subr_blist.c revision 302408
1/*-
2 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions
5 * are met:
6 * 1. Redistributions of source code must retain the above copyright
7 *    notice, this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright
9 *    notice, this list of conditions and the following disclaimer in the
10 *    documentation and/or other materials provided with the distribution.
11 * 4. Neither the name of the University nor the names of its contributors
12 *    may be used to endorse or promote products derived from this software
13 *    without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27/*
28 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
29 *
30 *	This module implements a general bitmap allocator/deallocator.  The
31 *	allocator eats around 2 bits per 'block'.  The module does not
32 *	try to interpret the meaning of a 'block' other than to return
33 *	SWAPBLK_NONE on an allocation failure.
34 *
35 *	A radix tree is used to maintain the bitmap.  Two radix constants are
36 *	involved:  One for the bitmaps contained in the leaf nodes (typically
37 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
38 *	nodes have a hint field.  This field gives us a hint as to the largest
39 *	free contiguous range of blocks under the node.  It may contain a
40 *	value that is too high, but will never contain a value that is too
41 *	low.  When the radix tree is searched, allocation failures in subtrees
42 *	update the hint.
43 *
44 *	The radix tree also implements two collapsed states for meta nodes:
45 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
46 *	in either of these two states, all information contained underneath
47 *	the node is considered stale.  These states are used to optimize
48 *	allocation and freeing operations.
49 *
50 * 	The hinting greatly increases code efficiency for allocations while
51 *	the general radix structure optimizes both allocations and frees.  The
52 *	radix tree should be able to operate well no matter how much
53 *	fragmentation there is and no matter how large a bitmap is used.
54 *
55 *	The blist code wires all necessary memory at creation time.  Neither
56 *	allocations nor frees require interaction with the memory subsystem.
57 *	The non-blocking features of the blist code are used in the swap code
58 *	(vm/swap_pager.c).
59 *
60 *	LAYOUT: The radix tree is laid out recursively using a
61 *	linear array.  Each meta node is immediately followed (laid out
62 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
63 *	is a recursive structure but one that can be easily scanned through
64 *	a very simple 'skip' calculation.  In order to support large radixes,
65 *	portions of the tree may reside outside our memory allocation.  We
66 *	handle this with an early-termination optimization (when bighint is
67 *	set to -1) on the scan.  The memory allocation is only large enough
68 *	to cover the number of blocks requested at creation time even if it
69 *	must be encompassed in larger root-node radix.
70 *
71 *	NOTE: the allocator cannot currently allocate more than
72 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
73 *	large' if you try.  This is an area that could use improvement.  The
74 *	radix is large enough that this restriction does not effect the swap
75 *	system, though.  Currently only the allocation code is effected by
76 *	this algorithmic unfeature.  The freeing code can handle arbitrary
77 *	ranges.
78 *
79 *	This code can be compiled stand-alone for debugging.
80 */
81
82#include <sys/cdefs.h>
83__FBSDID("$FreeBSD: stable/11/sys/kern/subr_blist.c 298819 2016-04-29 22:15:33Z pfg $");
84
85#ifdef _KERNEL
86
87#include <sys/param.h>
88#include <sys/systm.h>
89#include <sys/lock.h>
90#include <sys/kernel.h>
91#include <sys/blist.h>
92#include <sys/malloc.h>
93#include <sys/proc.h>
94#include <sys/mutex.h>
95
96#else
97
98#ifndef BLIST_NO_DEBUG
99#define BLIST_DEBUG
100#endif
101
102#define SWAPBLK_NONE ((daddr_t)-1)
103
104#include <sys/types.h>
105#include <stdio.h>
106#include <string.h>
107#include <stdlib.h>
108#include <stdarg.h>
109
110#define malloc(a,b,c)	calloc(a, 1)
111#define free(a,b)	free(a)
112
113typedef unsigned int u_daddr_t;
114
115#include <sys/blist.h>
116
117void panic(const char *ctl, ...);
118
119#endif
120
121/*
122 * static support functions
123 */
124
125static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
126static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
127				daddr_t count, daddr_t radix, int skip);
128static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
129static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
130					daddr_t radix, int skip, daddr_t blk);
131static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
132				daddr_t skip, blist_t dest, daddr_t count);
133static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
134static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
135				daddr_t radix, int skip, daddr_t blk);
136static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
137						int skip, daddr_t count);
138#ifndef _KERNEL
139static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
140					daddr_t radix, int skip, int tab);
141#endif
142
143#ifdef _KERNEL
144static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
145#endif
146
147/*
148 * blist_create() - create a blist capable of handling up to the specified
149 *		    number of blocks
150 *
151 *	blocks - must be greater than 0
152 * 	flags  - malloc flags
153 *
154 *	The smallest blist consists of a single leaf node capable of
155 *	managing BLIST_BMAP_RADIX blocks.
156 */
157
158blist_t
159blist_create(daddr_t blocks, int flags)
160{
161	blist_t bl;
162	int radix;
163	int skip = 0;
164
165	/*
166	 * Calculate radix and skip field used for scanning.
167	 */
168	radix = BLIST_BMAP_RADIX;
169
170	while (radix < blocks) {
171		radix *= BLIST_META_RADIX;
172		skip = (skip + 1) * BLIST_META_RADIX;
173	}
174
175	bl = malloc(sizeof(struct blist), M_SWAP, flags | M_ZERO);
176
177	bl->bl_blocks = blocks;
178	bl->bl_radix = radix;
179	bl->bl_skip = skip;
180	bl->bl_rootblks = 1 +
181	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
182	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, flags);
183
184#if defined(BLIST_DEBUG)
185	printf(
186		"BLIST representing %lld blocks (%lld MB of swap)"
187		", requiring %lldK of ram\n",
188		(long long)bl->bl_blocks,
189		(long long)bl->bl_blocks * 4 / 1024,
190		(long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
191	);
192	printf("BLIST raw radix tree contains %lld records\n",
193	    (long long)bl->bl_rootblks);
194#endif
195	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
196
197	return(bl);
198}
199
200void
201blist_destroy(blist_t bl)
202{
203	free(bl->bl_root, M_SWAP);
204	free(bl, M_SWAP);
205}
206
207/*
208 * blist_alloc() - reserve space in the block bitmap.  Return the base
209 *		     of a contiguous region or SWAPBLK_NONE if space could
210 *		     not be allocated.
211 */
212
213daddr_t
214blist_alloc(blist_t bl, daddr_t count)
215{
216	daddr_t blk = SWAPBLK_NONE;
217
218	if (bl) {
219		if (bl->bl_radix == BLIST_BMAP_RADIX)
220			blk = blst_leaf_alloc(bl->bl_root, 0, count);
221		else
222			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
223		if (blk != SWAPBLK_NONE)
224			bl->bl_free -= count;
225	}
226	return(blk);
227}
228
229/*
230 * blist_free() -	free up space in the block bitmap.  Return the base
231 *		     	of a contiguous region.  Panic if an inconsistancy is
232 *			found.
233 */
234
235void
236blist_free(blist_t bl, daddr_t blkno, daddr_t count)
237{
238	if (bl) {
239		if (bl->bl_radix == BLIST_BMAP_RADIX)
240			blst_leaf_free(bl->bl_root, blkno, count);
241		else
242			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
243		bl->bl_free += count;
244	}
245}
246
247/*
248 * blist_fill() -	mark a region in the block bitmap as off-limits
249 *			to the allocator (i.e. allocate it), ignoring any
250 *			existing allocations.  Return the number of blocks
251 *			actually filled that were free before the call.
252 */
253
254int
255blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
256{
257	int filled;
258
259	if (bl) {
260		if (bl->bl_radix == BLIST_BMAP_RADIX)
261			filled = blst_leaf_fill(bl->bl_root, blkno, count);
262		else
263			filled = blst_meta_fill(bl->bl_root, blkno, count,
264			    bl->bl_radix, bl->bl_skip, 0);
265		bl->bl_free -= filled;
266		return filled;
267	} else
268		return 0;
269}
270
271/*
272 * blist_resize() -	resize an existing radix tree to handle the
273 *			specified number of blocks.  This will reallocate
274 *			the tree and transfer the previous bitmap to the new
275 *			one.  When extending the tree you can specify whether
276 *			the new blocks are to left allocated or freed.
277 */
278
279void
280blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
281{
282    blist_t newbl = blist_create(count, flags);
283    blist_t save = *pbl;
284
285    *pbl = newbl;
286    if (count > save->bl_blocks)
287	    count = save->bl_blocks;
288    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
289
290    /*
291     * If resizing upwards, should we free the new space or not?
292     */
293    if (freenew && count < newbl->bl_blocks) {
294	    blist_free(newbl, count, newbl->bl_blocks - count);
295    }
296    blist_destroy(save);
297}
298
299#ifdef BLIST_DEBUG
300
301/*
302 * blist_print()    - dump radix tree
303 */
304
305void
306blist_print(blist_t bl)
307{
308	printf("BLIST {\n");
309	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
310	printf("}\n");
311}
312
313#endif
314
315/************************************************************************
316 *			  ALLOCATION SUPPORT FUNCTIONS			*
317 ************************************************************************
318 *
319 *	These support functions do all the actual work.  They may seem
320 *	rather longish, but that's because I've commented them up.  The
321 *	actual code is straight forward.
322 *
323 */
324
325/*
326 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
327 *
328 *	This is the core of the allocator and is optimized for the 1 block
329 *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
330 *	somewhat slower.  The 1 block allocation case is log2 and extremely
331 *	quick.
332 */
333
334static daddr_t
335blst_leaf_alloc(
336	blmeta_t *scan,
337	daddr_t blk,
338	int count
339) {
340	u_daddr_t orig = scan->u.bmu_bitmap;
341
342	if (orig == 0) {
343		/*
344		 * Optimize bitmap all-allocated case.  Also, count = 1
345		 * case assumes at least 1 bit is free in the bitmap, so
346		 * we have to take care of this case here.
347		 */
348		scan->bm_bighint = 0;
349		return(SWAPBLK_NONE);
350	}
351	if (count == 1) {
352		/*
353		 * Optimized code to allocate one bit out of the bitmap
354		 */
355		u_daddr_t mask;
356		int j = BLIST_BMAP_RADIX/2;
357		int r = 0;
358
359		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
360
361		while (j) {
362			if ((orig & mask) == 0) {
363			    r += j;
364			    orig >>= j;
365			}
366			j >>= 1;
367			mask >>= j;
368		}
369		scan->u.bmu_bitmap &= ~(1 << r);
370		return(blk + r);
371	}
372	if (count <= BLIST_BMAP_RADIX) {
373		/*
374		 * non-optimized code to allocate N bits out of the bitmap.
375		 * The more bits, the faster the code runs.  It will run
376		 * the slowest allocating 2 bits, but since there aren't any
377		 * memory ops in the core loop (or shouldn't be, anyway),
378		 * you probably won't notice the difference.
379		 */
380		int j;
381		int n = BLIST_BMAP_RADIX - count;
382		u_daddr_t mask;
383
384		mask = (u_daddr_t)-1 >> n;
385
386		for (j = 0; j <= n; ++j) {
387			if ((orig & mask) == mask) {
388				scan->u.bmu_bitmap &= ~mask;
389				return(blk + j);
390			}
391			mask = (mask << 1);
392		}
393	}
394	/*
395	 * We couldn't allocate count in this subtree, update bighint.
396	 */
397	scan->bm_bighint = count - 1;
398	return(SWAPBLK_NONE);
399}
400
401/*
402 * blist_meta_alloc() -	allocate at a meta in the radix tree.
403 *
404 *	Attempt to allocate at a meta node.  If we can't, we update
405 *	bighint and return a failure.  Updating bighint optimize future
406 *	calls that hit this node.  We have to check for our collapse cases
407 *	and we have a few optimizations strewn in as well.
408 */
409
410static daddr_t
411blst_meta_alloc(
412	blmeta_t *scan,
413	daddr_t blk,
414	daddr_t count,
415	daddr_t radix,
416	int skip
417) {
418	int i;
419	int next_skip = ((u_int)skip / BLIST_META_RADIX);
420
421	if (scan->u.bmu_avail == 0)  {
422		/*
423		 * ALL-ALLOCATED special case
424		 */
425		scan->bm_bighint = count;
426		return(SWAPBLK_NONE);
427	}
428
429	if (scan->u.bmu_avail == radix) {
430		radix /= BLIST_META_RADIX;
431
432		/*
433		 * ALL-FREE special case, initialize uninitialize
434		 * sublevel.
435		 */
436		for (i = 1; i <= skip; i += next_skip) {
437			if (scan[i].bm_bighint == (daddr_t)-1)
438				break;
439			if (next_skip == 1) {
440				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
441				scan[i].bm_bighint = BLIST_BMAP_RADIX;
442			} else {
443				scan[i].bm_bighint = radix;
444				scan[i].u.bmu_avail = radix;
445			}
446		}
447	} else {
448		radix /= BLIST_META_RADIX;
449	}
450
451	for (i = 1; i <= skip; i += next_skip) {
452		if (count <= scan[i].bm_bighint) {
453			/*
454			 * count fits in object
455			 */
456			daddr_t r;
457			if (next_skip == 1) {
458				r = blst_leaf_alloc(&scan[i], blk, count);
459			} else {
460				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
461			}
462			if (r != SWAPBLK_NONE) {
463				scan->u.bmu_avail -= count;
464				if (scan->bm_bighint > scan->u.bmu_avail)
465					scan->bm_bighint = scan->u.bmu_avail;
466				return(r);
467			}
468		} else if (scan[i].bm_bighint == (daddr_t)-1) {
469			/*
470			 * Terminator
471			 */
472			break;
473		} else if (count > radix) {
474			/*
475			 * count does not fit in object even if it were
476			 * complete free.
477			 */
478			panic("blist_meta_alloc: allocation too large");
479		}
480		blk += radix;
481	}
482
483	/*
484	 * We couldn't allocate count in this subtree, update bighint.
485	 */
486	if (scan->bm_bighint >= count)
487		scan->bm_bighint = count - 1;
488	return(SWAPBLK_NONE);
489}
490
491/*
492 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
493 *
494 */
495
496static void
497blst_leaf_free(
498	blmeta_t *scan,
499	daddr_t blk,
500	int count
501) {
502	/*
503	 * free some data in this bitmap
504	 *
505	 * e.g.
506	 *	0000111111111110000
507	 *          \_________/\__/
508	 *		v        n
509	 */
510	int n = blk & (BLIST_BMAP_RADIX - 1);
511	u_daddr_t mask;
512
513	mask = ((u_daddr_t)-1 << n) &
514	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
515
516	if (scan->u.bmu_bitmap & mask)
517		panic("blst_radix_free: freeing free block");
518	scan->u.bmu_bitmap |= mask;
519
520	/*
521	 * We could probably do a better job here.  We are required to make
522	 * bighint at least as large as the biggest contiguous block of
523	 * data.  If we just shoehorn it, a little extra overhead will
524	 * be incured on the next allocation (but only that one typically).
525	 */
526	scan->bm_bighint = BLIST_BMAP_RADIX;
527}
528
529/*
530 * BLST_META_FREE() - free allocated blocks from radix tree meta info
531 *
532 *	This support routine frees a range of blocks from the bitmap.
533 *	The range must be entirely enclosed by this radix node.  If a
534 *	meta node, we break the range down recursively to free blocks
535 *	in subnodes (which means that this code can free an arbitrary
536 *	range whereas the allocation code cannot allocate an arbitrary
537 *	range).
538 */
539
540static void
541blst_meta_free(
542	blmeta_t *scan,
543	daddr_t freeBlk,
544	daddr_t count,
545	daddr_t radix,
546	int skip,
547	daddr_t blk
548) {
549	int i;
550	int next_skip = ((u_int)skip / BLIST_META_RADIX);
551
552#if 0
553	printf("free (%llx,%lld) FROM (%llx,%lld)\n",
554	    (long long)freeBlk, (long long)count,
555	    (long long)blk, (long long)radix
556	);
557#endif
558
559	if (scan->u.bmu_avail == 0) {
560		/*
561		 * ALL-ALLOCATED special case, with possible
562		 * shortcut to ALL-FREE special case.
563		 */
564		scan->u.bmu_avail = count;
565		scan->bm_bighint = count;
566
567		if (count != radix)  {
568			for (i = 1; i <= skip; i += next_skip) {
569				if (scan[i].bm_bighint == (daddr_t)-1)
570					break;
571				scan[i].bm_bighint = 0;
572				if (next_skip == 1) {
573					scan[i].u.bmu_bitmap = 0;
574				} else {
575					scan[i].u.bmu_avail = 0;
576				}
577			}
578			/* fall through */
579		}
580	} else {
581		scan->u.bmu_avail += count;
582		/* scan->bm_bighint = radix; */
583	}
584
585	/*
586	 * ALL-FREE special case.
587	 */
588
589	if (scan->u.bmu_avail == radix)
590		return;
591	if (scan->u.bmu_avail > radix)
592		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
593		    (long long)count, (long long)scan->u.bmu_avail,
594		    (long long)radix);
595
596	/*
597	 * Break the free down into its components
598	 */
599
600	radix /= BLIST_META_RADIX;
601
602	i = (freeBlk - blk) / radix;
603	blk += i * radix;
604	i = i * next_skip + 1;
605
606	while (i <= skip && blk < freeBlk + count) {
607		daddr_t v;
608
609		v = blk + radix - freeBlk;
610		if (v > count)
611			v = count;
612
613		if (scan->bm_bighint == (daddr_t)-1)
614			panic("blst_meta_free: freeing unexpected range");
615
616		if (next_skip == 1) {
617			blst_leaf_free(&scan[i], freeBlk, v);
618		} else {
619			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
620		}
621		if (scan->bm_bighint < scan[i].bm_bighint)
622		    scan->bm_bighint = scan[i].bm_bighint;
623		count -= v;
624		freeBlk += v;
625		blk += radix;
626		i += next_skip;
627	}
628}
629
630/*
631 * BLIST_RADIX_COPY() - copy one radix tree to another
632 *
633 *	Locates free space in the source tree and frees it in the destination
634 *	tree.  The space may not already be free in the destination.
635 */
636
637static void blst_copy(
638	blmeta_t *scan,
639	daddr_t blk,
640	daddr_t radix,
641	daddr_t skip,
642	blist_t dest,
643	daddr_t count
644) {
645	int next_skip;
646	int i;
647
648	/*
649	 * Leaf node
650	 */
651
652	if (radix == BLIST_BMAP_RADIX) {
653		u_daddr_t v = scan->u.bmu_bitmap;
654
655		if (v == (u_daddr_t)-1) {
656			blist_free(dest, blk, count);
657		} else if (v != 0) {
658			int i;
659
660			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
661				if (v & (1 << i))
662					blist_free(dest, blk + i, 1);
663			}
664		}
665		return;
666	}
667
668	/*
669	 * Meta node
670	 */
671
672	if (scan->u.bmu_avail == 0) {
673		/*
674		 * Source all allocated, leave dest allocated
675		 */
676		return;
677	}
678	if (scan->u.bmu_avail == radix) {
679		/*
680		 * Source all free, free entire dest
681		 */
682		if (count < radix)
683			blist_free(dest, blk, count);
684		else
685			blist_free(dest, blk, radix);
686		return;
687	}
688
689
690	radix /= BLIST_META_RADIX;
691	next_skip = ((u_int)skip / BLIST_META_RADIX);
692
693	for (i = 1; count && i <= skip; i += next_skip) {
694		if (scan[i].bm_bighint == (daddr_t)-1)
695			break;
696
697		if (count >= radix) {
698			blst_copy(
699			    &scan[i],
700			    blk,
701			    radix,
702			    next_skip - 1,
703			    dest,
704			    radix
705			);
706			count -= radix;
707		} else {
708			if (count) {
709				blst_copy(
710				    &scan[i],
711				    blk,
712				    radix,
713				    next_skip - 1,
714				    dest,
715				    count
716				);
717			}
718			count = 0;
719		}
720		blk += radix;
721	}
722}
723
724/*
725 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
726 *
727 *	This routine allocates all blocks in the specified range
728 *	regardless of any existing allocations in that range.  Returns
729 *	the number of blocks allocated by the call.
730 */
731
732static int
733blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
734{
735	int n = blk & (BLIST_BMAP_RADIX - 1);
736	int nblks;
737	u_daddr_t mask, bitmap;
738
739	mask = ((u_daddr_t)-1 << n) &
740	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
741
742	/* Count the number of blocks we're about to allocate */
743	bitmap = scan->u.bmu_bitmap & mask;
744	for (nblks = 0; bitmap != 0; nblks++)
745		bitmap &= bitmap - 1;
746
747	scan->u.bmu_bitmap &= ~mask;
748	return nblks;
749}
750
751/*
752 * BLIST_META_FILL() -	allocate specific blocks at a meta node
753 *
754 *	This routine allocates the specified range of blocks,
755 *	regardless of any existing allocations in the range.  The
756 *	range must be within the extent of this node.  Returns the
757 *	number of blocks allocated by the call.
758 */
759static int
760blst_meta_fill(
761	blmeta_t *scan,
762	daddr_t allocBlk,
763	daddr_t count,
764	daddr_t radix,
765	int skip,
766	daddr_t blk
767) {
768	int i;
769	int next_skip = ((u_int)skip / BLIST_META_RADIX);
770	int nblks = 0;
771
772	if (count == radix || scan->u.bmu_avail == 0)  {
773		/*
774		 * ALL-ALLOCATED special case
775		 */
776		nblks = scan->u.bmu_avail;
777		scan->u.bmu_avail = 0;
778		scan->bm_bighint = count;
779		return nblks;
780	}
781
782	if (scan->u.bmu_avail == radix) {
783		radix /= BLIST_META_RADIX;
784
785		/*
786		 * ALL-FREE special case, initialize sublevel
787		 */
788		for (i = 1; i <= skip; i += next_skip) {
789			if (scan[i].bm_bighint == (daddr_t)-1)
790				break;
791			if (next_skip == 1) {
792				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
793				scan[i].bm_bighint = BLIST_BMAP_RADIX;
794			} else {
795				scan[i].bm_bighint = radix;
796				scan[i].u.bmu_avail = radix;
797			}
798		}
799	} else {
800		radix /= BLIST_META_RADIX;
801	}
802
803	if (count > radix)
804		panic("blist_meta_fill: allocation too large");
805
806	i = (allocBlk - blk) / radix;
807	blk += i * radix;
808	i = i * next_skip + 1;
809
810	while (i <= skip && blk < allocBlk + count) {
811		daddr_t v;
812
813		v = blk + radix - allocBlk;
814		if (v > count)
815			v = count;
816
817		if (scan->bm_bighint == (daddr_t)-1)
818			panic("blst_meta_fill: filling unexpected range");
819
820		if (next_skip == 1) {
821			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
822		} else {
823			nblks += blst_meta_fill(&scan[i], allocBlk, v,
824			    radix, next_skip - 1, blk);
825		}
826		count -= v;
827		allocBlk += v;
828		blk += radix;
829		i += next_skip;
830	}
831	scan->u.bmu_avail -= nblks;
832	return nblks;
833}
834
835/*
836 * BLST_RADIX_INIT() - initialize radix tree
837 *
838 *	Initialize our meta structures and bitmaps and calculate the exact
839 *	amount of space required to manage 'count' blocks - this space may
840 *	be considerably less than the calculated radix due to the large
841 *	RADIX values we use.
842 */
843
844static daddr_t
845blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
846{
847	int i;
848	int next_skip;
849	daddr_t memindex = 0;
850
851	/*
852	 * Leaf node
853	 */
854
855	if (radix == BLIST_BMAP_RADIX) {
856		if (scan) {
857			scan->bm_bighint = 0;
858			scan->u.bmu_bitmap = 0;
859		}
860		return(memindex);
861	}
862
863	/*
864	 * Meta node.  If allocating the entire object we can special
865	 * case it.  However, we need to figure out how much memory
866	 * is required to manage 'count' blocks, so we continue on anyway.
867	 */
868
869	if (scan) {
870		scan->bm_bighint = 0;
871		scan->u.bmu_avail = 0;
872	}
873
874	radix /= BLIST_META_RADIX;
875	next_skip = ((u_int)skip / BLIST_META_RADIX);
876
877	for (i = 1; i <= skip; i += next_skip) {
878		if (count >= radix) {
879			/*
880			 * Allocate the entire object
881			 */
882			memindex = i + blst_radix_init(
883			    ((scan) ? &scan[i] : NULL),
884			    radix,
885			    next_skip - 1,
886			    radix
887			);
888			count -= radix;
889		} else if (count > 0) {
890			/*
891			 * Allocate a partial object
892			 */
893			memindex = i + blst_radix_init(
894			    ((scan) ? &scan[i] : NULL),
895			    radix,
896			    next_skip - 1,
897			    count
898			);
899			count = 0;
900		} else {
901			/*
902			 * Add terminator and break out
903			 */
904			if (scan)
905				scan[i].bm_bighint = (daddr_t)-1;
906			break;
907		}
908	}
909	if (memindex < i)
910		memindex = i;
911	return(memindex);
912}
913
914#ifdef BLIST_DEBUG
915
916static void
917blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
918{
919	int i;
920	int next_skip;
921	int lastState = 0;
922
923	if (radix == BLIST_BMAP_RADIX) {
924		printf(
925		    "%*.*s(%08llx,%lld): bitmap %08llx big=%lld\n",
926		    tab, tab, "",
927		    (long long)blk, (long long)radix,
928		    (long long)scan->u.bmu_bitmap,
929		    (long long)scan->bm_bighint
930		);
931		return;
932	}
933
934	if (scan->u.bmu_avail == 0) {
935		printf(
936		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
937		    tab, tab, "",
938		    (long long)blk,
939		    (long long)radix
940		);
941		return;
942	}
943	if (scan->u.bmu_avail == radix) {
944		printf(
945		    "%*.*s(%08llx,%lld) ALL FREE\n",
946		    tab, tab, "",
947		    (long long)blk,
948		    (long long)radix
949		);
950		return;
951	}
952
953	printf(
954	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
955	    tab, tab, "",
956	    (long long)blk, (long long)radix,
957	    (long long)scan->u.bmu_avail,
958	    (long long)radix,
959	    (long long)scan->bm_bighint
960	);
961
962	radix /= BLIST_META_RADIX;
963	next_skip = ((u_int)skip / BLIST_META_RADIX);
964	tab += 4;
965
966	for (i = 1; i <= skip; i += next_skip) {
967		if (scan[i].bm_bighint == (daddr_t)-1) {
968			printf(
969			    "%*.*s(%08llx,%lld): Terminator\n",
970			    tab, tab, "",
971			    (long long)blk, (long long)radix
972			);
973			lastState = 0;
974			break;
975		}
976		blst_radix_print(
977		    &scan[i],
978		    blk,
979		    radix,
980		    next_skip - 1,
981		    tab
982		);
983		blk += radix;
984	}
985	tab -= 4;
986
987	printf(
988	    "%*.*s}\n",
989	    tab, tab, ""
990	);
991}
992
993#endif
994
995#ifdef BLIST_DEBUG
996
997int
998main(int ac, char **av)
999{
1000	int size = 1024;
1001	int i;
1002	blist_t bl;
1003
1004	for (i = 1; i < ac; ++i) {
1005		const char *ptr = av[i];
1006		if (*ptr != '-') {
1007			size = strtol(ptr, NULL, 0);
1008			continue;
1009		}
1010		ptr += 2;
1011		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1012		exit(1);
1013	}
1014	bl = blist_create(size, M_WAITOK);
1015	blist_free(bl, 0, size);
1016
1017	for (;;) {
1018		char buf[1024];
1019		daddr_t da = 0;
1020		daddr_t count = 0;
1021
1022
1023		printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
1024		    (long long)size, (long long)bl->bl_radix);
1025		fflush(stdout);
1026		if (fgets(buf, sizeof(buf), stdin) == NULL)
1027			break;
1028		switch(buf[0]) {
1029		case 'r':
1030			if (sscanf(buf + 1, "%lld", &count) == 1) {
1031				blist_resize(&bl, count, 1);
1032			} else {
1033				printf("?\n");
1034			}
1035		case 'p':
1036			blist_print(bl);
1037			break;
1038		case 'a':
1039			if (sscanf(buf + 1, "%lld", &count) == 1) {
1040				daddr_t blk = blist_alloc(bl, count);
1041				printf("    R=%08llx\n", (long long)blk);
1042			} else {
1043				printf("?\n");
1044			}
1045			break;
1046		case 'f':
1047			if (sscanf(buf + 1, "%llx %lld",
1048			    (long long *)&da, (long long *)&count) == 2) {
1049				blist_free(bl, da, count);
1050			} else {
1051				printf("?\n");
1052			}
1053			break;
1054		case 'l':
1055			if (sscanf(buf + 1, "%llx %lld",
1056			    (long long *)&da, (long long *)&count) == 2) {
1057				printf("    n=%d\n",
1058				    blist_fill(bl, da, count));
1059			} else {
1060				printf("?\n");
1061			}
1062			break;
1063		case '?':
1064		case 'h':
1065			puts(
1066			    "p          -print\n"
1067			    "a %d       -allocate\n"
1068			    "f %x %d    -free\n"
1069			    "l %x %d    -fill\n"
1070			    "r %d       -resize\n"
1071			    "h/?        -help"
1072			);
1073			break;
1074		default:
1075			printf("?\n");
1076			break;
1077		}
1078	}
1079	return(0);
1080}
1081
1082void
1083panic(const char *ctl, ...)
1084{
1085	va_list va;
1086
1087	va_start(va, ctl);
1088	vfprintf(stderr, ctl, va);
1089	fprintf(stderr, "\n");
1090	va_end(va);
1091	exit(1);
1092}
1093
1094#endif
1095
1096