**
2204 * @brief Return non-zero if the device was successfully probed
2205 */
2206int
2207device_is_alive(device_t dev)
2208{
2209	return (dev->state >= DS_ALIVE);
2210}
2211
2212/**
2213 * @brief Return non-zero if the device currently has a driver
2214 * attached to it
2215 */
2216int
2217device_is_attached(device_t dev)
2218{
2219	return (dev->state >= DS_ATTACHED);
2220}
2221
2222/**
2223 * @brief Set the devclass of a device
2224 * @see devclass_add_device().
2225 */
2226int
2227device_set_devclass(device_t dev, const char *classname)
2228{
2229	devclass_t dc;
2230	int error;
2231
2232	if (!classname) {
2233		if (dev->devclass)
2234			devclass_delete_device(dev->devclass, dev);
2235		return (0);
2236	}
2237
2238	if (dev->devclass) {
2239		printf("device_set_devclass: device class already set\n");
2240		return (EINVAL);
2241	}
2242
2243	dc = devclass_find_internal(classname, 0, TRUE);
2244	if (!dc)
2245		return (ENOMEM);
2246
2247	error = devclass_add_device(dc, dev);
2248
2249	bus_data_generation_update();
2250	return (error);
2251}
2252
2253/**
2254 * @brief Set the driver of a device
2255 *
2256 * @retval 0		success
2257 * @retval EBUSY	the device already has a driver attached
2258 * @retval ENOMEM	a memory allocation failure occurred
2259 */
2260int
2261device_set_driver(device_t dev, driver_t *driver)
2262{
2263	if (dev->state >= DS_ATTACHED)
2264		return (EBUSY);
2265
2266	if (dev->driver == driver)
2267		return (0);
2268
2269	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2270		free(dev->softc, M_BUS_SC);
2271		dev->softc = NULL;
2272	}
2273	kobj_delete((kobj_t) dev, 0);
2274	dev->driver = driver;
2275	if (driver) {
2276		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2277		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2278			dev->softc = malloc(driver->size, M_BUS_SC,
2279			    M_NOWAIT | M_ZERO);
2280			if (!dev->softc) {
2281				kobj_delete((kobj_t) dev, 0);
2282				kobj_init((kobj_t) dev, &null_class);
2283				dev->driver = NULL;
2284				return (ENOMEM);
2285			}
2286		}
2287	} else {
2288		kobj_init((kobj_t) dev, &null_class);
2289	}
2290
2291	bus_data_generation_update();
2292	return (0);
2293}
2294
2295/**
2296 * @brief Probe a device and attach a driver if possible
2297 *
2298 * This function is the core of the device autoconfiguration
2299 * system. Its purpose is to select a suitable driver for a device and
2300 * then call that driver to initialise the hardware appropriately. The
2301 * driver is selected by calling the DEVICE_PROBE() method of a set of
2302 * candidate drivers and then choosing the driver which returned the
2303 * best value. This driver is then attached to the device using
2304 * device_attach().
2305 *
2306 * The set of suitable drivers is taken from the list of drivers in
2307 * the parent device's devclass. If the device was originally created
2308 * with a specific class name (see device_add_child()), only drivers
2309 * with that name are probed, otherwise all drivers in the devclass
2310 * are probed. If no drivers return successful probe values in the
2311 * parent devclass, the search continues in the parent of that
2312 * devclass (see devclass_get_parent()) if any.
2313 *
2314 * @param dev		the device to initialise
2315 *
2316 * @retval 0		success
2317 * @retval ENXIO	no driver was found
2318 * @retval ENOMEM	memory allocation failure
2319 * @retval non-zero	some other unix error code
2320 */
2321int
2322device_probe_and_attach(device_t dev)
2323{
2324	int error;
2325
2326	GIANT_REQUIRED;
2327
2328	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2329		return (0);
2330
2331	if (!(dev->flags & DF_ENABLED)) {
2332		if (bootverbose && device_get_name(dev) != NULL) {
2333			device_print_prettyname(dev);
2334			printf("not probed (disabled)\n");
2335		}
2336		return (0);
2337	}
2338	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2339		if (!(dev->flags & DF_DONENOMATCH)) {
2340			BUS_PROBE_NOMATCH(dev->parent, dev);
2341			devnomatch(dev);
2342			dev->flags |= DF_DONENOMATCH;
2343		}
2344		return (error);
2345	}
2346	error = device_attach(dev);
2347
2348	return (error);
2349}
2350
2351/**
2352 * @brief Attach a device driver to a device
2353 *
2354 * This function is a wrapper around the DEVICE_ATTACH() driver
2355 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2356 * device's sysctl tree, optionally prints a description of the device
2357 * and queues a notification event for user-based device management
2358 * services.
2359 *
2360 * Normally this function is only called internally from
2361 * device_probe_and_attach().
2362 *
2363 * @param dev		the device to initialise
2364 *
2365 * @retval 0		success
2366 * @retval ENXIO	no driver was found
2367 * @retval ENOMEM	memory allocation failure
2368 * @retval non-zero	some other unix error code
2369 */
2370int
2371device_attach(device_t dev)
2372{
2373	int error;
2374
2375	device_sysctl_init(dev);
2376	if (!device_is_quiet(dev))
2377		device_print_child(dev->parent, dev);
2378	if ((error = DEVICE_ATTACH(dev)) != 0) {
2379		printf("device_attach: %s%d attach returned %d\n",
2380		    dev->driver->name, dev->unit, error);
2381		/* Unset the class; set in device_probe_child */
2382		if (dev->devclass == 0)
2383			device_set_devclass(dev, 0);
2384		device_set_driver(dev, NULL);
2385		device_sysctl_fini(dev);
2386		dev->state = DS_NOTPRESENT;
2387		return (error);
2388	}
2389	dev->state = DS_ATTACHED;
2390	devadded(dev);
2391	return (0);
2392}
2393
2394/**
2395 * @brief Detach a driver from a device
2396 *
2397 * This function is a wrapper around the DEVICE_DETACH() driver
2398 * method. If the call to DEVICE_DETACH() succeeds, it calls
2399 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2400 * notification event for user-based device management services and
2401 * cleans up the device's sysctl tree.
2402 *
2403 * @param dev		the device to un-initialise
2404 *
2405 * @retval 0		success
2406 * @retval ENXIO	no driver was found
2407 * @retval ENOMEM	memory allocation failure
2408 * @retval non-zero	some other unix error code
2409 */
2410int
2411device_detach(device_t dev)
2412{
2413	int error;
2414
2415	GIANT_REQUIRED;
2416
2417	PDEBUG(("%s", DEVICENAME(dev)));
2418	if (dev->state == DS_BUSY)
2419		return (EBUSY);
2420	if (dev->state != DS_ATTACHED)
2421		return (0);
2422
2423	if ((error = DEVICE_DETACH(dev)) != 0)
2424		return (error);
2425	devremoved(dev);
2426	device_printf(dev, "detached\n");
2427	if (dev->parent)
2428		BUS_CHILD_DETACHED(dev->parent, dev);
2429
2430	if (!(dev->flags & DF_FIXEDCLASS))
2431		devclass_delete_device(dev->devclass, dev);
2432
2433	dev->state = DS_NOTPRESENT;
2434	device_set_driver(dev, NULL);
2435	device_set_desc(dev, NULL);
2436	device_sysctl_fini(dev);
2437
2438	return (0);
2439}
2440
2441/**
2442 * @brief Tells a driver to quiesce itself.
2443 *
2444 * This function is a wrapper around the DEVICE_QUIESCE() driver
2445 * method. If the call to DEVICE_QUIESCE() succeeds.
2446 *
2447 * @param dev		the device to quiesce
2448 *
2449 * @retval 0		success
2450 * @retval ENXIO	no driver was found
2451 * @retval ENOMEM	memory allocation failure
2452 * @retval non-zero	some other unix error code
2453 */
2454int
2455device_quiesce(device_t dev)
2456{
2457
2458	PDEBUG(("%s", DEVICENAME(dev)));
2459	if (dev->state == DS_BUSY)
2460		return (EBUSY);
2461	if (dev->state != DS_ATTACHED)
2462		return (0);
2463
2464	return (DEVICE_QUIESCE(dev));
2465}
2466
2467/**
2468 * @brief Notify a device of system shutdown
2469 *
2470 * This function calls the DEVICE_SHUTDOWN() driver method if the
2471 * device currently has an attached driver.
2472 *
2473 * @returns the value returned by DEVICE_SHUTDOWN()
2474 */
2475int
2476device_shutdown(device_t dev)
2477{
2478	if (dev->state < DS_ATTACHED)
2479		return (0);
2480	return (DEVICE_SHUTDOWN(dev));
2481}
2482
2483/**
2484 * @brief Set the unit number of a device
2485 *
2486 * This function can be used to override the unit number used for a
2487 * device (e.g. to wire a device to a pre-configured unit number).
2488 */
2489int
2490device_set_unit(device_t dev, int unit)
2491{
2492	devclass_t dc;
2493	int err;
2494
2495	dc = device_get_devclass(dev);
2496	if (unit < dc->maxunit && dc->devices[unit])
2497		return (EBUSY);
2498	err = devclass_delete_device(dc, dev);
2499	if (err)
2500		return (err);
2501	dev->unit = unit;
2502	err = devclass_add_device(dc, dev);
2503	if (err)
2504		return (err);
2505
2506	bus_data_generation_update();
2507	return (0);
2508}
2509
2510/*======================================*/
2511/*
2512 * Some useful method implementations to make life easier for bus drivers.
2513 */
2514
2515/**
2516 * @brief Initialise a resource list.
2517 *
2518 * @param rl		the resource list to initialise
2519 */
2520void
2521resource_list_init(struct resource_list *rl)
2522{
2523	STAILQ_INIT(rl);
2524}
2525
2526/**
2527 * @brief Reclaim memory used by a resource list.
2528 *
2529 * This function frees the memory for all resource entries on the list
2530 * (if any).
2531 *
2532 * @param rl		the resource list to free
2533 */
2534void
2535resource_list_free(struct resource_list *rl)
2536{
2537	struct resource_list_entry *rle;
2538
2539	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2540		if (rle->res)
2541			panic("resource_list_free: resource entry is busy");
2542		STAILQ_REMOVE_HEAD(rl, link);
2543		free(rle, M_BUS);
2544	}
2545}
2546
2547/**
2548 * @brief Add a resource entry.
2549 *
2550 * This function adds a resource entry using the given @p type, @p
2551 * start, @p end and @p count values. A rid value is chosen by
2552 * searching sequentially for the first unused rid starting at zero.
2553 *
2554 * @param rl		the resource list to edit
2555 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2556 * @param start		the start address of the resource
2557 * @param end		the end address of the resource
2558 * @param count		XXX end-start+1
2559 */
2560int
2561resource_list_add_next(struct resource_list *rl, int type, u_long start,
2562    u_long end, u_long count)
2563{
2564	int rid;
2565
2566	rid = 0;
2567	while (resource_list_find(rl, type, rid) != NULL)
2568		rid++;
2569	resource_list_add(rl, type, rid, start, end, count);
2570	return (rid);
2571}
2572
2573/**
2574 * @brief Add or modify a resource entry.
2575 *
2576 * If an existing entry exists with the same type and rid, it will be
2577 * modified using the given values of @p start, @p end and @p
2578 * count. If no entry exists, a new one will be created using the
2579 * given values.  The resource list entry that matches is then returned.
2580 *
2581 * @param rl		the resource list to edit
2582 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2583 * @param rid		the resource identifier
2584 * @param start		the start address of the resource
2585 * @param end		the end address of the resource
2586 * @param count		XXX end-start+1
2587 */
2588struct resource_list_entry *
2589resource_list_add(struct resource_list *rl, int type, int rid,
2590    u_long start, u_long end, u_long count)
2591{
2592	struct resource_list_entry *rle;
2593
2594	rle = resource_list_find(rl, type, rid);
2595	if (!rle) {
2596		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2597		    M_NOWAIT);
2598		if (!rle)
2599			panic("resource_list_add: can't record entry");
2600		STAILQ_INSERT_TAIL(rl, rle, link);
2601		rle->type = type;
2602		rle->rid = rid;
2603		rle->res = NULL;
2604	}
2605
2606	if (rle->res)
2607		panic("resource_list_add: resource entry is busy");
2608
2609	rle->start = start;
2610	rle->end = end;
2611	rle->count = count;
2612	return (rle);
2613}
2614
2615/**
2616 * @brief Find a resource entry by type and rid.
2617 *
2618 * @param rl		the resource list to search
2619 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2620 * @param rid		the resource identifier
2621 *
2622 * @returns the resource entry pointer or NULL if there is no such
2623 * entry.
2624 */
2625struct resource_list_entry *
2626resource_list_find(struct resource_list *rl, int type, int rid)
2627{
2628	struct resource_list_entry *rle;
2629
2630	STAILQ_FOREACH(rle, rl, link) {
2631		if (rle->type == type && rle->rid == rid)
2632			return (rle);
2633	}
2634	return (NULL);
2635}
2636
2637/**
2638 * @brief Delete a resource entry.
2639 *
2640 * @param rl		the resource list to edit
2641 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2642 * @param rid		the resource identifier
2643 */
2644void
2645resource_list_delete(struct resource_list *rl, int type, int rid)
2646{
2647	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2648
2649	if (rle) {
2650		if (rle->res != NULL)
2651			panic("resource_list_delete: resource has not been released");
2652		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2653		free(rle, M_BUS);
2654	}
2655}
2656
2657/**
2658 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2659 *
2660 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2661 * and passing the allocation up to the parent of @p bus. This assumes
2662 * that the first entry of @c device_get_ivars(child) is a struct
2663 * resource_list. This also handles 'passthrough' allocations where a
2664 * child is a remote descendant of bus by passing the allocation up to
2665 * the parent of bus.
2666 *
2667 * Typically, a bus driver would store a list of child resources
2668 * somewhere in the child device's ivars (see device_get_ivars()) and
2669 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2670 * then call resource_list_alloc() to perform the allocation.
2671 *
2672 * @param rl		the resource list to allocate from
2673 * @param bus		the parent device of @p child
2674 * @param child		the device which is requesting an allocation
2675 * @param type		the type of resource to allocate
2676 * @param rid		a pointer to the resource identifier
2677 * @param start		hint at the start of the resource range - pass
2678 *			@c 0UL for any start address
2679 * @param end		hint at the end of the resource range - pass
2680 *			@c ~0UL for any end address
2681 * @param count		hint at the size of range required - pass @c 1
2682 *			for any size
2683 * @param flags		any extra flags to control the resource
2684 *			allocation - see @c RF_XXX flags in
2685 *			<sys/rman.h> for details
2686 *
2687 * @returns		the resource which was allocated or @c NULL if no
2688 *			resource could be allocated
2689 */
2690struct resource *
2691resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2692    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2693{
2694	struct resource_list_entry *rle = 0;
2695	int passthrough = (device_get_parent(child) != bus);
2696	int isdefault = (start == 0UL && end == ~0UL);
2697
2698	if (passthrough) {
2699		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2700		    type, rid, start, end, count, flags));
2701	}
2702
2703	rle = resource_list_find(rl, type, *rid);
2704
2705	if (!rle)
2706		return (NULL);		/* no resource of that type/rid */
2707
2708	if (rle->res)
2709		panic("resource_list_alloc: resource entry is busy");
2710
2711	if (isdefault) {
2712		start = rle->start;
2713		count = ulmax(count, rle->count);
2714		end = ulmax(rle->end, start + count - 1);
2715	}
2716
2717	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2718	    type, rid, start, end, count, flags);
2719
2720	/*
2721	 * Record the new range.
2722	 */
2723	if (rle->res) {
2724		rle->start = rman_get_start(rle->res);
2725		rle->end = rman_get_end(rle->res);
2726		rle->count = count;
2727	}
2728
2729	return (rle->res);
2730}
2731
2732/**
2733 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2734 *
2735 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2736 * used with resource_list_alloc().
2737 *
2738 * @param rl		the resource list which was allocated from
2739 * @param bus		the parent device of @p child
2740 * @param child		the device which is requesting a release
2741 * @param type		the type of resource to allocate
2742 * @param rid		the resource identifier
2743 * @param res		the resource to release
2744 *
2745 * @retval 0		success
2746 * @retval non-zero	a standard unix error code indicating what
2747 *			error condition prevented the operation
2748 */
2749int
2750resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2751    int type, int rid, struct resource *res)
2752{
2753	struct resource_list_entry *rle = 0;
2754	int passthrough = (device_get_parent(child) != bus);
2755	int error;
2756
2757	if (passthrough) {
2758		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2759		    type, rid, res));
2760	}
2761
2762	rle = resource_list_find(rl, type, rid);
2763
2764	if (!rle)
2765		panic("resource_list_release: can't find resource");
2766	if (!rle->res)
2767		panic("resource_list_release: resource entry is not busy");
2768
2769	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2770	    type, rid, res);
2771	if (error)
2772		return (error);
2773
2774	rle->res = NULL;
2775	return (0);
2776}
2777
2778/**
2779 * @brief Print a description of resources in a resource list
2780 *
2781 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2782 * The name is printed if at least one resource of the given type is available.
2783 * The format is used to print resource start and end.
2784 *
2785 * @param rl		the resource list to print
2786 * @param name		the name of @p type, e.g. @c "memory"
2787 * @param type		type type of resource entry to print
2788 * @param format	printf(9) format string to print resource
2789 *			start and end values
2790 *
2791 * @returns		the number of characters printed
2792 */
2793int
2794resource_list_print_type(struct resource_list *rl, const char *name, int type,
2795    const char *format)
2796{
2797	struct resource_list_entry *rle;
2798	int printed, retval;
2799
2800	printed = 0;
2801	retval = 0;
2802	/* Yes, this is kinda cheating */
2803	STAILQ_FOREACH(rle, rl, link) {
2804		if (rle->type == type) {
2805			if (printed == 0)
2806				retval += printf(" %s ", name);
2807			else
2808				retval += printf(",");
2809			printed++;
2810			retval += printf(format, rle->start);
2811			if (rle->count > 1) {
2812				retval += printf("-");
2813				retval += printf(format, rle->start +
2814						 rle->count - 1);
2815			}
2816		}
2817	}
2818	return (retval);
2819}
2820
2821/**
2822 * @brief Releases all the resources in a list.
2823 *
2824 * @param rl		The resource list to purge.
2825 *
2826 * @returns		nothing
2827 */
2828void
2829resource_list_purge(struct resource_list *rl)
2830{
2831	struct resource_list_entry *rle;
2832
2833	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2834		if (rle->res)
2835			bus_release_resource(rman_get_device(rle->res),
2836			    rle->type, rle->rid, rle->res);
2837		STAILQ_REMOVE_HEAD(rl, link);
2838		free(rle, M_BUS);
2839	}
2840}
2841
2842/**
2843 * @brief Helper function for implementing DEVICE_PROBE()
2844 *
2845 * This function can be used to help implement the DEVICE_PROBE() for
2846 * a bus (i.e. a device which has other devices attached to it). It
2847 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2848 * devclass.
2849 */
2850int
2851bus_generic_probe(device_t dev)
2852{
2853	devclass_t dc = dev->devclass;
2854	driverlink_t dl;
2855
2856	TAILQ_FOREACH(dl, &dc->drivers, link) {
2857		DEVICE_IDENTIFY(dl->driver, dev);
2858	}
2859
2860	return (0);
2861}
2862
2863/**
2864 * @brief Helper function for implementing DEVICE_ATTACH()
2865 *
2866 * This function can be used to help implement the DEVICE_ATTACH() for
2867 * a bus. It calls device_probe_and_attach() for each of the device's
2868 * children.
2869 */
2870int
2871bus_generic_attach(device_t dev)
2872{
2873	device_t child;
2874
2875	TAILQ_FOREACH(child, &dev->children, link) {
2876		device_probe_and_attach(child);
2877	}
2878
2879	return (0);
2880}
2881
2882/**
2883 * @brief Helper function for implementing DEVICE_DETACH()
2884 *
2885 * This function can be used to help implement the DEVICE_DETACH() for
2886 * a bus. It calls device_detach() for each of the device's
2887 * children.
2888 */
2889int
2890bus_generic_detach(device_t dev)
2891{
2892	device_t child;
2893	int error;
2894
2895	if (dev->state != DS_ATTACHED)
2896		return (EBUSY);
2897
2898	TAILQ_FOREACH(child, &dev->children, link) {
2899		if ((error = device_detach(child)) != 0)
2900			return (error);
2901	}
2902
2903	return (0);
2904}
2905
2906/**
2907 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2908 *
2909 * This function can be used to help implement the DEVICE_SHUTDOWN()
2910 * for a bus. It calls device_shutdown() for each of the device's
2911 * children.
2912 */
2913int
2914bus_generic_shutdown(device_t dev)
2915{
2916	device_t child;
2917
2918	TAILQ_FOREACH(child, &dev->children, link) {
2919		device_shutdown(child);
2920	}
2921
2922	return (0);
2923}
2924
2925/**
2926 * @brief Helper function for implementing DEVICE_SUSPEND()
2927 *
2928 * This function can be used to help implement the DEVICE_SUSPEND()
2929 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2930 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2931 * operation is aborted and any devices which were suspended are
2932 * resumed immediately by calling their DEVICE_RESUME() methods.
2933 */
2934int
2935bus_generic_suspend(device_t dev)
2936{
2937	int		error;
2938	device_t	child, child2;
2939
2940	TAILQ_FOREACH(child, &dev->children, link) {
2941		error = DEVICE_SUSPEND(child);
2942		if (error) {
2943			for (child2 = TAILQ_FIRST(&dev->children);
2944			     child2 && child2 != child;
2945			     child2 = TAILQ_NEXT(child2, link))
2946				DEVICE_RESUME(child2);
2947			return (error);
2948		}
2949	}
2950	return (0);
2951}
2952
2953/**
2954 * @brief Helper function for implementing DEVICE_RESUME()
2955 *
2956 * This function can be used to help implement the DEVICE_RESUME() for
2957 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2958 */
2959int
2960bus_generic_resume(device_t dev)
2961{
2962	device_t	child;
2963
2964	TAILQ_FOREACH(child, &dev->children, link) {
2965		DEVICE_RESUME(child);
2966		/* if resume fails, there's nothing we can usefully do... */
2967	}
2968	return (0);
2969}
2970
2971/**
2972 * @brief Helper function for implementing BUS_PRINT_CHILD().
2973 *
2974 * This function prints the first part of the ascii representation of
2975 * @p child, including its name, unit and description (if any - see
2976 * device_set_desc()).
2977 *
2978 * @returns the number of characters printed
2979 */
2980int
2981bus_print_child_header(device_t dev, device_t child)
2982{
2983	int	retval = 0;
2984
2985	if (device_get_desc(child)) {
2986		retval += device_printf(child, "<%s>", device_get_desc(child));
2987	} else {
2988		retval += printf("%s", device_get_nameunit(child));
2989	}
2990
2991	return (retval);
2992}
2993
2994/**
2995 * @brief Helper function for implementing BUS_PRINT_CHILD().
2996 *
2997 * This function prints the last part of the ascii representation of
2998 * @p child, which consists of the string @c " on " followed by the
2999 * name and unit of the @p dev.
3000 *
3001 * @returns the number of characters printed
3002 */
3003int
3004bus_print_child_footer(device_t dev, device_t child)
3005{
3006	return (printf(" on %s\n", device_get_nameunit(dev)));
3007}
3008
3009/**
3010 * @brief Helper function for implementing BUS_PRINT_CHILD().
3011 *
3012 * This function simply calls bus_print_child_header() followed by
3013 * bus_print_child_footer().
3014 *
3015 * @returns the number of characters printed
3016 */
3017int
3018bus_generic_print_child(device_t dev, device_t child)
3019{
3020	int	retval = 0;
3021
3022	retval += bus_print_child_header(dev, child);
3023	retval += bus_print_child_footer(dev, child);
3024
3025	return (retval);
3026}
3027
3028/**
3029 * @brief Stub function for implementing BUS_READ_IVAR().
3030 *
3031 * @returns ENOENT
3032 */
3033int
3034bus_generic_read_ivar(device_t dev, device_t child, int index,
3035    uintptr_t * result)
3036{
3037	return (ENOENT);
3038}
3039
3040/**
3041 * @brief Stub function for implementing BUS_WRITE_IVAR().
3042 *
3043 * @returns ENOENT
3044 */
3045int
3046bus_generic_write_ivar(device_t dev, device_t child, int index,
3047    uintptr_t value)
3048{
3049	return (ENOENT);
3050}
3051
3052/**
3053 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3054 *
3055 * @returns NULL
3056 */
3057struct resource_list *
3058bus_generic_get_resource_list(device_t dev, device_t child)
3059{
3060	return (NULL);
3061}
3062
3063/**
3064 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3065 *
3066 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3067 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3068 * and then calls device_probe_and_attach() for each unattached child.
3069 */
3070void
3071bus_generic_driver_added(device_t dev, driver_t *driver)
3072{
3073	device_t child;
3074
3075	DEVICE_IDENTIFY(driver, dev);
3076	TAILQ_FOREACH(child, &dev->children, link) {
3077		if (child->state == DS_NOTPRESENT ||
3078		    (child->flags & DF_REBID))
3079			device_probe_and_attach(child);
3080	}
3081}
3082
3083/**
3084 * @brief Helper function for implementing BUS_SETUP_INTR().
3085 *
3086 * This simple implementation of BUS_SETUP_INTR() simply calls the
3087 * BUS_SETUP_INTR() method of the parent of @p dev.
3088 */
3089int
3090bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3091    int flags, driver_intr_t *intr, void *arg, void **cookiep)
3092{
3093	/* Propagate up the bus hierarchy until someone handles it. */
3094	if (dev->parent)
3095		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3096		    intr, arg, cookiep));
3097	return (EINVAL);
3098}
3099
3100/**
3101 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3102 *
3103 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3104 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3105 */
3106int
3107bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3108    void *cookie)
3109{
3110	/* Propagate up the bus hierarchy until someone handles it. */
3111	if (dev->parent)
3112		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3113	return (EINVAL);
3114}
3115
3116/**
3117 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3118 *
3119 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3120 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3121 */
3122struct resource *
3123bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3124    u_long start, u_long end, u_long count, u_int flags)
3125{
3126	/* Propagate up the bus hierarchy until someone handles it. */
3127	if (dev->parent)
3128		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3129		    start, end, count, flags));
3130	return (NULL);
3131}
3132
3133/**
3134 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3135 *
3136 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3137 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3138 */
3139int
3140bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3141    struct resource *r)
3142{
3143	/* Propagate up the bus hierarchy until someone handles it. */
3144	if (dev->parent)
3145		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3146		    r));
3147	return (EINVAL);
3148}
3149
3150/**
3151 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3152 *
3153 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3154 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3155 */
3156int
3157bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3158    struct resource *r)
3159{
3160	/* Propagate up the bus hierarchy until someone handles it. */
3161	if (dev->parent)
3162		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3163		    r));
3164	return (EINVAL);
3165}
3166
3167/**
3168 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3169 *
3170 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3171 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3172 */
3173int
3174bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3175    int rid, struct resource *r)
3176{
3177	/* Propagate up the bus hierarchy until someone handles it. */
3178	if (dev->parent)
3179		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3180		    r));
3181	return (EINVAL);
3182}
3183
3184/**
3185 * @brief Helper function for implementing BUS_CONFIG_INTR().
3186 *
3187 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3188 * BUS_CONFIG_INTR() method of the parent of @p dev.
3189 */
3190int
3191bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3192    enum intr_polarity pol)
3193{
3194
3195	/* Propagate up the bus hierarchy until someone handles it. */
3196	if (dev->parent)
3197		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3198	return (EINVAL);
3199}
3200
3201/**
3202 * @brief Helper function for implementing BUS_GET_RESOURCE().
3203 *
3204 * This implementation of BUS_GET_RESOURCE() uses the
3205 * resource_list_find() function to do most of the work. It calls
3206 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3207 * search.
3208 */
3209int
3210bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3211    u_long *startp, u_long *countp)
3212{
3213	struct resource_list *		rl = NULL;
3214	struct resource_list_entry *	rle = NULL;
3215
3216	rl = BUS_GET_RESOURCE_LIST(dev, child);
3217	if (!rl)
3218		return (EINVAL);
3219
3220	rle = resource_list_find(rl, type, rid);
3221	if (!rle)
3222		return (ENOENT);
3223
3224	if (startp)
3225		*startp = rle->start;
3226	if (countp)
3227		*countp = rle->count;
3228
3229	return (0);
3230}
3231
3232/**
3233 * @brief Helper function for implementing BUS_SET_RESOURCE().
3234 *
3235 * This implementation of BUS_SET_RESOURCE() uses the
3236 * resource_list_add() function to do most of the work. It calls
3237 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3238 * edit.
3239 */
3240int
3241bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3242    u_long start, u_long count)
3243{
3244	struct resource_list *		rl = NULL;
3245
3246	rl = BUS_GET_RESOURCE_LIST(dev, child);
3247	if (!rl)
3248		return (EINVAL);
3249
3250	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3251
3252	return (0);
3253}
3254
3255/**
3256 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3257 *
3258 * This implementation of BUS_DELETE_RESOURCE() uses the
3259 * resource_list_delete() function to do most of the work. It calls
3260 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3261 * edit.
3262 */
3263void
3264bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3265{
3266	struct resource_list *		rl = NULL;
3267
3268	rl = BUS_GET_RESOURCE_LIST(dev, child);
3269	if (!rl)
3270		return;
3271
3272	resource_list_delete(rl, type, rid);
3273
3274	return;
3275}
3276
3277/**
3278 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3279 *
3280 * This implementation of BUS_RELEASE_RESOURCE() uses the
3281 * resource_list_release() function to do most of the work. It calls
3282 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3283 */
3284int
3285bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3286    int rid, struct resource *r)
3287{
3288	struct resource_list *		rl = NULL;
3289
3290	rl = BUS_GET_RESOURCE_LIST(dev, child);
3291	if (!rl)
3292		return (EINVAL);
3293
3294	return (resource_list_release(rl, dev, child, type, rid, r));
3295}
3296
3297/**
3298 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3299 *
3300 * This implementation of BUS_ALLOC_RESOURCE() uses the
3301 * resource_list_alloc() function to do most of the work. It calls
3302 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3303 */
3304struct resource *
3305bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3306    int *rid, u_long start, u_long end, u_long count, u_int flags)
3307{
3308	struct resource_list *		rl = NULL;
3309
3310	rl = BUS_GET_RESOURCE_LIST(dev, child);
3311	if (!rl)
3312		return (NULL);
3313
3314	return (resource_list_alloc(rl, dev, child, type, rid,
3315	    start, end, count, flags));
3316}
3317
3318/**
3319 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3320 *
3321 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3322 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3323 */
3324int
3325bus_generic_child_present(device_t dev, device_t child)
3326{
3327	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3328}
3329
3330/*
3331 * Some convenience functions to make it easier for drivers to use the
3332 * resource-management functions.  All these really do is hide the
3333 * indirection through the parent's method table, making for slightly
3334 * less-wordy code.  In the future, it might make sense for this code
3335 * to maintain some sort of a list of resources allocated by each device.
3336 */
3337
3338int
3339bus_alloc_resources(device_t dev, struct resource_spec *rs,
3340    struct resource **res)
3341{
3342	int i;
3343
3344	for (i = 0; rs[i].type != -1; i++)
3345		res[i] = NULL;
3346	for (i = 0; rs[i].type != -1; i++) {
3347		res[i] = bus_alloc_resource_any(dev,
3348		    rs[i].type, &rs[i].rid, rs[i].flags);
3349		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
3350			bus_release_resources(dev, rs, res);
3351			return (ENXIO);
3352		}
3353	}
3354	return (0);
3355}
3356
3357void
3358bus_release_resources(device_t dev, struct resource_spec *rs,
3359    struct resource **res)
3360{
3361	int i;
3362
3363	for (i = 0; rs[i].type != -1; i++)
3364		if (res[i] != NULL)
3365			bus_release_resource(
3366			    dev, rs[i].type, rs[i].rid, res[i]);
3367}
3368
3369/**
3370 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3371 *
3372 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3373 * parent of @p dev.
3374 */
3375struct resource *
3376bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3377    u_long count, u_int flags)
3378{
3379	if (dev->parent == 0)
3380		return (0);
3381	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3382	    count, flags));
3383}
3384
3385/**
3386 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3387 *
3388 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3389 * parent of @p dev.
3390 */
3391int
3392bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3393{
3394	if (dev->parent == 0)
3395		return (EINVAL);
3396	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3397}
3398
3399/**
3400 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3401 *
3402 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3403 * parent of @p dev.
3404 */
3405int
3406bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3407{
3408	if (dev->parent == 0)
3409		return (EINVAL);
3410	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3411}
3412
3413/**
3414 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3415 *
3416 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3417 * parent of @p dev.
3418 */
3419int
3420bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3421{
3422	if (dev->parent == 0)
3423		return (EINVAL);
3424	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3425}
3426
3427/**
3428 * @brief Wrapper function for BUS_SETUP_INTR().
3429 *
3430 * This function simply calls the BUS_SETUP_INTR() method of the
3431 * parent of @p dev.
3432 */
3433int
3434bus_setup_intr(device_t dev, struct resource *r, int flags,
3435    driver_intr_t handler, void *arg, void **cookiep)
3436{
3437	int error;
3438
3439	if (dev->parent != 0) {
3440		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3441		    !debug_mpsafenet)
3442			flags &= ~INTR_MPSAFE;
3443		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3444		    handler, arg, cookiep);
3445		if (error == 0) {
3446			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3447				device_printf(dev, "[GIANT-LOCKED]\n");
3448			if (bootverbose && (flags & INTR_MPSAFE))
3449				device_printf(dev, "[MPSAFE]\n");
3450			if (flags & INTR_FAST)
3451				device_printf(dev, "[FAST]\n");
3452		}
3453	} else
3454		error = EINVAL;
3455	return (error);
3456}
3457
3458/**
3459 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3460 *
3461 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3462 * parent of @p dev.
3463 */
3464int
3465bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3466{
3467	if (dev->parent == 0)
3468		return (EINVAL);
3469	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3470}
3471
3472/**
3473 * @brief Wrapper function for BUS_SET_RESOURCE().
3474 *
3475 * This function simply calls the BUS_SET_RESOURCE() method of the
3476 * parent of @p dev.
3477 */
3478int
3479bus_set_resource(device_t dev, int type, int rid,
3480    u_long start, u_long count)
3481{
3482	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3483	    start, count));
3484}
3485
3486/**
3487 * @brief Wrapper function for BUS_GET_RESOURCE().
3488 *
3489 * This function simply calls the BUS_GET_RESOURCE() method of the
3490 * parent of @p dev.
3491 */
3492int
3493bus_get_resource(device_t dev, int type, int rid,
3494    u_long *startp, u_long *countp)
3495{
3496	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3497	    startp, countp));
3498}
3499
3500/**
3501 * @brief Wrapper function for BUS_GET_RESOURCE().
3502 *
3503 * This function simply calls the BUS_GET_RESOURCE() method of the
3504 * parent of @p dev and returns the start value.
3505 */
3506u_long
3507bus_get_resource_start(device_t dev, int type, int rid)
3508{
3509	u_long start, count;
3510	int error;
3511
3512	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3513	    &start, &count);
3514	if (error)
3515		return (0);
3516	return (start);
3517}
3518
3519/**
3520 * @brief Wrapper function for BUS_GET_RESOURCE().
3521 *
3522 * This function simply calls the BUS_GET_RESOURCE() method of the
3523 * parent of @p dev and returns the count value.
3524 */
3525u_long
3526bus_get_resource_count(device_t dev, int type, int rid)
3527{
3528	u_long start, count;
3529	int error;
3530
3531	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3532	    &start, &count);
3533	if (error)
3534		return (0);
3535	return (count);
3536}
3537
3538/**
3539 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3540 *
3541 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3542 * parent of @p dev.
3543 */
3544void
3545bus_delete_resource(device_t dev, int type, int rid)
3546{
3547	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3548}
3549
3550/**
3551 * @brief Wrapper function for BUS_CHILD_PRESENT().
3552 *
3553 * This function simply calls the BUS_CHILD_PRESENT() method of the
3554 * parent of @p dev.
3555 */
3556int
3557bus_child_present(device_t child)
3558{
3559	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3560}
3561
3562/**
3563 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3564 *
3565 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3566 * parent of @p dev.
3567 */
3568int
3569bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3570{
3571	device_t parent;
3572
3573	parent = device_get_parent(child);
3574	if (parent == NULL) {
3575		*buf = '\0';
3576		return (0);
3577	}
3578	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3579}
3580
3581/**
3582 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3583 *
3584 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3585 * parent of @p dev.
3586 */
3587int
3588bus_child_location_str(device_t child, char *buf, size_t buflen)
3589{
3590	device_t parent;
3591
3592	parent = device_get_parent(child);
3593	if (parent == NULL) {
3594		*buf = '\0';
3595		return (0);
3596	}
3597	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3598}
3599
3600static int
3601root_print_child(device_t dev, device_t child)
3602{
3603	int	retval = 0;
3604
3605	retval += bus_print_child_header(dev, child);
3606	retval += printf("\n");
3607
3608	return (retval);
3609}
3610
3611static int
3612root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3613    void **cookiep)
3614{
3615	/*
3616	 * If an interrupt mapping gets to here something bad has happened.
3617	 */
3618	panic("root_setup_intr");
3619}
3620
3621/*
3622 * If we get here, assume that the device is permanant and really is
3623 * present in the system.  Removable bus drivers are expected to intercept
3624 * this call long before it gets here.  We return -1 so that drivers that
3625 * really care can check vs -1 or some ERRNO returned higher in the food
3626 * chain.
3627 */
3628static int
3629root_child_present(device_t dev, device_t child)
3630{
3631	return (-1);
3632}
3633
3634static kobj_method_t root_methods[] = {
3635	/* Device interface */
3636	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3637	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3638	KOBJMETHOD(device_resume,	bus_generic_resume),
3639
3640	/* Bus interface */
3641	KOBJMETHOD(bus_print_child,	root_print_child),
3642	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3643	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3644	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3645	KOBJMETHOD(bus_child_present,	root_child_present),
3646
3647	{ 0, 0 }
3648};
3649
3650static driver_t root_driver = {
3651	"root",
3652	root_methods,
3653	1,			/* no softc */
3654};
3655
3656device_t	root_bus;
3657devclass_t	root_devclass;
3658
3659static int
3660root_bus_module_handler(module_t mod, int what, void* arg)
3661{
3662	switch (what) {
3663	case MOD_LOAD:
3664		TAILQ_INIT(&bus_data_devices);
3665		kobj_class_compile((kobj_class_t) &root_driver);
3666		root_bus = make_device(NULL, "root", 0);
3667		root_bus->desc = "System root bus";
3668		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3669		root_bus->driver = &root_driver;
3670		root_bus->state = DS_ATTACHED;
3671		root_devclass = devclass_find_internal("root", 0, FALSE);
3672		devinit();
3673		return (0);
3674
3675	case MOD_SHUTDOWN:
3676		device_shutdown(root_bus);
3677		return (0);
3678	default:
3679		return (EOPNOTSUPP);
3680	}
3681
3682	return (0);
3683}
3684
3685static moduledata_t root_bus_mod = {
3686	"rootbus",
3687	root_bus_module_handler,
3688	0
3689};
3690DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3691
3692/**
3693 * @brief Automatically configure devices
3694 *
3695 * This function begins the autoconfiguration process by calling
3696 * device_probe_and_attach() for each child of the @c root0 device.
3697 */
3698void
3699root_bus_configure(void)
3700{
3701	device_t dev;
3702
3703	PDEBUG(("."));
3704
3705	TAILQ_FOREACH(dev, &root_bus->children, link) {
3706		device_probe_and_attach(dev);
3707	}
3708}
3709
3710/**
3711 * @brief Module handler for registering device drivers
3712 *
3713 * This module handler is used to automatically register device
3714 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3715 * devclass_add_driver() for the driver described by the
3716 * driver_module_data structure pointed to by @p arg
3717 */
3718int
3719driver_module_handler(module_t mod, int what, void *arg)
3720{
3721	int error;
3722	struct driver_module_data *dmd;
3723	devclass_t bus_devclass;
3724	kobj_class_t driver;
3725
3726	dmd = (struct driver_module_data *)arg;
3727	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3728	error = 0;
3729
3730	switch (what) {
3731	case MOD_LOAD:
3732		if (dmd->dmd_chainevh)
3733			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3734
3735		driver = dmd->dmd_driver;
3736		PDEBUG(("Loading module: driver %s on bus %s",
3737		    DRIVERNAME(driver), dmd->dmd_busname));
3738		error = devclass_add_driver(bus_devclass, driver);
3739		if (error)
3740			break;
3741
3742		/*
3743		 * If the driver has any base classes, make the
3744		 * devclass inherit from the devclass of the driver's
3745		 * first base class. This will allow the system to
3746		 * search for drivers in both devclasses for children
3747		 * of a device using this driver.
3748		 */
3749		if (driver->baseclasses) {
3750			const char *parentname;
3751			parentname = driver->baseclasses[0]->name;
3752			*dmd->dmd_devclass =
3753				devclass_find_internal(driver->name,
3754				    parentname, TRUE);
3755		} else {
3756			*dmd->dmd_devclass =
3757				devclass_find_internal(driver->name, 0, TRUE);
3758		}
3759		break;
3760
3761	case MOD_UNLOAD:
3762		PDEBUG(("Unloading module: driver %s from bus %s",
3763		    DRIVERNAME(dmd->dmd_driver),
3764		    dmd->dmd_busname));
3765		error = devclass_delete_driver(bus_devclass,
3766		    dmd->dmd_driver);
3767
3768		if (!error && dmd->dmd_chainevh)
3769			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3770		break;
3771	case MOD_QUIESCE:
3772		PDEBUG(("Quiesce module: driver %s from bus %s",
3773		    DRIVERNAME(dmd->dmd_driver),
3774		    dmd->dmd_busname));
3775		error = devclass_quiesce_driver(bus_devclass,
3776		    dmd->dmd_driver);
3777
3778		if (!error && dmd->dmd_chainevh)
3779			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3780		break;
3781	default:
3782		error = EOPNOTSUPP;
3783		break;
3784	}
3785
3786	return (error);
3787}
3788
3789#ifdef BUS_DEBUG
3790
3791/* the _short versions avoid iteration by not calling anything that prints
3792 * more than oneliners. I love oneliners.
3793 */
3794
3795static void
3796print_device_short(device_t dev, int indent)
3797{
3798	if (!dev)
3799		return;
3800
3801	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3802	    dev->unit, dev->desc,
3803	    (dev->parent? "":"no "),
3804	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3805	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3806	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3807	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3808	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3809	    (dev->flags&DF_REBID? "rebiddable,":""),
3810	    (dev->ivars? "":"no "),
3811	    (dev->softc? "":"no "),
3812	    dev->busy));
3813}
3814
3815static void
3816print_device(device_t dev, int indent)
3817{
3818	if (!dev)
3819		return;
3820
3821	print_device_short(dev, indent);
3822
3823	indentprintf(("Parent:\n"));
3824	print_device_short(dev->parent, indent+1);
3825	indentprintf(("Driver:\n"));
3826	print_driver_short(dev->driver, indent+1);
3827	indentprintf(("Devclass:\n"));
3828	print_devclass_short(dev->devclass, indent+1);
3829}
3830
3831void
3832print_device_tree_short(device_t dev, int indent)
3833/* print the device and all its children (indented) */
3834{
3835	device_t child;
3836
3837	if (!dev)
3838		return;
3839
3840	print_device_short(dev, indent);
3841
3842	TAILQ_FOREACH(child, &dev->children, link) {
3843		print_device_tree_short(child, indent+1);
3844	}
3845}
3846
3847void
3848print_device_tree(device_t dev, int indent)
3849/* print the device and all its children (indented) */
3850{
3851	device_t child;
3852
3853	if (!dev)
3854		return;
3855
3856	print_device(dev, indent);
3857
3858	TAILQ_FOREACH(child, &dev->children, link) {
3859		print_device_tree(child, indent+1);
3860	}
3861}
3862
3863static void
3864print_driver_short(driver_t *driver, int indent)
3865{
3866	if (!driver)
3867		return;
3868
3869	indentprintf(("driver %s: softc size = %zd\n",
3870	    driver->name, driver->size));
3871}
3872
3873static void
3874print_driver(driver_t *driver, int indent)
3875{
3876	if (!driver)
3877		return;
3878
3879	print_driver_short(driver, indent);
3880}
3881
3882
3883static void
3884print_driver_list(driver_list_t drivers, int indent)
3885{
3886	driverlink_t driver;
3887
3888	TAILQ_FOREACH(driver, &drivers, link) {
3889		print_driver(driver->driver, indent);
3890	}
3891}
3892
3893static void
3894print_devclass_short(devclass_t dc, int indent)
3895{
3896	if ( !dc )
3897		return;
3898
3899	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3900}
3901
3902static void
3903print_devclass(devclass_t dc, int indent)
3904{
3905	int i;
3906
3907	if ( !dc )
3908		return;
3909
3910	print_devclass_short(dc, indent);
3911	indentprintf(("Drivers:\n"));
3912	print_driver_list(dc->drivers, indent+1);
3913
3914	indentprintf(("Devices:\n"));
3915	for (i = 0; i < dc->maxunit; i++)
3916		if (dc->devices[i])
3917			print_device(dc->devices[i], indent+1);
3918}
3919
3920void
3921print_devclass_list_short(void)
3922{
3923	devclass_t dc;
3924
3925	printf("Short listing of devclasses, drivers & devices:\n");
3926	TAILQ_FOREACH(dc, &devclasses, link) {
3927		print_devclass_short(dc, 0);
3928	}
3929}
3930
3931void
3932print_devclass_list(void)
3933{
3934	devclass_t dc;
3935
3936	printf("Full listing of devclasses, drivers & devices:\n");
3937	TAILQ_FOREACH(dc, &devclasses, link) {
3938		print_devclass(dc, 0);
3939	}
3940}
3941
3942#endif
3943
3944/*
3945 * User-space access to the device tree.
3946 *
3947 * We implement a small set of nodes:
3948 *
3949 * hw.bus			Single integer read method to obtain the
3950 *				current generation count.
3951 * hw.bus.devices		Reads the entire device tree in flat space.
3952 * hw.bus.rman			Resource manager interface
3953 *
3954 * We might like to add the ability to scan devclasses and/or drivers to
3955 * determine what else is currently loaded/available.
3956 */
3957
3958static int
3959sysctl_bus(SYSCTL_HANDLER_ARGS)
3960{
3961	struct u_businfo	ubus;
3962
3963	ubus.ub_version = BUS_USER_VERSION;
3964	ubus.ub_generation = bus_data_generation;
3965
3966	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3967}
3968SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3969    "bus-related data");
3970
3971static int
3972sysctl_devices(SYSCTL_HANDLER_ARGS)
3973{
3974	int			*name = (int *)arg1;
3975	u_int			namelen = arg2;
3976	int			index;
3977	struct device		*dev;
3978	struct u_device		udev;	/* XXX this is a bit big */
3979	int			error;
3980
3981	if (namelen != 2)
3982		return (EINVAL);
3983
3984	if (bus_data_generation_check(name[0]))
3985		return (EINVAL);
3986
3987	index = name[1];
3988
3989	/*
3990	 * Scan the list of devices, looking for the requested index.
3991	 */
3992	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3993		if (index-- == 0)
3994			break;
3995	}
3996	if (dev == NULL)
3997		return (ENOENT);
3998
3999	/*
4000	 * Populate the return array.
4001	 */
4002	bzero(&udev, sizeof(udev));
4003	udev.dv_handle = (uintptr_t)dev;
4004	udev.dv_parent = (uintptr_t)dev->parent;
4005	if (dev->nameunit != NULL)
4006		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4007	if (dev->desc != NULL)
4008		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4009	if (dev->driver != NULL && dev->driver->name != NULL)
4010		strlcpy(udev.dv_drivername, dev->driver->name,
4011		    sizeof(udev.dv_drivername));
4012	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4013	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4014	udev.dv_devflags = dev->devflags;
4015	udev.dv_flags = dev->flags;
4016	udev.dv_state = dev->state;
4017	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4018	return (error);
4019}
4020
4021SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4022    "system device tree");
4023
4024int
4025bus_data_generation_check(int generation)
4026{
4027	if (generation != bus_data_generation)
4028		return (1);
4029
4030	/* XXX generate optimised lists here? */
4031	return (0);
4032}
4033
4034void
4035bus_data_generation_update(void)
4036{
4037	bus_data_generation++;
4038}
4039
4040int
4041bus_free_resource(device_t dev, int type, struct resource *r)
4042{
4043	if (r == NULL)
4044		return (0);
4045	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4046}
4047