kern_thread.c revision 289661
1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include "opt_witness.h"
30#include "opt_hwpmc_hooks.h"
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_thread.c 289661 2015-10-20 20:29:21Z kib $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/rangelock.h>
42#include <sys/resourcevar.h>
43#include <sys/sdt.h>
44#include <sys/smp.h>
45#include <sys/sched.h>
46#include <sys/sleepqueue.h>
47#include <sys/selinfo.h>
48#include <sys/sysent.h>
49#include <sys/turnstile.h>
50#include <sys/ktr.h>
51#include <sys/rwlock.h>
52#include <sys/umtx.h>
53#include <sys/cpuset.h>
54#ifdef	HWPMC_HOOKS
55#include <sys/pmckern.h>
56#endif
57
58#include <security/audit/audit.h>
59
60#include <vm/vm.h>
61#include <vm/vm_extern.h>
62#include <vm/uma.h>
63#include <vm/vm_domain.h>
64#include <sys/eventhandler.h>
65
66SDT_PROVIDER_DECLARE(proc);
67SDT_PROBE_DEFINE(proc, , , lwp__exit);
68
69/*
70 * thread related storage.
71 */
72static uma_zone_t thread_zone;
73
74TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75static struct mtx zombie_lock;
76MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78static void thread_zombie(struct thread *);
79static int thread_unsuspend_one(struct thread *td, struct proc *p,
80    bool boundary);
81
82#define TID_BUFFER_SIZE	1024
83
84struct mtx tid_lock;
85static struct unrhdr *tid_unrhdr;
86static lwpid_t tid_buffer[TID_BUFFER_SIZE];
87static int tid_head, tid_tail;
88static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
89
90struct	tidhashhead *tidhashtbl;
91u_long	tidhash;
92struct	rwlock tidhash_lock;
93
94static lwpid_t
95tid_alloc(void)
96{
97	lwpid_t	tid;
98
99	tid = alloc_unr(tid_unrhdr);
100	if (tid != -1)
101		return (tid);
102	mtx_lock(&tid_lock);
103	if (tid_head == tid_tail) {
104		mtx_unlock(&tid_lock);
105		return (-1);
106	}
107	tid = tid_buffer[tid_head];
108	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
109	mtx_unlock(&tid_lock);
110	return (tid);
111}
112
113static void
114tid_free(lwpid_t tid)
115{
116	lwpid_t tmp_tid = -1;
117
118	mtx_lock(&tid_lock);
119	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
120		tmp_tid = tid_buffer[tid_head];
121		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
122	}
123	tid_buffer[tid_tail] = tid;
124	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
125	mtx_unlock(&tid_lock);
126	if (tmp_tid != -1)
127		free_unr(tid_unrhdr, tmp_tid);
128}
129
130/*
131 * Prepare a thread for use.
132 */
133static int
134thread_ctor(void *mem, int size, void *arg, int flags)
135{
136	struct thread	*td;
137
138	td = (struct thread *)mem;
139	td->td_state = TDS_INACTIVE;
140	td->td_oncpu = NOCPU;
141
142	td->td_tid = tid_alloc();
143
144	/*
145	 * Note that td_critnest begins life as 1 because the thread is not
146	 * running and is thereby implicitly waiting to be on the receiving
147	 * end of a context switch.
148	 */
149	td->td_critnest = 1;
150	td->td_lend_user_pri = PRI_MAX;
151	EVENTHANDLER_INVOKE(thread_ctor, td);
152#ifdef AUDIT
153	audit_thread_alloc(td);
154#endif
155	umtx_thread_alloc(td);
156	return (0);
157}
158
159/*
160 * Reclaim a thread after use.
161 */
162static void
163thread_dtor(void *mem, int size, void *arg)
164{
165	struct thread *td;
166
167	td = (struct thread *)mem;
168
169#ifdef INVARIANTS
170	/* Verify that this thread is in a safe state to free. */
171	switch (td->td_state) {
172	case TDS_INHIBITED:
173	case TDS_RUNNING:
174	case TDS_CAN_RUN:
175	case TDS_RUNQ:
176		/*
177		 * We must never unlink a thread that is in one of
178		 * these states, because it is currently active.
179		 */
180		panic("bad state for thread unlinking");
181		/* NOTREACHED */
182	case TDS_INACTIVE:
183		break;
184	default:
185		panic("bad thread state");
186		/* NOTREACHED */
187	}
188#endif
189#ifdef AUDIT
190	audit_thread_free(td);
191#endif
192	/* Free all OSD associated to this thread. */
193	osd_thread_exit(td);
194
195	EVENTHANDLER_INVOKE(thread_dtor, td);
196	tid_free(td->td_tid);
197}
198
199/*
200 * Initialize type-stable parts of a thread (when newly created).
201 */
202static int
203thread_init(void *mem, int size, int flags)
204{
205	struct thread *td;
206
207	td = (struct thread *)mem;
208
209	td->td_sleepqueue = sleepq_alloc();
210	td->td_turnstile = turnstile_alloc();
211	td->td_rlqe = NULL;
212	EVENTHANDLER_INVOKE(thread_init, td);
213	td->td_sched = (struct td_sched *)&td[1];
214	umtx_thread_init(td);
215	td->td_kstack = 0;
216	td->td_sel = NULL;
217	return (0);
218}
219
220/*
221 * Tear down type-stable parts of a thread (just before being discarded).
222 */
223static void
224thread_fini(void *mem, int size)
225{
226	struct thread *td;
227
228	td = (struct thread *)mem;
229	EVENTHANDLER_INVOKE(thread_fini, td);
230	rlqentry_free(td->td_rlqe);
231	turnstile_free(td->td_turnstile);
232	sleepq_free(td->td_sleepqueue);
233	umtx_thread_fini(td);
234	seltdfini(td);
235}
236
237/*
238 * For a newly created process,
239 * link up all the structures and its initial threads etc.
240 * called from:
241 * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
242 * proc_dtor() (should go away)
243 * proc_init()
244 */
245void
246proc_linkup0(struct proc *p, struct thread *td)
247{
248	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
249	proc_linkup(p, td);
250}
251
252void
253proc_linkup(struct proc *p, struct thread *td)
254{
255
256	sigqueue_init(&p->p_sigqueue, p);
257	p->p_ksi = ksiginfo_alloc(1);
258	if (p->p_ksi != NULL) {
259		/* XXX p_ksi may be null if ksiginfo zone is not ready */
260		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
261	}
262	LIST_INIT(&p->p_mqnotifier);
263	p->p_numthreads = 0;
264	thread_link(td, p);
265}
266
267/*
268 * Initialize global thread allocation resources.
269 */
270void
271threadinit(void)
272{
273
274	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
275
276	/*
277	 * pid_max cannot be greater than PID_MAX.
278	 * leave one number for thread0.
279	 */
280	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
281
282	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
283	    thread_ctor, thread_dtor, thread_init, thread_fini,
284	    16 - 1, UMA_ZONE_NOFREE);
285	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
286	rw_init(&tidhash_lock, "tidhash");
287}
288
289/*
290 * Place an unused thread on the zombie list.
291 * Use the slpq as that must be unused by now.
292 */
293void
294thread_zombie(struct thread *td)
295{
296	mtx_lock_spin(&zombie_lock);
297	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
298	mtx_unlock_spin(&zombie_lock);
299}
300
301/*
302 * Release a thread that has exited after cpu_throw().
303 */
304void
305thread_stash(struct thread *td)
306{
307	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
308	thread_zombie(td);
309}
310
311/*
312 * Reap zombie resources.
313 */
314void
315thread_reap(void)
316{
317	struct thread *td_first, *td_next;
318
319	/*
320	 * Don't even bother to lock if none at this instant,
321	 * we really don't care about the next instant..
322	 */
323	if (!TAILQ_EMPTY(&zombie_threads)) {
324		mtx_lock_spin(&zombie_lock);
325		td_first = TAILQ_FIRST(&zombie_threads);
326		if (td_first)
327			TAILQ_INIT(&zombie_threads);
328		mtx_unlock_spin(&zombie_lock);
329		while (td_first) {
330			td_next = TAILQ_NEXT(td_first, td_slpq);
331			thread_cow_free(td_first);
332			thread_free(td_first);
333			td_first = td_next;
334		}
335	}
336}
337
338/*
339 * Allocate a thread.
340 */
341struct thread *
342thread_alloc(int pages)
343{
344	struct thread *td;
345
346	thread_reap(); /* check if any zombies to get */
347
348	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
349	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
350	if (!vm_thread_new(td, pages)) {
351		uma_zfree(thread_zone, td);
352		return (NULL);
353	}
354	cpu_thread_alloc(td);
355	vm_domain_policy_init(&td->td_vm_dom_policy);
356	return (td);
357}
358
359int
360thread_alloc_stack(struct thread *td, int pages)
361{
362
363	KASSERT(td->td_kstack == 0,
364	    ("thread_alloc_stack called on a thread with kstack"));
365	if (!vm_thread_new(td, pages))
366		return (0);
367	cpu_thread_alloc(td);
368	return (1);
369}
370
371/*
372 * Deallocate a thread.
373 */
374void
375thread_free(struct thread *td)
376{
377
378	lock_profile_thread_exit(td);
379	if (td->td_cpuset)
380		cpuset_rel(td->td_cpuset);
381	td->td_cpuset = NULL;
382	cpu_thread_free(td);
383	if (td->td_kstack != 0)
384		vm_thread_dispose(td);
385	vm_domain_policy_cleanup(&td->td_vm_dom_policy);
386	uma_zfree(thread_zone, td);
387}
388
389void
390thread_cow_get_proc(struct thread *newtd, struct proc *p)
391{
392
393	PROC_LOCK_ASSERT(p, MA_OWNED);
394	newtd->td_ucred = crhold(p->p_ucred);
395	newtd->td_limit = lim_hold(p->p_limit);
396	newtd->td_cowgen = p->p_cowgen;
397}
398
399void
400thread_cow_get(struct thread *newtd, struct thread *td)
401{
402
403	newtd->td_ucred = crhold(td->td_ucred);
404	newtd->td_limit = lim_hold(td->td_limit);
405	newtd->td_cowgen = td->td_cowgen;
406}
407
408void
409thread_cow_free(struct thread *td)
410{
411
412	if (td->td_ucred != NULL)
413		crfree(td->td_ucred);
414	if (td->td_limit != NULL)
415		lim_free(td->td_limit);
416}
417
418void
419thread_cow_update(struct thread *td)
420{
421	struct proc *p;
422	struct ucred *oldcred;
423	struct plimit *oldlimit;
424
425	p = td->td_proc;
426	oldcred = NULL;
427	oldlimit = NULL;
428	PROC_LOCK(p);
429	if (td->td_ucred != p->p_ucred) {
430		oldcred = td->td_ucred;
431		td->td_ucred = crhold(p->p_ucred);
432	}
433	if (td->td_limit != p->p_limit) {
434		oldlimit = td->td_limit;
435		td->td_limit = lim_hold(p->p_limit);
436	}
437	td->td_cowgen = p->p_cowgen;
438	PROC_UNLOCK(p);
439	if (oldcred != NULL)
440		crfree(oldcred);
441	if (oldlimit != NULL)
442		lim_free(oldlimit);
443}
444
445/*
446 * Discard the current thread and exit from its context.
447 * Always called with scheduler locked.
448 *
449 * Because we can't free a thread while we're operating under its context,
450 * push the current thread into our CPU's deadthread holder. This means
451 * we needn't worry about someone else grabbing our context before we
452 * do a cpu_throw().
453 */
454void
455thread_exit(void)
456{
457	uint64_t runtime, new_switchtime;
458	struct thread *td;
459	struct thread *td2;
460	struct proc *p;
461	int wakeup_swapper;
462
463	td = curthread;
464	p = td->td_proc;
465
466	PROC_SLOCK_ASSERT(p, MA_OWNED);
467	mtx_assert(&Giant, MA_NOTOWNED);
468
469	PROC_LOCK_ASSERT(p, MA_OWNED);
470	KASSERT(p != NULL, ("thread exiting without a process"));
471	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
472	    (long)p->p_pid, td->td_name);
473	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
474
475#ifdef AUDIT
476	AUDIT_SYSCALL_EXIT(0, td);
477#endif
478	/*
479	 * drop FPU & debug register state storage, or any other
480	 * architecture specific resources that
481	 * would not be on a new untouched process.
482	 */
483	cpu_thread_exit(td);	/* XXXSMP */
484
485	/*
486	 * The last thread is left attached to the process
487	 * So that the whole bundle gets recycled. Skip
488	 * all this stuff if we never had threads.
489	 * EXIT clears all sign of other threads when
490	 * it goes to single threading, so the last thread always
491	 * takes the short path.
492	 */
493	if (p->p_flag & P_HADTHREADS) {
494		if (p->p_numthreads > 1) {
495			atomic_add_int(&td->td_proc->p_exitthreads, 1);
496			thread_unlink(td);
497			td2 = FIRST_THREAD_IN_PROC(p);
498			sched_exit_thread(td2, td);
499
500			/*
501			 * The test below is NOT true if we are the
502			 * sole exiting thread. P_STOPPED_SINGLE is unset
503			 * in exit1() after it is the only survivor.
504			 */
505			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
506				if (p->p_numthreads == p->p_suspcount) {
507					thread_lock(p->p_singlethread);
508					wakeup_swapper = thread_unsuspend_one(
509						p->p_singlethread, p, false);
510					thread_unlock(p->p_singlethread);
511					if (wakeup_swapper)
512						kick_proc0();
513				}
514			}
515
516			PCPU_SET(deadthread, td);
517		} else {
518			/*
519			 * The last thread is exiting.. but not through exit()
520			 */
521			panic ("thread_exit: Last thread exiting on its own");
522		}
523	}
524#ifdef	HWPMC_HOOKS
525	/*
526	 * If this thread is part of a process that is being tracked by hwpmc(4),
527	 * inform the module of the thread's impending exit.
528	 */
529	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
530		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
531#endif
532	PROC_UNLOCK(p);
533	PROC_STATLOCK(p);
534	thread_lock(td);
535	PROC_SUNLOCK(p);
536
537	/* Do the same timestamp bookkeeping that mi_switch() would do. */
538	new_switchtime = cpu_ticks();
539	runtime = new_switchtime - PCPU_GET(switchtime);
540	td->td_runtime += runtime;
541	td->td_incruntime += runtime;
542	PCPU_SET(switchtime, new_switchtime);
543	PCPU_SET(switchticks, ticks);
544	PCPU_INC(cnt.v_swtch);
545
546	/* Save our resource usage in our process. */
547	td->td_ru.ru_nvcsw++;
548	ruxagg(p, td);
549	rucollect(&p->p_ru, &td->td_ru);
550	PROC_STATUNLOCK(p);
551
552	td->td_state = TDS_INACTIVE;
553#ifdef WITNESS
554	witness_thread_exit(td);
555#endif
556	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
557	sched_throw(td);
558	panic("I'm a teapot!");
559	/* NOTREACHED */
560}
561
562/*
563 * Do any thread specific cleanups that may be needed in wait()
564 * called with Giant, proc and schedlock not held.
565 */
566void
567thread_wait(struct proc *p)
568{
569	struct thread *td;
570
571	mtx_assert(&Giant, MA_NOTOWNED);
572	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
573	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
574	td = FIRST_THREAD_IN_PROC(p);
575	/* Lock the last thread so we spin until it exits cpu_throw(). */
576	thread_lock(td);
577	thread_unlock(td);
578	lock_profile_thread_exit(td);
579	cpuset_rel(td->td_cpuset);
580	td->td_cpuset = NULL;
581	cpu_thread_clean(td);
582	thread_cow_free(td);
583	thread_reap();	/* check for zombie threads etc. */
584}
585
586/*
587 * Link a thread to a process.
588 * set up anything that needs to be initialized for it to
589 * be used by the process.
590 */
591void
592thread_link(struct thread *td, struct proc *p)
593{
594
595	/*
596	 * XXX This can't be enabled because it's called for proc0 before
597	 * its lock has been created.
598	 * PROC_LOCK_ASSERT(p, MA_OWNED);
599	 */
600	td->td_state    = TDS_INACTIVE;
601	td->td_proc     = p;
602	td->td_flags    = TDF_INMEM;
603
604	LIST_INIT(&td->td_contested);
605	LIST_INIT(&td->td_lprof[0]);
606	LIST_INIT(&td->td_lprof[1]);
607	sigqueue_init(&td->td_sigqueue, p);
608	callout_init(&td->td_slpcallout, 1);
609	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
610	p->p_numthreads++;
611}
612
613/*
614 * Called from:
615 *  thread_exit()
616 */
617void
618thread_unlink(struct thread *td)
619{
620	struct proc *p = td->td_proc;
621
622	PROC_LOCK_ASSERT(p, MA_OWNED);
623	TAILQ_REMOVE(&p->p_threads, td, td_plist);
624	p->p_numthreads--;
625	/* could clear a few other things here */
626	/* Must  NOT clear links to proc! */
627}
628
629static int
630calc_remaining(struct proc *p, int mode)
631{
632	int remaining;
633
634	PROC_LOCK_ASSERT(p, MA_OWNED);
635	PROC_SLOCK_ASSERT(p, MA_OWNED);
636	if (mode == SINGLE_EXIT)
637		remaining = p->p_numthreads;
638	else if (mode == SINGLE_BOUNDARY)
639		remaining = p->p_numthreads - p->p_boundary_count;
640	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
641		remaining = p->p_numthreads - p->p_suspcount;
642	else
643		panic("calc_remaining: wrong mode %d", mode);
644	return (remaining);
645}
646
647static int
648remain_for_mode(int mode)
649{
650
651	return (mode == SINGLE_ALLPROC ? 0 : 1);
652}
653
654static int
655weed_inhib(int mode, struct thread *td2, struct proc *p)
656{
657	int wakeup_swapper;
658
659	PROC_LOCK_ASSERT(p, MA_OWNED);
660	PROC_SLOCK_ASSERT(p, MA_OWNED);
661	THREAD_LOCK_ASSERT(td2, MA_OWNED);
662
663	wakeup_swapper = 0;
664	switch (mode) {
665	case SINGLE_EXIT:
666		if (TD_IS_SUSPENDED(td2))
667			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
668		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
669			wakeup_swapper |= sleepq_abort(td2, EINTR);
670		break;
671	case SINGLE_BOUNDARY:
672		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
673			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
674		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
675			wakeup_swapper |= sleepq_abort(td2, ERESTART);
676		break;
677	case SINGLE_NO_EXIT:
678		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
679			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
680		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
681			wakeup_swapper |= sleepq_abort(td2, ERESTART);
682		break;
683	case SINGLE_ALLPROC:
684		/*
685		 * ALLPROC suspend tries to avoid spurious EINTR for
686		 * threads sleeping interruptable, by suspending the
687		 * thread directly, similarly to sig_suspend_threads().
688		 * Since such sleep is not performed at the user
689		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
690		 * is used to avoid immediate un-suspend.
691		 */
692		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
693		    TDF_ALLPROCSUSP)) == 0)
694			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
695		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
696			if ((td2->td_flags & TDF_SBDRY) == 0) {
697				thread_suspend_one(td2);
698				td2->td_flags |= TDF_ALLPROCSUSP;
699			} else {
700				wakeup_swapper |= sleepq_abort(td2, ERESTART);
701			}
702		}
703		break;
704	}
705	return (wakeup_swapper);
706}
707
708/*
709 * Enforce single-threading.
710 *
711 * Returns 1 if the caller must abort (another thread is waiting to
712 * exit the process or similar). Process is locked!
713 * Returns 0 when you are successfully the only thread running.
714 * A process has successfully single threaded in the suspend mode when
715 * There are no threads in user mode. Threads in the kernel must be
716 * allowed to continue until they get to the user boundary. They may even
717 * copy out their return values and data before suspending. They may however be
718 * accelerated in reaching the user boundary as we will wake up
719 * any sleeping threads that are interruptable. (PCATCH).
720 */
721int
722thread_single(struct proc *p, int mode)
723{
724	struct thread *td;
725	struct thread *td2;
726	int remaining, wakeup_swapper;
727
728	td = curthread;
729	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
730	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
731	    ("invalid mode %d", mode));
732	/*
733	 * If allowing non-ALLPROC singlethreading for non-curproc
734	 * callers, calc_remaining() and remain_for_mode() should be
735	 * adjusted to also account for td->td_proc != p.  For now
736	 * this is not implemented because it is not used.
737	 */
738	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
739	    (mode != SINGLE_ALLPROC && td->td_proc == p),
740	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
741	mtx_assert(&Giant, MA_NOTOWNED);
742	PROC_LOCK_ASSERT(p, MA_OWNED);
743
744	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
745		return (0);
746
747	/* Is someone already single threading? */
748	if (p->p_singlethread != NULL && p->p_singlethread != td)
749		return (1);
750
751	if (mode == SINGLE_EXIT) {
752		p->p_flag |= P_SINGLE_EXIT;
753		p->p_flag &= ~P_SINGLE_BOUNDARY;
754	} else {
755		p->p_flag &= ~P_SINGLE_EXIT;
756		if (mode == SINGLE_BOUNDARY)
757			p->p_flag |= P_SINGLE_BOUNDARY;
758		else
759			p->p_flag &= ~P_SINGLE_BOUNDARY;
760	}
761	if (mode == SINGLE_ALLPROC)
762		p->p_flag |= P_TOTAL_STOP;
763	p->p_flag |= P_STOPPED_SINGLE;
764	PROC_SLOCK(p);
765	p->p_singlethread = td;
766	remaining = calc_remaining(p, mode);
767	while (remaining != remain_for_mode(mode)) {
768		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
769			goto stopme;
770		wakeup_swapper = 0;
771		FOREACH_THREAD_IN_PROC(p, td2) {
772			if (td2 == td)
773				continue;
774			thread_lock(td2);
775			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
776			if (TD_IS_INHIBITED(td2)) {
777				wakeup_swapper |= weed_inhib(mode, td2, p);
778#ifdef SMP
779			} else if (TD_IS_RUNNING(td2) && td != td2) {
780				forward_signal(td2);
781#endif
782			}
783			thread_unlock(td2);
784		}
785		if (wakeup_swapper)
786			kick_proc0();
787		remaining = calc_remaining(p, mode);
788
789		/*
790		 * Maybe we suspended some threads.. was it enough?
791		 */
792		if (remaining == remain_for_mode(mode))
793			break;
794
795stopme:
796		/*
797		 * Wake us up when everyone else has suspended.
798		 * In the mean time we suspend as well.
799		 */
800		thread_suspend_switch(td, p);
801		remaining = calc_remaining(p, mode);
802	}
803	if (mode == SINGLE_EXIT) {
804		/*
805		 * Convert the process to an unthreaded process.  The
806		 * SINGLE_EXIT is called by exit1() or execve(), in
807		 * both cases other threads must be retired.
808		 */
809		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
810		p->p_singlethread = NULL;
811		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
812
813		/*
814		 * Wait for any remaining threads to exit cpu_throw().
815		 */
816		while (p->p_exitthreads != 0) {
817			PROC_SUNLOCK(p);
818			PROC_UNLOCK(p);
819			sched_relinquish(td);
820			PROC_LOCK(p);
821			PROC_SLOCK(p);
822		}
823	} else if (mode == SINGLE_BOUNDARY) {
824		/*
825		 * Wait until all suspended threads are removed from
826		 * the processors.  The thread_suspend_check()
827		 * increments p_boundary_count while it is still
828		 * running, which makes it possible for the execve()
829		 * to destroy vmspace while our other threads are
830		 * still using the address space.
831		 *
832		 * We lock the thread, which is only allowed to
833		 * succeed after context switch code finished using
834		 * the address space.
835		 */
836		FOREACH_THREAD_IN_PROC(p, td2) {
837			if (td2 == td)
838				continue;
839			thread_lock(td2);
840			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
841			    ("td %p not on boundary", td2));
842			KASSERT(TD_IS_SUSPENDED(td2),
843			    ("td %p is not suspended", td2));
844			thread_unlock(td2);
845		}
846	}
847	PROC_SUNLOCK(p);
848	return (0);
849}
850
851bool
852thread_suspend_check_needed(void)
853{
854	struct proc *p;
855	struct thread *td;
856
857	td = curthread;
858	p = td->td_proc;
859	PROC_LOCK_ASSERT(p, MA_OWNED);
860	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
861	    (td->td_dbgflags & TDB_SUSPEND) != 0));
862}
863
864/*
865 * Called in from locations that can safely check to see
866 * whether we have to suspend or at least throttle for a
867 * single-thread event (e.g. fork).
868 *
869 * Such locations include userret().
870 * If the "return_instead" argument is non zero, the thread must be able to
871 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
872 *
873 * The 'return_instead' argument tells the function if it may do a
874 * thread_exit() or suspend, or whether the caller must abort and back
875 * out instead.
876 *
877 * If the thread that set the single_threading request has set the
878 * P_SINGLE_EXIT bit in the process flags then this call will never return
879 * if 'return_instead' is false, but will exit.
880 *
881 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
882 *---------------+--------------------+---------------------
883 *       0       | returns 0          |   returns 0 or 1
884 *               | when ST ends       |   immediately
885 *---------------+--------------------+---------------------
886 *       1       | thread exits       |   returns 1
887 *               |                    |  immediately
888 * 0 = thread_exit() or suspension ok,
889 * other = return error instead of stopping the thread.
890 *
891 * While a full suspension is under effect, even a single threading
892 * thread would be suspended if it made this call (but it shouldn't).
893 * This call should only be made from places where
894 * thread_exit() would be safe as that may be the outcome unless
895 * return_instead is set.
896 */
897int
898thread_suspend_check(int return_instead)
899{
900	struct thread *td;
901	struct proc *p;
902	int wakeup_swapper;
903
904	td = curthread;
905	p = td->td_proc;
906	mtx_assert(&Giant, MA_NOTOWNED);
907	PROC_LOCK_ASSERT(p, MA_OWNED);
908	while (thread_suspend_check_needed()) {
909		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
910			KASSERT(p->p_singlethread != NULL,
911			    ("singlethread not set"));
912			/*
913			 * The only suspension in action is a
914			 * single-threading. Single threader need not stop.
915			 * XXX Should be safe to access unlocked
916			 * as it can only be set to be true by us.
917			 */
918			if (p->p_singlethread == td)
919				return (0);	/* Exempt from stopping. */
920		}
921		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
922			return (EINTR);
923
924		/* Should we goto user boundary if we didn't come from there? */
925		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
926		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
927			return (ERESTART);
928
929		/*
930		 * Ignore suspend requests if they are deferred.
931		 */
932		if ((td->td_flags & TDF_SBDRY) != 0) {
933			KASSERT(return_instead,
934			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
935			return (0);
936		}
937
938		/*
939		 * If the process is waiting for us to exit,
940		 * this thread should just suicide.
941		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
942		 */
943		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
944			PROC_UNLOCK(p);
945			tidhash_remove(td);
946
947			/*
948			 * Allow Linux emulation layer to do some work
949			 * before thread suicide.
950			 */
951			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
952				(p->p_sysent->sv_thread_detach)(td);
953
954			PROC_LOCK(p);
955			tdsigcleanup(td);
956			umtx_thread_exit(td);
957			PROC_SLOCK(p);
958			thread_stopped(p);
959			thread_exit();
960		}
961
962		PROC_SLOCK(p);
963		thread_stopped(p);
964		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
965			if (p->p_numthreads == p->p_suspcount + 1) {
966				thread_lock(p->p_singlethread);
967				wakeup_swapper = thread_unsuspend_one(
968				    p->p_singlethread, p, false);
969				thread_unlock(p->p_singlethread);
970				if (wakeup_swapper)
971					kick_proc0();
972			}
973		}
974		PROC_UNLOCK(p);
975		thread_lock(td);
976		/*
977		 * When a thread suspends, it just
978		 * gets taken off all queues.
979		 */
980		thread_suspend_one(td);
981		if (return_instead == 0) {
982			p->p_boundary_count++;
983			td->td_flags |= TDF_BOUNDARY;
984		}
985		PROC_SUNLOCK(p);
986		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
987		thread_unlock(td);
988		PROC_LOCK(p);
989	}
990	return (0);
991}
992
993void
994thread_suspend_switch(struct thread *td, struct proc *p)
995{
996
997	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
998	PROC_LOCK_ASSERT(p, MA_OWNED);
999	PROC_SLOCK_ASSERT(p, MA_OWNED);
1000	/*
1001	 * We implement thread_suspend_one in stages here to avoid
1002	 * dropping the proc lock while the thread lock is owned.
1003	 */
1004	if (p == td->td_proc) {
1005		thread_stopped(p);
1006		p->p_suspcount++;
1007	}
1008	PROC_UNLOCK(p);
1009	thread_lock(td);
1010	td->td_flags &= ~TDF_NEEDSUSPCHK;
1011	TD_SET_SUSPENDED(td);
1012	sched_sleep(td, 0);
1013	PROC_SUNLOCK(p);
1014	DROP_GIANT();
1015	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1016	thread_unlock(td);
1017	PICKUP_GIANT();
1018	PROC_LOCK(p);
1019	PROC_SLOCK(p);
1020}
1021
1022void
1023thread_suspend_one(struct thread *td)
1024{
1025	struct proc *p;
1026
1027	p = td->td_proc;
1028	PROC_SLOCK_ASSERT(p, MA_OWNED);
1029	THREAD_LOCK_ASSERT(td, MA_OWNED);
1030	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1031	p->p_suspcount++;
1032	td->td_flags &= ~TDF_NEEDSUSPCHK;
1033	TD_SET_SUSPENDED(td);
1034	sched_sleep(td, 0);
1035}
1036
1037static int
1038thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1039{
1040
1041	THREAD_LOCK_ASSERT(td, MA_OWNED);
1042	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1043	TD_CLR_SUSPENDED(td);
1044	td->td_flags &= ~TDF_ALLPROCSUSP;
1045	if (td->td_proc == p) {
1046		PROC_SLOCK_ASSERT(p, MA_OWNED);
1047		p->p_suspcount--;
1048		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1049			td->td_flags &= ~TDF_BOUNDARY;
1050			p->p_boundary_count--;
1051		}
1052	}
1053	return (setrunnable(td));
1054}
1055
1056/*
1057 * Allow all threads blocked by single threading to continue running.
1058 */
1059void
1060thread_unsuspend(struct proc *p)
1061{
1062	struct thread *td;
1063	int wakeup_swapper;
1064
1065	PROC_LOCK_ASSERT(p, MA_OWNED);
1066	PROC_SLOCK_ASSERT(p, MA_OWNED);
1067	wakeup_swapper = 0;
1068	if (!P_SHOULDSTOP(p)) {
1069                FOREACH_THREAD_IN_PROC(p, td) {
1070			thread_lock(td);
1071			if (TD_IS_SUSPENDED(td)) {
1072				wakeup_swapper |= thread_unsuspend_one(td, p,
1073				    true);
1074			}
1075			thread_unlock(td);
1076		}
1077	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1078	    p->p_numthreads == p->p_suspcount) {
1079		/*
1080		 * Stopping everything also did the job for the single
1081		 * threading request. Now we've downgraded to single-threaded,
1082		 * let it continue.
1083		 */
1084		if (p->p_singlethread->td_proc == p) {
1085			thread_lock(p->p_singlethread);
1086			wakeup_swapper = thread_unsuspend_one(
1087			    p->p_singlethread, p, false);
1088			thread_unlock(p->p_singlethread);
1089		}
1090	}
1091	if (wakeup_swapper)
1092		kick_proc0();
1093}
1094
1095/*
1096 * End the single threading mode..
1097 */
1098void
1099thread_single_end(struct proc *p, int mode)
1100{
1101	struct thread *td;
1102	int wakeup_swapper;
1103
1104	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1105	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1106	    ("invalid mode %d", mode));
1107	PROC_LOCK_ASSERT(p, MA_OWNED);
1108	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1109	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1110	    ("mode %d does not match P_TOTAL_STOP", mode));
1111	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1112	    ("thread_single_end from other thread %p %p",
1113	    curthread, p->p_singlethread));
1114	KASSERT(mode != SINGLE_BOUNDARY ||
1115	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1116	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1117	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1118	    P_TOTAL_STOP);
1119	PROC_SLOCK(p);
1120	p->p_singlethread = NULL;
1121	wakeup_swapper = 0;
1122	/*
1123	 * If there are other threads they may now run,
1124	 * unless of course there is a blanket 'stop order'
1125	 * on the process. The single threader must be allowed
1126	 * to continue however as this is a bad place to stop.
1127	 */
1128	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1129                FOREACH_THREAD_IN_PROC(p, td) {
1130			thread_lock(td);
1131			if (TD_IS_SUSPENDED(td)) {
1132				wakeup_swapper |= thread_unsuspend_one(td, p,
1133				    mode == SINGLE_BOUNDARY);
1134			}
1135			thread_unlock(td);
1136		}
1137	}
1138	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1139	    ("inconsistent boundary count %d", p->p_boundary_count));
1140	PROC_SUNLOCK(p);
1141	if (wakeup_swapper)
1142		kick_proc0();
1143}
1144
1145struct thread *
1146thread_find(struct proc *p, lwpid_t tid)
1147{
1148	struct thread *td;
1149
1150	PROC_LOCK_ASSERT(p, MA_OWNED);
1151	FOREACH_THREAD_IN_PROC(p, td) {
1152		if (td->td_tid == tid)
1153			break;
1154	}
1155	return (td);
1156}
1157
1158/* Locate a thread by number; return with proc lock held. */
1159struct thread *
1160tdfind(lwpid_t tid, pid_t pid)
1161{
1162#define RUN_THRESH	16
1163	struct thread *td;
1164	int run = 0;
1165
1166	rw_rlock(&tidhash_lock);
1167	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1168		if (td->td_tid == tid) {
1169			if (pid != -1 && td->td_proc->p_pid != pid) {
1170				td = NULL;
1171				break;
1172			}
1173			PROC_LOCK(td->td_proc);
1174			if (td->td_proc->p_state == PRS_NEW) {
1175				PROC_UNLOCK(td->td_proc);
1176				td = NULL;
1177				break;
1178			}
1179			if (run > RUN_THRESH) {
1180				if (rw_try_upgrade(&tidhash_lock)) {
1181					LIST_REMOVE(td, td_hash);
1182					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1183						td, td_hash);
1184					rw_wunlock(&tidhash_lock);
1185					return (td);
1186				}
1187			}
1188			break;
1189		}
1190		run++;
1191	}
1192	rw_runlock(&tidhash_lock);
1193	return (td);
1194}
1195
1196void
1197tidhash_add(struct thread *td)
1198{
1199	rw_wlock(&tidhash_lock);
1200	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1201	rw_wunlock(&tidhash_lock);
1202}
1203
1204void
1205tidhash_remove(struct thread *td)
1206{
1207	rw_wlock(&tidhash_lock);
1208	LIST_REMOVE(td, td_hash);
1209	rw_wunlock(&tidhash_lock);
1210}
1211