subr_bus.c revision 144626
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 144626 2005-04-04 15:26:51Z njl $");
29
30#include "opt_bus.h"
31
32#include <sys/param.h>
33#include <sys/conf.h>
34#include <sys/filio.h>
35#include <sys/lock.h>
36#include <sys/kernel.h>
37#include <sys/kobj.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/mutex.h>
41#include <sys/poll.h>
42#include <sys/proc.h>
43#include <sys/condvar.h>
44#include <sys/queue.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47#include <sys/selinfo.h>
48#include <sys/signalvar.h>
49#include <sys/sysctl.h>
50#include <sys/systm.h>
51#include <sys/uio.h>
52#include <sys/bus.h>
53
54#include <machine/stdarg.h>
55
56#include <vm/uma.h>
57
58SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
59SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
60
61/*
62 * Used to attach drivers to devclasses.
63 */
64typedef struct driverlink *driverlink_t;
65struct driverlink {
66	kobj_class_t	driver;
67	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
68};
69
70/*
71 * Forward declarations
72 */
73typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
74typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
75typedef TAILQ_HEAD(device_list, device) device_list_t;
76
77struct devclass {
78	TAILQ_ENTRY(devclass) link;
79	devclass_t	parent;		/* parent in devclass hierarchy */
80	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
81	char		*name;
82	device_t	*devices;	/* array of devices indexed by unit */
83	int		maxunit;	/* size of devices array */
84
85	struct sysctl_ctx_list sysctl_ctx;
86	struct sysctl_oid *sysctl_tree;
87};
88
89/**
90 * @brief Implementation of device.
91 */
92struct device {
93	/*
94	 * A device is a kernel object. The first field must be the
95	 * current ops table for the object.
96	 */
97	KOBJ_FIELDS;
98
99	/*
100	 * Device hierarchy.
101	 */
102	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
103	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
104	device_t	parent;		/**< parent of this device  */
105	device_list_t	children;	/**< list of child devices */
106
107	/*
108	 * Details of this device.
109	 */
110	driver_t	*driver;	/**< current driver */
111	devclass_t	devclass;	/**< current device class */
112	int		unit;		/**< current unit number */
113	char*		nameunit;	/**< name+unit e.g. foodev0 */
114	char*		desc;		/**< driver specific description */
115	int		busy;		/**< count of calls to device_busy() */
116	device_state_t	state;		/**< current device state  */
117	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
118	u_short		flags;		/**< internal device flags  */
119#define	DF_ENABLED	1		/* device should be probed/attached */
120#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
121#define	DF_WILDCARD	4		/* unit was originally wildcard */
122#define	DF_DESCMALLOCED	8		/* description was malloced */
123#define	DF_QUIET	16		/* don't print verbose attach message */
124#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
125#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
126#define	DF_REBID	128		/* Can rebid after attach */
127	u_char	order;			/**< order from device_add_child_ordered() */
128	u_char	pad;
129	void	*ivars;			/**< instance variables  */
130	void	*softc;			/**< current driver's variables  */
131
132	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
133	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
134};
135
136static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
137static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
138
139#ifdef BUS_DEBUG
140
141static int bus_debug = 1;
142TUNABLE_INT("bus.debug", &bus_debug);
143SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
144    "Debug bus code");
145
146#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
147#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
148#define DRIVERNAME(d)	((d)? d->name : "no driver")
149#define DEVCLANAME(d)	((d)? d->name : "no devclass")
150
151/**
152 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
153 * prevent syslog from deleting initial spaces
154 */
155#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
156
157static void print_device_short(device_t dev, int indent);
158static void print_device(device_t dev, int indent);
159void print_device_tree_short(device_t dev, int indent);
160void print_device_tree(device_t dev, int indent);
161static void print_driver_short(driver_t *driver, int indent);
162static void print_driver(driver_t *driver, int indent);
163static void print_driver_list(driver_list_t drivers, int indent);
164static void print_devclass_short(devclass_t dc, int indent);
165static void print_devclass(devclass_t dc, int indent);
166void print_devclass_list_short(void);
167void print_devclass_list(void);
168
169#else
170/* Make the compiler ignore the function calls */
171#define PDEBUG(a)			/* nop */
172#define DEVICENAME(d)			/* nop */
173#define DRIVERNAME(d)			/* nop */
174#define DEVCLANAME(d)			/* nop */
175
176#define print_device_short(d,i)		/* nop */
177#define print_device(d,i)		/* nop */
178#define print_device_tree_short(d,i)	/* nop */
179#define print_device_tree(d,i)		/* nop */
180#define print_driver_short(d,i)		/* nop */
181#define print_driver(d,i)		/* nop */
182#define print_driver_list(d,i)		/* nop */
183#define print_devclass_short(d,i)	/* nop */
184#define print_devclass(d,i)		/* nop */
185#define print_devclass_list_short()	/* nop */
186#define print_devclass_list()		/* nop */
187#endif
188
189/*
190 * dev sysctl tree
191 */
192
193enum {
194	DEVCLASS_SYSCTL_PARENT,
195};
196
197static int
198devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
199{
200	devclass_t dc = (devclass_t)arg1;
201	const char *value;
202
203	switch (arg2) {
204	case DEVCLASS_SYSCTL_PARENT:
205		value = dc->parent ? dc->parent->name : "";
206		break;
207	default:
208		return (EINVAL);
209	}
210	return (SYSCTL_OUT(req, value, strlen(value)));
211}
212
213static void
214devclass_sysctl_init(devclass_t dc)
215{
216
217	if (dc->sysctl_tree != NULL)
218		return;
219	sysctl_ctx_init(&dc->sysctl_ctx);
220	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
221	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
222	    CTLFLAG_RD, 0, "");
223	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
224	    OID_AUTO, "%parent", CTLFLAG_RD,
225	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
226	    "parent class");
227}
228
229enum {
230	DEVICE_SYSCTL_DESC,
231	DEVICE_SYSCTL_DRIVER,
232	DEVICE_SYSCTL_LOCATION,
233	DEVICE_SYSCTL_PNPINFO,
234	DEVICE_SYSCTL_PARENT,
235};
236
237static int
238device_sysctl_handler(SYSCTL_HANDLER_ARGS)
239{
240	device_t dev = (device_t)arg1;
241	const char *value;
242	char *buf;
243	int error;
244
245	buf = NULL;
246	switch (arg2) {
247	case DEVICE_SYSCTL_DESC:
248		value = dev->desc ? dev->desc : "";
249		break;
250	case DEVICE_SYSCTL_DRIVER:
251		value = dev->driver ? dev->driver->name : "";
252		break;
253	case DEVICE_SYSCTL_LOCATION:
254		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
255		bus_child_location_str(dev, buf, 1024);
256		break;
257	case DEVICE_SYSCTL_PNPINFO:
258		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
259		bus_child_pnpinfo_str(dev, buf, 1024);
260		break;
261	case DEVICE_SYSCTL_PARENT:
262		value = dev->parent ? dev->parent->nameunit : "";
263		break;
264	default:
265		return (EINVAL);
266	}
267	error = SYSCTL_OUT(req, value, strlen(value));
268	if (buf != NULL)
269		free(buf, M_BUS);
270	return (error);
271}
272
273static void
274device_sysctl_init(device_t dev)
275{
276	devclass_t dc = dev->devclass;
277
278	if (dev->sysctl_tree != NULL)
279		return;
280	devclass_sysctl_init(dc);
281	sysctl_ctx_init(&dev->sysctl_ctx);
282	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
283	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
284	    dev->nameunit + strlen(dc->name),
285	    CTLFLAG_RD, 0, "");
286	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
287	    OID_AUTO, "%desc", CTLFLAG_RD,
288	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
289	    "device description");
290	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
291	    OID_AUTO, "%driver", CTLFLAG_RD,
292	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
293	    "device driver name");
294	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
295	    OID_AUTO, "%location", CTLFLAG_RD,
296	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
297	    "device location relative to parent");
298	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
299	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
300	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
301	    "device identification");
302	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
303	    OID_AUTO, "%parent", CTLFLAG_RD,
304	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
305	    "parent device");
306}
307
308static void
309device_sysctl_fini(device_t dev)
310{
311	if (dev->sysctl_tree == NULL)
312		return;
313	sysctl_ctx_free(&dev->sysctl_ctx);
314	dev->sysctl_tree = NULL;
315}
316
317/*
318 * /dev/devctl implementation
319 */
320
321/*
322 * This design allows only one reader for /dev/devctl.  This is not desirable
323 * in the long run, but will get a lot of hair out of this implementation.
324 * Maybe we should make this device a clonable device.
325 *
326 * Also note: we specifically do not attach a device to the device_t tree
327 * to avoid potential chicken and egg problems.  One could argue that all
328 * of this belongs to the root node.  One could also further argue that the
329 * sysctl interface that we have not might more properly be an ioctl
330 * interface, but at this stage of the game, I'm not inclined to rock that
331 * boat.
332 *
333 * I'm also not sure that the SIGIO support is done correctly or not, as
334 * I copied it from a driver that had SIGIO support that likely hasn't been
335 * tested since 3.4 or 2.2.8!
336 */
337
338static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
339static int devctl_disable = 0;
340TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
341SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
342    sysctl_devctl_disable, "I", "devctl disable");
343
344static d_open_t		devopen;
345static d_close_t	devclose;
346static d_read_t		devread;
347static d_ioctl_t	devioctl;
348static d_poll_t		devpoll;
349
350static struct cdevsw dev_cdevsw = {
351	.d_version =	D_VERSION,
352	.d_flags =	D_NEEDGIANT,
353	.d_open =	devopen,
354	.d_close =	devclose,
355	.d_read =	devread,
356	.d_ioctl =	devioctl,
357	.d_poll =	devpoll,
358	.d_name =	"devctl",
359};
360
361struct dev_event_info
362{
363	char *dei_data;
364	TAILQ_ENTRY(dev_event_info) dei_link;
365};
366
367TAILQ_HEAD(devq, dev_event_info);
368
369static struct dev_softc
370{
371	int	inuse;
372	int	nonblock;
373	struct mtx mtx;
374	struct cv cv;
375	struct selinfo sel;
376	struct devq devq;
377	struct proc *async_proc;
378} devsoftc;
379
380static struct cdev *devctl_dev;
381
382static void
383devinit(void)
384{
385	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
386	    "devctl");
387	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
388	cv_init(&devsoftc.cv, "dev cv");
389	TAILQ_INIT(&devsoftc.devq);
390}
391
392static int
393devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
394{
395	if (devsoftc.inuse)
396		return (EBUSY);
397	/* move to init */
398	devsoftc.inuse = 1;
399	devsoftc.nonblock = 0;
400	devsoftc.async_proc = NULL;
401	return (0);
402}
403
404static int
405devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
406{
407	devsoftc.inuse = 0;
408	mtx_lock(&devsoftc.mtx);
409	cv_broadcast(&devsoftc.cv);
410	mtx_unlock(&devsoftc.mtx);
411
412	return (0);
413}
414
415/*
416 * The read channel for this device is used to report changes to
417 * userland in realtime.  We are required to free the data as well as
418 * the n1 object because we allocate them separately.  Also note that
419 * we return one record at a time.  If you try to read this device a
420 * character at a time, you will loose the rest of the data.  Listening
421 * programs are expected to cope.
422 */
423static int
424devread(struct cdev *dev, struct uio *uio, int ioflag)
425{
426	struct dev_event_info *n1;
427	int rv;
428
429	mtx_lock(&devsoftc.mtx);
430	while (TAILQ_EMPTY(&devsoftc.devq)) {
431		if (devsoftc.nonblock) {
432			mtx_unlock(&devsoftc.mtx);
433			return (EAGAIN);
434		}
435		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
436		if (rv) {
437			/*
438			 * Need to translate ERESTART to EINTR here? -- jake
439			 */
440			mtx_unlock(&devsoftc.mtx);
441			return (rv);
442		}
443	}
444	n1 = TAILQ_FIRST(&devsoftc.devq);
445	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
446	mtx_unlock(&devsoftc.mtx);
447	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
448	free(n1->dei_data, M_BUS);
449	free(n1, M_BUS);
450	return (rv);
451}
452
453static	int
454devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
455{
456	switch (cmd) {
457
458	case FIONBIO:
459		if (*(int*)data)
460			devsoftc.nonblock = 1;
461		else
462			devsoftc.nonblock = 0;
463		return (0);
464	case FIOASYNC:
465		if (*(int*)data)
466			devsoftc.async_proc = td->td_proc;
467		else
468			devsoftc.async_proc = NULL;
469		return (0);
470
471		/* (un)Support for other fcntl() calls. */
472	case FIOCLEX:
473	case FIONCLEX:
474	case FIONREAD:
475	case FIOSETOWN:
476	case FIOGETOWN:
477	default:
478		break;
479	}
480	return (ENOTTY);
481}
482
483static	int
484devpoll(struct cdev *dev, int events, d_thread_t *td)
485{
486	int	revents = 0;
487
488	mtx_lock(&devsoftc.mtx);
489	if (events & (POLLIN | POLLRDNORM)) {
490		if (!TAILQ_EMPTY(&devsoftc.devq))
491			revents = events & (POLLIN | POLLRDNORM);
492		else
493			selrecord(td, &devsoftc.sel);
494	}
495	mtx_unlock(&devsoftc.mtx);
496
497	return (revents);
498}
499
500/**
501 * @brief Queue data to be read from the devctl device
502 *
503 * Generic interface to queue data to the devctl device.  It is
504 * assumed that @p data is properly formatted.  It is further assumed
505 * that @p data is allocated using the M_BUS malloc type.
506 */
507void
508devctl_queue_data(char *data)
509{
510	struct dev_event_info *n1 = NULL;
511	struct proc *p;
512
513	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
514	if (n1 == NULL)
515		return;
516	n1->dei_data = data;
517	mtx_lock(&devsoftc.mtx);
518	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
519	cv_broadcast(&devsoftc.cv);
520	mtx_unlock(&devsoftc.mtx);
521	selwakeup(&devsoftc.sel);
522	p = devsoftc.async_proc;
523	if (p != NULL) {
524		PROC_LOCK(p);
525		psignal(p, SIGIO);
526		PROC_UNLOCK(p);
527	}
528}
529
530/**
531 * @brief Send a 'notification' to userland, using standard ways
532 */
533void
534devctl_notify(const char *system, const char *subsystem, const char *type,
535    const char *data)
536{
537	int len = 0;
538	char *msg;
539
540	if (system == NULL)
541		return;		/* BOGUS!  Must specify system. */
542	if (subsystem == NULL)
543		return;		/* BOGUS!  Must specify subsystem. */
544	if (type == NULL)
545		return;		/* BOGUS!  Must specify type. */
546	len += strlen(" system=") + strlen(system);
547	len += strlen(" subsystem=") + strlen(subsystem);
548	len += strlen(" type=") + strlen(type);
549	/* add in the data message plus newline. */
550	if (data != NULL)
551		len += strlen(data);
552	len += 3;	/* '!', '\n', and NUL */
553	msg = malloc(len, M_BUS, M_NOWAIT);
554	if (msg == NULL)
555		return;		/* Drop it on the floor */
556	snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
557	    subsystem, type, data);
558	devctl_queue_data(msg);
559}
560
561/*
562 * Common routine that tries to make sending messages as easy as possible.
563 * We allocate memory for the data, copy strings into that, but do not
564 * free it unless there's an error.  The dequeue part of the driver should
565 * free the data.  We don't send data when the device is disabled.  We do
566 * send data, even when we have no listeners, because we wish to avoid
567 * races relating to startup and restart of listening applications.
568 *
569 * devaddq is designed to string together the type of event, with the
570 * object of that event, plus the plug and play info and location info
571 * for that event.  This is likely most useful for devices, but less
572 * useful for other consumers of this interface.  Those should use
573 * the devctl_queue_data() interface instead.
574 */
575static void
576devaddq(const char *type, const char *what, device_t dev)
577{
578	char *data = NULL;
579	char *loc = NULL;
580	char *pnp = NULL;
581	const char *parstr;
582
583	if (devctl_disable)
584		return;
585	data = malloc(1024, M_BUS, M_NOWAIT);
586	if (data == NULL)
587		goto bad;
588
589	/* get the bus specific location of this device */
590	loc = malloc(1024, M_BUS, M_NOWAIT);
591	if (loc == NULL)
592		goto bad;
593	*loc = '\0';
594	bus_child_location_str(dev, loc, 1024);
595
596	/* Get the bus specific pnp info of this device */
597	pnp = malloc(1024, M_BUS, M_NOWAIT);
598	if (pnp == NULL)
599		goto bad;
600	*pnp = '\0';
601	bus_child_pnpinfo_str(dev, pnp, 1024);
602
603	/* Get the parent of this device, or / if high enough in the tree. */
604	if (device_get_parent(dev) == NULL)
605		parstr = ".";	/* Or '/' ? */
606	else
607		parstr = device_get_nameunit(device_get_parent(dev));
608	/* String it all together. */
609	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
610	  parstr);
611	free(loc, M_BUS);
612	free(pnp, M_BUS);
613	devctl_queue_data(data);
614	return;
615bad:
616	free(pnp, M_BUS);
617	free(loc, M_BUS);
618	free(data, M_BUS);
619	return;
620}
621
622/*
623 * A device was added to the tree.  We are called just after it successfully
624 * attaches (that is, probe and attach success for this device).  No call
625 * is made if a device is merely parented into the tree.  See devnomatch
626 * if probe fails.  If attach fails, no notification is sent (but maybe
627 * we should have a different message for this).
628 */
629static void
630devadded(device_t dev)
631{
632	char *pnp = NULL;
633	char *tmp = NULL;
634
635	pnp = malloc(1024, M_BUS, M_NOWAIT);
636	if (pnp == NULL)
637		goto fail;
638	tmp = malloc(1024, M_BUS, M_NOWAIT);
639	if (tmp == NULL)
640		goto fail;
641	*pnp = '\0';
642	bus_child_pnpinfo_str(dev, pnp, 1024);
643	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
644	devaddq("+", tmp, dev);
645fail:
646	if (pnp != NULL)
647		free(pnp, M_BUS);
648	if (tmp != NULL)
649		free(tmp, M_BUS);
650	return;
651}
652
653/*
654 * A device was removed from the tree.  We are called just before this
655 * happens.
656 */
657static void
658devremoved(device_t dev)
659{
660	char *pnp = NULL;
661	char *tmp = NULL;
662
663	pnp = malloc(1024, M_BUS, M_NOWAIT);
664	if (pnp == NULL)
665		goto fail;
666	tmp = malloc(1024, M_BUS, M_NOWAIT);
667	if (tmp == NULL)
668		goto fail;
669	*pnp = '\0';
670	bus_child_pnpinfo_str(dev, pnp, 1024);
671	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
672	devaddq("-", tmp, dev);
673fail:
674	if (pnp != NULL)
675		free(pnp, M_BUS);
676	if (tmp != NULL)
677		free(tmp, M_BUS);
678	return;
679}
680
681/*
682 * Called when there's no match for this device.  This is only called
683 * the first time that no match happens, so we don't keep getitng this
684 * message.  Should that prove to be undesirable, we can change it.
685 * This is called when all drivers that can attach to a given bus
686 * decline to accept this device.  Other errrors may not be detected.
687 */
688static void
689devnomatch(device_t dev)
690{
691	devaddq("?", "", dev);
692}
693
694static int
695sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
696{
697	struct dev_event_info *n1;
698	int dis, error;
699
700	dis = devctl_disable;
701	error = sysctl_handle_int(oidp, &dis, 0, req);
702	if (error || !req->newptr)
703		return (error);
704	mtx_lock(&devsoftc.mtx);
705	devctl_disable = dis;
706	if (dis) {
707		while (!TAILQ_EMPTY(&devsoftc.devq)) {
708			n1 = TAILQ_FIRST(&devsoftc.devq);
709			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
710			free(n1->dei_data, M_BUS);
711			free(n1, M_BUS);
712		}
713	}
714	mtx_unlock(&devsoftc.mtx);
715	return (0);
716}
717
718/* End of /dev/devctl code */
719
720TAILQ_HEAD(,device)	bus_data_devices;
721static int bus_data_generation = 1;
722
723kobj_method_t null_methods[] = {
724	{ 0, 0 }
725};
726
727DEFINE_CLASS(null, null_methods, 0);
728
729/*
730 * Devclass implementation
731 */
732
733static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
734
735
736/**
737 * @internal
738 * @brief Find or create a device class
739 *
740 * If a device class with the name @p classname exists, return it,
741 * otherwise if @p create is non-zero create and return a new device
742 * class.
743 *
744 * If @p parentname is non-NULL, the parent of the devclass is set to
745 * the devclass of that name.
746 *
747 * @param classname	the devclass name to find or create
748 * @param parentname	the parent devclass name or @c NULL
749 * @param create	non-zero to create a devclass
750 */
751static devclass_t
752devclass_find_internal(const char *classname, const char *parentname,
753		       int create)
754{
755	devclass_t dc;
756
757	PDEBUG(("looking for %s", classname));
758	if (!classname)
759		return (NULL);
760
761	TAILQ_FOREACH(dc, &devclasses, link) {
762		if (!strcmp(dc->name, classname))
763			break;
764	}
765
766	if (create && !dc) {
767		PDEBUG(("creating %s", classname));
768		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
769		    M_BUS, M_NOWAIT|M_ZERO);
770		if (!dc)
771			return (NULL);
772		dc->parent = NULL;
773		dc->name = (char*) (dc + 1);
774		strcpy(dc->name, classname);
775		TAILQ_INIT(&dc->drivers);
776		TAILQ_INSERT_TAIL(&devclasses, dc, link);
777
778		bus_data_generation_update();
779	}
780	if (parentname && dc && !dc->parent) {
781		dc->parent = devclass_find_internal(parentname, 0, FALSE);
782	}
783
784	return (dc);
785}
786
787/**
788 * @brief Create a device class
789 *
790 * If a device class with the name @p classname exists, return it,
791 * otherwise create and return a new device class.
792 *
793 * @param classname	the devclass name to find or create
794 */
795devclass_t
796devclass_create(const char *classname)
797{
798	return (devclass_find_internal(classname, 0, TRUE));
799}
800
801/**
802 * @brief Find a device class
803 *
804 * If a device class with the name @p classname exists, return it,
805 * otherwise return @c NULL.
806 *
807 * @param classname	the devclass name to find
808 */
809devclass_t
810devclass_find(const char *classname)
811{
812	return (devclass_find_internal(classname, 0, FALSE));
813}
814
815/**
816 * @brief Add a device driver to a device class
817 *
818 * Add a device driver to a devclass. This is normally called
819 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
820 * all devices in the devclass will be called to allow them to attempt
821 * to re-probe any unmatched children.
822 *
823 * @param dc		the devclass to edit
824 * @param driver	the driver to register
825 */
826int
827devclass_add_driver(devclass_t dc, driver_t *driver)
828{
829	driverlink_t dl;
830	int i;
831
832	PDEBUG(("%s", DRIVERNAME(driver)));
833
834	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
835	if (!dl)
836		return (ENOMEM);
837
838	/*
839	 * Compile the driver's methods. Also increase the reference count
840	 * so that the class doesn't get freed when the last instance
841	 * goes. This means we can safely use static methods and avoids a
842	 * double-free in devclass_delete_driver.
843	 */
844	kobj_class_compile((kobj_class_t) driver);
845
846	/*
847	 * Make sure the devclass which the driver is implementing exists.
848	 */
849	devclass_find_internal(driver->name, 0, TRUE);
850
851	dl->driver = driver;
852	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
853	driver->refs++;		/* XXX: kobj_mtx */
854
855	/*
856	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
857	 */
858	for (i = 0; i < dc->maxunit; i++)
859		if (dc->devices[i])
860			BUS_DRIVER_ADDED(dc->devices[i], driver);
861
862	bus_data_generation_update();
863	return (0);
864}
865
866/**
867 * @brief Delete a device driver from a device class
868 *
869 * Delete a device driver from a devclass. This is normally called
870 * automatically by DRIVER_MODULE().
871 *
872 * If the driver is currently attached to any devices,
873 * devclass_delete_driver() will first attempt to detach from each
874 * device. If one of the detach calls fails, the driver will not be
875 * deleted.
876 *
877 * @param dc		the devclass to edit
878 * @param driver	the driver to unregister
879 */
880int
881devclass_delete_driver(devclass_t busclass, driver_t *driver)
882{
883	devclass_t dc = devclass_find(driver->name);
884	driverlink_t dl;
885	device_t dev;
886	int i;
887	int error;
888
889	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
890
891	if (!dc)
892		return (0);
893
894	/*
895	 * Find the link structure in the bus' list of drivers.
896	 */
897	TAILQ_FOREACH(dl, &busclass->drivers, link) {
898		if (dl->driver == driver)
899			break;
900	}
901
902	if (!dl) {
903		PDEBUG(("%s not found in %s list", driver->name,
904		    busclass->name));
905		return (ENOENT);
906	}
907
908	/*
909	 * Disassociate from any devices.  We iterate through all the
910	 * devices in the devclass of the driver and detach any which are
911	 * using the driver and which have a parent in the devclass which
912	 * we are deleting from.
913	 *
914	 * Note that since a driver can be in multiple devclasses, we
915	 * should not detach devices which are not children of devices in
916	 * the affected devclass.
917	 */
918	for (i = 0; i < dc->maxunit; i++) {
919		if (dc->devices[i]) {
920			dev = dc->devices[i];
921			if (dev->driver == driver && dev->parent &&
922			    dev->parent->devclass == busclass) {
923				if ((error = device_detach(dev)) != 0)
924					return (error);
925				device_set_driver(dev, NULL);
926			}
927		}
928	}
929
930	TAILQ_REMOVE(&busclass->drivers, dl, link);
931	free(dl, M_BUS);
932
933	/* XXX: kobj_mtx */
934	driver->refs--;
935	if (driver->refs == 0)
936		kobj_class_free((kobj_class_t) driver);
937
938	bus_data_generation_update();
939	return (0);
940}
941
942/**
943 * @brief Quiesces a set of device drivers from a device class
944 *
945 * Quiesce a device driver from a devclass. This is normally called
946 * automatically by DRIVER_MODULE().
947 *
948 * If the driver is currently attached to any devices,
949 * devclass_quiesece_driver() will first attempt to quiesce each
950 * device.
951 *
952 * @param dc		the devclass to edit
953 * @param driver	the driver to unregister
954 */
955int
956devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
957{
958	devclass_t dc = devclass_find(driver->name);
959	driverlink_t dl;
960	device_t dev;
961	int i;
962	int error;
963
964	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
965
966	if (!dc)
967		return (0);
968
969	/*
970	 * Find the link structure in the bus' list of drivers.
971	 */
972	TAILQ_FOREACH(dl, &busclass->drivers, link) {
973		if (dl->driver == driver)
974			break;
975	}
976
977	if (!dl) {
978		PDEBUG(("%s not found in %s list", driver->name,
979		    busclass->name));
980		return (ENOENT);
981	}
982
983	/*
984	 * Quiesce all devices.  We iterate through all the devices in
985	 * the devclass of the driver and quiesce any which are using
986	 * the driver and which have a parent in the devclass which we
987	 * are quiescing.
988	 *
989	 * Note that since a driver can be in multiple devclasses, we
990	 * should not quiesce devices which are not children of
991	 * devices in the affected devclass.
992	 */
993	for (i = 0; i < dc->maxunit; i++) {
994		if (dc->devices[i]) {
995			dev = dc->devices[i];
996			if (dev->driver == driver && dev->parent &&
997			    dev->parent->devclass == busclass) {
998				if ((error = device_quiesce(dev)) != 0)
999					return (error);
1000			}
1001		}
1002	}
1003
1004	return (0);
1005}
1006
1007/**
1008 * @internal
1009 */
1010static driverlink_t
1011devclass_find_driver_internal(devclass_t dc, const char *classname)
1012{
1013	driverlink_t dl;
1014
1015	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1016
1017	TAILQ_FOREACH(dl, &dc->drivers, link) {
1018		if (!strcmp(dl->driver->name, classname))
1019			return (dl);
1020	}
1021
1022	PDEBUG(("not found"));
1023	return (NULL);
1024}
1025
1026/**
1027 * @brief Search a devclass for a driver
1028 *
1029 * This function searches the devclass's list of drivers and returns
1030 * the first driver whose name is @p classname or @c NULL if there is
1031 * no driver of that name.
1032 *
1033 * @param dc		the devclass to search
1034 * @param classname	the driver name to search for
1035 */
1036kobj_class_t
1037devclass_find_driver(devclass_t dc, const char *classname)
1038{
1039	driverlink_t dl;
1040
1041	dl = devclass_find_driver_internal(dc, classname);
1042	if (dl)
1043		return (dl->driver);
1044	return (NULL);
1045}
1046
1047/**
1048 * @brief Return the name of the devclass
1049 */
1050const char *
1051devclass_get_name(devclass_t dc)
1052{
1053	return (dc->name);
1054}
1055
1056/**
1057 * @brief Find a device given a unit number
1058 *
1059 * @param dc		the devclass to search
1060 * @param unit		the unit number to search for
1061 *
1062 * @returns		the device with the given unit number or @c
1063 *			NULL if there is no such device
1064 */
1065device_t
1066devclass_get_device(devclass_t dc, int unit)
1067{
1068	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1069		return (NULL);
1070	return (dc->devices[unit]);
1071}
1072
1073/**
1074 * @brief Find the softc field of a device given a unit number
1075 *
1076 * @param dc		the devclass to search
1077 * @param unit		the unit number to search for
1078 *
1079 * @returns		the softc field of the device with the given
1080 *			unit number or @c NULL if there is no such
1081 *			device
1082 */
1083void *
1084devclass_get_softc(devclass_t dc, int unit)
1085{
1086	device_t dev;
1087
1088	dev = devclass_get_device(dc, unit);
1089	if (!dev)
1090		return (NULL);
1091
1092	return (device_get_softc(dev));
1093}
1094
1095/**
1096 * @brief Get a list of devices in the devclass
1097 *
1098 * An array containing a list of all the devices in the given devclass
1099 * is allocated and returned in @p *devlistp. The number of devices
1100 * in the array is returned in @p *devcountp. The caller should free
1101 * the array using @c free(p, M_TEMP).
1102 *
1103 * @param dc		the devclass to examine
1104 * @param devlistp	points at location for array pointer return
1105 *			value
1106 * @param devcountp	points at location for array size return value
1107 *
1108 * @retval 0		success
1109 * @retval ENOMEM	the array allocation failed
1110 */
1111int
1112devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1113{
1114	int count, i;
1115	device_t *list;
1116
1117	count = devclass_get_count(dc);
1118	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1119	if (!list)
1120		return (ENOMEM);
1121
1122	count = 0;
1123	for (i = 0; i < dc->maxunit; i++) {
1124		if (dc->devices[i]) {
1125			list[count] = dc->devices[i];
1126			count++;
1127		}
1128	}
1129
1130	*devlistp = list;
1131	*devcountp = count;
1132
1133	return (0);
1134}
1135
1136/**
1137 * @brief Get a list of drivers in the devclass
1138 *
1139 * An array containing a list of pointers to all the drivers in the
1140 * given devclass is allocated and returned in @p *listp.  The number
1141 * of drivers in the array is returned in @p *countp. The caller should
1142 * free the array using @c free(p, M_TEMP).
1143 *
1144 * @param dc		the devclass to examine
1145 * @param listp		gives location for array pointer return value
1146 * @param countp	gives location for number of array elements
1147 *			return value
1148 *
1149 * @retval 0		success
1150 * @retval ENOMEM	the array allocation failed
1151 */
1152int
1153devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1154{
1155	driverlink_t dl;
1156	driver_t **list;
1157	int count;
1158
1159	count = 0;
1160	TAILQ_FOREACH(dl, &dc->drivers, link)
1161		count++;
1162	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1163	if (list == NULL)
1164		return (ENOMEM);
1165
1166	count = 0;
1167	TAILQ_FOREACH(dl, &dc->drivers, link) {
1168		list[count] = dl->driver;
1169		count++;
1170	}
1171	*listp = list;
1172	*countp = count;
1173
1174	return (0);
1175}
1176
1177/**
1178 * @brief Get the number of devices in a devclass
1179 *
1180 * @param dc		the devclass to examine
1181 */
1182int
1183devclass_get_count(devclass_t dc)
1184{
1185	int count, i;
1186
1187	count = 0;
1188	for (i = 0; i < dc->maxunit; i++)
1189		if (dc->devices[i])
1190			count++;
1191	return (count);
1192}
1193
1194/**
1195 * @brief Get the maximum unit number used in a devclass
1196 *
1197 * @param dc		the devclass to examine
1198 */
1199int
1200devclass_get_maxunit(devclass_t dc)
1201{
1202	return (dc->maxunit);
1203}
1204
1205/**
1206 * @brief Find a free unit number in a devclass
1207 *
1208 * This function searches for the first unused unit number greater
1209 * that or equal to @p unit.
1210 *
1211 * @param dc		the devclass to examine
1212 * @param unit		the first unit number to check
1213 */
1214int
1215devclass_find_free_unit(devclass_t dc, int unit)
1216{
1217	if (dc == NULL)
1218		return (unit);
1219	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1220		unit++;
1221	return (unit);
1222}
1223
1224/**
1225 * @brief Set the parent of a devclass
1226 *
1227 * The parent class is normally initialised automatically by
1228 * DRIVER_MODULE().
1229 *
1230 * @param dc		the devclass to edit
1231 * @param pdc		the new parent devclass
1232 */
1233void
1234devclass_set_parent(devclass_t dc, devclass_t pdc)
1235{
1236	dc->parent = pdc;
1237}
1238
1239/**
1240 * @brief Get the parent of a devclass
1241 *
1242 * @param dc		the devclass to examine
1243 */
1244devclass_t
1245devclass_get_parent(devclass_t dc)
1246{
1247	return (dc->parent);
1248}
1249
1250struct sysctl_ctx_list *
1251devclass_get_sysctl_ctx(devclass_t dc)
1252{
1253	return (&dc->sysctl_ctx);
1254}
1255
1256struct sysctl_oid *
1257devclass_get_sysctl_tree(devclass_t dc)
1258{
1259	return (dc->sysctl_tree);
1260}
1261
1262/**
1263 * @internal
1264 * @brief Allocate a unit number
1265 *
1266 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1267 * will do). The allocated unit number is returned in @p *unitp.
1268
1269 * @param dc		the devclass to allocate from
1270 * @param unitp		points at the location for the allocated unit
1271 *			number
1272 *
1273 * @retval 0		success
1274 * @retval EEXIST	the requested unit number is already allocated
1275 * @retval ENOMEM	memory allocation failure
1276 */
1277static int
1278devclass_alloc_unit(devclass_t dc, int *unitp)
1279{
1280	int unit = *unitp;
1281
1282	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1283
1284	/* If we were given a wired unit number, check for existing device */
1285	/* XXX imp XXX */
1286	if (unit != -1) {
1287		if (unit >= 0 && unit < dc->maxunit &&
1288		    dc->devices[unit] != NULL) {
1289			if (bootverbose)
1290				printf("%s: %s%d already exists; skipping it\n",
1291				    dc->name, dc->name, *unitp);
1292			return (EEXIST);
1293		}
1294	} else {
1295		/* Unwired device, find the next available slot for it */
1296		unit = 0;
1297		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1298			unit++;
1299	}
1300
1301	/*
1302	 * We've selected a unit beyond the length of the table, so let's
1303	 * extend the table to make room for all units up to and including
1304	 * this one.
1305	 */
1306	if (unit >= dc->maxunit) {
1307		device_t *newlist;
1308		int newsize;
1309
1310		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1311		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1312		if (!newlist)
1313			return (ENOMEM);
1314		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1315		bzero(newlist + dc->maxunit,
1316		    sizeof(device_t) * (newsize - dc->maxunit));
1317		if (dc->devices)
1318			free(dc->devices, M_BUS);
1319		dc->devices = newlist;
1320		dc->maxunit = newsize;
1321	}
1322	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1323
1324	*unitp = unit;
1325	return (0);
1326}
1327
1328/**
1329 * @internal
1330 * @brief Add a device to a devclass
1331 *
1332 * A unit number is allocated for the device (using the device's
1333 * preferred unit number if any) and the device is registered in the
1334 * devclass. This allows the device to be looked up by its unit
1335 * number, e.g. by decoding a dev_t minor number.
1336 *
1337 * @param dc		the devclass to add to
1338 * @param dev		the device to add
1339 *
1340 * @retval 0		success
1341 * @retval EEXIST	the requested unit number is already allocated
1342 * @retval ENOMEM	memory allocation failure
1343 */
1344static int
1345devclass_add_device(devclass_t dc, device_t dev)
1346{
1347	int buflen, error;
1348
1349	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1350
1351	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1352	if (buflen < 0)
1353		return (ENOMEM);
1354	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1355	if (!dev->nameunit)
1356		return (ENOMEM);
1357
1358	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1359		free(dev->nameunit, M_BUS);
1360		dev->nameunit = NULL;
1361		return (error);
1362	}
1363	dc->devices[dev->unit] = dev;
1364	dev->devclass = dc;
1365	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1366
1367	return (0);
1368}
1369
1370/**
1371 * @internal
1372 * @brief Delete a device from a devclass
1373 *
1374 * The device is removed from the devclass's device list and its unit
1375 * number is freed.
1376
1377 * @param dc		the devclass to delete from
1378 * @param dev		the device to delete
1379 *
1380 * @retval 0		success
1381 */
1382static int
1383devclass_delete_device(devclass_t dc, device_t dev)
1384{
1385	if (!dc || !dev)
1386		return (0);
1387
1388	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1389
1390	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1391		panic("devclass_delete_device: inconsistent device class");
1392	dc->devices[dev->unit] = NULL;
1393	if (dev->flags & DF_WILDCARD)
1394		dev->unit = -1;
1395	dev->devclass = NULL;
1396	free(dev->nameunit, M_BUS);
1397	dev->nameunit = NULL;
1398
1399	return (0);
1400}
1401
1402/**
1403 * @internal
1404 * @brief Make a new device and add it as a child of @p parent
1405 *
1406 * @param parent	the parent of the new device
1407 * @param name		the devclass name of the new device or @c NULL
1408 *			to leave the devclass unspecified
1409 * @parem unit		the unit number of the new device of @c -1 to
1410 *			leave the unit number unspecified
1411 *
1412 * @returns the new device
1413 */
1414static device_t
1415make_device(device_t parent, const char *name, int unit)
1416{
1417	device_t dev;
1418	devclass_t dc;
1419
1420	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1421
1422	if (name) {
1423		dc = devclass_find_internal(name, 0, TRUE);
1424		if (!dc) {
1425			printf("make_device: can't find device class %s\n",
1426			    name);
1427			return (NULL);
1428		}
1429	} else {
1430		dc = NULL;
1431	}
1432
1433	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1434	if (!dev)
1435		return (NULL);
1436
1437	dev->parent = parent;
1438	TAILQ_INIT(&dev->children);
1439	kobj_init((kobj_t) dev, &null_class);
1440	dev->driver = NULL;
1441	dev->devclass = NULL;
1442	dev->unit = unit;
1443	dev->nameunit = NULL;
1444	dev->desc = NULL;
1445	dev->busy = 0;
1446	dev->devflags = 0;
1447	dev->flags = DF_ENABLED;
1448	dev->order = 0;
1449	if (unit == -1)
1450		dev->flags |= DF_WILDCARD;
1451	if (name) {
1452		dev->flags |= DF_FIXEDCLASS;
1453		if (devclass_add_device(dc, dev)) {
1454			kobj_delete((kobj_t) dev, M_BUS);
1455			return (NULL);
1456		}
1457	}
1458	dev->ivars = NULL;
1459	dev->softc = NULL;
1460
1461	dev->state = DS_NOTPRESENT;
1462
1463	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1464	bus_data_generation_update();
1465
1466	return (dev);
1467}
1468
1469/**
1470 * @internal
1471 * @brief Print a description of a device.
1472 */
1473static int
1474device_print_child(device_t dev, device_t child)
1475{
1476	int retval = 0;
1477
1478	if (device_is_alive(child))
1479		retval += BUS_PRINT_CHILD(dev, child);
1480	else
1481		retval += device_printf(child, " not found\n");
1482
1483	return (retval);
1484}
1485
1486/**
1487 * @brief Create a new device
1488 *
1489 * This creates a new device and adds it as a child of an existing
1490 * parent device. The new device will be added after the last existing
1491 * child with order zero.
1492 *
1493 * @param dev		the device which will be the parent of the
1494 *			new child device
1495 * @param name		devclass name for new device or @c NULL if not
1496 *			specified
1497 * @param unit		unit number for new device or @c -1 if not
1498 *			specified
1499 *
1500 * @returns		the new device
1501 */
1502device_t
1503device_add_child(device_t dev, const char *name, int unit)
1504{
1505	return (device_add_child_ordered(dev, 0, name, unit));
1506}
1507
1508/**
1509 * @brief Create a new device
1510 *
1511 * This creates a new device and adds it as a child of an existing
1512 * parent device. The new device will be added after the last existing
1513 * child with the same order.
1514 *
1515 * @param dev		the device which will be the parent of the
1516 *			new child device
1517 * @param order		a value which is used to partially sort the
1518 *			children of @p dev - devices created using
1519 *			lower values of @p order appear first in @p
1520 *			dev's list of children
1521 * @param name		devclass name for new device or @c NULL if not
1522 *			specified
1523 * @param unit		unit number for new device or @c -1 if not
1524 *			specified
1525 *
1526 * @returns		the new device
1527 */
1528device_t
1529device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1530{
1531	device_t child;
1532	device_t place;
1533
1534	PDEBUG(("%s at %s with order %d as unit %d",
1535	    name, DEVICENAME(dev), order, unit));
1536
1537	child = make_device(dev, name, unit);
1538	if (child == NULL)
1539		return (child);
1540	child->order = order;
1541
1542	TAILQ_FOREACH(place, &dev->children, link) {
1543		if (place->order > order)
1544			break;
1545	}
1546
1547	if (place) {
1548		/*
1549		 * The device 'place' is the first device whose order is
1550		 * greater than the new child.
1551		 */
1552		TAILQ_INSERT_BEFORE(place, child, link);
1553	} else {
1554		/*
1555		 * The new child's order is greater or equal to the order of
1556		 * any existing device. Add the child to the tail of the list.
1557		 */
1558		TAILQ_INSERT_TAIL(&dev->children, child, link);
1559	}
1560
1561	bus_data_generation_update();
1562	return (child);
1563}
1564
1565/**
1566 * @brief Delete a device
1567 *
1568 * This function deletes a device along with all of its children. If
1569 * the device currently has a driver attached to it, the device is
1570 * detached first using device_detach().
1571 *
1572 * @param dev		the parent device
1573 * @param child		the device to delete
1574 *
1575 * @retval 0		success
1576 * @retval non-zero	a unit error code describing the error
1577 */
1578int
1579device_delete_child(device_t dev, device_t child)
1580{
1581	int error;
1582	device_t grandchild;
1583
1584	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1585
1586	/* remove children first */
1587	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1588		error = device_delete_child(child, grandchild);
1589		if (error)
1590			return (error);
1591	}
1592
1593	if ((error = device_detach(child)) != 0)
1594		return (error);
1595	if (child->devclass)
1596		devclass_delete_device(child->devclass, child);
1597	TAILQ_REMOVE(&dev->children, child, link);
1598	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1599	kobj_delete((kobj_t) child, M_BUS);
1600
1601	bus_data_generation_update();
1602	return (0);
1603}
1604
1605/**
1606 * @brief Find a device given a unit number
1607 *
1608 * This is similar to devclass_get_devices() but only searches for
1609 * devices which have @p dev as a parent.
1610 *
1611 * @param dev		the parent device to search
1612 * @param unit		the unit number to search for.  If the unit is -1,
1613 *			return the first child of @p dev which has name
1614 *			@p classname (that is, the one with the lowest unit.)
1615 *
1616 * @returns		the device with the given unit number or @c
1617 *			NULL if there is no such device
1618 */
1619device_t
1620device_find_child(device_t dev, const char *classname, int unit)
1621{
1622	devclass_t dc;
1623	device_t child;
1624
1625	dc = devclass_find(classname);
1626	if (!dc)
1627		return (NULL);
1628
1629	if (unit != -1) {
1630		child = devclass_get_device(dc, unit);
1631		if (child && child->parent == dev)
1632			return (child);
1633	} else {
1634		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1635			child = devclass_get_device(dc, unit);
1636			if (child && child->parent == dev)
1637				return (child);
1638		}
1639	}
1640	return (NULL);
1641}
1642
1643/**
1644 * @internal
1645 */
1646static driverlink_t
1647first_matching_driver(devclass_t dc, device_t dev)
1648{
1649	if (dev->devclass)
1650		return (devclass_find_driver_internal(dc, dev->devclass->name));
1651	return (TAILQ_FIRST(&dc->drivers));
1652}
1653
1654/**
1655 * @internal
1656 */
1657static driverlink_t
1658next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1659{
1660	if (dev->devclass) {
1661		driverlink_t dl;
1662		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1663			if (!strcmp(dev->devclass->name, dl->driver->name))
1664				return (dl);
1665		return (NULL);
1666	}
1667	return (TAILQ_NEXT(last, link));
1668}
1669
1670/**
1671 * @internal
1672 */
1673static int
1674device_probe_child(device_t dev, device_t child)
1675{
1676	devclass_t dc;
1677	driverlink_t best = 0;
1678	driverlink_t dl;
1679	int result, pri = 0;
1680	int hasclass = (child->devclass != 0);
1681
1682	GIANT_REQUIRED;
1683
1684	dc = dev->devclass;
1685	if (!dc)
1686		panic("device_probe_child: parent device has no devclass");
1687
1688	/*
1689	 * If the state is already probed, then return.  However, don't
1690	 * return if we can rebid this object.
1691	 */
1692	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1693		return (0);
1694
1695	for (; dc; dc = dc->parent) {
1696		for (dl = first_matching_driver(dc, child);
1697		     dl;
1698		     dl = next_matching_driver(dc, child, dl)) {
1699			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1700			device_set_driver(child, dl->driver);
1701			if (!hasclass)
1702				device_set_devclass(child, dl->driver->name);
1703
1704			/* Fetch any flags for the device before probing. */
1705			resource_int_value(dl->driver->name, child->unit,
1706			    "flags", &child->devflags);
1707
1708			result = DEVICE_PROBE(child);
1709
1710			/* Reset flags and devclass before the next probe. */
1711			child->devflags = 0;
1712			if (!hasclass)
1713				device_set_devclass(child, 0);
1714
1715			/*
1716			 * If the driver returns SUCCESS, there can be
1717			 * no higher match for this device.
1718			 */
1719			if (result == 0) {
1720				best = dl;
1721				pri = 0;
1722				break;
1723			}
1724
1725			/*
1726			 * The driver returned an error so it
1727			 * certainly doesn't match.
1728			 */
1729			if (result > 0) {
1730				device_set_driver(child, 0);
1731				continue;
1732			}
1733
1734			/*
1735			 * A priority lower than SUCCESS, remember the
1736			 * best matching driver. Initialise the value
1737			 * of pri for the first match.
1738			 */
1739			if (best == 0 || result > pri) {
1740				best = dl;
1741				pri = result;
1742				continue;
1743			}
1744		}
1745		/*
1746		 * If we have an unambiguous match in this devclass,
1747		 * don't look in the parent.
1748		 */
1749		if (best && pri == 0)
1750			break;
1751	}
1752
1753	/*
1754	 * If we found a driver, change state and initialise the devclass.
1755	 */
1756	/* XXX What happens if we rebid and got no best? */
1757	if (best) {
1758		/*
1759		 * If this device was atached, and we were asked to
1760		 * rescan, and it is a different driver, then we have
1761		 * to detach the old driver and reattach this new one.
1762		 * Note, we don't have to check for DF_REBID here
1763		 * because if the state is > DS_ALIVE, we know it must
1764		 * be.
1765		 *
1766		 * This assumes that all DF_REBID drivers can have
1767		 * their probe routine called at any time and that
1768		 * they are idempotent as well as completely benign in
1769		 * normal operations.
1770		 *
1771		 * We also have to make sure that the detach
1772		 * succeeded, otherwise we fail the operation (or
1773		 * maybe it should just fail silently?  I'm torn).
1774		 */
1775		if (child->state > DS_ALIVE && best->driver != child->driver)
1776			if ((result = device_detach(dev)) != 0)
1777				return (result);
1778
1779		/* Set the winning driver, devclass, and flags. */
1780		if (!child->devclass)
1781			device_set_devclass(child, best->driver->name);
1782		device_set_driver(child, best->driver);
1783		resource_int_value(best->driver->name, child->unit,
1784		    "flags", &child->devflags);
1785
1786		if (pri < 0) {
1787			/*
1788			 * A bit bogus. Call the probe method again to make
1789			 * sure that we have the right description.
1790			 */
1791			DEVICE_PROBE(child);
1792#if 0
1793			child->flags |= DF_REBID;
1794#endif
1795		} else
1796			child->flags &= ~DF_REBID;
1797		child->state = DS_ALIVE;
1798
1799		bus_data_generation_update();
1800		return (0);
1801	}
1802
1803	return (ENXIO);
1804}
1805
1806/**
1807 * @brief Return the parent of a device
1808 */
1809device_t
1810device_get_parent(device_t dev)
1811{
1812	return (dev->parent);
1813}
1814
1815/**
1816 * @brief Get a list of children of a device
1817 *
1818 * An array containing a list of all the children of the given device
1819 * is allocated and returned in @p *devlistp. The number of devices
1820 * in the array is returned in @p *devcountp. The caller should free
1821 * the array using @c free(p, M_TEMP).
1822 *
1823 * @param dev		the device to examine
1824 * @param devlistp	points at location for array pointer return
1825 *			value
1826 * @param devcountp	points at location for array size return value
1827 *
1828 * @retval 0		success
1829 * @retval ENOMEM	the array allocation failed
1830 */
1831int
1832device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1833{
1834	int count;
1835	device_t child;
1836	device_t *list;
1837
1838	count = 0;
1839	TAILQ_FOREACH(child, &dev->children, link) {
1840		count++;
1841	}
1842
1843	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1844	if (!list)
1845		return (ENOMEM);
1846
1847	count = 0;
1848	TAILQ_FOREACH(child, &dev->children, link) {
1849		list[count] = child;
1850		count++;
1851	}
1852
1853	*devlistp = list;
1854	*devcountp = count;
1855
1856	return (0);
1857}
1858
1859/**
1860 * @brief Return the current driver for the device or @c NULL if there
1861 * is no driver currently attached
1862 */
1863driver_t *
1864device_get_driver(device_t dev)
1865{
1866	return (dev->driver);
1867}
1868
1869/**
1870 * @brief Return the current devclass for the device or @c NULL if
1871 * there is none.
1872 */
1873devclass_t
1874device_get_devclass(device_t dev)
1875{
1876	return (dev->devclass);
1877}
1878
1879/**
1880 * @brief Return the name of the device's devclass or @c NULL if there
1881 * is none.
1882 */
1883const char *
1884device_get_name(device_t dev)
1885{
1886	if (dev != NULL && dev->devclass)
1887		return (devclass_get_name(dev->devclass));
1888	return (NULL);
1889}
1890
1891/**
1892 * @brief Return a string containing the device's devclass name
1893 * followed by an ascii representation of the device's unit number
1894 * (e.g. @c "foo2").
1895 */
1896const char *
1897device_get_nameunit(device_t dev)
1898{
1899	return (dev->nameunit);
1900}
1901
1902/**
1903 * @brief Return the device's unit number.
1904 */
1905int
1906device_get_unit(device_t dev)
1907{
1908	return (dev->unit);
1909}
1910
1911/**
1912 * @brief Return the device's description string
1913 */
1914const char *
1915device_get_desc(device_t dev)
1916{
1917	return (dev->desc);
1918}
1919
1920/**
1921 * @brief Return the device's flags
1922 */
1923u_int32_t
1924device_get_flags(device_t dev)
1925{
1926	return (dev->devflags);
1927}
1928
1929struct sysctl_ctx_list *
1930device_get_sysctl_ctx(device_t dev)
1931{
1932	return (&dev->sysctl_ctx);
1933}
1934
1935struct sysctl_oid *
1936device_get_sysctl_tree(device_t dev)
1937{
1938	return (dev->sysctl_tree);
1939}
1940
1941/**
1942 * @brief Print the name of the device followed by a colon and a space
1943 *
1944 * @returns the number of characters printed
1945 */
1946int
1947device_print_prettyname(device_t dev)
1948{
1949	const char *name = device_get_name(dev);
1950
1951	if (name == 0)
1952		return (printf("unknown: "));
1953	return (printf("%s%d: ", name, device_get_unit(dev)));
1954}
1955
1956/**
1957 * @brief Print the name of the device followed by a colon, a space
1958 * and the result of calling vprintf() with the value of @p fmt and
1959 * the following arguments.
1960 *
1961 * @returns the number of characters printed
1962 */
1963int
1964device_printf(device_t dev, const char * fmt, ...)
1965{
1966	va_list ap;
1967	int retval;
1968
1969	retval = device_print_prettyname(dev);
1970	va_start(ap, fmt);
1971	retval += vprintf(fmt, ap);
1972	va_end(ap);
1973	return (retval);
1974}
1975
1976/**
1977 * @internal
1978 */
1979static void
1980device_set_desc_internal(device_t dev, const char* desc, int copy)
1981{
1982	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1983		free(dev->desc, M_BUS);
1984		dev->flags &= ~DF_DESCMALLOCED;
1985		dev->desc = NULL;
1986	}
1987
1988	if (copy && desc) {
1989		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1990		if (dev->desc) {
1991			strcpy(dev->desc, desc);
1992			dev->flags |= DF_DESCMALLOCED;
1993		}
1994	} else {
1995		/* Avoid a -Wcast-qual warning */
1996		dev->desc = (char *)(uintptr_t) desc;
1997	}
1998
1999	bus_data_generation_update();
2000}
2001
2002/**
2003 * @brief Set the device's description
2004 *
2005 * The value of @c desc should be a string constant that will not
2006 * change (at least until the description is changed in a subsequent
2007 * call to device_set_desc() or device_set_desc_copy()).
2008 */
2009void
2010device_set_desc(device_t dev, const char* desc)
2011{
2012	device_set_desc_internal(dev, desc, FALSE);
2013}
2014
2015/**
2016 * @brief Set the device's description
2017 *
2018 * The string pointed to by @c desc is copied. Use this function if
2019 * the device description is generated, (e.g. with sprintf()).
2020 */
2021void
2022device_set_desc_copy(device_t dev, const char* desc)
2023{
2024	device_set_desc_internal(dev, desc, TRUE);
2025}
2026
2027/**
2028 * @brief Set the device's flags
2029 */
2030void
2031device_set_flags(device_t dev, u_int32_t flags)
2032{
2033	dev->devflags = flags;
2034}
2035
2036/**
2037 * @brief Return the device's softc field
2038 *
2039 * The softc is allocated and zeroed when a driver is attached, based
2040 * on the size field of the driver.
2041 */
2042void *
2043device_get_softc(device_t dev)
2044{
2045	return (dev->softc);
2046}
2047
2048/**
2049 * @brief Set the device's softc field
2050 *
2051 * Most drivers do not need to use this since the softc is allocated
2052 * automatically when the driver is attached.
2053 */
2054void
2055device_set_softc(device_t dev, void *softc)
2056{
2057	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2058		free(dev->softc, M_BUS_SC);
2059	dev->softc = softc;
2060	if (dev->softc)
2061		dev->flags |= DF_EXTERNALSOFTC;
2062	else
2063		dev->flags &= ~DF_EXTERNALSOFTC;
2064}
2065
2066/**
2067 * @brief Get the device's ivars field
2068 *
2069 * The ivars field is used by the parent device to store per-device
2070 * state (e.g. the physical location of the device or a list of
2071 * resources).
2072 */
2073void *
2074device_get_ivars(device_t dev)
2075{
2076
2077	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2078	return (dev->ivars);
2079}
2080
2081/**
2082 * @brief Set the device's ivars field
2083 */
2084void
2085device_set_ivars(device_t dev, void * ivars)
2086{
2087
2088	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2089	dev->ivars = ivars;
2090}
2091
2092/**
2093 * @brief Return the device's state
2094 */
2095device_state_t
2096device_get_state(device_t dev)
2097{
2098	return (dev->state);
2099}
2100
2101/**
2102 * @brief Set the DF_ENABLED flag for the device
2103 */
2104void
2105device_enable(device_t dev)
2106{
2107	dev->flags |= DF_ENABLED;
2108}
2109
2110/**
2111 * @brief Clear the DF_ENABLED flag for the device
2112 */
2113void
2114device_disable(device_t dev)
2115{
2116	dev->flags &= ~DF_ENABLED;
2117}
2118
2119/**
2120 * @brief Increment the busy counter for the device
2121 */
2122void
2123device_busy(device_t dev)
2124{
2125	if (dev->state < DS_ATTACHED)
2126		panic("device_busy: called for unattached device");
2127	if (dev->busy == 0 && dev->parent)
2128		device_busy(dev->parent);
2129	dev->busy++;
2130	dev->state = DS_BUSY;
2131}
2132
2133/**
2134 * @brief Decrement the busy counter for the device
2135 */
2136void
2137device_unbusy(device_t dev)
2138{
2139	if (dev->state != DS_BUSY)
2140		panic("device_unbusy: called for non-busy device %s",
2141		    device_get_nameunit(dev));
2142	dev->busy--;
2143	if (dev->busy == 0) {
2144		if (dev->parent)
2145			device_unbusy(dev->parent);
2146		dev->state = DS_ATTACHED;
2147	}
2148}
2149
2150/**
2151 * @brief Set the DF_QUIET flag for the device
2152 */
2153void
2154device_quiet(device_t dev)
2155{
2156	dev->flags |= DF_QUIET;
2157}
2158
2159/**
2160 * @brief Clear the DF_QUIET flag for the device
2161 */
2162void
2163device_verbose(device_t dev)
2164{
2165	dev->flags &= ~DF_QUIET;
2166}
2167
2168/**
2169 * @brief Return non-zero if the DF_QUIET flag is set on the device
2170 */
2171int
2172device_is_quiet(device_t dev)
2173{
2174	return ((dev->flags & DF_QUIET) != 0);
2175}
2176
2177/**
2178 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2179 */
2180int
2181device_is_enabled(device_t dev)
2182{
2183	return ((dev->flags & DF_ENABLED) != 0);
2184}
2185
2186/**
2187 * @brief Return non-zero if the device was successfully probed
2188 */
2189int
2190device_is_alive(device_t dev)
2191{
2192	return (dev->state >= DS_ALIVE);
2193}
2194
2195/**
2196 * @brief Return non-zero if the device currently has a driver
2197 * attached to it
2198 */
2199int
2200device_is_attached(device_t dev)
2201{
2202	return (dev->state >= DS_ATTACHED);
2203}
2204
2205/**
2206 * @brief Set the devclass of a device
2207 * @see devclass_add_device().
2208 */
2209int
2210device_set_devclass(device_t dev, const char *classname)
2211{
2212	devclass_t dc;
2213	int error;
2214
2215	if (!classname) {
2216		if (dev->devclass)
2217			devclass_delete_device(dev->devclass, dev);
2218		return (0);
2219	}
2220
2221	if (dev->devclass) {
2222		printf("device_set_devclass: device class already set\n");
2223		return (EINVAL);
2224	}
2225
2226	dc = devclass_find_internal(classname, 0, TRUE);
2227	if (!dc)
2228		return (ENOMEM);
2229
2230	error = devclass_add_device(dc, dev);
2231
2232	bus_data_generation_update();
2233	return (error);
2234}
2235
2236/**
2237 * @brief Set the driver of a device
2238 *
2239 * @retval 0		success
2240 * @retval EBUSY	the device already has a driver attached
2241 * @retval ENOMEM	a memory allocation failure occurred
2242 */
2243int
2244device_set_driver(device_t dev, driver_t *driver)
2245{
2246	if (dev->state >= DS_ATTACHED)
2247		return (EBUSY);
2248
2249	if (dev->driver == driver)
2250		return (0);
2251
2252	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2253		free(dev->softc, M_BUS_SC);
2254		dev->softc = NULL;
2255	}
2256	kobj_delete((kobj_t) dev, 0);
2257	dev->driver = driver;
2258	if (driver) {
2259		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2260		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2261			dev->softc = malloc(driver->size, M_BUS_SC,
2262			    M_NOWAIT | M_ZERO);
2263			if (!dev->softc) {
2264				kobj_delete((kobj_t) dev, 0);
2265				kobj_init((kobj_t) dev, &null_class);
2266				dev->driver = NULL;
2267				return (ENOMEM);
2268			}
2269		}
2270	} else {
2271		kobj_init((kobj_t) dev, &null_class);
2272	}
2273
2274	bus_data_generation_update();
2275	return (0);
2276}
2277
2278/**
2279 * @brief Probe a device and attach a driver if possible
2280 *
2281 * This function is the core of the device autoconfiguration
2282 * system. Its purpose is to select a suitable driver for a device and
2283 * then call that driver to initialise the hardware appropriately. The
2284 * driver is selected by calling the DEVICE_PROBE() method of a set of
2285 * candidate drivers and then choosing the driver which returned the
2286 * best value. This driver is then attached to the device using
2287 * device_attach().
2288 *
2289 * The set of suitable drivers is taken from the list of drivers in
2290 * the parent device's devclass. If the device was originally created
2291 * with a specific class name (see device_add_child()), only drivers
2292 * with that name are probed, otherwise all drivers in the devclass
2293 * are probed. If no drivers return successful probe values in the
2294 * parent devclass, the search continues in the parent of that
2295 * devclass (see devclass_get_parent()) if any.
2296 *
2297 * @param dev		the device to initialise
2298 *
2299 * @retval 0		success
2300 * @retval ENXIO	no driver was found
2301 * @retval ENOMEM	memory allocation failure
2302 * @retval non-zero	some other unix error code
2303 */
2304int
2305device_probe_and_attach(device_t dev)
2306{
2307	int error;
2308
2309	GIANT_REQUIRED;
2310
2311	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2312		return (0);
2313
2314	if (!(dev->flags & DF_ENABLED)) {
2315		if (bootverbose && device_get_name(dev) != NULL) {
2316			device_print_prettyname(dev);
2317			printf("not probed (disabled)\n");
2318		}
2319		return (0);
2320	}
2321	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2322		if (!(dev->flags & DF_DONENOMATCH)) {
2323			BUS_PROBE_NOMATCH(dev->parent, dev);
2324			devnomatch(dev);
2325			dev->flags |= DF_DONENOMATCH;
2326		}
2327		return (error);
2328	}
2329	error = device_attach(dev);
2330
2331	return (error);
2332}
2333
2334/**
2335 * @brief Attach a device driver to a device
2336 *
2337 * This function is a wrapper around the DEVICE_ATTACH() driver
2338 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2339 * device's sysctl tree, optionally prints a description of the device
2340 * and queues a notification event for user-based device management
2341 * services.
2342 *
2343 * Normally this function is only called internally from
2344 * device_probe_and_attach().
2345 *
2346 * @param dev		the device to initialise
2347 *
2348 * @retval 0		success
2349 * @retval ENXIO	no driver was found
2350 * @retval ENOMEM	memory allocation failure
2351 * @retval non-zero	some other unix error code
2352 */
2353int
2354device_attach(device_t dev)
2355{
2356	int error;
2357
2358	device_sysctl_init(dev);
2359	if (!device_is_quiet(dev))
2360		device_print_child(dev->parent, dev);
2361	if ((error = DEVICE_ATTACH(dev)) != 0) {
2362		printf("device_attach: %s%d attach returned %d\n",
2363		    dev->driver->name, dev->unit, error);
2364		/* Unset the class; set in device_probe_child */
2365		if (dev->devclass == 0)
2366			device_set_devclass(dev, 0);
2367		device_set_driver(dev, NULL);
2368		device_sysctl_fini(dev);
2369		dev->state = DS_NOTPRESENT;
2370		return (error);
2371	}
2372	dev->state = DS_ATTACHED;
2373	devadded(dev);
2374	return (0);
2375}
2376
2377/**
2378 * @brief Detach a driver from a device
2379 *
2380 * This function is a wrapper around the DEVICE_DETACH() driver
2381 * method. If the call to DEVICE_DETACH() succeeds, it calls
2382 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2383 * notification event for user-based device management services and
2384 * cleans up the device's sysctl tree.
2385 *
2386 * @param dev		the device to un-initialise
2387 *
2388 * @retval 0		success
2389 * @retval ENXIO	no driver was found
2390 * @retval ENOMEM	memory allocation failure
2391 * @retval non-zero	some other unix error code
2392 */
2393int
2394device_detach(device_t dev)
2395{
2396	int error;
2397
2398	GIANT_REQUIRED;
2399
2400	PDEBUG(("%s", DEVICENAME(dev)));
2401	if (dev->state == DS_BUSY)
2402		return (EBUSY);
2403	if (dev->state != DS_ATTACHED)
2404		return (0);
2405
2406	if ((error = DEVICE_DETACH(dev)) != 0)
2407		return (error);
2408	devremoved(dev);
2409	device_printf(dev, "detached\n");
2410	if (dev->parent)
2411		BUS_CHILD_DETACHED(dev->parent, dev);
2412
2413	if (!(dev->flags & DF_FIXEDCLASS))
2414		devclass_delete_device(dev->devclass, dev);
2415
2416	dev->state = DS_NOTPRESENT;
2417	device_set_driver(dev, NULL);
2418	device_set_desc(dev, NULL);
2419	device_sysctl_fini(dev);
2420
2421	return (0);
2422}
2423
2424/**
2425 * @brief Tells a driver to quiesce itself.
2426 *
2427 * This function is a wrapper around the DEVICE_QUIESCE() driver
2428 * method. If the call to DEVICE_QUIESCE() succeeds.
2429 *
2430 * @param dev		the device to quiesce
2431 *
2432 * @retval 0		success
2433 * @retval ENXIO	no driver was found
2434 * @retval ENOMEM	memory allocation failure
2435 * @retval non-zero	some other unix error code
2436 */
2437int
2438device_quiesce(device_t dev)
2439{
2440
2441	PDEBUG(("%s", DEVICENAME(dev)));
2442	if (dev->state == DS_BUSY)
2443		return (EBUSY);
2444	if (dev->state != DS_ATTACHED)
2445		return (0);
2446
2447	return (DEVICE_QUIESCE(dev));
2448}
2449
2450/**
2451 * @brief Notify a device of system shutdown
2452 *
2453 * This function calls the DEVICE_SHUTDOWN() driver method if the
2454 * device currently has an attached driver.
2455 *
2456 * @returns the value returned by DEVICE_SHUTDOWN()
2457 */
2458int
2459device_shutdown(device_t dev)
2460{
2461	if (dev->state < DS_ATTACHED)
2462		return (0);
2463	return (DEVICE_SHUTDOWN(dev));
2464}
2465
2466/**
2467 * @brief Set the unit number of a device
2468 *
2469 * This function can be used to override the unit number used for a
2470 * device (e.g. to wire a device to a pre-configured unit number).
2471 */
2472int
2473device_set_unit(device_t dev, int unit)
2474{
2475	devclass_t dc;
2476	int err;
2477
2478	dc = device_get_devclass(dev);
2479	if (unit < dc->maxunit && dc->devices[unit])
2480		return (EBUSY);
2481	err = devclass_delete_device(dc, dev);
2482	if (err)
2483		return (err);
2484	dev->unit = unit;
2485	err = devclass_add_device(dc, dev);
2486	if (err)
2487		return (err);
2488
2489	bus_data_generation_update();
2490	return (0);
2491}
2492
2493/*======================================*/
2494/*
2495 * Some useful method implementations to make life easier for bus drivers.
2496 */
2497
2498/**
2499 * @brief Initialise a resource list.
2500 *
2501 * @param rl		the resource list to initialise
2502 */
2503void
2504resource_list_init(struct resource_list *rl)
2505{
2506	STAILQ_INIT(rl);
2507}
2508
2509/**
2510 * @brief Reclaim memory used by a resource list.
2511 *
2512 * This function frees the memory for all resource entries on the list
2513 * (if any).
2514 *
2515 * @param rl		the resource list to free
2516 */
2517void
2518resource_list_free(struct resource_list *rl)
2519{
2520	struct resource_list_entry *rle;
2521
2522	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2523		if (rle->res)
2524			panic("resource_list_free: resource entry is busy");
2525		STAILQ_REMOVE_HEAD(rl, link);
2526		free(rle, M_BUS);
2527	}
2528}
2529
2530/**
2531 * @brief Add a resource entry.
2532 *
2533 * This function adds a resource entry using the given @p type, @p
2534 * start, @p end and @p count values. A rid value is chosen by
2535 * searching sequentially for the first unused rid starting at zero.
2536 *
2537 * @param rl		the resource list to edit
2538 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2539 * @param start		the start address of the resource
2540 * @param end		the end address of the resource
2541 * @param count		XXX end-start+1
2542 */
2543int
2544resource_list_add_next(struct resource_list *rl, int type, u_long start,
2545    u_long end, u_long count)
2546{
2547	int rid;
2548
2549	rid = 0;
2550	while (resource_list_find(rl, type, rid) != NULL)
2551		rid++;
2552	resource_list_add(rl, type, rid, start, end, count);
2553	return (rid);
2554}
2555
2556/**
2557 * @brief Add or modify a resource entry.
2558 *
2559 * If an existing entry exists with the same type and rid, it will be
2560 * modified using the given values of @p start, @p end and @p
2561 * count. If no entry exists, a new one will be created using the
2562 * given values.
2563 *
2564 * @param rl		the resource list to edit
2565 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2566 * @param rid		the resource identifier
2567 * @param start		the start address of the resource
2568 * @param end		the end address of the resource
2569 * @param count		XXX end-start+1
2570 */
2571void
2572resource_list_add(struct resource_list *rl, int type, int rid,
2573    u_long start, u_long end, u_long count)
2574{
2575	struct resource_list_entry *rle;
2576
2577	rle = resource_list_find(rl, type, rid);
2578	if (!rle) {
2579		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2580		    M_NOWAIT);
2581		if (!rle)
2582			panic("resource_list_add: can't record entry");
2583		STAILQ_INSERT_TAIL(rl, rle, link);
2584		rle->type = type;
2585		rle->rid = rid;
2586		rle->res = NULL;
2587	}
2588
2589	if (rle->res)
2590		panic("resource_list_add: resource entry is busy");
2591
2592	rle->start = start;
2593	rle->end = end;
2594	rle->count = count;
2595}
2596
2597/**
2598 * @brief Find a resource entry by type and rid.
2599 *
2600 * @param rl		the resource list to search
2601 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2602 * @param rid		the resource identifier
2603 *
2604 * @returns the resource entry pointer or NULL if there is no such
2605 * entry.
2606 */
2607struct resource_list_entry *
2608resource_list_find(struct resource_list *rl, int type, int rid)
2609{
2610	struct resource_list_entry *rle;
2611
2612	STAILQ_FOREACH(rle, rl, link) {
2613		if (rle->type == type && rle->rid == rid)
2614			return (rle);
2615	}
2616	return (NULL);
2617}
2618
2619/**
2620 * @brief Delete a resource entry.
2621 *
2622 * @param rl		the resource list to edit
2623 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2624 * @param rid		the resource identifier
2625 */
2626void
2627resource_list_delete(struct resource_list *rl, int type, int rid)
2628{
2629	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2630
2631	if (rle) {
2632		if (rle->res != NULL)
2633			panic("resource_list_delete: resource has not been released");
2634		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2635		free(rle, M_BUS);
2636	}
2637}
2638
2639/**
2640 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2641 *
2642 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2643 * and passing the allocation up to the parent of @p bus. This assumes
2644 * that the first entry of @c device_get_ivars(child) is a struct
2645 * resource_list. This also handles 'passthrough' allocations where a
2646 * child is a remote descendant of bus by passing the allocation up to
2647 * the parent of bus.
2648 *
2649 * Typically, a bus driver would store a list of child resources
2650 * somewhere in the child device's ivars (see device_get_ivars()) and
2651 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2652 * then call resource_list_alloc() to perform the allocation.
2653 *
2654 * @param rl		the resource list to allocate from
2655 * @param bus		the parent device of @p child
2656 * @param child		the device which is requesting an allocation
2657 * @param type		the type of resource to allocate
2658 * @param rid		a pointer to the resource identifier
2659 * @param start		hint at the start of the resource range - pass
2660 *			@c 0UL for any start address
2661 * @param end		hint at the end of the resource range - pass
2662 *			@c ~0UL for any end address
2663 * @param count		hint at the size of range required - pass @c 1
2664 *			for any size
2665 * @param flags		any extra flags to control the resource
2666 *			allocation - see @c RF_XXX flags in
2667 *			<sys/rman.h> for details
2668 *
2669 * @returns		the resource which was allocated or @c NULL if no
2670 *			resource could be allocated
2671 */
2672struct resource *
2673resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2674    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2675{
2676	struct resource_list_entry *rle = 0;
2677	int passthrough = (device_get_parent(child) != bus);
2678	int isdefault = (start == 0UL && end == ~0UL);
2679
2680	if (passthrough) {
2681		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2682		    type, rid, start, end, count, flags));
2683	}
2684
2685	rle = resource_list_find(rl, type, *rid);
2686
2687	if (!rle)
2688		return (NULL);		/* no resource of that type/rid */
2689
2690	if (rle->res)
2691		panic("resource_list_alloc: resource entry is busy");
2692
2693	if (isdefault) {
2694		start = rle->start;
2695		count = ulmax(count, rle->count);
2696		end = ulmax(rle->end, start + count - 1);
2697	}
2698
2699	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2700	    type, rid, start, end, count, flags);
2701
2702	/*
2703	 * Record the new range.
2704	 */
2705	if (rle->res) {
2706		rle->start = rman_get_start(rle->res);
2707		rle->end = rman_get_end(rle->res);
2708		rle->count = count;
2709	}
2710
2711	return (rle->res);
2712}
2713
2714/**
2715 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2716 *
2717 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2718 * used with resource_list_alloc().
2719 *
2720 * @param rl		the resource list which was allocated from
2721 * @param bus		the parent device of @p child
2722 * @param child		the device which is requesting a release
2723 * @param type		the type of resource to allocate
2724 * @param rid		the resource identifier
2725 * @param res		the resource to release
2726 *
2727 * @retval 0		success
2728 * @retval non-zero	a standard unix error code indicating what
2729 *			error condition prevented the operation
2730 */
2731int
2732resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2733    int type, int rid, struct resource *res)
2734{
2735	struct resource_list_entry *rle = 0;
2736	int passthrough = (device_get_parent(child) != bus);
2737	int error;
2738
2739	if (passthrough) {
2740		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2741		    type, rid, res));
2742	}
2743
2744	rle = resource_list_find(rl, type, rid);
2745
2746	if (!rle)
2747		panic("resource_list_release: can't find resource");
2748	if (!rle->res)
2749		panic("resource_list_release: resource entry is not busy");
2750
2751	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2752	    type, rid, res);
2753	if (error)
2754		return (error);
2755
2756	rle->res = NULL;
2757	return (0);
2758}
2759
2760/**
2761 * @brief Print a description of resources in a resource list
2762 *
2763 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2764 * The name is printed if at least one resource of the given type is available.
2765 * The format is used to print resource start and end.
2766 *
2767 * @param rl		the resource list to print
2768 * @param name		the name of @p type, e.g. @c "memory"
2769 * @param type		type type of resource entry to print
2770 * @param format	printf(9) format string to print resource
2771 *			start and end values
2772 *
2773 * @returns		the number of characters printed
2774 */
2775int
2776resource_list_print_type(struct resource_list *rl, const char *name, int type,
2777    const char *format)
2778{
2779	struct resource_list_entry *rle;
2780	int printed, retval;
2781
2782	printed = 0;
2783	retval = 0;
2784	/* Yes, this is kinda cheating */
2785	STAILQ_FOREACH(rle, rl, link) {
2786		if (rle->type == type) {
2787			if (printed == 0)
2788				retval += printf(" %s ", name);
2789			else
2790				retval += printf(",");
2791			printed++;
2792			retval += printf(format, rle->start);
2793			if (rle->count > 1) {
2794				retval += printf("-");
2795				retval += printf(format, rle->start +
2796						 rle->count - 1);
2797			}
2798		}
2799	}
2800	return (retval);
2801}
2802
2803/**
2804 * @brief Helper function for implementing DEVICE_PROBE()
2805 *
2806 * This function can be used to help implement the DEVICE_PROBE() for
2807 * a bus (i.e. a device which has other devices attached to it). It
2808 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2809 * devclass.
2810 */
2811int
2812bus_generic_probe(device_t dev)
2813{
2814	devclass_t dc = dev->devclass;
2815	driverlink_t dl;
2816
2817	TAILQ_FOREACH(dl, &dc->drivers, link) {
2818		DEVICE_IDENTIFY(dl->driver, dev);
2819	}
2820
2821	return (0);
2822}
2823
2824/**
2825 * @brief Helper function for implementing DEVICE_ATTACH()
2826 *
2827 * This function can be used to help implement the DEVICE_ATTACH() for
2828 * a bus. It calls device_probe_and_attach() for each of the device's
2829 * children.
2830 */
2831int
2832bus_generic_attach(device_t dev)
2833{
2834	device_t child;
2835
2836	TAILQ_FOREACH(child, &dev->children, link) {
2837		device_probe_and_attach(child);
2838	}
2839
2840	return (0);
2841}
2842
2843/**
2844 * @brief Helper function for implementing DEVICE_DETACH()
2845 *
2846 * This function can be used to help implement the DEVICE_DETACH() for
2847 * a bus. It calls device_detach() for each of the device's
2848 * children.
2849 */
2850int
2851bus_generic_detach(device_t dev)
2852{
2853	device_t child;
2854	int error;
2855
2856	if (dev->state != DS_ATTACHED)
2857		return (EBUSY);
2858
2859	TAILQ_FOREACH(child, &dev->children, link) {
2860		if ((error = device_detach(child)) != 0)
2861			return (error);
2862	}
2863
2864	return (0);
2865}
2866
2867/**
2868 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2869 *
2870 * This function can be used to help implement the DEVICE_SHUTDOWN()
2871 * for a bus. It calls device_shutdown() for each of the device's
2872 * children.
2873 */
2874int
2875bus_generic_shutdown(device_t dev)
2876{
2877	device_t child;
2878
2879	TAILQ_FOREACH(child, &dev->children, link) {
2880		device_shutdown(child);
2881	}
2882
2883	return (0);
2884}
2885
2886/**
2887 * @brief Helper function for implementing DEVICE_SUSPEND()
2888 *
2889 * This function can be used to help implement the DEVICE_SUSPEND()
2890 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2891 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2892 * operation is aborted and any devices which were suspended are
2893 * resumed immediately by calling their DEVICE_RESUME() methods.
2894 */
2895int
2896bus_generic_suspend(device_t dev)
2897{
2898	int		error;
2899	device_t	child, child2;
2900
2901	TAILQ_FOREACH(child, &dev->children, link) {
2902		error = DEVICE_SUSPEND(child);
2903		if (error) {
2904			for (child2 = TAILQ_FIRST(&dev->children);
2905			     child2 && child2 != child;
2906			     child2 = TAILQ_NEXT(child2, link))
2907				DEVICE_RESUME(child2);
2908			return (error);
2909		}
2910	}
2911	return (0);
2912}
2913
2914/**
2915 * @brief Helper function for implementing DEVICE_RESUME()
2916 *
2917 * This function can be used to help implement the DEVICE_RESUME() for
2918 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2919 */
2920int
2921bus_generic_resume(device_t dev)
2922{
2923	device_t	child;
2924
2925	TAILQ_FOREACH(child, &dev->children, link) {
2926		DEVICE_RESUME(child);
2927		/* if resume fails, there's nothing we can usefully do... */
2928	}
2929	return (0);
2930}
2931
2932/**
2933 * @brief Helper function for implementing BUS_PRINT_CHILD().
2934 *
2935 * This function prints the first part of the ascii representation of
2936 * @p child, including its name, unit and description (if any - see
2937 * device_set_desc()).
2938 *
2939 * @returns the number of characters printed
2940 */
2941int
2942bus_print_child_header(device_t dev, device_t child)
2943{
2944	int	retval = 0;
2945
2946	if (device_get_desc(child)) {
2947		retval += device_printf(child, "<%s>", device_get_desc(child));
2948	} else {
2949		retval += printf("%s", device_get_nameunit(child));
2950	}
2951
2952	return (retval);
2953}
2954
2955/**
2956 * @brief Helper function for implementing BUS_PRINT_CHILD().
2957 *
2958 * This function prints the last part of the ascii representation of
2959 * @p child, which consists of the string @c " on " followed by the
2960 * name and unit of the @p dev.
2961 *
2962 * @returns the number of characters printed
2963 */
2964int
2965bus_print_child_footer(device_t dev, device_t child)
2966{
2967	return (printf(" on %s\n", device_get_nameunit(dev)));
2968}
2969
2970/**
2971 * @brief Helper function for implementing BUS_PRINT_CHILD().
2972 *
2973 * This function simply calls bus_print_child_header() followed by
2974 * bus_print_child_footer().
2975 *
2976 * @returns the number of characters printed
2977 */
2978int
2979bus_generic_print_child(device_t dev, device_t child)
2980{
2981	int	retval = 0;
2982
2983	retval += bus_print_child_header(dev, child);
2984	retval += bus_print_child_footer(dev, child);
2985
2986	return (retval);
2987}
2988
2989/**
2990 * @brief Stub function for implementing BUS_READ_IVAR().
2991 *
2992 * @returns ENOENT
2993 */
2994int
2995bus_generic_read_ivar(device_t dev, device_t child, int index,
2996    uintptr_t * result)
2997{
2998	return (ENOENT);
2999}
3000
3001/**
3002 * @brief Stub function for implementing BUS_WRITE_IVAR().
3003 *
3004 * @returns ENOENT
3005 */
3006int
3007bus_generic_write_ivar(device_t dev, device_t child, int index,
3008    uintptr_t value)
3009{
3010	return (ENOENT);
3011}
3012
3013/**
3014 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3015 *
3016 * @returns NULL
3017 */
3018struct resource_list *
3019bus_generic_get_resource_list(device_t dev, device_t child)
3020{
3021	return (NULL);
3022}
3023
3024/**
3025 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3026 *
3027 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3028 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3029 * and then calls device_probe_and_attach() for each unattached child.
3030 */
3031void
3032bus_generic_driver_added(device_t dev, driver_t *driver)
3033{
3034	device_t child;
3035
3036	DEVICE_IDENTIFY(driver, dev);
3037	TAILQ_FOREACH(child, &dev->children, link) {
3038		if (child->state == DS_NOTPRESENT ||
3039		    (child->flags & DF_REBID))
3040			device_probe_and_attach(child);
3041	}
3042}
3043
3044/**
3045 * @brief Helper function for implementing BUS_SETUP_INTR().
3046 *
3047 * This simple implementation of BUS_SETUP_INTR() simply calls the
3048 * BUS_SETUP_INTR() method of the parent of @p dev.
3049 */
3050int
3051bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3052    int flags, driver_intr_t *intr, void *arg, void **cookiep)
3053{
3054	/* Propagate up the bus hierarchy until someone handles it. */
3055	if (dev->parent)
3056		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3057		    intr, arg, cookiep));
3058	return (EINVAL);
3059}
3060
3061/**
3062 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3063 *
3064 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3065 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3066 */
3067int
3068bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3069    void *cookie)
3070{
3071	/* Propagate up the bus hierarchy until someone handles it. */
3072	if (dev->parent)
3073		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3074	return (EINVAL);
3075}
3076
3077/**
3078 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3079 *
3080 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3081 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3082 */
3083struct resource *
3084bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3085    u_long start, u_long end, u_long count, u_int flags)
3086{
3087	/* Propagate up the bus hierarchy until someone handles it. */
3088	if (dev->parent)
3089		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3090		    start, end, count, flags));
3091	return (NULL);
3092}
3093
3094/**
3095 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3096 *
3097 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3098 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3099 */
3100int
3101bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3102    struct resource *r)
3103{
3104	/* Propagate up the bus hierarchy until someone handles it. */
3105	if (dev->parent)
3106		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3107		    r));
3108	return (EINVAL);
3109}
3110
3111/**
3112 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3113 *
3114 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3115 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3116 */
3117int
3118bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3119    struct resource *r)
3120{
3121	/* Propagate up the bus hierarchy until someone handles it. */
3122	if (dev->parent)
3123		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3124		    r));
3125	return (EINVAL);
3126}
3127
3128/**
3129 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3130 *
3131 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3132 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3133 */
3134int
3135bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3136    int rid, struct resource *r)
3137{
3138	/* Propagate up the bus hierarchy until someone handles it. */
3139	if (dev->parent)
3140		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3141		    r));
3142	return (EINVAL);
3143}
3144
3145/**
3146 * @brief Helper function for implementing BUS_CONFIG_INTR().
3147 *
3148 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3149 * BUS_CONFIG_INTR() method of the parent of @p dev.
3150 */
3151int
3152bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3153    enum intr_polarity pol)
3154{
3155
3156	/* Propagate up the bus hierarchy until someone handles it. */
3157	if (dev->parent)
3158		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3159	return (EINVAL);
3160}
3161
3162/**
3163 * @brief Helper function for implementing BUS_GET_RESOURCE().
3164 *
3165 * This implementation of BUS_GET_RESOURCE() uses the
3166 * resource_list_find() function to do most of the work. It calls
3167 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3168 * search.
3169 */
3170int
3171bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3172    u_long *startp, u_long *countp)
3173{
3174	struct resource_list *		rl = NULL;
3175	struct resource_list_entry *	rle = NULL;
3176
3177	rl = BUS_GET_RESOURCE_LIST(dev, child);
3178	if (!rl)
3179		return (EINVAL);
3180
3181	rle = resource_list_find(rl, type, rid);
3182	if (!rle)
3183		return (ENOENT);
3184
3185	if (startp)
3186		*startp = rle->start;
3187	if (countp)
3188		*countp = rle->count;
3189
3190	return (0);
3191}
3192
3193/**
3194 * @brief Helper function for implementing BUS_SET_RESOURCE().
3195 *
3196 * This implementation of BUS_SET_RESOURCE() uses the
3197 * resource_list_add() function to do most of the work. It calls
3198 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3199 * edit.
3200 */
3201int
3202bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3203    u_long start, u_long count)
3204{
3205	struct resource_list *		rl = NULL;
3206
3207	rl = BUS_GET_RESOURCE_LIST(dev, child);
3208	if (!rl)
3209		return (EINVAL);
3210
3211	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3212
3213	return (0);
3214}
3215
3216/**
3217 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3218 *
3219 * This implementation of BUS_DELETE_RESOURCE() uses the
3220 * resource_list_delete() function to do most of the work. It calls
3221 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3222 * edit.
3223 */
3224void
3225bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3226{
3227	struct resource_list *		rl = NULL;
3228
3229	rl = BUS_GET_RESOURCE_LIST(dev, child);
3230	if (!rl)
3231		return;
3232
3233	resource_list_delete(rl, type, rid);
3234
3235	return;
3236}
3237
3238/**
3239 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3240 *
3241 * This implementation of BUS_RELEASE_RESOURCE() uses the
3242 * resource_list_release() function to do most of the work. It calls
3243 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3244 */
3245int
3246bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3247    int rid, struct resource *r)
3248{
3249	struct resource_list *		rl = NULL;
3250
3251	rl = BUS_GET_RESOURCE_LIST(dev, child);
3252	if (!rl)
3253		return (EINVAL);
3254
3255	return (resource_list_release(rl, dev, child, type, rid, r));
3256}
3257
3258/**
3259 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3260 *
3261 * This implementation of BUS_ALLOC_RESOURCE() uses the
3262 * resource_list_alloc() function to do most of the work. It calls
3263 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3264 */
3265struct resource *
3266bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3267    int *rid, u_long start, u_long end, u_long count, u_int flags)
3268{
3269	struct resource_list *		rl = NULL;
3270
3271	rl = BUS_GET_RESOURCE_LIST(dev, child);
3272	if (!rl)
3273		return (NULL);
3274
3275	return (resource_list_alloc(rl, dev, child, type, rid,
3276	    start, end, count, flags));
3277}
3278
3279/**
3280 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3281 *
3282 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3283 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3284 */
3285int
3286bus_generic_child_present(device_t dev, device_t child)
3287{
3288	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3289}
3290
3291/*
3292 * Some convenience functions to make it easier for drivers to use the
3293 * resource-management functions.  All these really do is hide the
3294 * indirection through the parent's method table, making for slightly
3295 * less-wordy code.  In the future, it might make sense for this code
3296 * to maintain some sort of a list of resources allocated by each device.
3297 */
3298
3299/**
3300 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3301 *
3302 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3303 * parent of @p dev.
3304 */
3305struct resource *
3306bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3307    u_long count, u_int flags)
3308{
3309	if (dev->parent == 0)
3310		return (0);
3311	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3312	    count, flags));
3313}
3314
3315/**
3316 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3317 *
3318 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3319 * parent of @p dev.
3320 */
3321int
3322bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3323{
3324	if (dev->parent == 0)
3325		return (EINVAL);
3326	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3327}
3328
3329/**
3330 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3331 *
3332 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3333 * parent of @p dev.
3334 */
3335int
3336bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3337{
3338	if (dev->parent == 0)
3339		return (EINVAL);
3340	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3341}
3342
3343/**
3344 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3345 *
3346 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3347 * parent of @p dev.
3348 */
3349int
3350bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3351{
3352	if (dev->parent == 0)
3353		return (EINVAL);
3354	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3355}
3356
3357/**
3358 * @brief Wrapper function for BUS_SETUP_INTR().
3359 *
3360 * This function simply calls the BUS_SETUP_INTR() method of the
3361 * parent of @p dev.
3362 */
3363int
3364bus_setup_intr(device_t dev, struct resource *r, int flags,
3365    driver_intr_t handler, void *arg, void **cookiep)
3366{
3367	int error;
3368
3369	if (dev->parent != 0) {
3370		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3371		    !debug_mpsafenet)
3372			flags &= ~INTR_MPSAFE;
3373		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3374		    handler, arg, cookiep);
3375		if (error == 0) {
3376			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3377				device_printf(dev, "[GIANT-LOCKED]\n");
3378			if (bootverbose && (flags & INTR_MPSAFE))
3379				device_printf(dev, "[MPSAFE]\n");
3380			if (flags & INTR_FAST)
3381				device_printf(dev, "[FAST]\n");
3382		}
3383	} else
3384		error = EINVAL;
3385	return (error);
3386}
3387
3388/**
3389 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3390 *
3391 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3392 * parent of @p dev.
3393 */
3394int
3395bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3396{
3397	if (dev->parent == 0)
3398		return (EINVAL);
3399	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3400}
3401
3402/**
3403 * @brief Wrapper function for BUS_SET_RESOURCE().
3404 *
3405 * This function simply calls the BUS_SET_RESOURCE() method of the
3406 * parent of @p dev.
3407 */
3408int
3409bus_set_resource(device_t dev, int type, int rid,
3410    u_long start, u_long count)
3411{
3412	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3413	    start, count));
3414}
3415
3416/**
3417 * @brief Wrapper function for BUS_GET_RESOURCE().
3418 *
3419 * This function simply calls the BUS_GET_RESOURCE() method of the
3420 * parent of @p dev.
3421 */
3422int
3423bus_get_resource(device_t dev, int type, int rid,
3424    u_long *startp, u_long *countp)
3425{
3426	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3427	    startp, countp));
3428}
3429
3430/**
3431 * @brief Wrapper function for BUS_GET_RESOURCE().
3432 *
3433 * This function simply calls the BUS_GET_RESOURCE() method of the
3434 * parent of @p dev and returns the start value.
3435 */
3436u_long
3437bus_get_resource_start(device_t dev, int type, int rid)
3438{
3439	u_long start, count;
3440	int error;
3441
3442	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3443	    &start, &count);
3444	if (error)
3445		return (0);
3446	return (start);
3447}
3448
3449/**
3450 * @brief Wrapper function for BUS_GET_RESOURCE().
3451 *
3452 * This function simply calls the BUS_GET_RESOURCE() method of the
3453 * parent of @p dev and returns the count value.
3454 */
3455u_long
3456bus_get_resource_count(device_t dev, int type, int rid)
3457{
3458	u_long start, count;
3459	int error;
3460
3461	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3462	    &start, &count);
3463	if (error)
3464		return (0);
3465	return (count);
3466}
3467
3468/**
3469 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3470 *
3471 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3472 * parent of @p dev.
3473 */
3474void
3475bus_delete_resource(device_t dev, int type, int rid)
3476{
3477	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3478}
3479
3480/**
3481 * @brief Wrapper function for BUS_CHILD_PRESENT().
3482 *
3483 * This function simply calls the BUS_CHILD_PRESENT() method of the
3484 * parent of @p dev.
3485 */
3486int
3487bus_child_present(device_t child)
3488{
3489	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3490}
3491
3492/**
3493 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3494 *
3495 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3496 * parent of @p dev.
3497 */
3498int
3499bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3500{
3501	device_t parent;
3502
3503	parent = device_get_parent(child);
3504	if (parent == NULL) {
3505		*buf = '\0';
3506		return (0);
3507	}
3508	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3509}
3510
3511/**
3512 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3513 *
3514 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3515 * parent of @p dev.
3516 */
3517int
3518bus_child_location_str(device_t child, char *buf, size_t buflen)
3519{
3520	device_t parent;
3521
3522	parent = device_get_parent(child);
3523	if (parent == NULL) {
3524		*buf = '\0';
3525		return (0);
3526	}
3527	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3528}
3529
3530static int
3531root_print_child(device_t dev, device_t child)
3532{
3533	int	retval = 0;
3534
3535	retval += bus_print_child_header(dev, child);
3536	retval += printf("\n");
3537
3538	return (retval);
3539}
3540
3541static int
3542root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3543    void **cookiep)
3544{
3545	/*
3546	 * If an interrupt mapping gets to here something bad has happened.
3547	 */
3548	panic("root_setup_intr");
3549}
3550
3551/*
3552 * If we get here, assume that the device is permanant and really is
3553 * present in the system.  Removable bus drivers are expected to intercept
3554 * this call long before it gets here.  We return -1 so that drivers that
3555 * really care can check vs -1 or some ERRNO returned higher in the food
3556 * chain.
3557 */
3558static int
3559root_child_present(device_t dev, device_t child)
3560{
3561	return (-1);
3562}
3563
3564static kobj_method_t root_methods[] = {
3565	/* Device interface */
3566	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3567	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3568	KOBJMETHOD(device_resume,	bus_generic_resume),
3569
3570	/* Bus interface */
3571	KOBJMETHOD(bus_print_child,	root_print_child),
3572	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3573	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3574	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3575	KOBJMETHOD(bus_child_present,	root_child_present),
3576
3577	{ 0, 0 }
3578};
3579
3580static driver_t root_driver = {
3581	"root",
3582	root_methods,
3583	1,			/* no softc */
3584};
3585
3586device_t	root_bus;
3587devclass_t	root_devclass;
3588
3589static int
3590root_bus_module_handler(module_t mod, int what, void* arg)
3591{
3592	switch (what) {
3593	case MOD_LOAD:
3594		TAILQ_INIT(&bus_data_devices);
3595		kobj_class_compile((kobj_class_t) &root_driver);
3596		root_bus = make_device(NULL, "root", 0);
3597		root_bus->desc = "System root bus";
3598		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3599		root_bus->driver = &root_driver;
3600		root_bus->state = DS_ATTACHED;
3601		root_devclass = devclass_find_internal("root", 0, FALSE);
3602		devinit();
3603		return (0);
3604
3605	case MOD_SHUTDOWN:
3606		device_shutdown(root_bus);
3607		return (0);
3608	default:
3609		return (EOPNOTSUPP);
3610	}
3611
3612	return (0);
3613}
3614
3615static moduledata_t root_bus_mod = {
3616	"rootbus",
3617	root_bus_module_handler,
3618	0
3619};
3620DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3621
3622/**
3623 * @brief Automatically configure devices
3624 *
3625 * This function begins the autoconfiguration process by calling
3626 * device_probe_and_attach() for each child of the @c root0 device.
3627 */
3628void
3629root_bus_configure(void)
3630{
3631	device_t dev;
3632
3633	PDEBUG(("."));
3634
3635	TAILQ_FOREACH(dev, &root_bus->children, link) {
3636		device_probe_and_attach(dev);
3637	}
3638}
3639
3640/**
3641 * @brief Module handler for registering device drivers
3642 *
3643 * This module handler is used to automatically register device
3644 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3645 * devclass_add_driver() for the driver described by the
3646 * driver_module_data structure pointed to by @p arg
3647 */
3648int
3649driver_module_handler(module_t mod, int what, void *arg)
3650{
3651	int error;
3652	struct driver_module_data *dmd;
3653	devclass_t bus_devclass;
3654	kobj_class_t driver;
3655
3656	dmd = (struct driver_module_data *)arg;
3657	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3658	error = 0;
3659
3660	switch (what) {
3661	case MOD_LOAD:
3662		if (dmd->dmd_chainevh)
3663			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3664
3665		driver = dmd->dmd_driver;
3666		PDEBUG(("Loading module: driver %s on bus %s",
3667		    DRIVERNAME(driver), dmd->dmd_busname));
3668		error = devclass_add_driver(bus_devclass, driver);
3669		if (error)
3670			break;
3671
3672		/*
3673		 * If the driver has any base classes, make the
3674		 * devclass inherit from the devclass of the driver's
3675		 * first base class. This will allow the system to
3676		 * search for drivers in both devclasses for children
3677		 * of a device using this driver.
3678		 */
3679		if (driver->baseclasses) {
3680			const char *parentname;
3681			parentname = driver->baseclasses[0]->name;
3682			*dmd->dmd_devclass =
3683				devclass_find_internal(driver->name,
3684				    parentname, TRUE);
3685		} else {
3686			*dmd->dmd_devclass =
3687				devclass_find_internal(driver->name, 0, TRUE);
3688		}
3689		break;
3690
3691	case MOD_UNLOAD:
3692		PDEBUG(("Unloading module: driver %s from bus %s",
3693		    DRIVERNAME(dmd->dmd_driver),
3694		    dmd->dmd_busname));
3695		error = devclass_delete_driver(bus_devclass,
3696		    dmd->dmd_driver);
3697
3698		if (!error && dmd->dmd_chainevh)
3699			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3700		break;
3701	case MOD_QUIESCE:
3702		PDEBUG(("Quiesce module: driver %s from bus %s",
3703		    DRIVERNAME(dmd->dmd_driver),
3704		    dmd->dmd_busname));
3705		error = devclass_quiesce_driver(bus_devclass,
3706		    dmd->dmd_driver);
3707
3708		if (!error && dmd->dmd_chainevh)
3709			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3710		break;
3711	default:
3712		error = EOPNOTSUPP;
3713		break;
3714	}
3715
3716	return (error);
3717}
3718
3719#ifdef BUS_DEBUG
3720
3721/* the _short versions avoid iteration by not calling anything that prints
3722 * more than oneliners. I love oneliners.
3723 */
3724
3725static void
3726print_device_short(device_t dev, int indent)
3727{
3728	if (!dev)
3729		return;
3730
3731	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3732	    dev->unit, dev->desc,
3733	    (dev->parent? "":"no "),
3734	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3735	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3736	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3737	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3738	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3739	    (dev->flags&DF_REBID? "rebiddable,":""),
3740	    (dev->ivars? "":"no "),
3741	    (dev->softc? "":"no "),
3742	    dev->busy));
3743}
3744
3745static void
3746print_device(device_t dev, int indent)
3747{
3748	if (!dev)
3749		return;
3750
3751	print_device_short(dev, indent);
3752
3753	indentprintf(("Parent:\n"));
3754	print_device_short(dev->parent, indent+1);
3755	indentprintf(("Driver:\n"));
3756	print_driver_short(dev->driver, indent+1);
3757	indentprintf(("Devclass:\n"));
3758	print_devclass_short(dev->devclass, indent+1);
3759}
3760
3761void
3762print_device_tree_short(device_t dev, int indent)
3763/* print the device and all its children (indented) */
3764{
3765	device_t child;
3766
3767	if (!dev)
3768		return;
3769
3770	print_device_short(dev, indent);
3771
3772	TAILQ_FOREACH(child, &dev->children, link) {
3773		print_device_tree_short(child, indent+1);
3774	}
3775}
3776
3777void
3778print_device_tree(device_t dev, int indent)
3779/* print the device and all its children (indented) */
3780{
3781	device_t child;
3782
3783	if (!dev)
3784		return;
3785
3786	print_device(dev, indent);
3787
3788	TAILQ_FOREACH(child, &dev->children, link) {
3789		print_device_tree(child, indent+1);
3790	}
3791}
3792
3793static void
3794print_driver_short(driver_t *driver, int indent)
3795{
3796	if (!driver)
3797		return;
3798
3799	indentprintf(("driver %s: softc size = %zd\n",
3800	    driver->name, driver->size));
3801}
3802
3803static void
3804print_driver(driver_t *driver, int indent)
3805{
3806	if (!driver)
3807		return;
3808
3809	print_driver_short(driver, indent);
3810}
3811
3812
3813static void
3814print_driver_list(driver_list_t drivers, int indent)
3815{
3816	driverlink_t driver;
3817
3818	TAILQ_FOREACH(driver, &drivers, link) {
3819		print_driver(driver->driver, indent);
3820	}
3821}
3822
3823static void
3824print_devclass_short(devclass_t dc, int indent)
3825{
3826	if ( !dc )
3827		return;
3828
3829	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3830}
3831
3832static void
3833print_devclass(devclass_t dc, int indent)
3834{
3835	int i;
3836
3837	if ( !dc )
3838		return;
3839
3840	print_devclass_short(dc, indent);
3841	indentprintf(("Drivers:\n"));
3842	print_driver_list(dc->drivers, indent+1);
3843
3844	indentprintf(("Devices:\n"));
3845	for (i = 0; i < dc->maxunit; i++)
3846		if (dc->devices[i])
3847			print_device(dc->devices[i], indent+1);
3848}
3849
3850void
3851print_devclass_list_short(void)
3852{
3853	devclass_t dc;
3854
3855	printf("Short listing of devclasses, drivers & devices:\n");
3856	TAILQ_FOREACH(dc, &devclasses, link) {
3857		print_devclass_short(dc, 0);
3858	}
3859}
3860
3861void
3862print_devclass_list(void)
3863{
3864	devclass_t dc;
3865
3866	printf("Full listing of devclasses, drivers & devices:\n");
3867	TAILQ_FOREACH(dc, &devclasses, link) {
3868		print_devclass(dc, 0);
3869	}
3870}
3871
3872#endif
3873
3874/*
3875 * User-space access to the device tree.
3876 *
3877 * We implement a small set of nodes:
3878 *
3879 * hw.bus			Single integer read method to obtain the
3880 *				current generation count.
3881 * hw.bus.devices		Reads the entire device tree in flat space.
3882 * hw.bus.rman			Resource manager interface
3883 *
3884 * We might like to add the ability to scan devclasses and/or drivers to
3885 * determine what else is currently loaded/available.
3886 */
3887
3888static int
3889sysctl_bus(SYSCTL_HANDLER_ARGS)
3890{
3891	struct u_businfo	ubus;
3892
3893	ubus.ub_version = BUS_USER_VERSION;
3894	ubus.ub_generation = bus_data_generation;
3895
3896	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3897}
3898SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3899    "bus-related data");
3900
3901static int
3902sysctl_devices(SYSCTL_HANDLER_ARGS)
3903{
3904	int			*name = (int *)arg1;
3905	u_int			namelen = arg2;
3906	int			index;
3907	struct device		*dev;
3908	struct u_device		udev;	/* XXX this is a bit big */
3909	int			error;
3910
3911	if (namelen != 2)
3912		return (EINVAL);
3913
3914	if (bus_data_generation_check(name[0]))
3915		return (EINVAL);
3916
3917	index = name[1];
3918
3919	/*
3920	 * Scan the list of devices, looking for the requested index.
3921	 */
3922	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3923		if (index-- == 0)
3924			break;
3925	}
3926	if (dev == NULL)
3927		return (ENOENT);
3928
3929	/*
3930	 * Populate the return array.
3931	 */
3932	udev.dv_handle = (uintptr_t)dev;
3933	udev.dv_parent = (uintptr_t)dev->parent;
3934	if (dev->nameunit == NULL)
3935		udev.dv_name[0] = '\0';
3936	else
3937		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3938
3939	if (dev->desc == NULL)
3940		udev.dv_desc[0] = '\0';
3941	else
3942		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3943	if (dev->driver == NULL || dev->driver->name == NULL)
3944		udev.dv_drivername[0] = '\0';
3945	else
3946		strlcpy(udev.dv_drivername, dev->driver->name,
3947		    sizeof(udev.dv_drivername));
3948	udev.dv_pnpinfo[0] = '\0';
3949	udev.dv_location[0] = '\0';
3950	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3951	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3952	udev.dv_devflags = dev->devflags;
3953	udev.dv_flags = dev->flags;
3954	udev.dv_state = dev->state;
3955	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3956	return (error);
3957}
3958
3959SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3960    "system device tree");
3961
3962int
3963bus_data_generation_check(int generation)
3964{
3965	if (generation != bus_data_generation)
3966		return (1);
3967
3968	/* XXX generate optimised lists here? */
3969	return (0);
3970}
3971
3972void
3973bus_data_generation_update(void)
3974{
3975	bus_data_generation++;
3976}
3977
3978int
3979bus_free_resource(device_t dev, int type, struct resource *r)
3980{
3981	if (r == NULL)
3982		return (0);
3983	return (bus_release_resource(dev, type, rman_get_rid(r), r));
3984}
3985