subr_bus.c revision 137147
1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/subr_bus.c 137147 2004-11-03 09:06:45Z phk $");
29
30#include "opt_bus.h"
31
32#define __RMAN_RESOURCE_VISIBLE
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/mutex.h>
42#include <sys/poll.h>
43#include <sys/proc.h>
44#include <sys/condvar.h>
45#include <sys/queue.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48#include <sys/selinfo.h>
49#include <sys/signalvar.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/uio.h>
53#include <sys/bus.h>
54
55#include <machine/stdarg.h>
56
57#include <vm/uma.h>
58
59SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
60SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
61
62/*
63 * Used to attach drivers to devclasses.
64 */
65typedef struct driverlink *driverlink_t;
66struct driverlink {
67	kobj_class_t	driver;
68	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
69};
70
71/*
72 * Forward declarations
73 */
74typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
75typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
76typedef TAILQ_HEAD(device_list, device) device_list_t;
77
78struct devclass {
79	TAILQ_ENTRY(devclass) link;
80	devclass_t	parent;		/* parent in devclass hierarchy */
81	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
82	char		*name;
83	device_t	*devices;	/* array of devices indexed by unit */
84	int		maxunit;	/* size of devices array */
85
86	struct sysctl_ctx_list sysctl_ctx;
87	struct sysctl_oid *sysctl_tree;
88};
89
90/**
91 * @brief Implementation of device.
92 */
93struct device {
94	/*
95	 * A device is a kernel object. The first field must be the
96	 * current ops table for the object.
97	 */
98	KOBJ_FIELDS;
99
100	/*
101	 * Device hierarchy.
102	 */
103	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
104	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
105	device_t	parent;		/**< parent of this device  */
106	device_list_t	children;	/**< list of child devices */
107
108	/*
109	 * Details of this device.
110	 */
111	driver_t	*driver;	/**< current driver */
112	devclass_t	devclass;	/**< current device class */
113	int		unit;		/**< current unit number */
114	char*		nameunit;	/**< name+unit e.g. foodev0 */
115	char*		desc;		/**< driver specific description */
116	int		busy;		/**< count of calls to device_busy() */
117	device_state_t	state;		/**< current device state  */
118	u_int32_t	devflags;	/**< api level flags for device_get_flags() */
119	u_short		flags;		/**< internal device flags  */
120#define	DF_ENABLED	1		/* device should be probed/attached */
121#define	DF_FIXEDCLASS	2		/* devclass specified at create time */
122#define	DF_WILDCARD	4		/* unit was originally wildcard */
123#define	DF_DESCMALLOCED	8		/* description was malloced */
124#define	DF_QUIET	16		/* don't print verbose attach message */
125#define	DF_DONENOMATCH	32		/* don't execute DEVICE_NOMATCH again */
126#define	DF_EXTERNALSOFTC 64		/* softc not allocated by us */
127#define DF_REBID	128	/* Can rebid after attach */
128	u_char	order;			/**< order from device_add_child_ordered() */
129	u_char	pad;
130	void	*ivars;			/**< instance variables  */
131	void	*softc;			/**< current driver's variables  */
132
133	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
134	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
135};
136
137static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
138static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
139
140#ifdef BUS_DEBUG
141
142static int bus_debug = 1;
143TUNABLE_INT("bus.debug", &bus_debug);
144SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
145    "Debug bus code");
146
147#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
148#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
149#define DRIVERNAME(d)	((d)? d->name : "no driver")
150#define DEVCLANAME(d)	((d)? d->name : "no devclass")
151
152/**
153 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
154 * prevent syslog from deleting initial spaces
155 */
156#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
157
158static void print_device_short(device_t dev, int indent);
159static void print_device(device_t dev, int indent);
160void print_device_tree_short(device_t dev, int indent);
161void print_device_tree(device_t dev, int indent);
162static void print_driver_short(driver_t *driver, int indent);
163static void print_driver(driver_t *driver, int indent);
164static void print_driver_list(driver_list_t drivers, int indent);
165static void print_devclass_short(devclass_t dc, int indent);
166static void print_devclass(devclass_t dc, int indent);
167void print_devclass_list_short(void);
168void print_devclass_list(void);
169
170#else
171/* Make the compiler ignore the function calls */
172#define PDEBUG(a)			/* nop */
173#define DEVICENAME(d)			/* nop */
174#define DRIVERNAME(d)			/* nop */
175#define DEVCLANAME(d)			/* nop */
176
177#define print_device_short(d,i)		/* nop */
178#define print_device(d,i)		/* nop */
179#define print_device_tree_short(d,i)	/* nop */
180#define print_device_tree(d,i)		/* nop */
181#define print_driver_short(d,i)		/* nop */
182#define print_driver(d,i)		/* nop */
183#define print_driver_list(d,i)		/* nop */
184#define print_devclass_short(d,i)	/* nop */
185#define print_devclass(d,i)		/* nop */
186#define print_devclass_list_short()	/* nop */
187#define print_devclass_list()		/* nop */
188#endif
189
190/*
191 * dev sysctl tree
192 */
193
194enum {
195	DEVCLASS_SYSCTL_PARENT,
196};
197
198static int
199devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
200{
201	devclass_t dc = (devclass_t)arg1;
202	const char *value;
203	char *buf;
204	int error;
205
206	buf = NULL;
207	switch (arg2) {
208	case DEVCLASS_SYSCTL_PARENT:
209		value = dc->parent ? dc->parent->name : "";
210		break;
211	default:
212		return (EINVAL);
213	}
214	error = SYSCTL_OUT(req, value, strlen(value));
215	if (buf != NULL)
216		free(buf, M_BUS);
217	return (error);
218}
219
220static void
221devclass_sysctl_init(devclass_t dc)
222{
223
224	if (dc->sysctl_tree != NULL)
225		return;
226	sysctl_ctx_init(&dc->sysctl_ctx);
227	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
228	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
229	    CTLFLAG_RD, 0, "");
230	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
231	    OID_AUTO, "%parent", CTLFLAG_RD,
232	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
233	    "parent class");
234}
235
236enum {
237	DEVICE_SYSCTL_DESC,
238	DEVICE_SYSCTL_DRIVER,
239	DEVICE_SYSCTL_LOCATION,
240	DEVICE_SYSCTL_PNPINFO,
241	DEVICE_SYSCTL_PARENT,
242};
243
244static int
245device_sysctl_handler(SYSCTL_HANDLER_ARGS)
246{
247	device_t dev = (device_t)arg1;
248	const char *value;
249	char *buf;
250	int error;
251
252	buf = NULL;
253	switch (arg2) {
254	case DEVICE_SYSCTL_DESC:
255		value = dev->desc ? dev->desc : "";
256		break;
257	case DEVICE_SYSCTL_DRIVER:
258		value = dev->driver ? dev->driver->name : "";
259		break;
260	case DEVICE_SYSCTL_LOCATION:
261		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
262		bus_child_location_str(dev, buf, 1024);
263		break;
264	case DEVICE_SYSCTL_PNPINFO:
265		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
266		bus_child_pnpinfo_str(dev, buf, 1024);
267		break;
268	case DEVICE_SYSCTL_PARENT:
269		value = dev->parent ? dev->parent->nameunit : "";
270		break;
271	default:
272		return (EINVAL);
273	}
274	error = SYSCTL_OUT(req, value, strlen(value));
275	if (buf != NULL)
276		free(buf, M_BUS);
277	return (error);
278}
279
280static void
281device_sysctl_init(device_t dev)
282{
283	devclass_t dc = dev->devclass;
284
285	if (dev->sysctl_tree != NULL)
286		return;
287	devclass_sysctl_init(dc);
288	sysctl_ctx_init(&dev->sysctl_ctx);
289	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
290	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
291	    dev->nameunit + strlen(dc->name),
292	    CTLFLAG_RD, 0, "");
293	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
294	    OID_AUTO, "%desc", CTLFLAG_RD,
295	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
296	    "device description");
297	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
298	    OID_AUTO, "%driver", CTLFLAG_RD,
299	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
300	    "device driver name");
301	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
302	    OID_AUTO, "%location", CTLFLAG_RD,
303	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
304	    "device location relative to parent");
305	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
306	    OID_AUTO, "%pnpinfo", CTLFLAG_RD,
307	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
308	    "device identification");
309	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
310	    OID_AUTO, "%parent", CTLFLAG_RD,
311	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
312	    "parent device");
313}
314
315static void
316device_sysctl_fini(device_t dev)
317{
318	if (dev->sysctl_tree == NULL)
319		return;
320	sysctl_ctx_free(&dev->sysctl_ctx);
321	dev->sysctl_tree = NULL;
322}
323
324/*
325 * /dev/devctl implementation
326 */
327
328/*
329 * This design allows only one reader for /dev/devctl.  This is not desirable
330 * in the long run, but will get a lot of hair out of this implementation.
331 * Maybe we should make this device a clonable device.
332 *
333 * Also note: we specifically do not attach a device to the device_t tree
334 * to avoid potential chicken and egg problems.  One could argue that all
335 * of this belongs to the root node.  One could also further argue that the
336 * sysctl interface that we have not might more properly be an ioctl
337 * interface, but at this stage of the game, I'm not inclined to rock that
338 * boat.
339 *
340 * I'm also not sure that the SIGIO support is done correctly or not, as
341 * I copied it from a driver that had SIGIO support that likely hasn't been
342 * tested since 3.4 or 2.2.8!
343 */
344
345static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
346static int devctl_disable = 0;
347TUNABLE_INT("hw.bus.devctl_disable", &devctl_disable);
348SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
349    sysctl_devctl_disable, "I", "devctl disable");
350
351static d_open_t		devopen;
352static d_close_t	devclose;
353static d_read_t		devread;
354static d_ioctl_t	devioctl;
355static d_poll_t		devpoll;
356
357#define CDEV_MAJOR 173
358static struct cdevsw dev_cdevsw = {
359	.d_version =	D_VERSION,
360	.d_flags =	D_NEEDGIANT,
361	.d_open =	devopen,
362	.d_close =	devclose,
363	.d_read =	devread,
364	.d_ioctl =	devioctl,
365	.d_poll =	devpoll,
366	.d_name =	"devctl",
367	.d_maj =	CDEV_MAJOR,
368};
369
370struct dev_event_info
371{
372	char *dei_data;
373	TAILQ_ENTRY(dev_event_info) dei_link;
374};
375
376TAILQ_HEAD(devq, dev_event_info);
377
378static struct dev_softc
379{
380	int	inuse;
381	int	nonblock;
382	struct mtx mtx;
383	struct cv cv;
384	struct selinfo sel;
385	struct devq devq;
386	struct proc *async_proc;
387} devsoftc;
388
389static struct cdev *devctl_dev;
390
391static void
392devinit(void)
393{
394	devctl_dev = make_dev(&dev_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
395	    "devctl");
396	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
397	cv_init(&devsoftc.cv, "dev cv");
398	TAILQ_INIT(&devsoftc.devq);
399}
400
401static int
402devopen(struct cdev *dev, int oflags, int devtype, d_thread_t *td)
403{
404	if (devsoftc.inuse)
405		return (EBUSY);
406	/* move to init */
407	devsoftc.inuse = 1;
408	devsoftc.nonblock = 0;
409	devsoftc.async_proc = NULL;
410	return (0);
411}
412
413static int
414devclose(struct cdev *dev, int fflag, int devtype, d_thread_t *td)
415{
416	devsoftc.inuse = 0;
417	mtx_lock(&devsoftc.mtx);
418	cv_broadcast(&devsoftc.cv);
419	mtx_unlock(&devsoftc.mtx);
420
421	return (0);
422}
423
424/*
425 * The read channel for this device is used to report changes to
426 * userland in realtime.  We are required to free the data as well as
427 * the n1 object because we allocate them separately.  Also note that
428 * we return one record at a time.  If you try to read this device a
429 * character at a time, you will loose the rest of the data.  Listening
430 * programs are expected to cope.
431 */
432static int
433devread(struct cdev *dev, struct uio *uio, int ioflag)
434{
435	struct dev_event_info *n1;
436	int rv;
437
438	mtx_lock(&devsoftc.mtx);
439	while (TAILQ_EMPTY(&devsoftc.devq)) {
440		if (devsoftc.nonblock) {
441			mtx_unlock(&devsoftc.mtx);
442			return (EAGAIN);
443		}
444		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
445		if (rv) {
446			/*
447			 * Need to translate ERESTART to EINTR here? -- jake
448			 */
449			mtx_unlock(&devsoftc.mtx);
450			return (rv);
451		}
452	}
453	n1 = TAILQ_FIRST(&devsoftc.devq);
454	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
455	mtx_unlock(&devsoftc.mtx);
456	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
457	free(n1->dei_data, M_BUS);
458	free(n1, M_BUS);
459	return (rv);
460}
461
462static	int
463devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, d_thread_t *td)
464{
465	switch (cmd) {
466
467	case FIONBIO:
468		if (*(int*)data)
469			devsoftc.nonblock = 1;
470		else
471			devsoftc.nonblock = 0;
472		return (0);
473	case FIOASYNC:
474		if (*(int*)data)
475			devsoftc.async_proc = td->td_proc;
476		else
477			devsoftc.async_proc = NULL;
478		return (0);
479
480		/* (un)Support for other fcntl() calls. */
481	case FIOCLEX:
482	case FIONCLEX:
483	case FIONREAD:
484	case FIOSETOWN:
485	case FIOGETOWN:
486	default:
487		break;
488	}
489	return (ENOTTY);
490}
491
492static	int
493devpoll(struct cdev *dev, int events, d_thread_t *td)
494{
495	int	revents = 0;
496
497	mtx_lock(&devsoftc.mtx);
498	if (events & (POLLIN | POLLRDNORM)) {
499		if (!TAILQ_EMPTY(&devsoftc.devq))
500			revents = events & (POLLIN | POLLRDNORM);
501		else
502			selrecord(td, &devsoftc.sel);
503	}
504	mtx_unlock(&devsoftc.mtx);
505
506	return (revents);
507}
508
509/**
510 * @brief Queue data to be read from the devctl device
511 *
512 * Generic interface to queue data to the devctl device.  It is
513 * assumed that @p data is properly formatted.  It is further assumed
514 * that @p data is allocated using the M_BUS malloc type.
515 */
516void
517devctl_queue_data(char *data)
518{
519	struct dev_event_info *n1 = NULL;
520	struct proc *p;
521
522	n1 = malloc(sizeof(*n1), M_BUS, M_NOWAIT);
523	if (n1 == NULL)
524		return;
525	n1->dei_data = data;
526	mtx_lock(&devsoftc.mtx);
527	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
528	cv_broadcast(&devsoftc.cv);
529	mtx_unlock(&devsoftc.mtx);
530	selwakeup(&devsoftc.sel);
531	p = devsoftc.async_proc;
532	if (p != NULL) {
533		PROC_LOCK(p);
534		psignal(p, SIGIO);
535		PROC_UNLOCK(p);
536	}
537}
538
539/**
540 * @brief Send a 'notification' to userland, using standard ways
541 */
542void
543devctl_notify(const char *system, const char *subsystem, const char *type,
544    const char *data)
545{
546	int len = 0;
547	char *msg;
548
549	if (system == NULL)
550		return;		/* BOGUS!  Must specify system. */
551	if (subsystem == NULL)
552		return;		/* BOGUS!  Must specify subsystem. */
553	if (type == NULL)
554		return;		/* BOGUS!  Must specify type. */
555	len += strlen(" system=") + strlen(system);
556	len += strlen(" subsystem=") + strlen(subsystem);
557	len += strlen(" type=") + strlen(type);
558	/* add in the data message plus newline. */
559	if (data != NULL)
560		len += strlen(data);
561	len += 3;	/* '!', '\n', and NUL */
562	msg = malloc(len, M_BUS, M_NOWAIT);
563	if (msg == NULL)
564		return;		/* Drop it on the floor */
565	snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n", system,
566	    subsystem, type, data);
567	devctl_queue_data(msg);
568}
569
570/*
571 * Common routine that tries to make sending messages as easy as possible.
572 * We allocate memory for the data, copy strings into that, but do not
573 * free it unless there's an error.  The dequeue part of the driver should
574 * free the data.  We don't send data when the device is disabled.  We do
575 * send data, even when we have no listeners, because we wish to avoid
576 * races relating to startup and restart of listening applications.
577 *
578 * devaddq is designed to string together the type of event, with the
579 * object of that event, plus the plug and play info and location info
580 * for that event.  This is likely most useful for devices, but less
581 * useful for other consumers of this interface.  Those should use
582 * the devctl_queue_data() interface instead.
583 */
584static void
585devaddq(const char *type, const char *what, device_t dev)
586{
587	char *data = NULL;
588	char *loc = NULL;
589	char *pnp = NULL;
590	const char *parstr;
591
592	if (devctl_disable)
593		return;
594	data = malloc(1024, M_BUS, M_NOWAIT);
595	if (data == NULL)
596		goto bad;
597
598	/* get the bus specific location of this device */
599	loc = malloc(1024, M_BUS, M_NOWAIT);
600	if (loc == NULL)
601		goto bad;
602	*loc = '\0';
603	bus_child_location_str(dev, loc, 1024);
604
605	/* Get the bus specific pnp info of this device */
606	pnp = malloc(1024, M_BUS, M_NOWAIT);
607	if (pnp == NULL)
608		goto bad;
609	*pnp = '\0';
610	bus_child_pnpinfo_str(dev, pnp, 1024);
611
612	/* Get the parent of this device, or / if high enough in the tree. */
613	if (device_get_parent(dev) == NULL)
614		parstr = ".";	/* Or '/' ? */
615	else
616		parstr = device_get_nameunit(device_get_parent(dev));
617	/* String it all together. */
618	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
619	  parstr);
620	free(loc, M_BUS);
621	free(pnp, M_BUS);
622	devctl_queue_data(data);
623	return;
624bad:
625	free(pnp, M_BUS);
626	free(loc, M_BUS);
627	free(data, M_BUS);
628	return;
629}
630
631/*
632 * A device was added to the tree.  We are called just after it successfully
633 * attaches (that is, probe and attach success for this device).  No call
634 * is made if a device is merely parented into the tree.  See devnomatch
635 * if probe fails.  If attach fails, no notification is sent (but maybe
636 * we should have a different message for this).
637 */
638static void
639devadded(device_t dev)
640{
641	char *pnp = NULL;
642	char *tmp = NULL;
643
644	pnp = malloc(1024, M_BUS, M_NOWAIT);
645	if (pnp == NULL)
646		goto fail;
647	tmp = malloc(1024, M_BUS, M_NOWAIT);
648	if (tmp == NULL)
649		goto fail;
650	*pnp = '\0';
651	bus_child_pnpinfo_str(dev, pnp, 1024);
652	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
653	devaddq("+", tmp, dev);
654fail:
655	if (pnp != NULL)
656		free(pnp, M_BUS);
657	if (tmp != NULL)
658		free(tmp, M_BUS);
659	return;
660}
661
662/*
663 * A device was removed from the tree.  We are called just before this
664 * happens.
665 */
666static void
667devremoved(device_t dev)
668{
669	char *pnp = NULL;
670	char *tmp = NULL;
671
672	pnp = malloc(1024, M_BUS, M_NOWAIT);
673	if (pnp == NULL)
674		goto fail;
675	tmp = malloc(1024, M_BUS, M_NOWAIT);
676	if (tmp == NULL)
677		goto fail;
678	*pnp = '\0';
679	bus_child_pnpinfo_str(dev, pnp, 1024);
680	snprintf(tmp, 1024, "%s %s", device_get_nameunit(dev), pnp);
681	devaddq("-", tmp, dev);
682fail:
683	if (pnp != NULL)
684		free(pnp, M_BUS);
685	if (tmp != NULL)
686		free(tmp, M_BUS);
687	return;
688}
689
690/*
691 * Called when there's no match for this device.  This is only called
692 * the first time that no match happens, so we don't keep getitng this
693 * message.  Should that prove to be undesirable, we can change it.
694 * This is called when all drivers that can attach to a given bus
695 * decline to accept this device.  Other errrors may not be detected.
696 */
697static void
698devnomatch(device_t dev)
699{
700	devaddq("?", "", dev);
701}
702
703static int
704sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
705{
706	struct dev_event_info *n1;
707	int dis, error;
708
709	dis = devctl_disable;
710	error = sysctl_handle_int(oidp, &dis, 0, req);
711	if (error || !req->newptr)
712		return (error);
713	mtx_lock(&devsoftc.mtx);
714	devctl_disable = dis;
715	if (dis) {
716		while (!TAILQ_EMPTY(&devsoftc.devq)) {
717			n1 = TAILQ_FIRST(&devsoftc.devq);
718			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
719			free(n1->dei_data, M_BUS);
720			free(n1, M_BUS);
721		}
722	}
723	mtx_unlock(&devsoftc.mtx);
724	return (0);
725}
726
727/* End of /dev/devctl code */
728
729TAILQ_HEAD(,device)	bus_data_devices;
730static int bus_data_generation = 1;
731
732kobj_method_t null_methods[] = {
733	{ 0, 0 }
734};
735
736DEFINE_CLASS(null, null_methods, 0);
737
738/*
739 * Devclass implementation
740 */
741
742static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
743
744
745/**
746 * @internal
747 * @brief Find or create a device class
748 *
749 * If a device class with the name @p classname exists, return it,
750 * otherwise if @p create is non-zero create and return a new device
751 * class.
752 *
753 * If @p parentname is non-NULL, the parent of the devclass is set to
754 * the devclass of that name.
755 *
756 * @param classname	the devclass name to find or create
757 * @param parentname	the parent devclass name or @c NULL
758 * @param create	non-zero to create a devclass
759 */
760static devclass_t
761devclass_find_internal(const char *classname, const char *parentname,
762		       int create)
763{
764	devclass_t dc;
765
766	PDEBUG(("looking for %s", classname));
767	if (!classname)
768		return (NULL);
769
770	TAILQ_FOREACH(dc, &devclasses, link) {
771		if (!strcmp(dc->name, classname))
772			break;
773	}
774
775	if (create && !dc) {
776		PDEBUG(("creating %s", classname));
777		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
778		    M_BUS, M_NOWAIT|M_ZERO);
779		if (!dc)
780			return (NULL);
781		dc->parent = NULL;
782		dc->name = (char*) (dc + 1);
783		strcpy(dc->name, classname);
784		TAILQ_INIT(&dc->drivers);
785		TAILQ_INSERT_TAIL(&devclasses, dc, link);
786
787		bus_data_generation_update();
788	}
789	if (parentname && dc && !dc->parent) {
790		dc->parent = devclass_find_internal(parentname, 0, FALSE);
791	}
792
793	return (dc);
794}
795
796/**
797 * @brief Create a device class
798 *
799 * If a device class with the name @p classname exists, return it,
800 * otherwise create and return a new device class.
801 *
802 * @param classname	the devclass name to find or create
803 */
804devclass_t
805devclass_create(const char *classname)
806{
807	return (devclass_find_internal(classname, 0, TRUE));
808}
809
810/**
811 * @brief Find a device class
812 *
813 * If a device class with the name @p classname exists, return it,
814 * otherwise return @c NULL.
815 *
816 * @param classname	the devclass name to find
817 */
818devclass_t
819devclass_find(const char *classname)
820{
821	return (devclass_find_internal(classname, 0, FALSE));
822}
823
824/**
825 * @brief Add a device driver to a device class
826 *
827 * Add a device driver to a devclass. This is normally called
828 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
829 * all devices in the devclass will be called to allow them to attempt
830 * to re-probe any unmatched children.
831 *
832 * @param dc		the devclass to edit
833 * @param driver	the driver to register
834 */
835int
836devclass_add_driver(devclass_t dc, driver_t *driver)
837{
838	driverlink_t dl;
839	int i;
840
841	PDEBUG(("%s", DRIVERNAME(driver)));
842
843	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
844	if (!dl)
845		return (ENOMEM);
846
847	/*
848	 * Compile the driver's methods. Also increase the reference count
849	 * so that the class doesn't get freed when the last instance
850	 * goes. This means we can safely use static methods and avoids a
851	 * double-free in devclass_delete_driver.
852	 */
853	kobj_class_compile((kobj_class_t) driver);
854
855	/*
856	 * Make sure the devclass which the driver is implementing exists.
857	 */
858	devclass_find_internal(driver->name, 0, TRUE);
859
860	dl->driver = driver;
861	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
862	driver->refs++;
863
864	/*
865	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
866	 */
867	for (i = 0; i < dc->maxunit; i++)
868		if (dc->devices[i])
869			BUS_DRIVER_ADDED(dc->devices[i], driver);
870
871	bus_data_generation_update();
872	return (0);
873}
874
875/**
876 * @brief Delete a device driver from a device class
877 *
878 * Delete a device driver from a devclass. This is normally called
879 * automatically by DRIVER_MODULE().
880 *
881 * If the driver is currently attached to any devices,
882 * devclass_delete_driver() will first attempt to detach from each
883 * device. If one of the detach calls fails, the driver will not be
884 * deleted.
885 *
886 * @param dc		the devclass to edit
887 * @param driver	the driver to unregister
888 */
889int
890devclass_delete_driver(devclass_t busclass, driver_t *driver)
891{
892	devclass_t dc = devclass_find(driver->name);
893	driverlink_t dl;
894	device_t dev;
895	int i;
896	int error;
897
898	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
899
900	if (!dc)
901		return (0);
902
903	/*
904	 * Find the link structure in the bus' list of drivers.
905	 */
906	TAILQ_FOREACH(dl, &busclass->drivers, link) {
907		if (dl->driver == driver)
908			break;
909	}
910
911	if (!dl) {
912		PDEBUG(("%s not found in %s list", driver->name,
913		    busclass->name));
914		return (ENOENT);
915	}
916
917	/*
918	 * Disassociate from any devices.  We iterate through all the
919	 * devices in the devclass of the driver and detach any which are
920	 * using the driver and which have a parent in the devclass which
921	 * we are deleting from.
922	 *
923	 * Note that since a driver can be in multiple devclasses, we
924	 * should not detach devices which are not children of devices in
925	 * the affected devclass.
926	 */
927	for (i = 0; i < dc->maxunit; i++) {
928		if (dc->devices[i]) {
929			dev = dc->devices[i];
930			if (dev->driver == driver && dev->parent &&
931			    dev->parent->devclass == busclass) {
932				if ((error = device_detach(dev)) != 0)
933					return (error);
934				device_set_driver(dev, NULL);
935			}
936		}
937	}
938
939	TAILQ_REMOVE(&busclass->drivers, dl, link);
940	free(dl, M_BUS);
941
942	driver->refs--;
943	if (driver->refs == 0)
944		kobj_class_free((kobj_class_t) driver);
945
946	bus_data_generation_update();
947	return (0);
948}
949
950/**
951 * @internal
952 */
953static driverlink_t
954devclass_find_driver_internal(devclass_t dc, const char *classname)
955{
956	driverlink_t dl;
957
958	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
959
960	TAILQ_FOREACH(dl, &dc->drivers, link) {
961		if (!strcmp(dl->driver->name, classname))
962			return (dl);
963	}
964
965	PDEBUG(("not found"));
966	return (NULL);
967}
968
969/**
970 * @brief Search a devclass for a driver
971 *
972 * This function searches the devclass's list of drivers and returns
973 * the first driver whose name is @p classname or @c NULL if there is
974 * no driver of that name.
975 *
976 * @param dc		the devclass to search
977 * @param classname	the driver name to search for
978 */
979kobj_class_t
980devclass_find_driver(devclass_t dc, const char *classname)
981{
982	driverlink_t dl;
983
984	dl = devclass_find_driver_internal(dc, classname);
985	if (dl)
986		return (dl->driver);
987	return (NULL);
988}
989
990/**
991 * @brief Return the name of the devclass
992 */
993const char *
994devclass_get_name(devclass_t dc)
995{
996	return (dc->name);
997}
998
999/**
1000 * @brief Find a device given a unit number
1001 *
1002 * @param dc		the devclass to search
1003 * @param unit		the unit number to search for
1004 *
1005 * @returns		the device with the given unit number or @c
1006 *			NULL if there is no such device
1007 */
1008device_t
1009devclass_get_device(devclass_t dc, int unit)
1010{
1011	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1012		return (NULL);
1013	return (dc->devices[unit]);
1014}
1015
1016/**
1017 * @brief Find the softc field of a device given a unit number
1018 *
1019 * @param dc		the devclass to search
1020 * @param unit		the unit number to search for
1021 *
1022 * @returns		the softc field of the device with the given
1023 *			unit number or @c NULL if there is no such
1024 *			device
1025 */
1026void *
1027devclass_get_softc(devclass_t dc, int unit)
1028{
1029	device_t dev;
1030
1031	dev = devclass_get_device(dc, unit);
1032	if (!dev)
1033		return (NULL);
1034
1035	return (device_get_softc(dev));
1036}
1037
1038/**
1039 * @brief Get a list of devices in the devclass
1040 *
1041 * An array containing a list of all the devices in the given devclass
1042 * is allocated and returned in @p *devlistp. The number of devices
1043 * in the array is returned in @p *devcountp. The caller should free
1044 * the array using @c free(p, M_TEMP).
1045 *
1046 * @param dc		the devclass to examine
1047 * @param devlistp	points at location for array pointer return
1048 *			value
1049 * @param devcountp	points at location for array size return value
1050 *
1051 * @retval 0		success
1052 * @retval ENOMEM	the array allocation failed
1053 */
1054int
1055devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1056{
1057	int i;
1058	int count;
1059	device_t *list;
1060
1061	count = 0;
1062	for (i = 0; i < dc->maxunit; i++)
1063		if (dc->devices[i])
1064			count++;
1065
1066	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1067	if (!list)
1068		return (ENOMEM);
1069
1070	count = 0;
1071	for (i = 0; i < dc->maxunit; i++) {
1072		if (dc->devices[i]) {
1073			list[count] = dc->devices[i];
1074			count++;
1075		}
1076	}
1077
1078	*devlistp = list;
1079	*devcountp = count;
1080
1081	return (0);
1082}
1083
1084/**
1085 * @brief Get the maximum unit number used in a devclass
1086 *
1087 * @param dc		the devclass to examine
1088 */
1089int
1090devclass_get_maxunit(devclass_t dc)
1091{
1092	return (dc->maxunit);
1093}
1094
1095/**
1096 * @brief Find a free unit number in a devclass
1097 *
1098 * This function searches for the first unused unit number greater
1099 * that or equal to @p unit.
1100 *
1101 * @param dc		the devclass to examine
1102 * @param unit		the first unit number to check
1103 */
1104int
1105devclass_find_free_unit(devclass_t dc, int unit)
1106{
1107	if (dc == NULL)
1108		return (unit);
1109	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1110		unit++;
1111	return (unit);
1112}
1113
1114/**
1115 * @brief Set the parent of a devclass
1116 *
1117 * The parent class is normally initialised automatically by
1118 * DRIVER_MODULE().
1119 *
1120 * @param dc		the devclass to edit
1121 * @param pdc		the new parent devclass
1122 */
1123void
1124devclass_set_parent(devclass_t dc, devclass_t pdc)
1125{
1126	dc->parent = pdc;
1127}
1128
1129/**
1130 * @brief Get the parent of a devclass
1131 *
1132 * @param dc		the devclass to examine
1133 */
1134devclass_t
1135devclass_get_parent(devclass_t dc)
1136{
1137	return (dc->parent);
1138}
1139
1140struct sysctl_ctx_list *
1141devclass_get_sysctl_ctx(devclass_t dc)
1142{
1143	return (&dc->sysctl_ctx);
1144}
1145
1146struct sysctl_oid *
1147devclass_get_sysctl_tree(devclass_t dc)
1148{
1149	return (dc->sysctl_tree);
1150}
1151
1152/**
1153 * @internal
1154 * @brief Allocate a unit number
1155 *
1156 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1157 * will do). The allocated unit number is returned in @p *unitp.
1158
1159 * @param dc		the devclass to allocate from
1160 * @param unitp		points at the location for the allocated unit
1161 *			number
1162 *
1163 * @retval 0		success
1164 * @retval EEXIST	the requested unit number is already allocated
1165 * @retval ENOMEM	memory allocation failure
1166 */
1167static int
1168devclass_alloc_unit(devclass_t dc, int *unitp)
1169{
1170	int unit = *unitp;
1171
1172	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1173
1174	/* If we were given a wired unit number, check for existing device */
1175	/* XXX imp XXX */
1176	if (unit != -1) {
1177		if (unit >= 0 && unit < dc->maxunit &&
1178		    dc->devices[unit] != NULL) {
1179			if (bootverbose)
1180				printf("%s: %s%d already exists; skipping it\n",
1181				    dc->name, dc->name, *unitp);
1182			return (EEXIST);
1183		}
1184	} else {
1185		/* Unwired device, find the next available slot for it */
1186		unit = 0;
1187		while (unit < dc->maxunit && dc->devices[unit] != NULL)
1188			unit++;
1189	}
1190
1191	/*
1192	 * We've selected a unit beyond the length of the table, so let's
1193	 * extend the table to make room for all units up to and including
1194	 * this one.
1195	 */
1196	if (unit >= dc->maxunit) {
1197		device_t *newlist;
1198		int newsize;
1199
1200		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1201		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1202		if (!newlist)
1203			return (ENOMEM);
1204		bcopy(dc->devices, newlist, sizeof(device_t) * dc->maxunit);
1205		bzero(newlist + dc->maxunit,
1206		    sizeof(device_t) * (newsize - dc->maxunit));
1207		if (dc->devices)
1208			free(dc->devices, M_BUS);
1209		dc->devices = newlist;
1210		dc->maxunit = newsize;
1211	}
1212	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1213
1214	*unitp = unit;
1215	return (0);
1216}
1217
1218/**
1219 * @internal
1220 * @brief Add a device to a devclass
1221 *
1222 * A unit number is allocated for the device (using the device's
1223 * preferred unit number if any) and the device is registered in the
1224 * devclass. This allows the device to be looked up by its unit
1225 * number, e.g. by decoding a dev_t minor number.
1226 *
1227 * @param dc		the devclass to add to
1228 * @param dev		the device to add
1229 *
1230 * @retval 0		success
1231 * @retval EEXIST	the requested unit number is already allocated
1232 * @retval ENOMEM	memory allocation failure
1233 */
1234static int
1235devclass_add_device(devclass_t dc, device_t dev)
1236{
1237	int buflen, error;
1238
1239	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1240
1241	buflen = snprintf(NULL, 0, "%s%d$", dc->name, dev->unit);
1242	if (buflen < 0)
1243		return (ENOMEM);
1244	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1245	if (!dev->nameunit)
1246		return (ENOMEM);
1247
1248	if ((error = devclass_alloc_unit(dc, &dev->unit)) != 0) {
1249		free(dev->nameunit, M_BUS);
1250		dev->nameunit = NULL;
1251		return (error);
1252	}
1253	dc->devices[dev->unit] = dev;
1254	dev->devclass = dc;
1255	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1256
1257	return (0);
1258}
1259
1260/**
1261 * @internal
1262 * @brief Delete a device from a devclass
1263 *
1264 * The device is removed from the devclass's device list and its unit
1265 * number is freed.
1266
1267 * @param dc		the devclass to delete from
1268 * @param dev		the device to delete
1269 *
1270 * @retval 0		success
1271 */
1272static int
1273devclass_delete_device(devclass_t dc, device_t dev)
1274{
1275	if (!dc || !dev)
1276		return (0);
1277
1278	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1279
1280	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1281		panic("devclass_delete_device: inconsistent device class");
1282	dc->devices[dev->unit] = NULL;
1283	if (dev->flags & DF_WILDCARD)
1284		dev->unit = -1;
1285	dev->devclass = NULL;
1286	free(dev->nameunit, M_BUS);
1287	dev->nameunit = NULL;
1288
1289	return (0);
1290}
1291
1292/**
1293 * @internal
1294 * @brief Make a new device and add it as a child of @p parent
1295 *
1296 * @param parent	the parent of the new device
1297 * @param name		the devclass name of the new device or @c NULL
1298 *			to leave the devclass unspecified
1299 * @parem unit		the unit number of the new device of @c -1 to
1300 *			leave the unit number unspecified
1301 *
1302 * @returns the new device
1303 */
1304static device_t
1305make_device(device_t parent, const char *name, int unit)
1306{
1307	device_t dev;
1308	devclass_t dc;
1309
1310	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1311
1312	if (name) {
1313		dc = devclass_find_internal(name, 0, TRUE);
1314		if (!dc) {
1315			printf("make_device: can't find device class %s\n",
1316			    name);
1317			return (NULL);
1318		}
1319	} else {
1320		dc = NULL;
1321	}
1322
1323	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1324	if (!dev)
1325		return (NULL);
1326
1327	dev->parent = parent;
1328	TAILQ_INIT(&dev->children);
1329	kobj_init((kobj_t) dev, &null_class);
1330	dev->driver = NULL;
1331	dev->devclass = NULL;
1332	dev->unit = unit;
1333	dev->nameunit = NULL;
1334	dev->desc = NULL;
1335	dev->busy = 0;
1336	dev->devflags = 0;
1337	dev->flags = DF_ENABLED;
1338	dev->order = 0;
1339	if (unit == -1)
1340		dev->flags |= DF_WILDCARD;
1341	if (name) {
1342		dev->flags |= DF_FIXEDCLASS;
1343		if (devclass_add_device(dc, dev)) {
1344			kobj_delete((kobj_t) dev, M_BUS);
1345			return (NULL);
1346		}
1347	}
1348	dev->ivars = NULL;
1349	dev->softc = NULL;
1350
1351	dev->state = DS_NOTPRESENT;
1352
1353	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1354	bus_data_generation_update();
1355
1356	return (dev);
1357}
1358
1359/**
1360 * @internal
1361 * @brief Print a description of a device.
1362 */
1363static int
1364device_print_child(device_t dev, device_t child)
1365{
1366	int retval = 0;
1367
1368	if (device_is_alive(child))
1369		retval += BUS_PRINT_CHILD(dev, child);
1370	else
1371		retval += device_printf(child, " not found\n");
1372
1373	return (retval);
1374}
1375
1376/**
1377 * @brief Create a new device
1378 *
1379 * This creates a new device and adds it as a child of an existing
1380 * parent device. The new device will be added after the last existing
1381 * child with order zero.
1382 *
1383 * @param dev		the device which will be the parent of the
1384 *			new child device
1385 * @param name		devclass name for new device or @c NULL if not
1386 *			specified
1387 * @param unit		unit number for new device or @c -1 if not
1388 *			specified
1389 *
1390 * @returns		the new device
1391 */
1392device_t
1393device_add_child(device_t dev, const char *name, int unit)
1394{
1395	return (device_add_child_ordered(dev, 0, name, unit));
1396}
1397
1398/**
1399 * @brief Create a new device
1400 *
1401 * This creates a new device and adds it as a child of an existing
1402 * parent device. The new device will be added after the last existing
1403 * child with the same order.
1404 *
1405 * @param dev		the device which will be the parent of the
1406 *			new child device
1407 * @param order		a value which is used to partially sort the
1408 *			children of @p dev - devices created using
1409 *			lower values of @p order appear first in @p
1410 *			dev's list of children
1411 * @param name		devclass name for new device or @c NULL if not
1412 *			specified
1413 * @param unit		unit number for new device or @c -1 if not
1414 *			specified
1415 *
1416 * @returns		the new device
1417 */
1418device_t
1419device_add_child_ordered(device_t dev, int order, const char *name, int unit)
1420{
1421	device_t child;
1422	device_t place;
1423
1424	PDEBUG(("%s at %s with order %d as unit %d",
1425	    name, DEVICENAME(dev), order, unit));
1426
1427	child = make_device(dev, name, unit);
1428	if (child == NULL)
1429		return (child);
1430	child->order = order;
1431
1432	TAILQ_FOREACH(place, &dev->children, link) {
1433		if (place->order > order)
1434			break;
1435	}
1436
1437	if (place) {
1438		/*
1439		 * The device 'place' is the first device whose order is
1440		 * greater than the new child.
1441		 */
1442		TAILQ_INSERT_BEFORE(place, child, link);
1443	} else {
1444		/*
1445		 * The new child's order is greater or equal to the order of
1446		 * any existing device. Add the child to the tail of the list.
1447		 */
1448		TAILQ_INSERT_TAIL(&dev->children, child, link);
1449	}
1450
1451	bus_data_generation_update();
1452	return (child);
1453}
1454
1455/**
1456 * @brief Delete a device
1457 *
1458 * This function deletes a device along with all of its children. If
1459 * the device currently has a driver attached to it, the device is
1460 * detached first using device_detach().
1461 *
1462 * @param dev		the parent device
1463 * @param child		the device to delete
1464 *
1465 * @retval 0		success
1466 * @retval non-zero	a unit error code describing the error
1467 */
1468int
1469device_delete_child(device_t dev, device_t child)
1470{
1471	int error;
1472	device_t grandchild;
1473
1474	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1475
1476	/* remove children first */
1477	while ( (grandchild = TAILQ_FIRST(&child->children)) ) {
1478		error = device_delete_child(child, grandchild);
1479		if (error)
1480			return (error);
1481	}
1482
1483	if ((error = device_detach(child)) != 0)
1484		return (error);
1485	if (child->devclass)
1486		devclass_delete_device(child->devclass, child);
1487	TAILQ_REMOVE(&dev->children, child, link);
1488	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1489	kobj_delete((kobj_t) child, M_BUS);
1490
1491	bus_data_generation_update();
1492	return (0);
1493}
1494
1495/**
1496 * @brief Find a device given a unit number
1497 *
1498 * This is similar to devclass_get_devices() but only searches for
1499 * devices which have @p dev as a parent.
1500 *
1501 * @param dev		the parent device to search
1502 * @param unit		the unit number to search for
1503 *
1504 * @returns		the device with the given unit number or @c
1505 *			NULL if there is no such device
1506 */
1507device_t
1508device_find_child(device_t dev, const char *classname, int unit)
1509{
1510	devclass_t dc;
1511	device_t child;
1512
1513	dc = devclass_find(classname);
1514	if (!dc)
1515		return (NULL);
1516
1517	child = devclass_get_device(dc, unit);
1518	if (child && child->parent == dev)
1519		return (child);
1520	return (NULL);
1521}
1522
1523/**
1524 * @internal
1525 */
1526static driverlink_t
1527first_matching_driver(devclass_t dc, device_t dev)
1528{
1529	if (dev->devclass)
1530		return (devclass_find_driver_internal(dc, dev->devclass->name));
1531	return (TAILQ_FIRST(&dc->drivers));
1532}
1533
1534/**
1535 * @internal
1536 */
1537static driverlink_t
1538next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1539{
1540	if (dev->devclass) {
1541		driverlink_t dl;
1542		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1543			if (!strcmp(dev->devclass->name, dl->driver->name))
1544				return (dl);
1545		return (NULL);
1546	}
1547	return (TAILQ_NEXT(last, link));
1548}
1549
1550/**
1551 * @internal
1552 */
1553static int
1554device_probe_child(device_t dev, device_t child)
1555{
1556	devclass_t dc;
1557	driverlink_t best = 0;
1558	driverlink_t dl;
1559	int result, pri = 0;
1560	int hasclass = (child->devclass != 0);
1561
1562	dc = dev->devclass;
1563	if (!dc)
1564		panic("device_probe_child: parent device has no devclass");
1565
1566	/*
1567	 * If the state is already probed, then return.  However, don't
1568	 * return if we can rebid this object.
1569	 */
1570	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
1571		return (0);
1572
1573	for (; dc; dc = dc->parent) {
1574		for (dl = first_matching_driver(dc, child);
1575		     dl;
1576		     dl = next_matching_driver(dc, child, dl)) {
1577			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1578			device_set_driver(child, dl->driver);
1579			if (!hasclass)
1580				device_set_devclass(child, dl->driver->name);
1581
1582			/* Fetch any flags for the device before probing. */
1583			resource_int_value(dl->driver->name, child->unit,
1584			    "flags", &child->devflags);
1585
1586			result = DEVICE_PROBE(child);
1587
1588			/* Reset flags and devclass before the next probe. */
1589			child->devflags = 0;
1590			if (!hasclass)
1591				device_set_devclass(child, 0);
1592
1593			/*
1594			 * If the driver returns SUCCESS, there can be
1595			 * no higher match for this device.
1596			 */
1597			if (result == 0) {
1598				best = dl;
1599				pri = 0;
1600				break;
1601			}
1602
1603			/*
1604			 * The driver returned an error so it
1605			 * certainly doesn't match.
1606			 */
1607			if (result > 0) {
1608				device_set_driver(child, 0);
1609				continue;
1610			}
1611
1612			/*
1613			 * A priority lower than SUCCESS, remember the
1614			 * best matching driver. Initialise the value
1615			 * of pri for the first match.
1616			 */
1617			if (best == 0 || result > pri) {
1618				best = dl;
1619				pri = result;
1620				continue;
1621			}
1622		}
1623		/*
1624		 * If we have an unambiguous match in this devclass,
1625		 * don't look in the parent.
1626		 */
1627		if (best && pri == 0)
1628			break;
1629	}
1630
1631	/*
1632	 * If we found a driver, change state and initialise the devclass.
1633	 */
1634	/* XXX What happens if we rebid and got no best? */
1635	if (best) {
1636		/*
1637		 * If this device was atached, and we were asked to
1638		 * rescan, and it is a different driver, then we have
1639		 * to detach the old driver and reattach this new one.
1640		 * Note, we don't have to check for DF_REBID here
1641		 * because if the state is > DS_ALIVE, we know it must
1642		 * be.
1643		 *
1644		 * This assumes that all DF_REBID drivers can have
1645		 * their probe routine called at any time and that
1646		 * they are idempotent as well as completely benign in
1647		 * normal operations.
1648		 *
1649		 * We also have to make sure that the detach
1650		 * succeeded, otherwise we fail the operation (or
1651		 * maybe it should just fail silently?  I'm torn).
1652		 */
1653		if (child->state > DS_ALIVE && best->driver != child->driver)
1654			if ((result = device_detach(dev)) != 0)
1655				return (result);
1656
1657		/* Set the winning driver, devclass, and flags. */
1658		if (!child->devclass)
1659			device_set_devclass(child, best->driver->name);
1660		device_set_driver(child, best->driver);
1661		resource_int_value(best->driver->name, child->unit,
1662		    "flags", &child->devflags);
1663
1664		if (pri < 0) {
1665			/*
1666			 * A bit bogus. Call the probe method again to make
1667			 * sure that we have the right description.
1668			 */
1669			DEVICE_PROBE(child);
1670#if 0
1671			child->flags |= DF_REBID;
1672#endif
1673		} else
1674			child->flags &= ~DF_REBID;
1675		child->state = DS_ALIVE;
1676
1677		bus_data_generation_update();
1678		return (0);
1679	}
1680
1681	return (ENXIO);
1682}
1683
1684/**
1685 * @brief Return the parent of a device
1686 */
1687device_t
1688device_get_parent(device_t dev)
1689{
1690	return (dev->parent);
1691}
1692
1693/**
1694 * @brief Get a list of children of a device
1695 *
1696 * An array containing a list of all the children of the given device
1697 * is allocated and returned in @p *devlistp. The number of devices
1698 * in the array is returned in @p *devcountp. The caller should free
1699 * the array using @c free(p, M_TEMP).
1700 *
1701 * @param dev		the device to examine
1702 * @param devlistp	points at location for array pointer return
1703 *			value
1704 * @param devcountp	points at location for array size return value
1705 *
1706 * @retval 0		success
1707 * @retval ENOMEM	the array allocation failed
1708 */
1709int
1710device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1711{
1712	int count;
1713	device_t child;
1714	device_t *list;
1715
1716	count = 0;
1717	TAILQ_FOREACH(child, &dev->children, link) {
1718		count++;
1719	}
1720
1721	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1722	if (!list)
1723		return (ENOMEM);
1724
1725	count = 0;
1726	TAILQ_FOREACH(child, &dev->children, link) {
1727		list[count] = child;
1728		count++;
1729	}
1730
1731	*devlistp = list;
1732	*devcountp = count;
1733
1734	return (0);
1735}
1736
1737/**
1738 * @brief Return the current driver for the device or @c NULL if there
1739 * is no driver currently attached
1740 */
1741driver_t *
1742device_get_driver(device_t dev)
1743{
1744	return (dev->driver);
1745}
1746
1747/**
1748 * @brief Return the current devclass for the device or @c NULL if
1749 * there is none.
1750 */
1751devclass_t
1752device_get_devclass(device_t dev)
1753{
1754	return (dev->devclass);
1755}
1756
1757/**
1758 * @brief Return the name of the device's devclass or @c NULL if there
1759 * is none.
1760 */
1761const char *
1762device_get_name(device_t dev)
1763{
1764	if (dev != NULL && dev->devclass)
1765		return (devclass_get_name(dev->devclass));
1766	return (NULL);
1767}
1768
1769/**
1770 * @brief Return a string containing the device's devclass name
1771 * followed by an ascii representation of the device's unit number
1772 * (e.g. @c "foo2").
1773 */
1774const char *
1775device_get_nameunit(device_t dev)
1776{
1777	return (dev->nameunit);
1778}
1779
1780/**
1781 * @brief Return the device's unit number.
1782 */
1783int
1784device_get_unit(device_t dev)
1785{
1786	return (dev->unit);
1787}
1788
1789/**
1790 * @brief Return the device's description string
1791 */
1792const char *
1793device_get_desc(device_t dev)
1794{
1795	return (dev->desc);
1796}
1797
1798/**
1799 * @brief Return the device's flags
1800 */
1801u_int32_t
1802device_get_flags(device_t dev)
1803{
1804	return (dev->devflags);
1805}
1806
1807struct sysctl_ctx_list *
1808device_get_sysctl_ctx(device_t dev)
1809{
1810	return (&dev->sysctl_ctx);
1811}
1812
1813struct sysctl_oid *
1814device_get_sysctl_tree(device_t dev)
1815{
1816	return (dev->sysctl_tree);
1817}
1818
1819/**
1820 * @brief Print the name of the device followed by a colon and a space
1821 *
1822 * @returns the number of characters printed
1823 */
1824int
1825device_print_prettyname(device_t dev)
1826{
1827	const char *name = device_get_name(dev);
1828
1829	if (name == 0)
1830		return (printf("unknown: "));
1831	return (printf("%s%d: ", name, device_get_unit(dev)));
1832}
1833
1834/**
1835 * @brief Print the name of the device followed by a colon, a space
1836 * and the result of calling vprintf() with the value of @p fmt and
1837 * the following arguments.
1838 *
1839 * @returns the number of characters printed
1840 */
1841int
1842device_printf(device_t dev, const char * fmt, ...)
1843{
1844	va_list ap;
1845	int retval;
1846
1847	retval = device_print_prettyname(dev);
1848	va_start(ap, fmt);
1849	retval += vprintf(fmt, ap);
1850	va_end(ap);
1851	return (retval);
1852}
1853
1854/**
1855 * @internal
1856 */
1857static void
1858device_set_desc_internal(device_t dev, const char* desc, int copy)
1859{
1860	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
1861		free(dev->desc, M_BUS);
1862		dev->flags &= ~DF_DESCMALLOCED;
1863		dev->desc = NULL;
1864	}
1865
1866	if (copy && desc) {
1867		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
1868		if (dev->desc) {
1869			strcpy(dev->desc, desc);
1870			dev->flags |= DF_DESCMALLOCED;
1871		}
1872	} else {
1873		/* Avoid a -Wcast-qual warning */
1874		dev->desc = (char *)(uintptr_t) desc;
1875	}
1876
1877	bus_data_generation_update();
1878}
1879
1880/**
1881 * @brief Set the device's description
1882 *
1883 * The value of @c desc should be a string constant that will not
1884 * change (at least until the description is changed in a subsequent
1885 * call to device_set_desc() or device_set_desc_copy()).
1886 */
1887void
1888device_set_desc(device_t dev, const char* desc)
1889{
1890	device_set_desc_internal(dev, desc, FALSE);
1891}
1892
1893/**
1894 * @brief Set the device's description
1895 *
1896 * The string pointed to by @c desc is copied. Use this function if
1897 * the device description is generated, (e.g. with sprintf()).
1898 */
1899void
1900device_set_desc_copy(device_t dev, const char* desc)
1901{
1902	device_set_desc_internal(dev, desc, TRUE);
1903}
1904
1905/**
1906 * @brief Set the device's flags
1907 */
1908void
1909device_set_flags(device_t dev, u_int32_t flags)
1910{
1911	dev->devflags = flags;
1912}
1913
1914/**
1915 * @brief Return the device's softc field
1916 *
1917 * The softc is allocated and zeroed when a driver is attached, based
1918 * on the size field of the driver.
1919 */
1920void *
1921device_get_softc(device_t dev)
1922{
1923	return (dev->softc);
1924}
1925
1926/**
1927 * @brief Set the device's softc field
1928 *
1929 * Most drivers do not need to use this since the softc is allocated
1930 * automatically when the driver is attached.
1931 */
1932void
1933device_set_softc(device_t dev, void *softc)
1934{
1935	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1936		free(dev->softc, M_BUS_SC);
1937	dev->softc = softc;
1938	if (dev->softc)
1939		dev->flags |= DF_EXTERNALSOFTC;
1940	else
1941		dev->flags &= ~DF_EXTERNALSOFTC;
1942}
1943
1944/**
1945 * @brief Get the device's ivars field
1946 *
1947 * The ivars field is used by the parent device to store per-device
1948 * state (e.g. the physical location of the device or a list of
1949 * resources).
1950 */
1951void *
1952device_get_ivars(device_t dev)
1953{
1954
1955	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
1956	return (dev->ivars);
1957}
1958
1959/**
1960 * @brief Set the device's ivars field
1961 */
1962void
1963device_set_ivars(device_t dev, void * ivars)
1964{
1965
1966	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
1967	dev->ivars = ivars;
1968}
1969
1970/**
1971 * @brief Return the device's state
1972 */
1973device_state_t
1974device_get_state(device_t dev)
1975{
1976	return (dev->state);
1977}
1978
1979/**
1980 * @brief Set the DF_ENABLED flag for the device
1981 */
1982void
1983device_enable(device_t dev)
1984{
1985	dev->flags |= DF_ENABLED;
1986}
1987
1988/**
1989 * @brief Clear the DF_ENABLED flag for the device
1990 */
1991void
1992device_disable(device_t dev)
1993{
1994	dev->flags &= ~DF_ENABLED;
1995}
1996
1997/**
1998 * @brief Increment the busy counter for the device
1999 */
2000void
2001device_busy(device_t dev)
2002{
2003	if (dev->state < DS_ATTACHED)
2004		panic("device_busy: called for unattached device");
2005	if (dev->busy == 0 && dev->parent)
2006		device_busy(dev->parent);
2007	dev->busy++;
2008	dev->state = DS_BUSY;
2009}
2010
2011/**
2012 * @brief Decrement the busy counter for the device
2013 */
2014void
2015device_unbusy(device_t dev)
2016{
2017	if (dev->state != DS_BUSY)
2018		panic("device_unbusy: called for non-busy device");
2019	dev->busy--;
2020	if (dev->busy == 0) {
2021		if (dev->parent)
2022			device_unbusy(dev->parent);
2023		dev->state = DS_ATTACHED;
2024	}
2025}
2026
2027/**
2028 * @brief Set the DF_QUIET flag for the device
2029 */
2030void
2031device_quiet(device_t dev)
2032{
2033	dev->flags |= DF_QUIET;
2034}
2035
2036/**
2037 * @brief Clear the DF_QUIET flag for the device
2038 */
2039void
2040device_verbose(device_t dev)
2041{
2042	dev->flags &= ~DF_QUIET;
2043}
2044
2045/**
2046 * @brief Return non-zero if the DF_QUIET flag is set on the device
2047 */
2048int
2049device_is_quiet(device_t dev)
2050{
2051	return ((dev->flags & DF_QUIET) != 0);
2052}
2053
2054/**
2055 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2056 */
2057int
2058device_is_enabled(device_t dev)
2059{
2060	return ((dev->flags & DF_ENABLED) != 0);
2061}
2062
2063/**
2064 * @brief Return non-zero if the device was successfully probed
2065 */
2066int
2067device_is_alive(device_t dev)
2068{
2069	return (dev->state >= DS_ALIVE);
2070}
2071
2072/**
2073 * @brief Return non-zero if the device currently has a driver
2074 * attached to it
2075 */
2076int
2077device_is_attached(device_t dev)
2078{
2079	return (dev->state >= DS_ATTACHED);
2080}
2081
2082/**
2083 * @brief Set the devclass of a device
2084 * @see devclass_add_device().
2085 */
2086int
2087device_set_devclass(device_t dev, const char *classname)
2088{
2089	devclass_t dc;
2090	int error;
2091
2092	if (!classname) {
2093		if (dev->devclass)
2094			devclass_delete_device(dev->devclass, dev);
2095		return (0);
2096	}
2097
2098	if (dev->devclass) {
2099		printf("device_set_devclass: device class already set\n");
2100		return (EINVAL);
2101	}
2102
2103	dc = devclass_find_internal(classname, 0, TRUE);
2104	if (!dc)
2105		return (ENOMEM);
2106
2107	error = devclass_add_device(dc, dev);
2108
2109	bus_data_generation_update();
2110	return (error);
2111}
2112
2113/**
2114 * @brief Set the driver of a device
2115 *
2116 * @retval 0		success
2117 * @retval EBUSY	the device already has a driver attached
2118 * @retval ENOMEM	a memory allocation failure occurred
2119 */
2120int
2121device_set_driver(device_t dev, driver_t *driver)
2122{
2123	if (dev->state >= DS_ATTACHED)
2124		return (EBUSY);
2125
2126	if (dev->driver == driver)
2127		return (0);
2128
2129	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2130		free(dev->softc, M_BUS_SC);
2131		dev->softc = NULL;
2132	}
2133	kobj_delete((kobj_t) dev, 0);
2134	dev->driver = driver;
2135	if (driver) {
2136		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2137		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2138			dev->softc = malloc(driver->size, M_BUS_SC,
2139			    M_NOWAIT | M_ZERO);
2140			if (!dev->softc) {
2141				kobj_delete((kobj_t) dev, 0);
2142				kobj_init((kobj_t) dev, &null_class);
2143				dev->driver = NULL;
2144				return (ENOMEM);
2145			}
2146		}
2147	} else {
2148		kobj_init((kobj_t) dev, &null_class);
2149	}
2150
2151	bus_data_generation_update();
2152	return (0);
2153}
2154
2155/**
2156 * @brief Probe a device and attach a driver if possible
2157 *
2158 * This function is the core of the device autoconfiguration
2159 * system. Its purpose is to select a suitable driver for a device and
2160 * then call that driver to initialise the hardware appropriately. The
2161 * driver is selected by calling the DEVICE_PROBE() method of a set of
2162 * candidate drivers and then choosing the driver which returned the
2163 * best value. This driver is then attached to the device using
2164 * device_attach().
2165 *
2166 * The set of suitable drivers is taken from the list of drivers in
2167 * the parent device's devclass. If the device was originally created
2168 * with a specific class name (see device_add_child()), only drivers
2169 * with that name are probed, otherwise all drivers in the devclass
2170 * are probed. If no drivers return successful probe values in the
2171 * parent devclass, the search continues in the parent of that
2172 * devclass (see devclass_get_parent()) if any.
2173 *
2174 * @param dev		the device to initialise
2175 *
2176 * @retval 0		success
2177 * @retval ENXIO	no driver was found
2178 * @retval ENOMEM	memory allocation failure
2179 * @retval non-zero	some other unix error code
2180 */
2181int
2182device_probe_and_attach(device_t dev)
2183{
2184	int error;
2185
2186	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2187		return (0);
2188
2189	if (!(dev->flags & DF_ENABLED)) {
2190		if (bootverbose && device_get_name(dev) != NULL) {
2191			device_print_prettyname(dev);
2192			printf("not probed (disabled)\n");
2193		}
2194		return (0);
2195	}
2196	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2197		if (!(dev->flags & DF_DONENOMATCH)) {
2198			BUS_PROBE_NOMATCH(dev->parent, dev);
2199			devnomatch(dev);
2200			dev->flags |= DF_DONENOMATCH;
2201		}
2202		return (error);
2203	}
2204	error = device_attach(dev);
2205
2206	return (error);
2207}
2208
2209/**
2210 * @brief Attach a device driver to a device
2211 *
2212 * This function is a wrapper around the DEVICE_ATTACH() driver
2213 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2214 * device's sysctl tree, optionally prints a description of the device
2215 * and queues a notification event for user-based device management
2216 * services.
2217 *
2218 * Normally this function is only called internally from
2219 * device_probe_and_attach().
2220 *
2221 * @param dev		the device to initialise
2222 *
2223 * @retval 0		success
2224 * @retval ENXIO	no driver was found
2225 * @retval ENOMEM	memory allocation failure
2226 * @retval non-zero	some other unix error code
2227 */
2228int
2229device_attach(device_t dev)
2230{
2231	int error;
2232
2233	device_sysctl_init(dev);
2234	if (!device_is_quiet(dev))
2235		device_print_child(dev->parent, dev);
2236	if ((error = DEVICE_ATTACH(dev)) != 0) {
2237		printf("device_attach: %s%d attach returned %d\n",
2238		    dev->driver->name, dev->unit, error);
2239		/* Unset the class; set in device_probe_child */
2240		if (dev->devclass == 0)
2241			device_set_devclass(dev, 0);
2242		device_set_driver(dev, NULL);
2243		device_sysctl_fini(dev);
2244		dev->state = DS_NOTPRESENT;
2245		return (error);
2246	}
2247	dev->state = DS_ATTACHED;
2248	devadded(dev);
2249	return (0);
2250}
2251
2252/**
2253 * @brief Detach a driver from a device
2254 *
2255 * This function is a wrapper around the DEVICE_DETACH() driver
2256 * method. If the call to DEVICE_DETACH() succeeds, it calls
2257 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2258 * notification event for user-based device management services and
2259 * cleans up the device's sysctl tree.
2260 *
2261 * @param dev		the device to un-initialise
2262 *
2263 * @retval 0		success
2264 * @retval ENXIO	no driver was found
2265 * @retval ENOMEM	memory allocation failure
2266 * @retval non-zero	some other unix error code
2267 */
2268int
2269device_detach(device_t dev)
2270{
2271	int error;
2272
2273	PDEBUG(("%s", DEVICENAME(dev)));
2274	if (dev->state == DS_BUSY)
2275		return (EBUSY);
2276	if (dev->state != DS_ATTACHED)
2277		return (0);
2278
2279	if ((error = DEVICE_DETACH(dev)) != 0)
2280		return (error);
2281	devremoved(dev);
2282	device_printf(dev, "detached\n");
2283	if (dev->parent)
2284		BUS_CHILD_DETACHED(dev->parent, dev);
2285
2286	if (!(dev->flags & DF_FIXEDCLASS))
2287		devclass_delete_device(dev->devclass, dev);
2288
2289	dev->state = DS_NOTPRESENT;
2290	device_set_driver(dev, NULL);
2291	device_set_desc(dev, NULL);
2292	device_sysctl_fini(dev);
2293
2294	return (0);
2295}
2296
2297/**
2298 * @brief Notify a device of system shutdown
2299 *
2300 * This function calls the DEVICE_SHUTDOWN() driver method if the
2301 * device currently has an attached driver.
2302 *
2303 * @returns the value returned by DEVICE_SHUTDOWN()
2304 */
2305int
2306device_shutdown(device_t dev)
2307{
2308	if (dev->state < DS_ATTACHED)
2309		return (0);
2310	return (DEVICE_SHUTDOWN(dev));
2311}
2312
2313/**
2314 * @brief Set the unit number of a device
2315 *
2316 * This function can be used to override the unit number used for a
2317 * device (e.g. to wire a device to a pre-configured unit number).
2318 */
2319int
2320device_set_unit(device_t dev, int unit)
2321{
2322	devclass_t dc;
2323	int err;
2324
2325	dc = device_get_devclass(dev);
2326	if (unit < dc->maxunit && dc->devices[unit])
2327		return (EBUSY);
2328	err = devclass_delete_device(dc, dev);
2329	if (err)
2330		return (err);
2331	dev->unit = unit;
2332	err = devclass_add_device(dc, dev);
2333	if (err)
2334		return (err);
2335
2336	bus_data_generation_update();
2337	return (0);
2338}
2339
2340/*======================================*/
2341/*
2342 * Some useful method implementations to make life easier for bus drivers.
2343 */
2344
2345/**
2346 * @brief Initialise a resource list.
2347 *
2348 * @param rl		the resource list to initialise
2349 */
2350void
2351resource_list_init(struct resource_list *rl)
2352{
2353	SLIST_INIT(rl);
2354}
2355
2356/**
2357 * @brief Reclaim memory used by a resource list.
2358 *
2359 * This function frees the memory for all resource entries on the list
2360 * (if any).
2361 *
2362 * @param rl		the resource list to free
2363 */
2364void
2365resource_list_free(struct resource_list *rl)
2366{
2367	struct resource_list_entry *rle;
2368
2369	while ((rle = SLIST_FIRST(rl)) != NULL) {
2370		if (rle->res)
2371			panic("resource_list_free: resource entry is busy");
2372		SLIST_REMOVE_HEAD(rl, link);
2373		free(rle, M_BUS);
2374	}
2375}
2376
2377/**
2378 * @brief Add a resource entry.
2379 *
2380 * This function adds a resource entry using the given @p type, @p
2381 * start, @p end and @p count values. A rid value is chosen by
2382 * searching sequentially for the first unused rid starting at zero.
2383 *
2384 * @param rl		the resource list to edit
2385 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2386 * @param start		the start address of the resource
2387 * @param end		the end address of the resource
2388 * @param count		XXX end-start+1
2389 */
2390int
2391resource_list_add_next(struct resource_list *rl, int type, u_long start,
2392    u_long end, u_long count)
2393{
2394	int rid;
2395
2396	rid = 0;
2397	while (resource_list_find(rl, type, rid) != NULL)
2398		rid++;
2399	resource_list_add(rl, type, rid, start, end, count);
2400	return (rid);
2401}
2402
2403/**
2404 * @brief Add or modify a resource entry.
2405 *
2406 * If an existing entry exists with the same type and rid, it will be
2407 * modified using the given values of @p start, @p end and @p
2408 * count. If no entry exists, a new one will be created using the
2409 * given values.
2410 *
2411 * @param rl		the resource list to edit
2412 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2413 * @param rid		the resource identifier
2414 * @param start		the start address of the resource
2415 * @param end		the end address of the resource
2416 * @param count		XXX end-start+1
2417 */
2418void
2419resource_list_add(struct resource_list *rl, int type, int rid,
2420    u_long start, u_long end, u_long count)
2421{
2422	struct resource_list_entry *rle;
2423
2424	rle = resource_list_find(rl, type, rid);
2425	if (!rle) {
2426		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2427		    M_NOWAIT);
2428		if (!rle)
2429			panic("resource_list_add: can't record entry");
2430		SLIST_INSERT_HEAD(rl, rle, link);
2431		rle->type = type;
2432		rle->rid = rid;
2433		rle->res = NULL;
2434	}
2435
2436	if (rle->res)
2437		panic("resource_list_add: resource entry is busy");
2438
2439	rle->start = start;
2440	rle->end = end;
2441	rle->count = count;
2442}
2443
2444/**
2445 * @brief Find a resource entry by type and rid.
2446 *
2447 * @param rl		the resource list to search
2448 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2449 * @param rid		the resource identifier
2450 *
2451 * @returns the resource entry pointer or NULL if there is no such
2452 * entry.
2453 */
2454struct resource_list_entry *
2455resource_list_find(struct resource_list *rl, int type, int rid)
2456{
2457	struct resource_list_entry *rle;
2458
2459	SLIST_FOREACH(rle, rl, link) {
2460		if (rle->type == type && rle->rid == rid)
2461			return (rle);
2462	}
2463	return (NULL);
2464}
2465
2466/**
2467 * @brief Delete a resource entry.
2468 *
2469 * @param rl		the resource list to edit
2470 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2471 * @param rid		the resource identifier
2472 */
2473void
2474resource_list_delete(struct resource_list *rl, int type, int rid)
2475{
2476	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2477
2478	if (rle) {
2479		if (rle->res != NULL)
2480			panic("resource_list_delete: resource has not been released");
2481		SLIST_REMOVE(rl, rle, resource_list_entry, link);
2482		free(rle, M_BUS);
2483	}
2484}
2485
2486/**
2487 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
2488 *
2489 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
2490 * and passing the allocation up to the parent of @p bus. This assumes
2491 * that the first entry of @c device_get_ivars(child) is a struct
2492 * resource_list. This also handles 'passthrough' allocations where a
2493 * child is a remote descendant of bus by passing the allocation up to
2494 * the parent of bus.
2495 *
2496 * Typically, a bus driver would store a list of child resources
2497 * somewhere in the child device's ivars (see device_get_ivars()) and
2498 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
2499 * then call resource_list_alloc() to perform the allocation.
2500 *
2501 * @param rl		the resource list to allocate from
2502 * @param bus		the parent device of @p child
2503 * @param child		the device which is requesting an allocation
2504 * @param type		the type of resource to allocate
2505 * @param rid		a pointer to the resource identifier
2506 * @param start		hint at the start of the resource range - pass
2507 *			@c 0UL for any start address
2508 * @param end		hint at the end of the resource range - pass
2509 *			@c ~0UL for any end address
2510 * @param count		hint at the size of range required - pass @c 1
2511 *			for any size
2512 * @param flags		any extra flags to control the resource
2513 *			allocation - see @c RF_XXX flags in
2514 *			<sys/rman.h> for details
2515 *
2516 * @returns		the resource which was allocated or @c NULL if no
2517 *			resource could be allocated
2518 */
2519struct resource *
2520resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
2521    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
2522{
2523	struct resource_list_entry *rle = 0;
2524	int passthrough = (device_get_parent(child) != bus);
2525	int isdefault = (start == 0UL && end == ~0UL);
2526
2527	if (passthrough) {
2528		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2529		    type, rid, start, end, count, flags));
2530	}
2531
2532	rle = resource_list_find(rl, type, *rid);
2533
2534	if (!rle)
2535		return (NULL);		/* no resource of that type/rid */
2536
2537	if (rle->res)
2538		panic("resource_list_alloc: resource entry is busy");
2539
2540	if (isdefault) {
2541		start = rle->start;
2542		count = ulmax(count, rle->count);
2543		end = ulmax(rle->end, start + count - 1);
2544	}
2545
2546	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
2547	    type, rid, start, end, count, flags);
2548
2549	/*
2550	 * Record the new range.
2551	 */
2552	if (rle->res) {
2553		rle->start = rman_get_start(rle->res);
2554		rle->end = rman_get_end(rle->res);
2555		rle->count = count;
2556	}
2557
2558	return (rle->res);
2559}
2560
2561/**
2562 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
2563 *
2564 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
2565 * used with resource_list_alloc().
2566 *
2567 * @param rl		the resource list which was allocated from
2568 * @param bus		the parent device of @p child
2569 * @param child		the device which is requesting a release
2570 * @param type		the type of resource to allocate
2571 * @param rid		the resource identifier
2572 * @param res		the resource to release
2573 *
2574 * @retval 0		success
2575 * @retval non-zero	a standard unix error code indicating what
2576 *			error condition prevented the operation
2577 */
2578int
2579resource_list_release(struct resource_list *rl, device_t bus, device_t child,
2580    int type, int rid, struct resource *res)
2581{
2582	struct resource_list_entry *rle = 0;
2583	int passthrough = (device_get_parent(child) != bus);
2584	int error;
2585
2586	if (passthrough) {
2587		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2588		    type, rid, res));
2589	}
2590
2591	rle = resource_list_find(rl, type, rid);
2592
2593	if (!rle)
2594		panic("resource_list_release: can't find resource");
2595	if (!rle->res)
2596		panic("resource_list_release: resource entry is not busy");
2597
2598	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
2599	    type, rid, res);
2600	if (error)
2601		return (error);
2602
2603	rle->res = NULL;
2604	return (0);
2605}
2606
2607/**
2608 * @brief Print a description of resources in a resource list
2609 *
2610 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
2611 * The name is printed if at least one resource of the given type is available.
2612 * The format is used to print resource start and end.
2613 *
2614 * @param rl		the resource list to print
2615 * @param name		the name of @p type, e.g. @c "memory"
2616 * @param type		type type of resource entry to print
2617 * @param format	printf(9) format string to print resource
2618 *			start and end values
2619 *
2620 * @returns		the number of characters printed
2621 */
2622int
2623resource_list_print_type(struct resource_list *rl, const char *name, int type,
2624    const char *format)
2625{
2626	struct resource_list_entry *rle;
2627	int printed, retval;
2628
2629	printed = 0;
2630	retval = 0;
2631	/* Yes, this is kinda cheating */
2632	SLIST_FOREACH(rle, rl, link) {
2633		if (rle->type == type) {
2634			if (printed == 0)
2635				retval += printf(" %s ", name);
2636			else
2637				retval += printf(",");
2638			printed++;
2639			retval += printf(format, rle->start);
2640			if (rle->count > 1) {
2641				retval += printf("-");
2642				retval += printf(format, rle->start +
2643						 rle->count - 1);
2644			}
2645		}
2646	}
2647	return (retval);
2648}
2649
2650/**
2651 * @brief Helper function for implementing DEVICE_PROBE()
2652 *
2653 * This function can be used to help implement the DEVICE_PROBE() for
2654 * a bus (i.e. a device which has other devices attached to it). It
2655 * calls the DEVICE_IDENTIFY() method of each driver in the device's
2656 * devclass.
2657 */
2658int
2659bus_generic_probe(device_t dev)
2660{
2661	devclass_t dc = dev->devclass;
2662	driverlink_t dl;
2663
2664	TAILQ_FOREACH(dl, &dc->drivers, link) {
2665		DEVICE_IDENTIFY(dl->driver, dev);
2666	}
2667
2668	return (0);
2669}
2670
2671/**
2672 * @brief Helper function for implementing DEVICE_ATTACH()
2673 *
2674 * This function can be used to help implement the DEVICE_ATTACH() for
2675 * a bus. It calls device_probe_and_attach() for each of the device's
2676 * children.
2677 */
2678int
2679bus_generic_attach(device_t dev)
2680{
2681	device_t child;
2682
2683	TAILQ_FOREACH(child, &dev->children, link) {
2684		device_probe_and_attach(child);
2685	}
2686
2687	return (0);
2688}
2689
2690/**
2691 * @brief Helper function for implementing DEVICE_DETACH()
2692 *
2693 * This function can be used to help implement the DEVICE_DETACH() for
2694 * a bus. It calls device_detach() for each of the device's
2695 * children.
2696 */
2697int
2698bus_generic_detach(device_t dev)
2699{
2700	device_t child;
2701	int error;
2702
2703	if (dev->state != DS_ATTACHED)
2704		return (EBUSY);
2705
2706	TAILQ_FOREACH(child, &dev->children, link) {
2707		if ((error = device_detach(child)) != 0)
2708			return (error);
2709	}
2710
2711	return (0);
2712}
2713
2714/**
2715 * @brief Helper function for implementing DEVICE_SHUTDOWN()
2716 *
2717 * This function can be used to help implement the DEVICE_SHUTDOWN()
2718 * for a bus. It calls device_shutdown() for each of the device's
2719 * children.
2720 */
2721int
2722bus_generic_shutdown(device_t dev)
2723{
2724	device_t child;
2725
2726	TAILQ_FOREACH(child, &dev->children, link) {
2727		device_shutdown(child);
2728	}
2729
2730	return (0);
2731}
2732
2733/**
2734 * @brief Helper function for implementing DEVICE_SUSPEND()
2735 *
2736 * This function can be used to help implement the DEVICE_SUSPEND()
2737 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
2738 * children. If any call to DEVICE_SUSPEND() fails, the suspend
2739 * operation is aborted and any devices which were suspended are
2740 * resumed immediately by calling their DEVICE_RESUME() methods.
2741 */
2742int
2743bus_generic_suspend(device_t dev)
2744{
2745	int		error;
2746	device_t	child, child2;
2747
2748	TAILQ_FOREACH(child, &dev->children, link) {
2749		error = DEVICE_SUSPEND(child);
2750		if (error) {
2751			for (child2 = TAILQ_FIRST(&dev->children);
2752			     child2 && child2 != child;
2753			     child2 = TAILQ_NEXT(child2, link))
2754				DEVICE_RESUME(child2);
2755			return (error);
2756		}
2757	}
2758	return (0);
2759}
2760
2761/**
2762 * @brief Helper function for implementing DEVICE_RESUME()
2763 *
2764 * This function can be used to help implement the DEVICE_RESUME() for
2765 * a bus. It calls DEVICE_RESUME() on each of the device's children.
2766 */
2767int
2768bus_generic_resume(device_t dev)
2769{
2770	device_t	child;
2771
2772	TAILQ_FOREACH(child, &dev->children, link) {
2773		DEVICE_RESUME(child);
2774		/* if resume fails, there's nothing we can usefully do... */
2775	}
2776	return (0);
2777}
2778
2779/**
2780 * @brief Helper function for implementing BUS_PRINT_CHILD().
2781 *
2782 * This function prints the first part of the ascii representation of
2783 * @p child, including its name, unit and description (if any - see
2784 * device_set_desc()).
2785 *
2786 * @returns the number of characters printed
2787 */
2788int
2789bus_print_child_header(device_t dev, device_t child)
2790{
2791	int	retval = 0;
2792
2793	if (device_get_desc(child)) {
2794		retval += device_printf(child, "<%s>", device_get_desc(child));
2795	} else {
2796		retval += printf("%s", device_get_nameunit(child));
2797	}
2798
2799	return (retval);
2800}
2801
2802/**
2803 * @brief Helper function for implementing BUS_PRINT_CHILD().
2804 *
2805 * This function prints the last part of the ascii representation of
2806 * @p child, which consists of the string @c " on " followed by the
2807 * name and unit of the @p dev.
2808 *
2809 * @returns the number of characters printed
2810 */
2811int
2812bus_print_child_footer(device_t dev, device_t child)
2813{
2814	return (printf(" on %s\n", device_get_nameunit(dev)));
2815}
2816
2817/**
2818 * @brief Helper function for implementing BUS_PRINT_CHILD().
2819 *
2820 * This function simply calls bus_print_child_header() followed by
2821 * bus_print_child_footer().
2822 *
2823 * @returns the number of characters printed
2824 */
2825int
2826bus_generic_print_child(device_t dev, device_t child)
2827{
2828	int	retval = 0;
2829
2830	retval += bus_print_child_header(dev, child);
2831	retval += bus_print_child_footer(dev, child);
2832
2833	return (retval);
2834}
2835
2836/**
2837 * @brief Stub function for implementing BUS_READ_IVAR().
2838 *
2839 * @returns ENOENT
2840 */
2841int
2842bus_generic_read_ivar(device_t dev, device_t child, int index,
2843    uintptr_t * result)
2844{
2845	return (ENOENT);
2846}
2847
2848/**
2849 * @brief Stub function for implementing BUS_WRITE_IVAR().
2850 *
2851 * @returns ENOENT
2852 */
2853int
2854bus_generic_write_ivar(device_t dev, device_t child, int index,
2855    uintptr_t value)
2856{
2857	return (ENOENT);
2858}
2859
2860/**
2861 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
2862 *
2863 * @returns NULL
2864 */
2865struct resource_list *
2866bus_generic_get_resource_list(device_t dev, device_t child)
2867{
2868	return (NULL);
2869}
2870
2871/**
2872 * @brief Helper function for implementing BUS_DRIVER_ADDED().
2873 *
2874 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
2875 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
2876 * and then calls device_probe_and_attach() for each unattached child.
2877 */
2878void
2879bus_generic_driver_added(device_t dev, driver_t *driver)
2880{
2881	device_t child;
2882
2883	DEVICE_IDENTIFY(driver, dev);
2884	TAILQ_FOREACH(child, &dev->children, link) {
2885		if (child->state == DS_NOTPRESENT ||
2886		    (child->flags & DF_REBID))
2887			device_probe_and_attach(child);
2888	}
2889}
2890
2891/**
2892 * @brief Helper function for implementing BUS_SETUP_INTR().
2893 *
2894 * This simple implementation of BUS_SETUP_INTR() simply calls the
2895 * BUS_SETUP_INTR() method of the parent of @p dev.
2896 */
2897int
2898bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
2899    int flags, driver_intr_t *intr, void *arg, void **cookiep)
2900{
2901	/* Propagate up the bus hierarchy until someone handles it. */
2902	if (dev->parent)
2903		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
2904		    intr, arg, cookiep));
2905	return (EINVAL);
2906}
2907
2908/**
2909 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
2910 *
2911 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
2912 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
2913 */
2914int
2915bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
2916    void *cookie)
2917{
2918	/* Propagate up the bus hierarchy until someone handles it. */
2919	if (dev->parent)
2920		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
2921	return (EINVAL);
2922}
2923
2924/**
2925 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
2926 *
2927 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
2928 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
2929 */
2930struct resource *
2931bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
2932    u_long start, u_long end, u_long count, u_int flags)
2933{
2934	/* Propagate up the bus hierarchy until someone handles it. */
2935	if (dev->parent)
2936		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
2937		    start, end, count, flags));
2938	return (NULL);
2939}
2940
2941/**
2942 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
2943 *
2944 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
2945 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
2946 */
2947int
2948bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
2949    struct resource *r)
2950{
2951	/* Propagate up the bus hierarchy until someone handles it. */
2952	if (dev->parent)
2953		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
2954		    r));
2955	return (EINVAL);
2956}
2957
2958/**
2959 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
2960 *
2961 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
2962 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
2963 */
2964int
2965bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
2966    struct resource *r)
2967{
2968	/* Propagate up the bus hierarchy until someone handles it. */
2969	if (dev->parent)
2970		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
2971		    r));
2972	return (EINVAL);
2973}
2974
2975/**
2976 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
2977 *
2978 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
2979 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
2980 */
2981int
2982bus_generic_deactivate_resource(device_t dev, device_t child, int type,
2983    int rid, struct resource *r)
2984{
2985	/* Propagate up the bus hierarchy until someone handles it. */
2986	if (dev->parent)
2987		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
2988		    r));
2989	return (EINVAL);
2990}
2991
2992/**
2993 * @brief Helper function for implementing BUS_CONFIG_INTR().
2994 *
2995 * This simple implementation of BUS_CONFIG_INTR() simply calls the
2996 * BUS_CONFIG_INTR() method of the parent of @p dev.
2997 */
2998int
2999bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3000    enum intr_polarity pol)
3001{
3002
3003	/* Propagate up the bus hierarchy until someone handles it. */
3004	if (dev->parent)
3005		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3006	return (EINVAL);
3007}
3008
3009/**
3010 * @brief Helper function for implementing BUS_GET_RESOURCE().
3011 *
3012 * This implementation of BUS_GET_RESOURCE() uses the
3013 * resource_list_find() function to do most of the work. It calls
3014 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3015 * search.
3016 */
3017int
3018bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
3019    u_long *startp, u_long *countp)
3020{
3021	struct resource_list *		rl = NULL;
3022	struct resource_list_entry *	rle = NULL;
3023
3024	rl = BUS_GET_RESOURCE_LIST(dev, child);
3025	if (!rl)
3026		return (EINVAL);
3027
3028	rle = resource_list_find(rl, type, rid);
3029	if (!rle)
3030		return (ENOENT);
3031
3032	if (startp)
3033		*startp = rle->start;
3034	if (countp)
3035		*countp = rle->count;
3036
3037	return (0);
3038}
3039
3040/**
3041 * @brief Helper function for implementing BUS_SET_RESOURCE().
3042 *
3043 * This implementation of BUS_SET_RESOURCE() uses the
3044 * resource_list_add() function to do most of the work. It calls
3045 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3046 * edit.
3047 */
3048int
3049bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
3050    u_long start, u_long count)
3051{
3052	struct resource_list *		rl = NULL;
3053
3054	rl = BUS_GET_RESOURCE_LIST(dev, child);
3055	if (!rl)
3056		return (EINVAL);
3057
3058	resource_list_add(rl, type, rid, start, (start + count - 1), count);
3059
3060	return (0);
3061}
3062
3063/**
3064 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
3065 *
3066 * This implementation of BUS_DELETE_RESOURCE() uses the
3067 * resource_list_delete() function to do most of the work. It calls
3068 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
3069 * edit.
3070 */
3071void
3072bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
3073{
3074	struct resource_list *		rl = NULL;
3075
3076	rl = BUS_GET_RESOURCE_LIST(dev, child);
3077	if (!rl)
3078		return;
3079
3080	resource_list_delete(rl, type, rid);
3081
3082	return;
3083}
3084
3085/**
3086 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3087 *
3088 * This implementation of BUS_RELEASE_RESOURCE() uses the
3089 * resource_list_release() function to do most of the work. It calls
3090 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3091 */
3092int
3093bus_generic_rl_release_resource(device_t dev, device_t child, int type,
3094    int rid, struct resource *r)
3095{
3096	struct resource_list *		rl = NULL;
3097
3098	rl = BUS_GET_RESOURCE_LIST(dev, child);
3099	if (!rl)
3100		return (EINVAL);
3101
3102	return (resource_list_release(rl, dev, child, type, rid, r));
3103}
3104
3105/**
3106 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3107 *
3108 * This implementation of BUS_ALLOC_RESOURCE() uses the
3109 * resource_list_alloc() function to do most of the work. It calls
3110 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
3111 */
3112struct resource *
3113bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
3114    int *rid, u_long start, u_long end, u_long count, u_int flags)
3115{
3116	struct resource_list *		rl = NULL;
3117
3118	rl = BUS_GET_RESOURCE_LIST(dev, child);
3119	if (!rl)
3120		return (NULL);
3121
3122	return (resource_list_alloc(rl, dev, child, type, rid,
3123	    start, end, count, flags));
3124}
3125
3126/**
3127 * @brief Helper function for implementing BUS_CHILD_PRESENT().
3128 *
3129 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
3130 * BUS_CHILD_PRESENT() method of the parent of @p dev.
3131 */
3132int
3133bus_generic_child_present(device_t dev, device_t child)
3134{
3135	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
3136}
3137
3138/*
3139 * Some convenience functions to make it easier for drivers to use the
3140 * resource-management functions.  All these really do is hide the
3141 * indirection through the parent's method table, making for slightly
3142 * less-wordy code.  In the future, it might make sense for this code
3143 * to maintain some sort of a list of resources allocated by each device.
3144 */
3145
3146/**
3147 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
3148 *
3149 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
3150 * parent of @p dev.
3151 */
3152struct resource *
3153bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
3154    u_long count, u_int flags)
3155{
3156	if (dev->parent == 0)
3157		return (0);
3158	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
3159	    count, flags));
3160}
3161
3162/**
3163 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
3164 *
3165 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
3166 * parent of @p dev.
3167 */
3168int
3169bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
3170{
3171	if (dev->parent == 0)
3172		return (EINVAL);
3173	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3174}
3175
3176/**
3177 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
3178 *
3179 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
3180 * parent of @p dev.
3181 */
3182int
3183bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
3184{
3185	if (dev->parent == 0)
3186		return (EINVAL);
3187	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
3188}
3189
3190/**
3191 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
3192 *
3193 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
3194 * parent of @p dev.
3195 */
3196int
3197bus_release_resource(device_t dev, int type, int rid, struct resource *r)
3198{
3199	if (dev->parent == 0)
3200		return (EINVAL);
3201	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
3202}
3203
3204/**
3205 * @brief Wrapper function for BUS_SETUP_INTR().
3206 *
3207 * This function simply calls the BUS_SETUP_INTR() method of the
3208 * parent of @p dev.
3209 */
3210int
3211bus_setup_intr(device_t dev, struct resource *r, int flags,
3212    driver_intr_t handler, void *arg, void **cookiep)
3213{
3214	int error;
3215
3216	if (dev->parent != 0) {
3217		if ((flags &~ INTR_ENTROPY) == (INTR_TYPE_NET | INTR_MPSAFE) &&
3218		    !debug_mpsafenet)
3219			flags &= ~INTR_MPSAFE;
3220		error = BUS_SETUP_INTR(dev->parent, dev, r, flags,
3221		    handler, arg, cookiep);
3222		if (error == 0) {
3223			if (!(flags & (INTR_MPSAFE | INTR_FAST)))
3224				device_printf(dev, "[GIANT-LOCKED]\n");
3225			if (bootverbose && (flags & INTR_MPSAFE))
3226				device_printf(dev, "[MPSAFE]\n");
3227			if (flags & INTR_FAST)
3228				device_printf(dev, "[FAST]\n");
3229		}
3230	} else
3231		error = EINVAL;
3232	return (error);
3233}
3234
3235/**
3236 * @brief Wrapper function for BUS_TEARDOWN_INTR().
3237 *
3238 * This function simply calls the BUS_TEARDOWN_INTR() method of the
3239 * parent of @p dev.
3240 */
3241int
3242bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
3243{
3244	if (dev->parent == 0)
3245		return (EINVAL);
3246	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
3247}
3248
3249/**
3250 * @brief Wrapper function for BUS_SET_RESOURCE().
3251 *
3252 * This function simply calls the BUS_SET_RESOURCE() method of the
3253 * parent of @p dev.
3254 */
3255int
3256bus_set_resource(device_t dev, int type, int rid,
3257    u_long start, u_long count)
3258{
3259	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
3260	    start, count));
3261}
3262
3263/**
3264 * @brief Wrapper function for BUS_GET_RESOURCE().
3265 *
3266 * This function simply calls the BUS_GET_RESOURCE() method of the
3267 * parent of @p dev.
3268 */
3269int
3270bus_get_resource(device_t dev, int type, int rid,
3271    u_long *startp, u_long *countp)
3272{
3273	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3274	    startp, countp));
3275}
3276
3277/**
3278 * @brief Wrapper function for BUS_GET_RESOURCE().
3279 *
3280 * This function simply calls the BUS_GET_RESOURCE() method of the
3281 * parent of @p dev and returns the start value.
3282 */
3283u_long
3284bus_get_resource_start(device_t dev, int type, int rid)
3285{
3286	u_long start, count;
3287	int error;
3288
3289	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3290	    &start, &count);
3291	if (error)
3292		return (0);
3293	return (start);
3294}
3295
3296/**
3297 * @brief Wrapper function for BUS_GET_RESOURCE().
3298 *
3299 * This function simply calls the BUS_GET_RESOURCE() method of the
3300 * parent of @p dev and returns the count value.
3301 */
3302u_long
3303bus_get_resource_count(device_t dev, int type, int rid)
3304{
3305	u_long start, count;
3306	int error;
3307
3308	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
3309	    &start, &count);
3310	if (error)
3311		return (0);
3312	return (count);
3313}
3314
3315/**
3316 * @brief Wrapper function for BUS_DELETE_RESOURCE().
3317 *
3318 * This function simply calls the BUS_DELETE_RESOURCE() method of the
3319 * parent of @p dev.
3320 */
3321void
3322bus_delete_resource(device_t dev, int type, int rid)
3323{
3324	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
3325}
3326
3327/**
3328 * @brief Wrapper function for BUS_CHILD_PRESENT().
3329 *
3330 * This function simply calls the BUS_CHILD_PRESENT() method of the
3331 * parent of @p dev.
3332 */
3333int
3334bus_child_present(device_t child)
3335{
3336	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
3337}
3338
3339/**
3340 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
3341 *
3342 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
3343 * parent of @p dev.
3344 */
3345int
3346bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
3347{
3348	device_t parent;
3349
3350	parent = device_get_parent(child);
3351	if (parent == NULL) {
3352		*buf = '\0';
3353		return (0);
3354	}
3355	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
3356}
3357
3358/**
3359 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
3360 *
3361 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
3362 * parent of @p dev.
3363 */
3364int
3365bus_child_location_str(device_t child, char *buf, size_t buflen)
3366{
3367	device_t parent;
3368
3369	parent = device_get_parent(child);
3370	if (parent == NULL) {
3371		*buf = '\0';
3372		return (0);
3373	}
3374	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
3375}
3376
3377static int
3378root_print_child(device_t dev, device_t child)
3379{
3380	int	retval = 0;
3381
3382	retval += bus_print_child_header(dev, child);
3383	retval += printf("\n");
3384
3385	return (retval);
3386}
3387
3388static int
3389root_setup_intr(device_t dev, device_t child, driver_intr_t *intr, void *arg,
3390    void **cookiep)
3391{
3392	/*
3393	 * If an interrupt mapping gets to here something bad has happened.
3394	 */
3395	panic("root_setup_intr");
3396}
3397
3398/*
3399 * If we get here, assume that the device is permanant and really is
3400 * present in the system.  Removable bus drivers are expected to intercept
3401 * this call long before it gets here.  We return -1 so that drivers that
3402 * really care can check vs -1 or some ERRNO returned higher in the food
3403 * chain.
3404 */
3405static int
3406root_child_present(device_t dev, device_t child)
3407{
3408	return (-1);
3409}
3410
3411static kobj_method_t root_methods[] = {
3412	/* Device interface */
3413	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
3414	KOBJMETHOD(device_suspend,	bus_generic_suspend),
3415	KOBJMETHOD(device_resume,	bus_generic_resume),
3416
3417	/* Bus interface */
3418	KOBJMETHOD(bus_print_child,	root_print_child),
3419	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
3420	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
3421	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
3422	KOBJMETHOD(bus_child_present,	root_child_present),
3423
3424	{ 0, 0 }
3425};
3426
3427static driver_t root_driver = {
3428	"root",
3429	root_methods,
3430	1,			/* no softc */
3431};
3432
3433device_t	root_bus;
3434devclass_t	root_devclass;
3435
3436static int
3437root_bus_module_handler(module_t mod, int what, void* arg)
3438{
3439	switch (what) {
3440	case MOD_LOAD:
3441		TAILQ_INIT(&bus_data_devices);
3442		kobj_class_compile((kobj_class_t) &root_driver);
3443		root_bus = make_device(NULL, "root", 0);
3444		root_bus->desc = "System root bus";
3445		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
3446		root_bus->driver = &root_driver;
3447		root_bus->state = DS_ATTACHED;
3448		root_devclass = devclass_find_internal("root", 0, FALSE);
3449		devinit();
3450		return (0);
3451
3452	case MOD_SHUTDOWN:
3453		device_shutdown(root_bus);
3454		return (0);
3455	default:
3456		return (EOPNOTSUPP);
3457	}
3458
3459	return (0);
3460}
3461
3462static moduledata_t root_bus_mod = {
3463	"rootbus",
3464	root_bus_module_handler,
3465	0
3466};
3467DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
3468
3469/**
3470 * @brief Automatically configure devices
3471 *
3472 * This function begins the autoconfiguration process by calling
3473 * device_probe_and_attach() for each child of the @c root0 device.
3474 */
3475void
3476root_bus_configure(void)
3477{
3478	device_t dev;
3479
3480	PDEBUG(("."));
3481
3482	TAILQ_FOREACH(dev, &root_bus->children, link) {
3483		device_probe_and_attach(dev);
3484	}
3485}
3486
3487/**
3488 * @brief Module handler for registering device drivers
3489 *
3490 * This module handler is used to automatically register device
3491 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
3492 * devclass_add_driver() for the driver described by the
3493 * driver_module_data structure pointed to by @p arg
3494 */
3495int
3496driver_module_handler(module_t mod, int what, void *arg)
3497{
3498	int error;
3499	struct driver_module_data *dmd;
3500	devclass_t bus_devclass;
3501	kobj_class_t driver;
3502
3503	dmd = (struct driver_module_data *)arg;
3504	bus_devclass = devclass_find_internal(dmd->dmd_busname, 0, TRUE);
3505	error = 0;
3506
3507	switch (what) {
3508	case MOD_LOAD:
3509		if (dmd->dmd_chainevh)
3510			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3511
3512		driver = dmd->dmd_driver;
3513		PDEBUG(("Loading module: driver %s on bus %s",
3514		    DRIVERNAME(driver), dmd->dmd_busname));
3515		error = devclass_add_driver(bus_devclass, driver);
3516		if (error)
3517			break;
3518
3519		/*
3520		 * If the driver has any base classes, make the
3521		 * devclass inherit from the devclass of the driver's
3522		 * first base class. This will allow the system to
3523		 * search for drivers in both devclasses for children
3524		 * of a device using this driver.
3525		 */
3526		if (driver->baseclasses) {
3527			const char *parentname;
3528			parentname = driver->baseclasses[0]->name;
3529			*dmd->dmd_devclass =
3530				devclass_find_internal(driver->name,
3531				    parentname, TRUE);
3532		} else {
3533			*dmd->dmd_devclass =
3534				devclass_find_internal(driver->name, 0, TRUE);
3535		}
3536		break;
3537
3538	case MOD_UNLOAD:
3539		PDEBUG(("Unloading module: driver %s from bus %s",
3540		    DRIVERNAME(dmd->dmd_driver),
3541		    dmd->dmd_busname));
3542		error = devclass_delete_driver(bus_devclass,
3543		    dmd->dmd_driver);
3544
3545		if (!error && dmd->dmd_chainevh)
3546			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
3547		break;
3548	default:
3549		error = EOPNOTSUPP;
3550		break;
3551	}
3552
3553	return (error);
3554}
3555
3556#ifdef BUS_DEBUG
3557
3558/* the _short versions avoid iteration by not calling anything that prints
3559 * more than oneliners. I love oneliners.
3560 */
3561
3562static void
3563print_device_short(device_t dev, int indent)
3564{
3565	if (!dev)
3566		return;
3567
3568	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
3569	    dev->unit, dev->desc,
3570	    (dev->parent? "":"no "),
3571	    (TAILQ_EMPTY(&dev->children)? "no ":""),
3572	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
3573	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
3574	    (dev->flags&DF_WILDCARD? "wildcard,":""),
3575	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
3576	    (dev->flags&DF_REBID? "rebiddable,":""),
3577	    (dev->ivars? "":"no "),
3578	    (dev->softc? "":"no "),
3579	    dev->busy));
3580}
3581
3582static void
3583print_device(device_t dev, int indent)
3584{
3585	if (!dev)
3586		return;
3587
3588	print_device_short(dev, indent);
3589
3590	indentprintf(("Parent:\n"));
3591	print_device_short(dev->parent, indent+1);
3592	indentprintf(("Driver:\n"));
3593	print_driver_short(dev->driver, indent+1);
3594	indentprintf(("Devclass:\n"));
3595	print_devclass_short(dev->devclass, indent+1);
3596}
3597
3598void
3599print_device_tree_short(device_t dev, int indent)
3600/* print the device and all its children (indented) */
3601{
3602	device_t child;
3603
3604	if (!dev)
3605		return;
3606
3607	print_device_short(dev, indent);
3608
3609	TAILQ_FOREACH(child, &dev->children, link) {
3610		print_device_tree_short(child, indent+1);
3611	}
3612}
3613
3614void
3615print_device_tree(device_t dev, int indent)
3616/* print the device and all its children (indented) */
3617{
3618	device_t child;
3619
3620	if (!dev)
3621		return;
3622
3623	print_device(dev, indent);
3624
3625	TAILQ_FOREACH(child, &dev->children, link) {
3626		print_device_tree(child, indent+1);
3627	}
3628}
3629
3630static void
3631print_driver_short(driver_t *driver, int indent)
3632{
3633	if (!driver)
3634		return;
3635
3636	indentprintf(("driver %s: softc size = %zd\n",
3637	    driver->name, driver->size));
3638}
3639
3640static void
3641print_driver(driver_t *driver, int indent)
3642{
3643	if (!driver)
3644		return;
3645
3646	print_driver_short(driver, indent);
3647}
3648
3649
3650static void
3651print_driver_list(driver_list_t drivers, int indent)
3652{
3653	driverlink_t driver;
3654
3655	TAILQ_FOREACH(driver, &drivers, link) {
3656		print_driver(driver->driver, indent);
3657	}
3658}
3659
3660static void
3661print_devclass_short(devclass_t dc, int indent)
3662{
3663	if ( !dc )
3664		return;
3665
3666	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
3667}
3668
3669static void
3670print_devclass(devclass_t dc, int indent)
3671{
3672	int i;
3673
3674	if ( !dc )
3675		return;
3676
3677	print_devclass_short(dc, indent);
3678	indentprintf(("Drivers:\n"));
3679	print_driver_list(dc->drivers, indent+1);
3680
3681	indentprintf(("Devices:\n"));
3682	for (i = 0; i < dc->maxunit; i++)
3683		if (dc->devices[i])
3684			print_device(dc->devices[i], indent+1);
3685}
3686
3687void
3688print_devclass_list_short(void)
3689{
3690	devclass_t dc;
3691
3692	printf("Short listing of devclasses, drivers & devices:\n");
3693	TAILQ_FOREACH(dc, &devclasses, link) {
3694		print_devclass_short(dc, 0);
3695	}
3696}
3697
3698void
3699print_devclass_list(void)
3700{
3701	devclass_t dc;
3702
3703	printf("Full listing of devclasses, drivers & devices:\n");
3704	TAILQ_FOREACH(dc, &devclasses, link) {
3705		print_devclass(dc, 0);
3706	}
3707}
3708
3709#endif
3710
3711/*
3712 * User-space access to the device tree.
3713 *
3714 * We implement a small set of nodes:
3715 *
3716 * hw.bus			Single integer read method to obtain the
3717 *				current generation count.
3718 * hw.bus.devices		Reads the entire device tree in flat space.
3719 * hw.bus.rman			Resource manager interface
3720 *
3721 * We might like to add the ability to scan devclasses and/or drivers to
3722 * determine what else is currently loaded/available.
3723 */
3724
3725static int
3726sysctl_bus(SYSCTL_HANDLER_ARGS)
3727{
3728	struct u_businfo	ubus;
3729
3730	ubus.ub_version = BUS_USER_VERSION;
3731	ubus.ub_generation = bus_data_generation;
3732
3733	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
3734}
3735SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
3736    "bus-related data");
3737
3738static int
3739sysctl_devices(SYSCTL_HANDLER_ARGS)
3740{
3741	int			*name = (int *)arg1;
3742	u_int			namelen = arg2;
3743	int			index;
3744	struct device		*dev;
3745	struct u_device		udev;	/* XXX this is a bit big */
3746	int			error;
3747
3748	if (namelen != 2)
3749		return (EINVAL);
3750
3751	if (bus_data_generation_check(name[0]))
3752		return (EINVAL);
3753
3754	index = name[1];
3755
3756	/*
3757	 * Scan the list of devices, looking for the requested index.
3758	 */
3759	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
3760		if (index-- == 0)
3761			break;
3762	}
3763	if (dev == NULL)
3764		return (ENOENT);
3765
3766	/*
3767	 * Populate the return array.
3768	 */
3769	udev.dv_handle = (uintptr_t)dev;
3770	udev.dv_parent = (uintptr_t)dev->parent;
3771	if (dev->nameunit == NULL)
3772		udev.dv_name[0] = '\0';
3773	else
3774		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
3775
3776	if (dev->desc == NULL)
3777		udev.dv_desc[0] = '\0';
3778	else
3779		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
3780	if (dev->driver == NULL || dev->driver->name == NULL)
3781		udev.dv_drivername[0] = '\0';
3782	else
3783		strlcpy(udev.dv_drivername, dev->driver->name,
3784		    sizeof(udev.dv_drivername));
3785	udev.dv_pnpinfo[0] = '\0';
3786	udev.dv_location[0] = '\0';
3787	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
3788	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
3789	udev.dv_devflags = dev->devflags;
3790	udev.dv_flags = dev->flags;
3791	udev.dv_state = dev->state;
3792	error = SYSCTL_OUT(req, &udev, sizeof(udev));
3793	return (error);
3794}
3795
3796SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
3797    "system device tree");
3798
3799/*
3800 * Sysctl interface for scanning the resource lists.
3801 *
3802 * We take two input parameters; the index into the list of resource
3803 * managers, and the resource offset into the list.
3804 */
3805static int
3806sysctl_rman(SYSCTL_HANDLER_ARGS)
3807{
3808	int			*name = (int *)arg1;
3809	u_int			namelen = arg2;
3810	int			rman_idx, res_idx;
3811	struct rman		*rm;
3812	struct resource		*res;
3813	struct u_rman		urm;
3814	struct u_resource	ures;
3815	int			error;
3816
3817	if (namelen != 3)
3818		return (EINVAL);
3819
3820	if (bus_data_generation_check(name[0]))
3821		return (EINVAL);
3822	rman_idx = name[1];
3823	res_idx = name[2];
3824
3825	/*
3826	 * Find the indexed resource manager
3827	 */
3828	TAILQ_FOREACH(rm, &rman_head, rm_link) {
3829		if (rman_idx-- == 0)
3830			break;
3831	}
3832	if (rm == NULL)
3833		return (ENOENT);
3834
3835	/*
3836	 * If the resource index is -1, we want details on the
3837	 * resource manager.
3838	 */
3839	if (res_idx == -1) {
3840		urm.rm_handle = (uintptr_t)rm;
3841		strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
3842		urm.rm_start = rm->rm_start;
3843		urm.rm_size = rm->rm_end - rm->rm_start + 1;
3844		urm.rm_type = rm->rm_type;
3845
3846		error = SYSCTL_OUT(req, &urm, sizeof(urm));
3847		return (error);
3848	}
3849
3850	/*
3851	 * Find the indexed resource and return it.
3852	 */
3853	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
3854		if (res_idx-- == 0) {
3855			ures.r_handle = (uintptr_t)res;
3856			ures.r_parent = (uintptr_t)res->r_rm;
3857			ures.r_device = (uintptr_t)res->r_dev;
3858			if (res->r_dev != NULL) {
3859				if (device_get_name(res->r_dev) != NULL) {
3860					snprintf(ures.r_devname, RM_TEXTLEN,
3861					    "%s%d",
3862					    device_get_name(res->r_dev),
3863					    device_get_unit(res->r_dev));
3864				} else {
3865					strlcpy(ures.r_devname, "nomatch",
3866					    RM_TEXTLEN);
3867				}
3868			} else {
3869				ures.r_devname[0] = '\0';
3870			}
3871			ures.r_start = res->r_start;
3872			ures.r_size = res->r_end - res->r_start + 1;
3873			ures.r_flags = res->r_flags;
3874
3875			error = SYSCTL_OUT(req, &ures, sizeof(ures));
3876			return (error);
3877		}
3878	}
3879	return (ENOENT);
3880}
3881
3882SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD, sysctl_rman,
3883    "kernel resource manager");
3884
3885int
3886bus_data_generation_check(int generation)
3887{
3888	if (generation != bus_data_generation)
3889		return (1);
3890
3891	/* XXX generate optimised lists here? */
3892	return (0);
3893}
3894
3895void
3896bus_data_generation_update(void)
3897{
3898	bus_data_generation++;
3899}
3900