subr_bus.c revision 138384
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 138384 2004-12-05 07:55:30Z imp $");
29
30#include "opt_bus.h"
31
32#define __RMAN_RESOURCE_VISIBLE
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54
55#include <machine/stdarg.h>
56
57#include <vm/uma.h>
58
59SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61
62/*
63 * Used to attach drivers to devclasses.
64 */
65typedef struct driverlink *driverlink_t;
66struct driverlink {
67	kobj_class_t	driver;
68	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69};
70
71/*
72 * Forward declarations
73 */
74typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76typedef TAILQ_HEAD(device_list, device) device_list_t;
77
78struct devclass {
79	TAILQ_ENTRY(devclass) link;
80	devclass_t	parent;		/* parent in devclass hierarchy */
81	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82	char		*name;
83	device_t	*devices;	/* array of devices indexed by unit */
84	int		maxunit;	/* size of devices array */
85
86	struct sysctl_ctx_list sysctl_ctx;
87	struct sysctl_oid *sysctl_tree;
88};
89
90/**
91 * @brief Implementation of device.
92 */
93struct device {
94	/*
95	 * A device is a kernel object. The first field must be the
96	 * current ops table for the object.
97	 */
98	KOBJ_FIELDS;
99
100	/*
101	 * Device hierarchy.
102	 */
103	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105	device_t	parent;		/**< parent of this device  */
106	device_list_t	children;	/**< list of child devices */
107
108	/*
109	 * Details of this device.
110	 */
111	driver_t	*driver;	/**< current driver */
112	devclass_t	devclass;	/**< current device class */
113	int		unit;		/**< current unit number */
114	char*		nameunit;	/**< name+unit e.g. foodev0 */
115	char*		desc;		/**< driver specific description */
116	int		busy;		/**< count of calls to device_busy() */
117	device_state_t	state;		/**< current device state  */
118	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119	u_short		flags;		/**< internal device flags  */
120#define	DF_ENABLED	1		/* device should be probed/attached */
121#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122#define	DF_WILDCARD	4		/* unit was originally wildcard */
123#define	DF_DESCMALLOCED	8		/* description was malloced */
124#define	DF_QUIET	16		/* don't print verbose attach message */
125#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127#define DF_REBID	128	/* Can rebid after attach */
128	u_char	order;			/**< order from device_add_child_ordered() */
129	u_char	pad;
130	void	*ivars;			/**< instance variables  */
131	void	*softc;			/**< current driver's variables  */
132
133	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135};
136
137static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139
140#ifdef BUS_DEBUG
141
142static int bus_debug = 1;
143TUNABLE_INT("bus.debug", &bus_debug);
144SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145    "Debug bus code");
146
147#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149#define DRIVERNAME(d)	((d)? d->name : "no driver")
150#define DEVCLANAME(d)	((d)? d->name : "no devclass")
151
152/**
153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154 * prevent syslog from deleting initial spaces
155 */
156#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157
158static void print_device_short(device_t dev, int indent);
159static void print_device(device_t dev, int indent);
160void print_device_tree_short(device_t dev, int indent);
161void print_device_tree(device_t dev, int indent);
162static void print_driver_short(driver_t *driver, int indent);
163static void print_driver(driver_t *driver, int indent);
164static void print_driver_list(driver_list_t drivers, int indent);
165static void print_devclass_short(devclass_t dc, int indent);
166static void print_devclass(devclass_t dc, int indent);
167void print_devclass_list_short(void);
168void print_devclass_list(void);
169
170#else
171/* Make the compiler ignore the function calls */
172#define PDEBUG(a)			/* nop */
173#define DEVICENAME(d)			/* nop */
174#define DRIVERNAME(d)			/* nop */
175#define DEVCLANAME(d)			/* nop */
176
177#define print_device_short(d,i)		/* nop */
178#define print_device(d,i)		/* nop */
179#define print_device_tree_short(d,i)	/* nop */
180#define print_device_tree(d,i)		/* nop */
181#define print_driver_short(d,i)		/* nop */
182#define print_driver(d,i)		/* nop */
183#define print_driver_list(d,i)		/* nop */
184#define print_devclass_short(d,i)	/* nop */
185#define print_devclass(d,i)		/* nop */
186#define print_devclass_list_short()	/* nop */
187#define print_devclass_list()		/* nop */
188#endif
189
190/*
191 * dev sysctl tree
192 */
193
194enum {
195	DEVCLASS_SYSCTL_PARENT,
196};
197
198static int
199devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200{
201	devclass_t dc = (devclass_t)arg1;
202	const char *value;
203	char *buf;
204	int error;
205
206	buf = NULL;
207	switch (arg2) {
208	case DEVCLASS_SYSCTL_PARENT:
209		value = dc->parent ? dc->parent->name : "";
210		break;
211	default:
212		return (EINVAL);
213	}
214	error = SYSCTL_OUT(req, value, strlen(value));
215	if (buf != NULL)
216		free(buf, M_BUS);
217	return (error);
218}
219
220static void
221devclass_sysctl_init(devclass_t dc)
222{
223
224	if (dc->sysctl_tree != NULL)
225		return;
226	sysctl_ctx_init(&dc->sysctl_ctx);
227	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
228	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
229	    CTLFLAG_RD, 0, "");
230	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
231	    OID_AUTO, "%parent", CTLFLAG_RD,
232	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
233	    "parent class");
234}
235
236enum {
237	DEVICE_SYSCTL_DESC,
238	DEVICE_SYSCTL_DRIVER,
239	DEVICE_SYSCTL_LOCATION,
240	DEVICE_SYSCTL_PNPINFO,
241	DEVICE_SYSCTL_PARENT,
242};
243
244static int
245device_sysctl_handler(SYSCTL_HANDLER_ARGS)
246{
247	device_t dev = (device_t)arg1;
248	const char *value;
249	char *buf;
250	int error;
251
252	buf = NULL;
253	switch (arg2) {
254	case DEVICE_SYSCTL_DESC:
255		value = dev->desc ? dev->desc : "";
256		break;
257	case DEVICE_SYSCTL_DRIVER:
258		value = dev->driver ? dev->driver->name : "";
259		break;
260	case DEVICE_SYSCTL_LOCATION:
261		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
262		bus_child_location_str(dev, buf, 1024);
263		break;
264	case DEVICE_SYSCTL_PNPINFO:
265		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266		bus_child_pnpinfo_str(dev, buf, 1024);
267		break;
268	case DEVICE_SYSCTL_PARENT:
269		value = dev->parent ? dev->parent->nameunit : "";
270		break;
271	default:
272		return (EINVAL);
273	}
274	error = SYSCTL_OUT(req, value, strlen(value));
275	if (buf != NULL)
276		free(buf, M_BUS);
277	return (error);
278}
279
280static void
281device_sysctl_init(device_t dev)
282{
283	devclass_t dc = dev->devclass;
284
285	if (dev->sysctl_tree != NULL)
286		return;
287	devclass_sysctl_init(dc);
288	sysctl_ctx_init(&dev->sysctl_ctx);
289	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291	    dev->nameunit + strlen(dc->name),
292	    CTLFLAG_RD, 0, "");
293	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294	    OID_AUTO, "%desc", CTLFLAG_RD,
295	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296	    "device description");
297	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298	    OID_AUTO, "%driver", CTLFLAG_RD,
299	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300	    "device driver name");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%location", CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304	    "device location relative to parent");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308	    "device identification");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%parent", CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312	    "parent device");
313}
314
315static void
316device_sysctl_fini(device_t dev)
317{
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_ctx_free(&dev->sysctl_ctx);
321	dev->sysctl_tree = NULL;
322}
323
324/*
325 * /dev/devctl implementation
326 */
327
328/*
329 * This design allows only one reader for /dev/devctl.  This is not desirable
330 * in the long run, but will get a lot of hair out of this implementation.
331 * Maybe we should make this device a clonable device.
332 *
333 * Also note: we specifically do not attach a device to the device_t tree
334 * to avoid potential chicken and egg problems.  One could argue that all
335 * of this belongs to the root node.  One could also further argue that the
336 * sysctl interface that we have not might more properly be an ioctl
337 * interface, but at this stage of the game, I'm not inclined to rock that
338 * boat.
339 *
340 * I'm also not sure that the SIGIO support is done correctly or not, as
341 * I copied it from a driver that had SIGIO support that likely hasn't been
342 * tested since 3.4 or 2.2.8!
343 */
344
345static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
346static int devctl_disable = 0;
347TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
348SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
349    sysctl_devctl_disable, "I", "devctl disable");
350
351static d_open_t		devopen;
352static d_close_t	devclose;
353static d_read_t		devread;
354static d_ioctl_t	devioctl;
355static d_poll_t		devpoll;
356
357#define CDEV_MAJOR 173
358static struct cdevsw dev_cdevsw = {
359	.d_version =	D_VERSION,
360	.d_flags =	D_NEEDGIANT,
361	.d_open =	devopen,
362	.d_close =	devclose,
363	.d_read =	devread,
364	.d_ioctl =	devioctl,
365	.d_poll =	devpoll,
366	.d_name =	"devctl",
367	.d_maj =	CDEV_MAJOR,
368};
369
370struct dev_event_info
371{
372	char *dei_data;
373	TAILQ_ENTRY(dev_event_info) dei_link;
374};
375
376TAILQ_HEAD(devq, dev_event_info);
377
378static struct dev_softc
379{
380	int	inuse;
381	int	nonblock;
382	struct mtx mtx;
383	struct cv cv;
384	struct selinfo sel;
385	struct devq devq;
386	struct proc *async_proc;
387} devsoftc;
388
389static struct cdev *devctl_dev;
390
391static void
392devinit(void)
393{
394	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
395	    "devctl");
396	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
397	cv_init(&devsoftc.cv, "dev cv");
398	TAILQ_INIT(&devsoftc.devq);
399}
400
401static int
402devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
403{
404	if (devsoftc.inuse)
405		return (EBUSY);
406	/* move to init */
407	devsoftc.inuse = 1;
408	devsoftc.nonblock = 0;
409	devsoftc.async_proc = NULL;
410	return (0);
411}
412
413static int
414devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
415{
416	devsoftc.inuse = 0;
417	mtx_lock(&devsoftc.mtx);
418	cv_broadcast(&devsoftc.cv);
419	mtx_unlock(&devsoftc.mtx);
420
421	return (0);
422}
423
424/*
425 * The read channel for this device is used to report changes to
426 * userland in realtime.  We are required to free the data as well as
427 * the n1 object because we allocate them separately.  Also note that
428 * we return one record at a time.  If you try to read this device a
429 * character at a time, you will loose the rest of the data.  Listening
430 * programs are expected to cope.
431 */
432static int
433devread(struct cdev *dev, struct uio *uio, int ioflag)
434{
435	struct dev_event_info *n1;
436	int rv;
437
438	mtx_lock(&devsoftc.mtx);
439	while (TAILQ_EMPTY(&devsoftc.devq)) {
440		if (devsoftc.nonblock) {
441			mtx_unlock(&devsoftc.mtx);
442			return (EAGAIN);
443		}
444		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
445		if (rv) {
446			/*
447			 * Need to translate ERESTART to EINTR here? -- jake
448			 */
449			mtx_unlock(&devsoftc.mtx);
450			return (rv);
451		}
452	}
453	n1 = TAILQ_FIRST(&devsoftc.devq);
454	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
455	mtx_unlock(&devsoftc.mtx);
456	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
457	free(n1->dei_data, M_BUS);
458	free(n1, M_BUS);
459	return (rv);
460}
461
462static	int
463devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
464{
465	switch (cmd) {
466
467	case FIONBIO:
468		if (*(int*)data)
469			devsoftc.nonblock = 1;
470		else
471			devsoftc.nonblock = 0;
472		return (0);
473	case FIOASYNC:
474		if (*(int*)data)
475			devsoftc.async_proc = td->td_proc;
476		else
477			devsoftc.async_proc = NULL;
478		return (0);
479
480		/* (un)Support for other fcntl() calls. */
481	case FIOCLEX:
482	case FIONCLEX:
483	case FIONREAD:
484	case FIOSETOWN:
485	case FIOGETOWN:
486	default:
487		break;
488	}
489	return (ENOTTY);
490}
491
492static	int
493devpoll(struct cdev *dev, int events, d_thread_t *td)
494{
495	int	revents = 0;
496
497	mtx_lock(&devsoftc.mtx);
498	if (events & (POLLIN | POLLRDNORM)) {
499		if (!TAILQ_EMPTY(&devsoftc.devq))
500			revents = events & (POLLIN | POLLRDNORM);
501		else
502			selrecord(td, &devsoftc.sel);
503	}
504	mtx_unlock(&devsoftc.mtx);
505
506	return (revents);
507}
508
509/**
510 * @brief Queue data to be read from the devctl device
511 *
512 * Generic interface to queue data to the devctl device.  It is
513 * assumed that @p data is properly formatted.  It is further assumed
514 * that @p data is allocated using the M_BUS malloc type.
515 */
516void
517devctl_queue_data(char *data)
518{
519	struct dev_event_info *n1 = NULL;
520	struct proc *p;
521
522	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
523	if (n1 == NULL)
524		return;
525	n1->dei_data = data;
526	mtx_lock(&devsoftc.mtx);
527	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
528	cv_broadcast(&devsoftc.cv);
529	mtx_unlock(&devsoftc.mtx);
530	selwakeup(&devsoftc.sel);
531	p = devsoftc.async_proc;
532	if (p != NULL) {
533		PROC_LOCK(p);
534		psignal(p, SIGIO);
535		PROC_UNLOCK(p);
536	}
537}
538
539/**
540 * @brief Send a 'notification' to userland, using standard ways
541 */
542void
543devctl_notify(const char *system, const char *subsystem, const char *type,
544    const char *data)
545{
546	int len = 0;
547	char *msg;
548
549	if (system == NULL)
550		return;		/* BOGUS!  Must specify system. */
551	if (subsystem == NULL)
552		return;		/* BOGUS!  Must specify subsystem. */
553	if (type == NULL)
554		return;		/* BOGUS!  Must specify type. */
555	len += strlen(" system=") + strlen(system);
556	len += strlen(" subsystem=") + strlen(subsystem);
557	len += strlen(" type=") + strlen(type);
558	/* add in the data message plus newline. */
559	if (data != NULL)
560		len += strlen(data);
561	len += 3;	/* '!', '\n', and NUL */
562	msg = malloc(len, M_BUS, M_NOWAIT);
563	if (msg == NULL)
564		return;		/* Drop it on the floor */
565	snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
566	    subsystem, type, data);
567	devctl_queue_data(msg);
568}
569
570/*
571 * Common routine that tries to make sending messages as easy as possible.
572 * We allocate memory for the data, copy strings into that, but do not
573 * free it unless there's an error.  The dequeue part of the driver should
574 * free the data.  We don't send data when the device is disabled.  We do
575 * send data, even when we have no listeners, because we wish to avoid
576 * races relating to startup and restart of listening applications.
577 *
578 * devaddq is designed to string together the type of event, with the
579 * object of that event, plus the plug and play info and location info
580 * for that event.  This is likely most useful for devices, but less
581 * useful for other consumers of this interface.  Those should use
582 * the devctl_queue_data() interface instead.
583 */
584static void
585devaddq(const char *type, const char *what, device_t dev)
586{
587	char *data = NULL;
588	char *loc = NULL;
589	char *pnp = NULL;
590	const char *parstr;
591
592	if (devctl_disable)
593		return;
594	data = malloc(1024, M_BUS, M_NOWAIT);
595	if (data == NULL)
596		goto bad;
597
598	/* get the bus specific location of this device */
599	loc = malloc(1024, M_BUS, M_NOWAIT);
600	if (loc == NULL)
601		goto bad;
602	*loc = '\0';
603	bus_child_location_str(dev, loc, 1024);
604
605	/* Get the bus specific pnp info of this device */
606	pnp = malloc(1024, M_BUS, M_NOWAIT);
607	if (pnp == NULL)
608		goto bad;
609	*pnp = '\0';
610	bus_child_pnpinfo_str(dev, pnp, 1024);
611
612	/* Get the parent of this device, or / if high enough in the tree. */
613	if (device_get_parent(dev) == NULL)
614		parstr = ".";	/* Or '/' ? */
615	else
616		parstr = device_get_nameunit(device_get_parent(dev));
617	/* String it all together. */
618	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
619	  parstr);
620	free(loc, M_BUS);
621	free(pnp, M_BUS);
622	devctl_queue_data(data);
623	return;
624bad:
625	free(pnp, M_BUS);
626	free(loc, M_BUS);
627	free(data, M_BUS);
628	return;
629}
630
631/*
632 * A device was added to the tree.  We are called just after it successfully
633 * attaches (that is, probe and attach success for this device).  No call
634 * is made if a device is merely parented into the tree.  See devnomatch
635 * if probe fails.  If attach fails, no notification is sent (but maybe
636 * we should have a different message for this).
637 */
638static void
639devadded(device_t dev)
640{
641	char *pnp = NULL;
642	char *tmp = NULL;
643
644	pnp = malloc(1024, M_BUS, M_NOWAIT);
645	if (pnp == NULL)
646		goto fail;
647	tmp = malloc(1024, M_BUS, M_NOWAIT);
648	if (tmp == NULL)
649		goto fail;
650	*pnp = '\0';
651	bus_child_pnpinfo_str(dev, pnp, 1024);
652	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
653	devaddq("+", tmp, dev);
654fail:
655	if (pnp != NULL)
656		free(pnp, M_BUS);
657	if (tmp != NULL)
658		free(tmp, M_BUS);
659	return;
660}
661
662/*
663 * A device was removed from the tree.  We are called just before this
664 * happens.
665 */
666static void
667devremoved(device_t dev)
668{
669	char *pnp = NULL;
670	char *tmp = NULL;
671
672	pnp = malloc(1024, M_BUS, M_NOWAIT);
673	if (pnp == NULL)
674		goto fail;
675	tmp = malloc(1024, M_BUS, M_NOWAIT);
676	if (tmp == NULL)
677		goto fail;
678	*pnp = '\0';
679	bus_child_pnpinfo_str(dev, pnp, 1024);
680	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
681	devaddq("-", tmp, dev);
682fail:
683	if (pnp != NULL)
684		free(pnp, M_BUS);
685	if (tmp != NULL)
686		free(tmp, M_BUS);
687	return;
688}
689
690/*
691 * Called when there's no match for this device.  This is only called
692 * the first time that no match happens, so we don't keep getitng this
693 * message.  Should that prove to be undesirable, we can change it.
694 * This is called when all drivers that can attach to a given bus
695 * decline to accept this device.  Other errrors may not be detected.
696 */
697static void
698devnomatch(device_t dev)
699{
700	devaddq("?", "", dev);
701}
702
703static int
704sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
705{
706	struct dev_event_info *n1;
707	int dis, error;
708
709	dis = devctl_disable;
710	error = sysctl_handle_int(oidp, &dis, 0, req);
711	if (error || !req->newptr)
712		return (error);
713	mtx_lock(&devsoftc.mtx);
714	devctl_disable = dis;
715	if (dis) {
716		while (!TAILQ_EMPTY(&devsoftc.devq)) {
717			n1 = TAILQ_FIRST(&devsoftc.devq);
718			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
719			free(n1->dei_data, M_BUS);
720			free(n1, M_BUS);
721		}
722	}
723	mtx_unlock(&devsoftc.mtx);
724	return (0);
725}
726
727/* End of /dev/devctl code */
728
729TAILQ_HEAD(,device)	bus_data_devices;
730static int bus_data_generation = 1;
731
732kobj_method_t null_methods[] = {
733	{ 0, 0 }
734};
735
736DEFINE_CLASS(null, null_methods, 0);
737
738/*
739 * Devclass implementation
740 */
741
742static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
743
744
745/**
746 * @internal
747 * @brief Find or create a device class
748 *
749 * If a device class with the name @p classname exists, return it,
750 * otherwise if @p create is non-zero create and return a new device
751 * class.
752 *
753 * If @p parentname is non-NULL, the parent of the devclass is set to
754 * the devclass of that name.
755 *
756 * @param classname	the devclass name to find or create
757 * @param parentname	the parent devclass name or @c NULL
758 * @param create	non-zero to create a devclass
759 */
760static devclass_t
761devclass_find_internal(const char *classname, const char *parentname,
762		       int create)
763{
764	devclass_t dc;
765
766	PDEBUG(("looking for %s", classname));
767	if (!classname)
768		return (NULL);
769
770	TAILQ_FOREACH(dc, &devclasses, link) {
771		if (!strcmp(dc->name, classname))
772			break;
773	}
774
775	if (create && !dc) {
776		PDEBUG(("creating %s", classname));
777		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
778		    M_BUS, M_NOWAIT|M_ZERO);
779		if (!dc)
780			return (NULL);
781		dc->parent = NULL;
782		dc->name = (char*) (dc + 1);
783		strcpy(dc->name, classname);
784		TAILQ_INIT(&dc->drivers);
785		TAILQ_INSERT_TAIL(&devclasses, dc, link);
786
787		bus_data_generation_update();
788	}
789	if (parentname && dc && !dc->parent) {
790		dc->parent = devclass_find_internal(parentname, 0, FALSE);
791	}
792
793	return (dc);
794}
795
796/**
797 * @brief Create a device class
798 *
799 * If a device class with the name @p classname exists, return it,
800 * otherwise create and return a new device class.
801 *
802 * @param classname	the devclass name to find or create
803 */
804devclass_t
805devclass_create(const char *classname)
806{
807	return (devclass_find_internal(classname, 0, TRUE));
808}
809
810/**
811 * @brief Find a device class
812 *
813 * If a device class with the name @p classname exists, return it,
814 * otherwise return @c NULL.
815 *
816 * @param classname	the devclass name to find
817 */
818devclass_t
819devclass_find(const char *classname)
820{
821	return (devclass_find_internal(classname, 0, FALSE));
822}
823
824/**
825 * @brief Add a device driver to a device class
826 *
827 * Add a device driver to a devclass. This is normally called
828 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
829 * all devices in the devclass will be called to allow them to attempt
830 * to re-probe any unmatched children.
831 *
832 * @param dc		the devclass to edit
833 * @param driver	the driver to register
834 */
835int
836devclass_add_driver(devclass_t dc, driver_t *driver)
837{
838	driverlink_t dl;
839	int i;
840
841	PDEBUG(("%s", DRIVERNAME(driver)));
842
843	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
844	if (!dl)
845		return (ENOMEM);
846
847	/*
848	 * Compile the driver's methods. Also increase the reference count
849	 * so that the class doesn't get freed when the last instance
850	 * goes. This means we can safely use static methods and avoids a
851	 * double-free in devclass_delete_driver.
852	 */
853	kobj_class_compile((kobj_class_t) driver);
854
855	/*
856	 * Make sure the devclass which the driver is implementing exists.
857	 */
858	devclass_find_internal(driver->name, 0, TRUE);
859
860	dl->driver = driver;
861	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
862	driver->refs++;
863
864	/*
865	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
866	 */
867	for (i = 0; i < dc->maxunit; i++)
868		if (dc->devices[i])
869			BUS_DRIVER_ADDED(dc->devices[i], driver);
870
871	bus_data_generation_update();
872	return (0);
873}
874
875/**
876 * @brief Delete a device driver from a device class
877 *
878 * Delete a device driver from a devclass. This is normally called
879 * automatically by DRIVER_MODULE().
880 *
881 * If the driver is currently attached to any devices,
882 * devclass_delete_driver() will first attempt to detach from each
883 * device. If one of the detach calls fails, the driver will not be
884 * deleted.
885 *
886 * @param dc		the devclass to edit
887 * @param driver	the driver to unregister
888 */
889int
890devclass_delete_driver(devclass_t busclass, driver_t *driver)
891{
892	devclass_t dc = devclass_find(driver->name);
893	driverlink_t dl;
894	device_t dev;
895	int i;
896	int error;
897
898	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
899
900	if (!dc)
901		return (0);
902
903	/*
904	 * Find the link structure in the bus' list of drivers.
905	 */
906	TAILQ_FOREACH(dl, &busclass->drivers, link) {
907		if (dl->driver == driver)
908			break;
909	}
910
911	if (!dl) {
912		PDEBUG(("%s not found in %s list", driver->name,
913		    busclass->name));
914		return (ENOENT);
915	}
916
917	/*
918	 * Disassociate from any devices.  We iterate through all the
919	 * devices in the devclass of the driver and detach any which are
920	 * using the driver and which have a parent in the devclass which
921	 * we are deleting from.
922	 *
923	 * Note that since a driver can be in multiple devclasses, we
924	 * should not detach devices which are not children of devices in
925	 * the affected devclass.
926	 */
927	for (i = 0; i < dc->maxunit; i++) {
928		if (dc->devices[i]) {
929			dev = dc->devices[i];
930			if (dev->driver == driver && dev->parent &&
931			    dev->parent->devclass == busclass) {
932				if ((error = device_detach(dev)) != 0)
933					return (error);
934				device_set_driver(dev, NULL);
935			}
936		}
937	}
938
939	TAILQ_REMOVE(&busclass->drivers, dl, link);
940	free(dl, M_BUS);
941
942	driver->refs--;
943	if (driver->refs == 0)
944		kobj_class_free((kobj_class_t) driver);
945
946	bus_data_generation_update();
947	return (0);
948}
949
950/**
951 * @internal
952 */
953static driverlink_t
954devclass_find_driver_internal(devclass_t dc, const char *classname)
955{
956	driverlink_t dl;
957
958	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
959
960	TAILQ_FOREACH(dl, &dc->drivers, link) {
961		if (!strcmp(dl->driver->name, classname))
962			return (dl);
963	}
964
965	PDEBUG(("not found"));
966	return (NULL);
967}
968
969/**
970 * @brief Search a devclass for a driver
971 *
972 * This function searches the devclass's list of drivers and returns
973 * the first driver whose name is @p classname or @c NULL if there is
974 * no driver of that name.
975 *
976 * @param dc		the devclass to search
977 * @param classname	the driver name to search for
978 */
979kobj_class_t
980devclass_find_driver(devclass_t dc, const char *classname)
981{
982	driverlink_t dl;
983
984	dl = devclass_find_driver_internal(dc, classname);
985	if (dl)
986		return (dl->driver);
987	return (NULL);
988}
989
990/**
991 * @brief Return the name of the devclass
992 */
993const char *
994devclass_get_name(devclass_t dc)
995{
996	return (dc->name);
997}
998
999/**
1000 * @brief Find a device given a unit number
1001 *
1002 * @param dc		the devclass to search
1003 * @param unit		the unit number to search for
1004 *
1005 * @returns		the device with the given unit number or @c
1006 *			NULL if there is no such device
1007 */
1008device_t
1009devclass_get_device(devclass_t dc, int unit)
1010{
1011	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1012		return (NULL);
1013	return (dc->devices[unit]);
1014}
1015
1016/**
1017 * @brief Find the softc field of a device given a unit number
1018 *
1019 * @param dc		the devclass to search
1020 * @param unit		the unit number to search for
1021 *
1022 * @returns		the softc field of the device with the given
1023 *			unit number or @c NULL if there is no such
1024 *			device
1025 */
1026void *
1027devclass_get_softc(devclass_t dc, int unit)
1028{
1029	device_t dev;
1030
1031	dev = devclass_get_device(dc, unit);
1032	if (!dev)
1033		return (NULL);
1034
1035	return (device_get_softc(dev));
1036}
1037
1038/**
1039 * @brief Get a list of devices in the devclass
1040 *
1041 * An array containing a list of all the devices in the given devclass
1042 * is allocated and returned in @p *devlistp. The number of devices
1043 * in the array is returned in @p *devcountp. The caller should free
1044 * the array using @c free(p, M_TEMP).
1045 *
1046 * @param dc		the devclass to examine
1047 * @param devlistp	points at location for array pointer return
1048 *			value
1049 * @param devcountp	points at location for array size return value
1050 *
1051 * @retval 0		success
1052 * @retval ENOMEM	the array allocation failed
1053 */
1054int
1055devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1056{
1057	int i;
1058	int count;
1059	device_t *list;
1060
1061	count = 0;
1062	for (i = 0; i < dc->maxunit; i++)
1063		if (dc->devices[i])
1064			count++;
1065
1066	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1067	if (!list)
1068		return (ENOMEM);
1069
1070	count = 0;
1071	for (i = 0; i < dc->maxunit; i++) {
1072		if (dc->devices[i]) {
1073			list[count] = dc->devices[i];
1074			count++;
1075		}
1076	}
1077
1078	*devlistp = list;
1079	*devcountp = count;
1080
1081	return (0);
1082}
1083
1084/**
1085 * @brief Get the maximum unit number used in a devclass
1086 *
1087 * @param dc		the devclass to examine
1088 */
1089int
1090devclass_get_maxunit(devclass_t dc)
1091{
1092	return (dc->maxunit);
1093}
1094
1095/**
1096 * @brief Find a free unit number in a devclass
1097 *
1098 * This function searches for the first unused unit number greater
1099 * that or equal to @p unit.
1100 *
1101 * @param dc		the devclass to examine
1102 * @param unit		the first unit number to check
1103 */
1104int
1105devclass_find_free_unit(devclass_t dc, int unit)
1106{
1107	if (dc == NULL)
1108		return (unit);
1109	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1110		unit++;
1111	return (unit);
1112}
1113
1114/**
1115 * @brief Set the parent of a devclass
1116 *
1117 * The parent class is normally initialised automatically by
1118 * DRIVER_MODULE().
1119 *
1120 * @param dc		the devclass to edit
1121 * @param pdc		the new parent devclass
1122 */
1123void
1124devclass_set_parent(devclass_t dc, devclass_t pdc)
1125{
1126	dc->parent = pdc;
1127}
1128
1129/**
1130 * @brief Get the parent of a devclass
1131 *
1132 * @param dc		the devclass to examine
1133 */
1134devclass_t
1135devclass_get_parent(devclass_t dc)
1136{
1137	return (dc->parent);
1138}
1139
1140struct sysctl_ctx_list *
1141devclass_get_sysctl_ctx(devclass_t dc)
1142{
1143	return (&dc->sysctl_ctx);
1144}
1145
1146struct sysctl_oid *
1147devclass_get_sysctl_tree(devclass_t dc)
1148{
1149	return (dc->sysctl_tree);
1150}
1151
1152/**
1153 * @internal
1154 * @brief Allocate a unit number
1155 *
1156 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1157 * will do). The allocated unit number is returned in @p *unitp.
1158
1159 * @param dc		the devclass to allocate from
1160 * @param unitp		points at the location for the allocated unit
1161 *			number
1162 *
1163 * @retval 0		success
1164 * @retval EEXIST	the requested unit number is already allocated
1165 * @retval ENOMEM	memory allocation failure
1166 */
1167static int
1168devclass_alloc_unit(devclass_t dc, int *unitp)
1169{
1170	int unit = *unitp;
1171
1172	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1173
1174	/* If we were given a wired unit number, check for existing device */
1175	/* XXX imp XXX */
1176	if (unit != -1) {
1177		if (unit >= 0 && unit < dc->maxunit &&
1178		    dc->devices[unit] != NULL) {
1179			if (bootverbose)
1180				printf("%s: %s%d already exists; skipping it\n",
1181				    dc->name, dc->name, *unitp);
1182			return (EEXIST);
1183		}
1184	} else {
1185		/* Unwired device, find the next available slot for it */
1186		unit = 0;
1187		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1188			unit++;
1189	}
1190
1191	/*
1192	 * We've selected a unit beyond the length of the table, so let's
1193	 * extend the table to make room for all units up to and including
1194	 * this one.
1195	 */
1196	if (unit >= dc->maxunit) {
1197		device_t *newlist;
1198		int newsize;
1199
1200		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1201		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1202		if (!newlist)
1203			return (ENOMEM);
1204		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1205		bzero(newlist + dc->maxunit,
1206		    sizeof(device_t) * (newsize - dc->maxunit));
1207		if (dc->devices)
1208			free(dc->devices, M_BUS);
1209		dc->devices = newlist;
1210		dc->maxunit = newsize;
1211	}
1212	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1213
1214	*unitp = unit;
1215	return (0);
1216}
1217
1218/**
1219 * @internal
1220 * @brief Add a device to a devclass
1221 *
1222 * A unit number is allocated for the device (using the device's
1223 * preferred unit number if any) and the device is registered in the
1224 * devclass. This allows the device to be looked up by its unit
1225 * number, e.g. by decoding a dev_t minor number.
1226 *
1227 * @param dc		the devclass to add to
1228 * @param dev		the device to add
1229 *
1230 * @retval 0		success
1231 * @retval EEXIST	the requested unit number is already allocated
1232 * @retval ENOMEM	memory allocation failure
1233 */
1234static int
1235devclass_add_device(devclass_t dc, device_t dev)
1236{
1237	int buflen, error;
1238
1239	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1240
1241	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1242	if (buflen < 0)
1243		return (ENOMEM);
1244	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1245	if (!dev->nameunit)
1246		return (ENOMEM);
1247
1248	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1249		free(dev->nameunit, M_BUS);
1250		dev->nameunit = NULL;
1251		return (error);
1252	}
1253	dc->devices[dev->unit] = dev;
1254	dev->devclass = dc;
1255	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1256
1257	return (0);
1258}
1259
1260/**
1261 * @internal
1262 * @brief Delete a device from a devclass
1263 *
1264 * The device is removed from the devclass's device list and its unit
1265 * number is freed.
1266
1267 * @param dc		the devclass to delete from
1268 * @param dev		the device to delete
1269 *
1270 * @retval 0		success
1271 */
1272static int
1273devclass_delete_device(devclass_t dc, device_t dev)
1274{
1275	if (!dc || !dev)
1276		return (0);
1277
1278	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1279
1280	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1281		panic("devclass_delete_device: inconsistent device class");
1282	dc->devices[dev->unit] = NULL;
1283	if (dev->flags & DF_WILDCARD)
1284		dev->unit = -1;
1285	dev->devclass = NULL;
1286	free(dev->nameunit, M_BUS);
1287	dev->nameunit = NULL;
1288
1289	return (0);
1290}
1291
1292/**
1293 * @internal
1294 * @brief Make a new device and add it as a child of @p parent
1295 *
1296 * @param parent	the parent of the new device
1297 * @param name		the devclass name of the new device or @c NULL
1298 *			to leave the devclass unspecified
1299 * @parem unit		the unit number of the new device of @c -1 to
1300 *			leave the unit number unspecified
1301 *
1302 * @returns the new device
1303 */
1304static device_t
1305make_device(device_t parent, const char *name, int unit)
1306{
1307	device_t dev;
1308	devclass_t dc;
1309
1310	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1311
1312	if (name) {
1313		dc = devclass_find_internal(name, 0, TRUE);
1314		if (!dc) {
1315			printf("make_device: can't find device class %s\n",
1316			    name);
1317			return (NULL);
1318		}
1319	} else {
1320		dc = NULL;
1321	}
1322
1323	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1324	if (!dev)
1325		return (NULL);
1326
1327	dev->parent = parent;
1328	TAILQ_INIT(&dev->children);
1329	kobj_init((kobj_t) dev, &null_class);
1330	dev->driver = NULL;
1331	dev->devclass = NULL;
1332	dev->unit = unit;
1333	dev->nameunit = NULL;
1334	dev->desc = NULL;
1335	dev->busy = 0;
1336	dev->devflags = 0;
1337	dev->flags = DF_ENABLED;
1338	dev->order = 0;
1339	if (unit == -1)
1340		dev->flags |= DF_WILDCARD;
1341	if (name) {
1342		dev->flags |= DF_FIXEDCLASS;
1343		if (devclass_add_device(dc, dev)) {
1344			kobj_delete((kobj_t) dev, M_BUS);
1345			return (NULL);
1346		}
1347	}
1348	dev->ivars = NULL;
1349	dev->softc = NULL;
1350
1351	dev->state = DS_NOTPRESENT;
1352
1353	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1354	bus_data_generation_update();
1355
1356	return (dev);
1357}
1358
1359/**
1360 * @internal
1361 * @brief Print a description of a device.
1362 */
1363static int
1364device_print_child(device_t dev, device_t child)
1365{
1366	int retval = 0;
1367
1368	if (device_is_alive(child))
1369		retval += BUS_PRINT_CHILD(dev, child);
1370	else
1371		retval += device_printf(child, " not found\n");
1372
1373	return (retval);
1374}
1375
1376/**
1377 * @brief Create a new device
1378 *
1379 * This creates a new device and adds it as a child of an existing
1380 * parent device. The new device will be added after the last existing
1381 * child with order zero.
1382 *
1383 * @param dev		the device which will be the parent of the
1384 *			new child device
1385 * @param name		devclass name for new device or @c NULL if not
1386 *			specified
1387 * @param unit		unit number for new device or @c -1 if not
1388 *			specified
1389 *
1390 * @returns		the new device
1391 */
1392device_t
1393device_add_child(device_t dev, const char *name, int unit)
1394{
1395	return (device_add_child_ordered(dev, 0, name, unit));
1396}
1397
1398/**
1399 * @brief Create a new device
1400 *
1401 * This creates a new device and adds it as a child of an existing
1402 * parent device. The new device will be added after the last existing
1403 * child with the same order.
1404 *
1405 * @param dev		the device which will be the parent of the
1406 *			new child device
1407 * @param order		a value which is used to partially sort the
1408 *			children of @p dev - devices created using
1409 *			lower values of @p order appear first in @p
1410 *			dev's list of children
1411 * @param name		devclass name for new device or @c NULL if not
1412 *			specified
1413 * @param unit		unit number for new device or @c -1 if not
1414 *			specified
1415 *
1416 * @returns		the new device
1417 */
1418device_t
1419device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1420{
1421	device_t child;
1422	device_t place;
1423
1424	PDEBUG(("%s at %s with order %d as unit %d",
1425	    name, DEVICENAME(dev), order, unit));
1426
1427	child = make_device(dev, name, unit);
1428	if (child == NULL)
1429		return (child);
1430	child->order = order;
1431
1432	TAILQ_FOREACH(place, &dev->children, link) {
1433		if (place->order > order)
1434			break;
1435	}
1436
1437	if (place) {
1438		/*
1439		 * The device 'place' is the first device whose order is
1440		 * greater than the new child.
1441		 */
1442		TAILQ_INSERT_BEFORE(place, child, link);
1443	} else {
1444		/*
1445		 * The new child's order is greater or equal to the order of
1446		 * any existing device. Add the child to the tail of the list.
1447		 */
1448		TAILQ_INSERT_TAIL(&dev->children, child, link);
1449	}
1450
1451	bus_data_generation_update();
1452	return (child);
1453}
1454
1455/**
1456 * @brief Delete a device
1457 *
1458 * This function deletes a device along with all of its children. If
1459 * the device currently has a driver attached to it, the device is
1460 * detached first using device_detach().
1461 *
1462 * @param dev		the parent device
1463 * @param child		the device to delete
1464 *
1465 * @retval 0		success
1466 * @retval non-zero	a unit error code describing the error
1467 */
1468int
1469device_delete_child(device_t dev, device_t child)
1470{
1471	int error;
1472	device_t grandchild;
1473
1474	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1475
1476	/* remove children first */
1477	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1478		error = device_delete_child(child, grandchild);
1479		if (error)
1480			return (error);
1481	}
1482
1483	if ((error = device_detach(child)) != 0)
1484		return (error);
1485	if (child->devclass)
1486		devclass_delete_device(child->devclass, child);
1487	TAILQ_REMOVE(&dev->children, child, link);
1488	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1489	kobj_delete((kobj_t) child, M_BUS);
1490
1491	bus_data_generation_update();
1492	return (0);
1493}
1494
1495/**
1496 * @brief Find a device given a unit number
1497 *
1498 * This is similar to devclass_get_devices() but only searches for
1499 * devices which have @p dev as a parent.
1500 *
1501 * @param dev		the parent device to search
1502 * @param unit		the unit number to search for
1503 *
1504 * @returns		the device with the given unit number or @c
1505 *			NULL if there is no such device
1506 */
1507device_t
1508device_find_child(device_t dev, const char *classname, int unit)
1509{
1510	devclass_t dc;
1511	device_t child;
1512
1513	dc = devclass_find(classname);
1514	if (!dc)
1515		return (NULL);
1516
1517	child = devclass_get_device(dc, unit);
1518	if (child && child->parent == dev)
1519		return (child);
1520	return (NULL);
1521}
1522
1523/**
1524 * @internal
1525 */
1526static driverlink_t
1527first_matching_driver(devclass_t dc, device_t dev)
1528{
1529	if (dev->devclass)
1530		return (devclass_find_driver_internal(dc, dev->devclass->name));
1531	return (TAILQ_FIRST(&dc->drivers));
1532}
1533
1534/**
1535 * @internal
1536 */
1537static driverlink_t
1538next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1539{
1540	if (dev->devclass) {
1541		driverlink_t dl;
1542		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1543			if (!strcmp(dev->devclass->name, dl->driver->name))
1544				return (dl);
1545		return (NULL);
1546	}
1547	return (TAILQ_NEXT(last, link));
1548}
1549
1550/**
1551 * @internal
1552 */
1553static int
1554device_probe_child(device_t dev, device_t child)
1555{
1556	devclass_t dc;
1557	driverlink_t best = 0;
1558	driverlink_t dl;
1559	int result, pri = 0;
1560	int hasclass = (child->devclass != 0);
1561
1562	GIANT_REQUIRED;
1563
1564	dc = dev->devclass;
1565	if (!dc)
1566		panic("device_probe_child: parent device has no devclass");
1567
1568	/*
1569	 * If the state is already probed, then return.  However, don't
1570	 * return if we can rebid this object.
1571	 */
1572	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1573		return (0);
1574
1575	for (; dc; dc = dc->parent) {
1576		for (dl = first_matching_driver(dc, child);
1577		     dl;
1578		     dl = next_matching_driver(dc, child, dl)) {
1579			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1580			device_set_driver(child, dl->driver);
1581			if (!hasclass)
1582				device_set_devclass(child, dl->driver->name);
1583
1584			/* Fetch any flags for the device before probing. */
1585			resource_int_value(dl->driver->name, child->unit,
1586			    "flags", &child->devflags);
1587
1588			result = DEVICE_PROBE(child);
1589
1590			/* Reset flags and devclass before the next probe. */
1591			child->devflags = 0;
1592			if (!hasclass)
1593				device_set_devclass(child, 0);
1594
1595			/*
1596			 * If the driver returns SUCCESS, there can be
1597			 * no higher match for this device.
1598			 */
1599			if (result == 0) {
1600				best = dl;
1601				pri = 0;
1602				break;
1603			}
1604
1605			/*
1606			 * The driver returned an error so it
1607			 * certainly doesn't match.
1608			 */
1609			if (result > 0) {
1610				device_set_driver(child, 0);
1611				continue;
1612			}
1613
1614			/*
1615			 * A priority lower than SUCCESS, remember the
1616			 * best matching driver. Initialise the value
1617			 * of pri for the first match.
1618			 */
1619			if (best == 0 || result > pri) {
1620				best = dl;
1621				pri = result;
1622				continue;
1623			}
1624		}
1625		/*
1626		 * If we have an unambiguous match in this devclass,
1627		 * don't look in the parent.
1628		 */
1629		if (best && pri == 0)
1630			break;
1631	}
1632
1633	/*
1634	 * If we found a driver, change state and initialise the devclass.
1635	 */
1636	/* XXX What happens if we rebid and got no best? */
1637	if (best) {
1638		/*
1639		 * If this device was atached, and we were asked to
1640		 * rescan, and it is a different driver, then we have
1641		 * to detach the old driver and reattach this new one.
1642		 * Note, we don't have to check for DF_REBID here
1643		 * because if the state is > DS_ALIVE, we know it must
1644		 * be.
1645		 *
1646		 * This assumes that all DF_REBID drivers can have
1647		 * their probe routine called at any time and that
1648		 * they are idempotent as well as completely benign in
1649		 * normal operations.
1650		 *
1651		 * We also have to make sure that the detach
1652		 * succeeded, otherwise we fail the operation (or
1653		 * maybe it should just fail silently?  I'm torn).
1654		 */
1655		if (child->state > DS_ALIVE && best->driver != child->driver)
1656			if ((result = device_detach(dev)) != 0)
1657				return (result);
1658
1659		/* Set the winning driver, devclass, and flags. */
1660		if (!child->devclass)
1661			device_set_devclass(child, best->driver->name);
1662		device_set_driver(child, best->driver);
1663		resource_int_value(best->driver->name, child->unit,
1664		    "flags", &child->devflags);
1665
1666		if (pri < 0) {
1667			/*
1668			 * A bit bogus. Call the probe method again to make
1669			 * sure that we have the right description.
1670			 */
1671			DEVICE_PROBE(child);
1672#if 0
1673			child->flags |= DF_REBID;
1674#endif
1675		} else
1676			child->flags &= ~DF_REBID;
1677		child->state = DS_ALIVE;
1678
1679		bus_data_generation_update();
1680		return (0);
1681	}
1682
1683	return (ENXIO);
1684}
1685
1686/**
1687 * @brief Return the parent of a device
1688 */
1689device_t
1690device_get_parent(device_t dev)
1691{
1692	return (dev->parent);
1693}
1694
1695/**
1696 * @brief Get a list of children of a device
1697 *
1698 * An array containing a list of all the children of the given device
1699 * is allocated and returned in @p *devlistp. The number of devices
1700 * in the array is returned in @p *devcountp. The caller should free
1701 * the array using @c free(p, M_TEMP).
1702 *
1703 * @param dev		the device to examine
1704 * @param devlistp	points at location for array pointer return
1705 *			value
1706 * @param devcountp	points at location for array size return value
1707 *
1708 * @retval 0		success
1709 * @retval ENOMEM	the array allocation failed
1710 */
1711int
1712device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1713{
1714	int count;
1715	device_t child;
1716	device_t *list;
1717
1718	count = 0;
1719	TAILQ_FOREACH(child, &dev->children, link) {
1720		count++;
1721	}
1722
1723	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1724	if (!list)
1725		return (ENOMEM);
1726
1727	count = 0;
1728	TAILQ_FOREACH(child, &dev->children, link) {
1729		list[count] = child;
1730		count++;
1731	}
1732
1733	*devlistp = list;
1734	*devcountp = count;
1735
1736	return (0);
1737}
1738
1739/**
1740 * @brief Return the current driver for the device or @c NULL if there
1741 * is no driver currently attached
1742 */
1743driver_t *
1744device_get_driver(device_t dev)
1745{
1746	return (dev->driver);
1747}
1748
1749/**
1750 * @brief Return the current devclass for the device or @c NULL if
1751 * there is none.
1752 */
1753devclass_t
1754device_get_devclass(device_t dev)
1755{
1756	return (dev->devclass);
1757}
1758
1759/**
1760 * @brief Return the name of the device's devclass or @c NULL if there
1761 * is none.
1762 */
1763const char *
1764device_get_name(device_t dev)
1765{
1766	if (dev != NULL && dev->devclass)
1767		return (devclass_get_name(dev->devclass));
1768	return (NULL);
1769}
1770
1771/**
1772 * @brief Return a string containing the device's devclass name
1773 * followed by an ascii representation of the device's unit number
1774 * (e.g. @c "foo2").
1775 */
1776const char *
1777device_get_nameunit(device_t dev)
1778{
1779	return (dev->nameunit);
1780}
1781
1782/**
1783 * @brief Return the device's unit number.
1784 */
1785int
1786device_get_unit(device_t dev)
1787{
1788	return (dev->unit);
1789}
1790
1791/**
1792 * @brief Return the device's description string
1793 */
1794const char *
1795device_get_desc(device_t dev)
1796{
1797	return (dev->desc);
1798}
1799
1800/**
1801 * @brief Return the device's flags
1802 */
1803u_int32_t
1804device_get_flags(device_t dev)
1805{
1806	return (dev->devflags);
1807}
1808
1809struct sysctl_ctx_list *
1810device_get_sysctl_ctx(device_t dev)
1811{
1812	return (&dev->sysctl_ctx);
1813}
1814
1815struct sysctl_oid *
1816device_get_sysctl_tree(device_t dev)
1817{
1818	return (dev->sysctl_tree);
1819}
1820
1821/**
1822 * @brief Print the name of the device followed by a colon and a space
1823 *
1824 * @returns the number of characters printed
1825 */
1826int
1827device_print_prettyname(device_t dev)
1828{
1829	const char *name = device_get_name(dev);
1830
1831	if (name == 0)
1832		return (printf("unknown: "));
1833	return (printf("%s%d: ", name, device_get_unit(dev)));
1834}
1835
1836/**
1837 * @brief Print the name of the device followed by a colon, a space
1838 * and the result of calling vprintf() with the value of @p fmt and
1839 * the following arguments.
1840 *
1841 * @returns the number of characters printed
1842 */
1843int
1844device_printf(device_t dev, const char * fmt, ...)
1845{
1846	va_list ap;
1847	int retval;
1848
1849	retval = device_print_prettyname(dev);
1850	va_start(ap, fmt);
1851	retval += vprintf(fmt, ap);
1852	va_end(ap);
1853	return (retval);
1854}
1855
1856/**
1857 * @internal
1858 */
1859static void
1860device_set_desc_internal(device_t dev, const char* desc, int copy)
1861{
1862	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1863		free(dev->desc, M_BUS);
1864		dev->flags &= ~DF_DESCMALLOCED;
1865		dev->desc = NULL;
1866	}
1867
1868	if (copy && desc) {
1869		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1870		if (dev->desc) {
1871			strcpy(dev->desc, desc);
1872			dev->flags |= DF_DESCMALLOCED;
1873		}
1874	} else {
1875		/* Avoid a -Wcast-qual warning */
1876		dev->desc = (char *)(uintptr_t) desc;
1877	}
1878
1879	bus_data_generation_update();
1880}
1881
1882/**
1883 * @brief Set the device's description
1884 *
1885 * The value of @c desc should be a string constant that will not
1886 * change (at least until the description is changed in a subsequent
1887 * call to device_set_desc() or device_set_desc_copy()).
1888 */
1889void
1890device_set_desc(device_t dev, const char* desc)
1891{
1892	device_set_desc_internal(dev, desc, FALSE);
1893}
1894
1895/**
1896 * @brief Set the device's description
1897 *
1898 * The string pointed to by @c desc is copied. Use this function if
1899 * the device description is generated, (e.g. with sprintf()).
1900 */
1901void
1902device_set_desc_copy(device_t dev, const char* desc)
1903{
1904	device_set_desc_internal(dev, desc, TRUE);
1905}
1906
1907/**
1908 * @brief Set the device's flags
1909 */
1910void
1911device_set_flags(device_t dev, u_int32_t flags)
1912{
1913	dev->devflags = flags;
1914}
1915
1916/**
1917 * @brief Return the device's softc field
1918 *
1919 * The softc is allocated and zeroed when a driver is attached, based
1920 * on the size field of the driver.
1921 */
1922void *
1923device_get_softc(device_t dev)
1924{
1925	return (dev->softc);
1926}
1927
1928/**
1929 * @brief Set the device's softc field
1930 *
1931 * Most drivers do not need to use this since the softc is allocated
1932 * automatically when the driver is attached.
1933 */
1934void
1935device_set_softc(device_t dev, void *softc)
1936{
1937	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1938		free(dev->softc, M_BUS_SC);
1939	dev->softc = softc;
1940	if (dev->softc)
1941		dev->flags |= DF_EXTERNALSOFTC;
1942	else
1943		dev->flags &= ~DF_EXTERNALSOFTC;
1944}
1945
1946/**
1947 * @brief Get the device's ivars field
1948 *
1949 * The ivars field is used by the parent device to store per-device
1950 * state (e.g. the physical location of the device or a list of
1951 * resources).
1952 */
1953void *
1954device_get_ivars(device_t dev)
1955{
1956
1957	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
1958	return (dev->ivars);
1959}
1960
1961/**
1962 * @brief Set the device's ivars field
1963 */
1964void
1965device_set_ivars(device_t dev, void * ivars)
1966{
1967
1968	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
1969	dev->ivars = ivars;
1970}
1971
1972/**
1973 * @brief Return the device's state
1974 */
1975device_state_t
1976device_get_state(device_t dev)
1977{
1978	return (dev->state);
1979}
1980
1981/**
1982 * @brief Set the DF_ENABLED flag for the device
1983 */
1984void
1985device_enable(device_t dev)
1986{
1987	dev->flags |= DF_ENABLED;
1988}
1989
1990/**
1991 * @brief Clear the DF_ENABLED flag for the device
1992 */
1993void
1994device_disable(device_t dev)
1995{
1996	dev->flags &= ~DF_ENABLED;
1997}
1998
1999/**
2000 * @brief Increment the busy counter for the device
2001 */
2002void
2003device_busy(device_t dev)
2004{
2005	if (dev->state < DS_ATTACHED)
2006		panic("device_busy: called for unattached device");
2007	if (dev->busy == 0 && dev->parent)
2008		device_busy(dev->parent);
2009	dev->busy++;
2010	dev->state = DS_BUSY;
2011}
2012
2013/**
2014 * @brief Decrement the busy counter for the device
2015 */
2016void
2017device_unbusy(device_t dev)
2018{
2019	if (dev->state != DS_BUSY)
2020		panic("device_unbusy: called for non-busy device");
2021	dev->busy--;
2022	if (dev->busy == 0) {
2023		if (dev->parent)
2024			device_unbusy(dev->parent);
2025		dev->state = DS_ATTACHED;
2026	}
2027}
2028
2029/**
2030 * @brief Set the DF_QUIET flag for the device
2031 */
2032void
2033device_quiet(device_t dev)
2034{
2035	dev->flags |= DF_QUIET;
2036}
2037
2038/**
2039 * @brief Clear the DF_QUIET flag for the device
2040 */
2041void
2042device_verbose(device_t dev)
2043{
2044	dev->flags &= ~DF_QUIET;
2045}
2046
2047/**
2048 * @brief Return non-zero if the DF_QUIET flag is set on the device
2049 */
2050int
2051device_is_quiet(device_t dev)
2052{
2053	return ((dev->flags & DF_QUIET) != 0);
2054}
2055
2056/**
2057 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2058 */
2059int
2060device_is_enabled(device_t dev)
2061{
2062	return ((dev->flags & DF_ENABLED) != 0);
2063}
2064
2065/**
2066 * @brief Return non-zero if the device was successfully probed
2067 */
2068int
2069device_is_alive(device_t dev)
2070{
2071	return (dev->state >= DS_ALIVE);
2072}
2073
2074/**
2075 * @brief Return non-zero if the device currently has a driver
2076 * attached to it
2077 */
2078int
2079device_is_attached(device_t dev)
2080{
2081	return (dev->state >= DS_ATTACHED);
2082}
2083
2084/**
2085 * @brief Set the devclass of a device
2086 * @see devclass_add_device().
2087 */
2088int
2089device_set_devclass(device_t dev, const char *classname)
2090{
2091	devclass_t dc;
2092	int error;
2093
2094	if (!classname) {
2095		if (dev->devclass)
2096			devclass_delete_device(dev->devclass, dev);
2097		return (0);
2098	}
2099
2100	if (dev->devclass) {
2101		printf("device_set_devclass: device class already set\n");
2102		return (EINVAL);
2103	}
2104
2105	dc = devclass_find_internal(classname, 0, TRUE);
2106	if (!dc)
2107		return (ENOMEM);
2108
2109	error = devclass_add_device(dc, dev);
2110
2111	bus_data_generation_update();
2112	return (error);
2113}
2114
2115/**
2116 * @brief Set the driver of a device
2117 *
2118 * @retval 0		success
2119 * @retval EBUSY	the device already has a driver attached
2120 * @retval ENOMEM	a memory allocation failure occurred
2121 */
2122int
2123device_set_driver(device_t dev, driver_t *driver)
2124{
2125	if (dev->state >= DS_ATTACHED)
2126		return (EBUSY);
2127
2128	if (dev->driver == driver)
2129		return (0);
2130
2131	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2132		free(dev->softc, M_BUS_SC);
2133		dev->softc = NULL;
2134	}
2135	kobj_delete((kobj_t) dev, 0);
2136	dev->driver = driver;
2137	if (driver) {
2138		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2139		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2140			dev->softc = malloc(driver->size, M_BUS_SC,
2141			    M_NOWAIT | M_ZERO);
2142			if (!dev->softc) {
2143				kobj_delete((kobj_t) dev, 0);
2144				kobj_init((kobj_t) dev, &null_class);
2145				dev->driver = NULL;
2146				return (ENOMEM);
2147			}
2148		}
2149	} else {
2150		kobj_init((kobj_t) dev, &null_class);
2151	}
2152
2153	bus_data_generation_update();
2154	return (0);
2155}
2156
2157/**
2158 * @brief Probe a device and attach a driver if possible
2159 *
2160 * This function is the core of the device autoconfiguration
2161 * system. Its purpose is to select a suitable driver for a device and
2162 * then call that driver to initialise the hardware appropriately. The
2163 * driver is selected by calling the DEVICE_PROBE() method of a set of
2164 * candidate drivers and then choosing the driver which returned the
2165 * best value. This driver is then attached to the device using
2166 * device_attach().
2167 *
2168 * The set of suitable drivers is taken from the list of drivers in
2169 * the parent device's devclass. If the device was originally created
2170 * with a specific class name (see device_add_child()), only drivers
2171 * with that name are probed, otherwise all drivers in the devclass
2172 * are probed. If no drivers return successful probe values in the
2173 * parent devclass, the search continues in the parent of that
2174 * devclass (see devclass_get_parent()) if any.
2175 *
2176 * @param dev		the device to initialise
2177 *
2178 * @retval 0		success
2179 * @retval ENXIO	no driver was found
2180 * @retval ENOMEM	memory allocation failure
2181 * @retval non-zero	some other unix error code
2182 */
2183int
2184device_probe_and_attach(device_t dev)
2185{
2186	int error;
2187
2188	GIANT_REQUIRED;
2189
2190	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2191		return (0);
2192
2193	if (!(dev->flags & DF_ENABLED)) {
2194		if (bootverbose && device_get_name(dev) != NULL) {
2195			device_print_prettyname(dev);
2196			printf("not probed (disabled)\n");
2197		}
2198		return (0);
2199	}
2200	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2201		if (!(dev->flags & DF_DONENOMATCH)) {
2202			BUS_PROBE_NOMATCH(dev->parent, dev);
2203			devnomatch(dev);
2204			dev->flags |= DF_DONENOMATCH;
2205		}
2206		return (error);
2207	}
2208	error = device_attach(dev);
2209
2210	return (error);
2211}
2212
2213/**
2214 * @brief Attach a device driver to a device
2215 *
2216 * This function is a wrapper around the DEVICE_ATTACH() driver
2217 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2218 * device's sysctl tree, optionally prints a description of the device
2219 * and queues a notification event for user-based device management
2220 * services.
2221 *
2222 * Normally this function is only called internally from
2223 * device_probe_and_attach().
2224 *
2225 * @param dev		the device to initialise
2226 *
2227 * @retval 0		success
2228 * @retval ENXIO	no driver was found
2229 * @retval ENOMEM	memory allocation failure
2230 * @retval non-zero	some other unix error code
2231 */
2232int
2233device_attach(device_t dev)
2234{
2235	int error;
2236
2237	device_sysctl_init(dev);
2238	if (!device_is_quiet(dev))
2239		device_print_child(dev->parent, dev);
2240	if ((error = DEVICE_ATTACH(dev)) != 0) {
2241		printf("device_attach: %s%d attach returned %d\n",
2242		    dev->driver->name, dev->unit, error);
2243		/* Unset the class; set in device_probe_child */
2244		if (dev->devclass == 0)
2245			device_set_devclass(dev, 0);
2246		device_set_driver(dev, NULL);
2247		device_sysctl_fini(dev);
2248		dev->state = DS_NOTPRESENT;
2249		return (error);
2250	}
2251	dev->state = DS_ATTACHED;
2252	devadded(dev);
2253	return (0);
2254}
2255
2256/**
2257 * @brief Detach a driver from a device
2258 *
2259 * This function is a wrapper around the DEVICE_DETACH() driver
2260 * method. If the call to DEVICE_DETACH() succeeds, it calls
2261 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2262 * notification event for user-based device management services and
2263 * cleans up the device's sysctl tree.
2264 *
2265 * @param dev		the device to un-initialise
2266 *
2267 * @retval 0		success
2268 * @retval ENXIO	no driver was found
2269 * @retval ENOMEM	memory allocation failure
2270 * @retval non-zero	some other unix error code
2271 */
2272int
2273device_detach(device_t dev)
2274{
2275	int error;
2276
2277	GIANT_REQUIRED;
2278
2279	PDEBUG(("%s", DEVICENAME(dev)));
2280	if (dev->state == DS_BUSY)
2281		return (EBUSY);
2282	if (dev->state != DS_ATTACHED)
2283		return (0);
2284
2285	if ((error = DEVICE_DETACH(dev)) != 0)
2286		return (error);
2287	devremoved(dev);
2288	device_printf(dev, "detached\n");
2289	if (dev->parent)
2290		BUS_CHILD_DETACHED(dev->parent, dev);
2291
2292	if (!(dev->flags & DF_FIXEDCLASS))
2293		devclass_delete_device(dev->devclass, dev);
2294
2295	dev->state = DS_NOTPRESENT;
2296	device_set_driver(dev, NULL);
2297	device_set_desc(dev, NULL);
2298	device_sysctl_fini(dev);
2299
2300	return (0);
2301}
2302
2303/**
2304 * @brief Notify a device of system shutdown
2305 *
2306 * This function calls the DEVICE_SHUTDOWN() driver method if the
2307 * device currently has an attached driver.
2308 *
2309 * @returns the value returned by DEVICE_SHUTDOWN()
2310 */
2311int
2312device_shutdown(device_t dev)
2313{
2314	if (dev->state < DS_ATTACHED)
2315		return (0);
2316	return (DEVICE_SHUTDOWN(dev));
2317}
2318
2319/**
2320 * @brief Set the unit number of a device
2321 *
2322 * This function can be used to override the unit number used for a
2323 * device (e.g. to wire a device to a pre-configured unit number).
2324 */
2325int
2326device_set_unit(device_t dev, int unit)
2327{
2328	devclass_t dc;
2329	int err;
2330
2331	dc = device_get_devclass(dev);
2332	if (unit < dc->maxunit && dc->devices[unit])
2333		return (EBUSY);
2334	err = devclass_delete_device(dc, dev);
2335	if (err)
2336		return (err);
2337	dev->unit = unit;
2338	err = devclass_add_device(dc, dev);
2339	if (err)
2340		return (err);
2341
2342	bus_data_generation_update();
2343	return (0);
2344}
2345
2346/*======================================*/
2347/*
2348 * Some useful method implementations to make life easier for bus drivers.
2349 */
2350
2351/**
2352 * @brief Initialise a resource list.
2353 *
2354 * @param rl		the resource list to initialise
2355 */
2356void
2357resource_list_init(struct resource_list *rl)
2358{
2359	SLIST_INIT(rl);
2360}
2361
2362/**
2363 * @brief Reclaim memory used by a resource list.
2364 *
2365 * This function frees the memory for all resource entries on the list
2366 * (if any).
2367 *
2368 * @param rl		the resource list to free
2369 */
2370void
2371resource_list_free(struct resource_list *rl)
2372{
2373	struct resource_list_entry *rle;
2374
2375	while ((rle = SLIST_FIRST(rl)) != NULL) {
2376		if (rle->res)
2377			panic("resource_list_free: resource entry is busy");
2378		SLIST_REMOVE_HEAD(rl, link);
2379		free(rle, M_BUS);
2380	}
2381}
2382
2383/**
2384 * @brief Add a resource entry.
2385 *
2386 * This function adds a resource entry using the given @p type, @p
2387 * start, @p end and @p count values. A rid value is chosen by
2388 * searching sequentially for the first unused rid starting at zero.
2389 *
2390 * @param rl		the resource list to edit
2391 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2392 * @param start		the start address of the resource
2393 * @param end		the end address of the resource
2394 * @param count		XXX end-start+1
2395 */
2396int
2397resource_list_add_next(struct resource_list *rl, int type, u_long start,
2398    u_long end, u_long count)
2399{
2400	int rid;
2401
2402	rid = 0;
2403	while (resource_list_find(rl, type, rid) != NULL)
2404		rid++;
2405	resource_list_add(rl, type, rid, start, end, count);
2406	return (rid);
2407}
2408
2409/**
2410 * @brief Add or modify a resource entry.
2411 *
2412 * If an existing entry exists with the same type and rid, it will be
2413 * modified using the given values of @p start, @p end and @p
2414 * count. If no entry exists, a new one will be created using the
2415 * given values.
2416 *
2417 * @param rl		the resource list to edit
2418 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2419 * @param rid		the resource identifier
2420 * @param start		the start address of the resource
2421 * @param end		the end address of the resource
2422 * @param count		XXX end-start+1
2423 */
2424void
2425resource_list_add(struct resource_list *rl, int type, int rid,
2426    u_long start, u_long end, u_long count)
2427{
2428	struct resource_list_entry *rle;
2429
2430	rle = resource_list_find(rl, type, rid);
2431	if (!rle) {
2432		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2433		    M_NOWAIT);
2434		if (!rle)
2435			panic("resource_list_add: can't record entry");
2436		SLIST_INSERT_HEAD(rl, rle, link);
2437		rle->type = type;
2438		rle->rid = rid;
2439		rle->res = NULL;
2440	}
2441
2442	if (rle->res)
2443		panic("resource_list_add: resource entry is busy");
2444
2445	rle->start = start;
2446	rle->end = end;
2447	rle->count = count;
2448}
2449
2450/**
2451 * @brief Find a resource entry by type and rid.
2452 *
2453 * @param rl		the resource list to search
2454 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2455 * @param rid		the resource identifier
2456 *
2457 * @returns the resource entry pointer or NULL if there is no such
2458 * entry.
2459 */
2460struct resource_list_entry *
2461resource_list_find(struct resource_list *rl, int type, int rid)
2462{
2463	struct resource_list_entry *rle;
2464
2465	SLIST_FOREACH(rle, rl, link) {
2466		if (rle->type == type && rle->rid == rid)
2467			return (rle);
2468	}
2469	return (NULL);
2470}
2471
2472/**
2473 * @brief Delete a resource entry.
2474 *
2475 * @param rl		the resource list to edit
2476 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2477 * @param rid		the resource identifier
2478 */
2479void
2480resource_list_delete(struct resource_list *rl, int type, int rid)
2481{
2482	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2483
2484	if (rle) {
2485		if (rle->res != NULL)
2486			panic("resource_list_delete: resource has not been released");
2487		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2488		free(rle, M_BUS);
2489	}
2490}
2491
2492/**
2493 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2494 *
2495 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2496 * and passing the allocation up to the parent of @p bus. This assumes
2497 * that the first entry of @c device_get_ivars(child) is a struct
2498 * resource_list. This also handles 'passthrough' allocations where a
2499 * child is a remote descendant of bus by passing the allocation up to
2500 * the parent of bus.
2501 *
2502 * Typically, a bus driver would store a list of child resources
2503 * somewhere in the child device's ivars (see device_get_ivars()) and
2504 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2505 * then call resource_list_alloc() to perform the allocation.
2506 *
2507 * @param rl		the resource list to allocate from
2508 * @param bus		the parent device of @p child
2509 * @param child		the device which is requesting an allocation
2510 * @param type		the type of resource to allocate
2511 * @param rid		a pointer to the resource identifier
2512 * @param start		hint at the start of the resource range - pass
2513 *			@c 0UL for any start address
2514 * @param end		hint at the end of the resource range - pass
2515 *			@c ~0UL for any end address
2516 * @param count		hint at the size of range required - pass @c 1
2517 *			for any size
2518 * @param flags		any extra flags to control the resource
2519 *			allocation - see @c RF_XXX flags in
2520 *			<sys/rman.h> for details
2521 *
2522 * @returns		the resource which was allocated or @c NULL if no
2523 *			resource could be allocated
2524 */
2525struct resource *
2526resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2527    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2528{
2529	struct resource_list_entry *rle = 0;
2530	int passthrough = (device_get_parent(child) != bus);
2531	int isdefault = (start == 0UL && end == ~0UL);
2532
2533	if (passthrough) {
2534		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2535		    type, rid, start, end, count, flags));
2536	}
2537
2538	rle = resource_list_find(rl, type, *rid);
2539
2540	if (!rle)
2541		return (NULL);		/* no resource of that type/rid */
2542
2543	if (rle->res)
2544		panic("resource_list_alloc: resource entry is busy");
2545
2546	if (isdefault) {
2547		start = rle->start;
2548		count = ulmax(count, rle->count);
2549		end = ulmax(rle->end, start + count - 1);
2550	}
2551
2552	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2553	    type, rid, start, end, count, flags);
2554
2555	/*
2556	 * Record the new range.
2557	 */
2558	if (rle->res) {
2559		rle->start = rman_get_start(rle->res);
2560		rle->end = rman_get_end(rle->res);
2561		rle->count = count;
2562	}
2563
2564	return (rle->res);
2565}
2566
2567/**
2568 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2569 *
2570 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2571 * used with resource_list_alloc().
2572 *
2573 * @param rl		the resource list which was allocated from
2574 * @param bus		the parent device of @p child
2575 * @param child		the device which is requesting a release
2576 * @param type		the type of resource to allocate
2577 * @param rid		the resource identifier
2578 * @param res		the resource to release
2579 *
2580 * @retval 0		success
2581 * @retval non-zero	a standard unix error code indicating what
2582 *			error condition prevented the operation
2583 */
2584int
2585resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2586    int type, int rid, struct resource *res)
2587{
2588	struct resource_list_entry *rle = 0;
2589	int passthrough = (device_get_parent(child) != bus);
2590	int error;
2591
2592	if (passthrough) {
2593		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2594		    type, rid, res));
2595	}
2596
2597	rle = resource_list_find(rl, type, rid);
2598
2599	if (!rle)
2600		panic("resource_list_release: can't find resource");
2601	if (!rle->res)
2602		panic("resource_list_release: resource entry is not busy");
2603
2604	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2605	    type, rid, res);
2606	if (error)
2607		return (error);
2608
2609	rle->res = NULL;
2610	return (0);
2611}
2612
2613/**
2614 * @brief Print a description of resources in a resource list
2615 *
2616 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2617 * The name is printed if at least one resource of the given type is available.
2618 * The format is used to print resource start and end.
2619 *
2620 * @param rl		the resource list to print
2621 * @param name		the name of @p type, e.g. @c "memory"
2622 * @param type		type type of resource entry to print
2623 * @param format	printf(9) format string to print resource
2624 *			start and end values
2625 *
2626 * @returns		the number of characters printed
2627 */
2628int
2629resource_list_print_type(struct resource_list *rl, const char *name, int type,
2630    const char *format)
2631{
2632	struct resource_list_entry *rle;
2633	int printed, retval;
2634
2635	printed = 0;
2636	retval = 0;
2637	/* Yes, this is kinda cheating */
2638	SLIST_FOREACH(rle, rl, link) {
2639		if (rle->type == type) {
2640			if (printed == 0)
2641				retval += printf(" %s ", name);
2642			else
2643				retval += printf(",");
2644			printed++;
2645			retval += printf(format, rle->start);
2646			if (rle->count > 1) {
2647				retval += printf("-");
2648				retval += printf(format, rle->start +
2649						 rle->count - 1);
2650			}
2651		}
2652	}
2653	return (retval);
2654}
2655
2656/**
2657 * @brief Helper function for implementing DEVICE_PROBE()
2658 *
2659 * This function can be used to help implement the DEVICE_PROBE() for
2660 * a bus (i.e. a device which has other devices attached to it). It
2661 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2662 * devclass.
2663 */
2664int
2665bus_generic_probe(device_t dev)
2666{
2667	devclass_t dc = dev->devclass;
2668	driverlink_t dl;
2669
2670	TAILQ_FOREACH(dl, &dc->drivers, link) {
2671		DEVICE_IDENTIFY(dl->driver, dev);
2672	}
2673
2674	return (0);
2675}
2676
2677/**
2678 * @brief Helper function for implementing DEVICE_ATTACH()
2679 *
2680 * This function can be used to help implement the DEVICE_ATTACH() for
2681 * a bus. It calls device_probe_and_attach() for each of the device's
2682 * children.
2683 */
2684int
2685bus_generic_attach(device_t dev)
2686{
2687	device_t child;
2688
2689	TAILQ_FOREACH(child, &dev->children, link) {
2690		device_probe_and_attach(child);
2691	}
2692
2693	return (0);
2694}
2695
2696/**
2697 * @brief Helper function for implementing DEVICE_DETACH()
2698 *
2699 * This function can be used to help implement the DEVICE_DETACH() for
2700 * a bus. It calls device_detach() for each of the device's
2701 * children.
2702 */
2703int
2704bus_generic_detach(device_t dev)
2705{
2706	device_t child;
2707	int error;
2708
2709	if (dev->state != DS_ATTACHED)
2710		return (EBUSY);
2711
2712	TAILQ_FOREACH(child, &dev->children, link) {
2713		if ((error = device_detach(child)) != 0)
2714			return (error);
2715	}
2716
2717	return (0);
2718}
2719
2720/**
2721 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2722 *
2723 * This function can be used to help implement the DEVICE_SHUTDOWN()
2724 * for a bus. It calls device_shutdown() for each of the device's
2725 * children.
2726 */
2727int
2728bus_generic_shutdown(device_t dev)
2729{
2730	device_t child;
2731
2732	TAILQ_FOREACH(child, &dev->children, link) {
2733		device_shutdown(child);
2734	}
2735
2736	return (0);
2737}
2738
2739/**
2740 * @brief Helper function for implementing DEVICE_SUSPEND()
2741 *
2742 * This function can be used to help implement the DEVICE_SUSPEND()
2743 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2744 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2745 * operation is aborted and any devices which were suspended are
2746 * resumed immediately by calling their DEVICE_RESUME() methods.
2747 */
2748int
2749bus_generic_suspend(device_t dev)
2750{
2751	int		error;
2752	device_t	child, child2;
2753
2754	TAILQ_FOREACH(child, &dev->children, link) {
2755		error = DEVICE_SUSPEND(child);
2756		if (error) {
2757			for (child2 = TAILQ_FIRST(&dev->children);
2758			     child2 && child2 != child;
2759			     child2 = TAILQ_NEXT(child2, link))
2760				DEVICE_RESUME(child2);
2761			return (error);
2762		}
2763	}
2764	return (0);
2765}
2766
2767/**
2768 * @brief Helper function for implementing DEVICE_RESUME()
2769 *
2770 * This function can be used to help implement the DEVICE_RESUME() for
2771 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2772 */
2773int
2774bus_generic_resume(device_t dev)
2775{
2776	device_t	child;
2777
2778	TAILQ_FOREACH(child, &dev->children, link) {
2779		DEVICE_RESUME(child);
2780		/* if resume fails, there's nothing we can usefully do... */
2781	}
2782	return (0);
2783}
2784
2785/**
2786 * @brief Helper function for implementing BUS_PRINT_CHILD().
2787 *
2788 * This function prints the first part of the ascii representation of
2789 * @p child, including its name, unit and description (if any - see
2790 * device_set_desc()).
2791 *
2792 * @returns the number of characters printed
2793 */
2794int
2795bus_print_child_header(device_t dev, device_t child)
2796{
2797	int	retval = 0;
2798
2799	if (device_get_desc(child)) {
2800		retval += device_printf(child, "<%s>", device_get_desc(child));
2801	} else {
2802		retval += printf("%s", device_get_nameunit(child));
2803	}
2804
2805	return (retval);
2806}
2807
2808/**
2809 * @brief Helper function for implementing BUS_PRINT_CHILD().
2810 *
2811 * This function prints the last part of the ascii representation of
2812 * @p child, which consists of the string @c " on " followed by the
2813 * name and unit of the @p dev.
2814 *
2815 * @returns the number of characters printed
2816 */
2817int
2818bus_print_child_footer(device_t dev, device_t child)
2819{
2820	return (printf(" on %s\n", device_get_nameunit(dev)));
2821}
2822
2823/**
2824 * @brief Helper function for implementing BUS_PRINT_CHILD().
2825 *
2826 * This function simply calls bus_print_child_header() followed by
2827 * bus_print_child_footer().
2828 *
2829 * @returns the number of characters printed
2830 */
2831int
2832bus_generic_print_child(device_t dev, device_t child)
2833{
2834	int	retval = 0;
2835
2836	retval += bus_print_child_header(dev, child);
2837	retval += bus_print_child_footer(dev, child);
2838
2839	return (retval);
2840}
2841
2842/**
2843 * @brief Stub function for implementing BUS_READ_IVAR().
2844 *
2845 * @returns ENOENT
2846 */
2847int
2848bus_generic_read_ivar(device_t dev, device_t child, int index,
2849    uintptr_t * result)
2850{
2851	return (ENOENT);
2852}
2853
2854/**
2855 * @brief Stub function for implementing BUS_WRITE_IVAR().
2856 *
2857 * @returns ENOENT
2858 */
2859int
2860bus_generic_write_ivar(device_t dev, device_t child, int index,
2861    uintptr_t value)
2862{
2863	return (ENOENT);
2864}
2865
2866/**
2867 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
2868 *
2869 * @returns NULL
2870 */
2871struct resource_list *
2872bus_generic_get_resource_list(device_t dev, device_t child)
2873{
2874	return (NULL);
2875}
2876
2877/**
2878 * @brief Helper function for implementing BUS_DRIVER_ADDED().
2879 *
2880 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
2881 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
2882 * and then calls device_probe_and_attach() for each unattached child.
2883 */
2884void
2885bus_generic_driver_added(device_t dev, driver_t *driver)
2886{
2887	device_t child;
2888
2889	DEVICE_IDENTIFY(driver, dev);
2890	TAILQ_FOREACH(child, &dev->children, link) {
2891		if (child->state == DS_NOTPRESENT ||
2892		    (child->flags & DF_REBID))
2893			device_probe_and_attach(child);
2894	}
2895}
2896
2897/**
2898 * @brief Helper function for implementing BUS_SETUP_INTR().
2899 *
2900 * This simple implementation of BUS_SETUP_INTR() simply calls the
2901 * BUS_SETUP_INTR() method of the parent of @p dev.
2902 */
2903int
2904bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2905    int flags, driver_intr_t *intr, void *arg, void **cookiep)
2906{
2907	/* Propagate up the bus hierarchy until someone handles it. */
2908	if (dev->parent)
2909		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
2910		    intr, arg, cookiep));
2911	return (EINVAL);
2912}
2913
2914/**
2915 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
2916 *
2917 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
2918 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
2919 */
2920int
2921bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2922    void *cookie)
2923{
2924	/* Propagate up the bus hierarchy until someone handles it. */
2925	if (dev->parent)
2926		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2927	return (EINVAL);
2928}
2929
2930/**
2931 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
2932 *
2933 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
2934 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
2935 */
2936struct resource *
2937bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2938    u_long start, u_long end, u_long count, u_int flags)
2939{
2940	/* Propagate up the bus hierarchy until someone handles it. */
2941	if (dev->parent)
2942		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2943		    start, end, count, flags));
2944	return (NULL);
2945}
2946
2947/**
2948 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
2949 *
2950 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
2951 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
2952 */
2953int
2954bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2955    struct resource *r)
2956{
2957	/* Propagate up the bus hierarchy until someone handles it. */
2958	if (dev->parent)
2959		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
2960		    r));
2961	return (EINVAL);
2962}
2963
2964/**
2965 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
2966 *
2967 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
2968 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
2969 */
2970int
2971bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2972    struct resource *r)
2973{
2974	/* Propagate up the bus hierarchy until someone handles it. */
2975	if (dev->parent)
2976		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
2977		    r));
2978	return (EINVAL);
2979}
2980
2981/**
2982 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
2983 *
2984 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
2985 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
2986 */
2987int
2988bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2989    int rid, struct resource *r)
2990{
2991	/* Propagate up the bus hierarchy until someone handles it. */
2992	if (dev->parent)
2993		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2994		    r));
2995	return (EINVAL);
2996}
2997
2998/**
2999 * @brief Helper function for implementing BUS_CONFIG_INTR().
3000 *
3001 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3002 * BUS_CONFIG_INTR() method of the parent of @p dev.
3003 */
3004int
3005bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3006    enum intr_polarity pol)
3007{
3008
3009	/* Propagate up the bus hierarchy until someone handles it. */
3010	if (dev->parent)
3011		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3012	return (EINVAL);
3013}
3014
3015/**
3016 * @brief Helper function for implementing BUS_GET_RESOURCE().
3017 *
3018 * This implementation of BUS_GET_RESOURCE() uses the
3019 * resource_list_find() function to do most of the work. It calls
3020 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3021 * search.
3022 */
3023int
3024bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3025    u_long *startp, u_long *countp)
3026{
3027	struct resource_list *		rl = NULL;
3028	struct resource_list_entry *	rle = NULL;
3029
3030	rl = BUS_GET_RESOURCE_LIST(dev, child);
3031	if (!rl)
3032		return (EINVAL);
3033
3034	rle = resource_list_find(rl, type, rid);
3035	if (!rle)
3036		return (ENOENT);
3037
3038	if (startp)
3039		*startp = rle->start;
3040	if (countp)
3041		*countp = rle->count;
3042
3043	return (0);
3044}
3045
3046/**
3047 * @brief Helper function for implementing BUS_SET_RESOURCE().
3048 *
3049 * This implementation of BUS_SET_RESOURCE() uses the
3050 * resource_list_add() function to do most of the work. It calls
3051 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3052 * edit.
3053 */
3054int
3055bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3056    u_long start, u_long count)
3057{
3058	struct resource_list *		rl = NULL;
3059
3060	rl = BUS_GET_RESOURCE_LIST(dev, child);
3061	if (!rl)
3062		return (EINVAL);
3063
3064	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3065
3066	return (0);
3067}
3068
3069/**
3070 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3071 *
3072 * This implementation of BUS_DELETE_RESOURCE() uses the
3073 * resource_list_delete() function to do most of the work. It calls
3074 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3075 * edit.
3076 */
3077void
3078bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3079{
3080	struct resource_list *		rl = NULL;
3081
3082	rl = BUS_GET_RESOURCE_LIST(dev, child);
3083	if (!rl)
3084		return;
3085
3086	resource_list_delete(rl, type, rid);
3087
3088	return;
3089}
3090
3091/**
3092 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3093 *
3094 * This implementation of BUS_RELEASE_RESOURCE() uses the
3095 * resource_list_release() function to do most of the work. It calls
3096 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3097 */
3098int
3099bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3100    int rid, struct resource *r)
3101{
3102	struct resource_list *		rl = NULL;
3103
3104	rl = BUS_GET_RESOURCE_LIST(dev, child);
3105	if (!rl)
3106		return (EINVAL);
3107
3108	return (resource_list_release(rl, dev, child, type, rid, r));
3109}
3110
3111/**
3112 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3113 *
3114 * This implementation of BUS_ALLOC_RESOURCE() uses the
3115 * resource_list_alloc() function to do most of the work. It calls
3116 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3117 */
3118struct resource *
3119bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3120    int *rid, u_long start, u_long end, u_long count, u_int flags)
3121{
3122	struct resource_list *		rl = NULL;
3123
3124	rl = BUS_GET_RESOURCE_LIST(dev, child);
3125	if (!rl)
3126		return (NULL);
3127
3128	return (resource_list_alloc(rl, dev, child, type, rid,
3129	    start, end, count, flags));
3130}
3131
3132/**
3133 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3134 *
3135 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3136 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3137 */
3138int
3139bus_generic_child_present(device_t dev, device_t child)
3140{
3141	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3142}
3143
3144/*
3145 * Some convenience functions to make it easier for drivers to use the
3146 * resource-management functions.  All these really do is hide the
3147 * indirection through the parent's method table, making for slightly
3148 * less-wordy code.  In the future, it might make sense for this code
3149 * to maintain some sort of a list of resources allocated by each device.
3150 */
3151
3152/**
3153 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3154 *
3155 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3156 * parent of @p dev.
3157 */
3158struct resource *
3159bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3160    u_long count, u_int flags)
3161{
3162	if (dev->parent == 0)
3163		return (0);
3164	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3165	    count, flags));
3166}
3167
3168/**
3169 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3170 *
3171 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3172 * parent of @p dev.
3173 */
3174int
3175bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3176{
3177	if (dev->parent == 0)
3178		return (EINVAL);
3179	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3180}
3181
3182/**
3183 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3184 *
3185 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3186 * parent of @p dev.
3187 */
3188int
3189bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3190{
3191	if (dev->parent == 0)
3192		return (EINVAL);
3193	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3194}
3195
3196/**
3197 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3198 *
3199 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3200 * parent of @p dev.
3201 */
3202int
3203bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3204{
3205	if (dev->parent == 0)
3206		return (EINVAL);
3207	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3208}
3209
3210/**
3211 * @brief Wrapper function for BUS_SETUP_INTR().
3212 *
3213 * This function simply calls the BUS_SETUP_INTR() method of the
3214 * parent of @p dev.
3215 */
3216int
3217bus_setup_intr(device_t dev, struct resource *r, int flags,
3218    driver_intr_t handler, void *arg, void **cookiep)
3219{
3220	int error;
3221
3222	if (dev->parent != 0) {
3223		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3224		    !debug_mpsafenet)
3225			flags &= ~INTR_MPSAFE;
3226		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3227		    handler, arg, cookiep);
3228		if (error == 0) {
3229			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3230				device_printf(dev, "[GIANT-LOCKED]\n");
3231			if (bootverbose && (flags & INTR_MPSAFE))
3232				device_printf(dev, "[MPSAFE]\n");
3233			if (flags & INTR_FAST)
3234				device_printf(dev, "[FAST]\n");
3235		}
3236	} else
3237		error = EINVAL;
3238	return (error);
3239}
3240
3241/**
3242 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3243 *
3244 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3245 * parent of @p dev.
3246 */
3247int
3248bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3249{
3250	if (dev->parent == 0)
3251		return (EINVAL);
3252	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3253}
3254
3255/**
3256 * @brief Wrapper function for BUS_SET_RESOURCE().
3257 *
3258 * This function simply calls the BUS_SET_RESOURCE() method of the
3259 * parent of @p dev.
3260 */
3261int
3262bus_set_resource(device_t dev, int type, int rid,
3263    u_long start, u_long count)
3264{
3265	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3266	    start, count));
3267}
3268
3269/**
3270 * @brief Wrapper function for BUS_GET_RESOURCE().
3271 *
3272 * This function simply calls the BUS_GET_RESOURCE() method of the
3273 * parent of @p dev.
3274 */
3275int
3276bus_get_resource(device_t dev, int type, int rid,
3277    u_long *startp, u_long *countp)
3278{
3279	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3280	    startp, countp));
3281}
3282
3283/**
3284 * @brief Wrapper function for BUS_GET_RESOURCE().
3285 *
3286 * This function simply calls the BUS_GET_RESOURCE() method of the
3287 * parent of @p dev and returns the start value.
3288 */
3289u_long
3290bus_get_resource_start(device_t dev, int type, int rid)
3291{
3292	u_long start, count;
3293	int error;
3294
3295	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3296	    &start, &count);
3297	if (error)
3298		return (0);
3299	return (start);
3300}
3301
3302/**
3303 * @brief Wrapper function for BUS_GET_RESOURCE().
3304 *
3305 * This function simply calls the BUS_GET_RESOURCE() method of the
3306 * parent of @p dev and returns the count value.
3307 */
3308u_long
3309bus_get_resource_count(device_t dev, int type, int rid)
3310{
3311	u_long start, count;
3312	int error;
3313
3314	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3315	    &start, &count);
3316	if (error)
3317		return (0);
3318	return (count);
3319}
3320
3321/**
3322 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3323 *
3324 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3325 * parent of @p dev.
3326 */
3327void
3328bus_delete_resource(device_t dev, int type, int rid)
3329{
3330	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3331}
3332
3333/**
3334 * @brief Wrapper function for BUS_CHILD_PRESENT().
3335 *
3336 * This function simply calls the BUS_CHILD_PRESENT() method of the
3337 * parent of @p dev.
3338 */
3339int
3340bus_child_present(device_t child)
3341{
3342	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3343}
3344
3345/**
3346 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3347 *
3348 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3349 * parent of @p dev.
3350 */
3351int
3352bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3353{
3354	device_t parent;
3355
3356	parent = device_get_parent(child);
3357	if (parent == NULL) {
3358		*buf = '\0';
3359		return (0);
3360	}
3361	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3362}
3363
3364/**
3365 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3366 *
3367 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3368 * parent of @p dev.
3369 */
3370int
3371bus_child_location_str(device_t child, char *buf, size_t buflen)
3372{
3373	device_t parent;
3374
3375	parent = device_get_parent(child);
3376	if (parent == NULL) {
3377		*buf = '\0';
3378		return (0);
3379	}
3380	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3381}
3382
3383static int
3384root_print_child(device_t dev, device_t child)
3385{
3386	int	retval = 0;
3387
3388	retval += bus_print_child_header(dev, child);
3389	retval += printf("\n");
3390
3391	return (retval);
3392}
3393
3394static int
3395root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3396    void **cookiep)
3397{
3398	/*
3399	 * If an interrupt mapping gets to here something bad has happened.
3400	 */
3401	panic("root_setup_intr");
3402}
3403
3404/*
3405 * If we get here, assume that the device is permanant and really is
3406 * present in the system.  Removable bus drivers are expected to intercept
3407 * this call long before it gets here.  We return -1 so that drivers that
3408 * really care can check vs -1 or some ERRNO returned higher in the food
3409 * chain.
3410 */
3411static int
3412root_child_present(device_t dev, device_t child)
3413{
3414	return (-1);
3415}
3416
3417static kobj_method_t root_methods[] = {
3418	/* Device interface */
3419	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3420	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3421	KOBJMETHOD(device_resume,	bus_generic_resume),
3422
3423	/* Bus interface */
3424	KOBJMETHOD(bus_print_child,	root_print_child),
3425	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3426	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3427	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3428	KOBJMETHOD(bus_child_present,	root_child_present),
3429
3430	{ 0, 0 }
3431};
3432
3433static driver_t root_driver = {
3434	"root",
3435	root_methods,
3436	1,			/* no softc */
3437};
3438
3439device_t	root_bus;
3440devclass_t	root_devclass;
3441
3442static int
3443root_bus_module_handler(module_t mod, int what, void* arg)
3444{
3445	switch (what) {
3446	case MOD_LOAD:
3447		TAILQ_INIT(&bus_data_devices);
3448		kobj_class_compile((kobj_class_t) &root_driver);
3449		root_bus = make_device(NULL, "root", 0);
3450		root_bus->desc = "System root bus";
3451		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3452		root_bus->driver = &root_driver;
3453		root_bus->state = DS_ATTACHED;
3454		root_devclass = devclass_find_internal("root", 0, FALSE);
3455		devinit();
3456		return (0);
3457
3458	case MOD_SHUTDOWN:
3459		device_shutdown(root_bus);
3460		return (0);
3461	default:
3462		return (EOPNOTSUPP);
3463	}
3464
3465	return (0);
3466}
3467
3468static moduledata_t root_bus_mod = {
3469	"rootbus",
3470	root_bus_module_handler,
3471	0
3472};
3473DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3474
3475/**
3476 * @brief Automatically configure devices
3477 *
3478 * This function begins the autoconfiguration process by calling
3479 * device_probe_and_attach() for each child of the @c root0 device.
3480 */
3481void
3482root_bus_configure(void)
3483{
3484	device_t dev;
3485
3486	PDEBUG(("."));
3487
3488	TAILQ_FOREACH(dev, &root_bus->children, link) {
3489		device_probe_and_attach(dev);
3490	}
3491}
3492
3493/**
3494 * @brief Module handler for registering device drivers
3495 *
3496 * This module handler is used to automatically register device
3497 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3498 * devclass_add_driver() for the driver described by the
3499 * driver_module_data structure pointed to by @p arg
3500 */
3501int
3502driver_module_handler(module_t mod, int what, void *arg)
3503{
3504	int error;
3505	struct driver_module_data *dmd;
3506	devclass_t bus_devclass;
3507	kobj_class_t driver;
3508
3509	dmd = (struct driver_module_data *)arg;
3510	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3511	error = 0;
3512
3513	switch (what) {
3514	case MOD_LOAD:
3515		if (dmd->dmd_chainevh)
3516			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3517
3518		driver = dmd->dmd_driver;
3519		PDEBUG(("Loading module: driver %s on bus %s",
3520		    DRIVERNAME(driver), dmd->dmd_busname));
3521		error = devclass_add_driver(bus_devclass, driver);
3522		if (error)
3523			break;
3524
3525		/*
3526		 * If the driver has any base classes, make the
3527		 * devclass inherit from the devclass of the driver's
3528		 * first base class. This will allow the system to
3529		 * search for drivers in both devclasses for children
3530		 * of a device using this driver.
3531		 */
3532		if (driver->baseclasses) {
3533			const char *parentname;
3534			parentname = driver->baseclasses[0]->name;
3535			*dmd->dmd_devclass =
3536				devclass_find_internal(driver->name,
3537				    parentname, TRUE);
3538		} else {
3539			*dmd->dmd_devclass =
3540				devclass_find_internal(driver->name, 0, TRUE);
3541		}
3542		break;
3543
3544	case MOD_UNLOAD:
3545		PDEBUG(("Unloading module: driver %s from bus %s",
3546		    DRIVERNAME(dmd->dmd_driver),
3547		    dmd->dmd_busname));
3548		error = devclass_delete_driver(bus_devclass,
3549		    dmd->dmd_driver);
3550
3551		if (!error && dmd->dmd_chainevh)
3552			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3553		break;
3554	default:
3555		error = EOPNOTSUPP;
3556		break;
3557	}
3558
3559	return (error);
3560}
3561
3562#ifdef BUS_DEBUG
3563
3564/* the _short versions avoid iteration by not calling anything that prints
3565 * more than oneliners. I love oneliners.
3566 */
3567
3568static void
3569print_device_short(device_t dev, int indent)
3570{
3571	if (!dev)
3572		return;
3573
3574	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3575	    dev->unit, dev->desc,
3576	    (dev->parent? "":"no "),
3577	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3578	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3579	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3580	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3581	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3582	    (dev->flags&DF_REBID? "rebiddable,":""),
3583	    (dev->ivars? "":"no "),
3584	    (dev->softc? "":"no "),
3585	    dev->busy));
3586}
3587
3588static void
3589print_device(device_t dev, int indent)
3590{
3591	if (!dev)
3592		return;
3593
3594	print_device_short(dev, indent);
3595
3596	indentprintf(("Parent:\n"));
3597	print_device_short(dev->parent, indent+1);
3598	indentprintf(("Driver:\n"));
3599	print_driver_short(dev->driver, indent+1);
3600	indentprintf(("Devclass:\n"));
3601	print_devclass_short(dev->devclass, indent+1);
3602}
3603
3604void
3605print_device_tree_short(device_t dev, int indent)
3606/* print the device and all its children (indented) */
3607{
3608	device_t child;
3609
3610	if (!dev)
3611		return;
3612
3613	print_device_short(dev, indent);
3614
3615	TAILQ_FOREACH(child, &dev->children, link) {
3616		print_device_tree_short(child, indent+1);
3617	}
3618}
3619
3620void
3621print_device_tree(device_t dev, int indent)
3622/* print the device and all its children (indented) */
3623{
3624	device_t child;
3625
3626	if (!dev)
3627		return;
3628
3629	print_device(dev, indent);
3630
3631	TAILQ_FOREACH(child, &dev->children, link) {
3632		print_device_tree(child, indent+1);
3633	}
3634}
3635
3636static void
3637print_driver_short(driver_t *driver, int indent)
3638{
3639	if (!driver)
3640		return;
3641
3642	indentprintf(("driver %s: softc size = %zd\n",
3643	    driver->name, driver->size));
3644}
3645
3646static void
3647print_driver(driver_t *driver, int indent)
3648{
3649	if (!driver)
3650		return;
3651
3652	print_driver_short(driver, indent);
3653}
3654
3655
3656static void
3657print_driver_list(driver_list_t drivers, int indent)
3658{
3659	driverlink_t driver;
3660
3661	TAILQ_FOREACH(driver, &drivers, link) {
3662		print_driver(driver->driver, indent);
3663	}
3664}
3665
3666static void
3667print_devclass_short(devclass_t dc, int indent)
3668{
3669	if ( !dc )
3670		return;
3671
3672	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3673}
3674
3675static void
3676print_devclass(devclass_t dc, int indent)
3677{
3678	int i;
3679
3680	if ( !dc )
3681		return;
3682
3683	print_devclass_short(dc, indent);
3684	indentprintf(("Drivers:\n"));
3685	print_driver_list(dc->drivers, indent+1);
3686
3687	indentprintf(("Devices:\n"));
3688	for (i = 0; i < dc->maxunit; i++)
3689		if (dc->devices[i])
3690			print_device(dc->devices[i], indent+1);
3691}
3692
3693void
3694print_devclass_list_short(void)
3695{
3696	devclass_t dc;
3697
3698	printf("Short listing of devclasses, drivers & devices:\n");
3699	TAILQ_FOREACH(dc, &devclasses, link) {
3700		print_devclass_short(dc, 0);
3701	}
3702}
3703
3704void
3705print_devclass_list(void)
3706{
3707	devclass_t dc;
3708
3709	printf("Full listing of devclasses, drivers & devices:\n");
3710	TAILQ_FOREACH(dc, &devclasses, link) {
3711		print_devclass(dc, 0);
3712	}
3713}
3714
3715#endif
3716
3717/*
3718 * User-space access to the device tree.
3719 *
3720 * We implement a small set of nodes:
3721 *
3722 * hw.bus			Single integer read method to obtain the
3723 *				current generation count.
3724 * hw.bus.devices		Reads the entire device tree in flat space.
3725 * hw.bus.rman			Resource manager interface
3726 *
3727 * We might like to add the ability to scan devclasses and/or drivers to
3728 * determine what else is currently loaded/available.
3729 */
3730
3731static int
3732sysctl_bus(SYSCTL_HANDLER_ARGS)
3733{
3734	struct u_businfo	ubus;
3735
3736	ubus.ub_version = BUS_USER_VERSION;
3737	ubus.ub_generation = bus_data_generation;
3738
3739	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3740}
3741SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3742    "bus-related data");
3743
3744static int
3745sysctl_devices(SYSCTL_HANDLER_ARGS)
3746{
3747	int			*name = (int *)arg1;
3748	u_int			namelen = arg2;
3749	int			index;
3750	struct device		*dev;
3751	struct u_device		udev;	/* XXX this is a bit big */
3752	int			error;
3753
3754	if (namelen != 2)
3755		return (EINVAL);
3756
3757	if (bus_data_generation_check(name[0]))
3758		return (EINVAL);
3759
3760	index = name[1];
3761
3762	/*
3763	 * Scan the list of devices, looking for the requested index.
3764	 */
3765	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3766		if (index-- == 0)
3767			break;
3768	}
3769	if (dev == NULL)
3770		return (ENOENT);
3771
3772	/*
3773	 * Populate the return array.
3774	 */
3775	udev.dv_handle = (uintptr_t)dev;
3776	udev.dv_parent = (uintptr_t)dev->parent;
3777	if (dev->nameunit == NULL)
3778		udev.dv_name[0] = '\0';
3779	else
3780		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3781
3782	if (dev->desc == NULL)
3783		udev.dv_desc[0] = '\0';
3784	else
3785		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3786	if (dev->driver == NULL || dev->driver->name == NULL)
3787		udev.dv_drivername[0] = '\0';
3788	else
3789		strlcpy(udev.dv_drivername, dev->driver->name,
3790		    sizeof(udev.dv_drivername));
3791	udev.dv_pnpinfo[0] = '\0';
3792	udev.dv_location[0] = '\0';
3793	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3794	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3795	udev.dv_devflags = dev->devflags;
3796	udev.dv_flags = dev->flags;
3797	udev.dv_state = dev->state;
3798	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3799	return (error);
3800}
3801
3802SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3803    "system device tree");
3804
3805/*
3806 * Sysctl interface for scanning the resource lists.
3807 *
3808 * We take two input parameters; the index into the list of resource
3809 * managers, and the resource offset into the list.
3810 */
3811static int
3812sysctl_rman(SYSCTL_HANDLER_ARGS)
3813{
3814	int			*name = (int *)arg1;
3815	u_int			namelen = arg2;
3816	int			rman_idx, res_idx;
3817	struct rman		*rm;
3818	struct resource		*res;
3819	struct u_rman		urm;
3820	struct u_resource	ures;
3821	int			error;
3822
3823	if (namelen != 3)
3824		return (EINVAL);
3825
3826	if (bus_data_generation_check(name[0]))
3827		return (EINVAL);
3828	rman_idx = name[1];
3829	res_idx = name[2];
3830
3831	/*
3832	 * Find the indexed resource manager
3833	 */
3834	TAILQ_FOREACH(rm, &rman_head, rm_link) {
3835		if (rman_idx-- == 0)
3836			break;
3837	}
3838	if (rm == NULL)
3839		return (ENOENT);
3840
3841	/*
3842	 * If the resource index is -1, we want details on the
3843	 * resource manager.
3844	 */
3845	if (res_idx == -1) {
3846		urm.rm_handle = (uintptr_t)rm;
3847		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
3848		urm.rm_start = rm->rm_start;
3849		urm.rm_size = rm->rm_end - rm->rm_start + 1;
3850		urm.rm_type = rm->rm_type;
3851
3852		error = SYSCTL_OUT(req, &urm, sizeof(urm));
3853		return (error);
3854	}
3855
3856	/*
3857	 * Find the indexed resource and return it.
3858	 */
3859	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
3860		if (res_idx-- == 0) {
3861			ures.r_handle = (uintptr_t)res;
3862			ures.r_parent = (uintptr_t)res->r_rm;
3863			ures.r_device = (uintptr_t)res->r_dev;
3864			if (res->r_dev != NULL) {
3865				if (device_get_name(res->r_dev) != NULL) {
3866					snprintf(ures.r_devname, RM_TEXTLEN,
3867					    "%s%d",
3868					    device_get_name(res->r_dev),
3869					    device_get_unit(res->r_dev));
3870				} else {
3871					strlcpy(ures.r_devname, "nomatch",
3872					    RM_TEXTLEN);
3873				}
3874			} else {
3875				ures.r_devname[0] = '\0';
3876			}
3877			ures.r_start = res->r_start;
3878			ures.r_size = res->r_end - res->r_start + 1;
3879			ures.r_flags = res->r_flags;
3880
3881			error = SYSCTL_OUT(req, &ures, sizeof(ures));
3882			return (error);
3883		}
3884	}
3885	return (ENOENT);
3886}
3887
3888SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
3889    "kernel resource manager");
3890
3891int
3892bus_data_generation_check(int generation)
3893{
3894	if (generation != bus_data_generation)
3895		return (1);
3896
3897	/* XXX generate optimised lists here? */
3898	return (0);
3899}
3900
3901void
3902bus_data_generation_update(void)
3903{
3904	bus_data_generation++;
3905}
3906