kern_thread.c revision 196730
1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include "opt_witness.h"
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: head/sys/kern/kern_thread.c 196730 2009-09-01 11:41:51Z kib $");
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/lock.h>
38#include <sys/mutex.h>
39#include <sys/proc.h>
40#include <sys/resourcevar.h>
41#include <sys/smp.h>
42#include <sys/sysctl.h>
43#include <sys/sched.h>
44#include <sys/sleepqueue.h>
45#include <sys/selinfo.h>
46#include <sys/turnstile.h>
47#include <sys/ktr.h>
48#include <sys/umtx.h>
49#include <sys/cpuset.h>
50
51#include <security/audit/audit.h>
52
53#include <vm/vm.h>
54#include <vm/vm_extern.h>
55#include <vm/uma.h>
56#include <sys/eventhandler.h>
57
58/*
59 * thread related storage.
60 */
61static uma_zone_t thread_zone;
62
63SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
64
65int max_threads_per_proc = 1500;
66SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
67	&max_threads_per_proc, 0, "Limit on threads per proc");
68
69int max_threads_hits;
70SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
71	&max_threads_hits, 0, "");
72
73TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74static struct mtx zombie_lock;
75MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77static void thread_zombie(struct thread *);
78
79struct mtx tid_lock;
80static struct unrhdr *tid_unrhdr;
81
82/*
83 * Prepare a thread for use.
84 */
85static int
86thread_ctor(void *mem, int size, void *arg, int flags)
87{
88	struct thread	*td;
89
90	td = (struct thread *)mem;
91	td->td_state = TDS_INACTIVE;
92	td->td_oncpu = NOCPU;
93
94	td->td_tid = alloc_unr(tid_unrhdr);
95	td->td_syscalls = 0;
96
97	/*
98	 * Note that td_critnest begins life as 1 because the thread is not
99	 * running and is thereby implicitly waiting to be on the receiving
100	 * end of a context switch.
101	 */
102	td->td_critnest = 1;
103	EVENTHANDLER_INVOKE(thread_ctor, td);
104#ifdef AUDIT
105	audit_thread_alloc(td);
106#endif
107	umtx_thread_alloc(td);
108	return (0);
109}
110
111/*
112 * Reclaim a thread after use.
113 */
114static void
115thread_dtor(void *mem, int size, void *arg)
116{
117	struct thread *td;
118
119	td = (struct thread *)mem;
120
121#ifdef INVARIANTS
122	/* Verify that this thread is in a safe state to free. */
123	switch (td->td_state) {
124	case TDS_INHIBITED:
125	case TDS_RUNNING:
126	case TDS_CAN_RUN:
127	case TDS_RUNQ:
128		/*
129		 * We must never unlink a thread that is in one of
130		 * these states, because it is currently active.
131		 */
132		panic("bad state for thread unlinking");
133		/* NOTREACHED */
134	case TDS_INACTIVE:
135		break;
136	default:
137		panic("bad thread state");
138		/* NOTREACHED */
139	}
140#endif
141#ifdef AUDIT
142	audit_thread_free(td);
143#endif
144	/* Free all OSD associated to this thread. */
145	osd_thread_exit(td);
146
147	EVENTHANDLER_INVOKE(thread_dtor, td);
148	free_unr(tid_unrhdr, td->td_tid);
149}
150
151/*
152 * Initialize type-stable parts of a thread (when newly created).
153 */
154static int
155thread_init(void *mem, int size, int flags)
156{
157	struct thread *td;
158
159	td = (struct thread *)mem;
160
161	td->td_sleepqueue = sleepq_alloc();
162	td->td_turnstile = turnstile_alloc();
163	EVENTHANDLER_INVOKE(thread_init, td);
164	td->td_sched = (struct td_sched *)&td[1];
165	umtx_thread_init(td);
166	td->td_kstack = 0;
167	return (0);
168}
169
170/*
171 * Tear down type-stable parts of a thread (just before being discarded).
172 */
173static void
174thread_fini(void *mem, int size)
175{
176	struct thread *td;
177
178	td = (struct thread *)mem;
179	EVENTHANDLER_INVOKE(thread_fini, td);
180	turnstile_free(td->td_turnstile);
181	sleepq_free(td->td_sleepqueue);
182	umtx_thread_fini(td);
183	seltdfini(td);
184}
185
186/*
187 * For a newly created process,
188 * link up all the structures and its initial threads etc.
189 * called from:
190 * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
191 * proc_dtor() (should go away)
192 * proc_init()
193 */
194void
195proc_linkup0(struct proc *p, struct thread *td)
196{
197	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
198	proc_linkup(p, td);
199}
200
201void
202proc_linkup(struct proc *p, struct thread *td)
203{
204
205	sigqueue_init(&p->p_sigqueue, p);
206	p->p_ksi = ksiginfo_alloc(1);
207	if (p->p_ksi != NULL) {
208		/* XXX p_ksi may be null if ksiginfo zone is not ready */
209		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
210	}
211	LIST_INIT(&p->p_mqnotifier);
212	p->p_numthreads = 0;
213	thread_link(td, p);
214}
215
216/*
217 * Initialize global thread allocation resources.
218 */
219void
220threadinit(void)
221{
222
223	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
224	/* leave one number for thread0 */
225	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
226
227	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
228	    thread_ctor, thread_dtor, thread_init, thread_fini,
229	    16 - 1, 0);
230}
231
232/*
233 * Place an unused thread on the zombie list.
234 * Use the slpq as that must be unused by now.
235 */
236void
237thread_zombie(struct thread *td)
238{
239	mtx_lock_spin(&zombie_lock);
240	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
241	mtx_unlock_spin(&zombie_lock);
242}
243
244/*
245 * Release a thread that has exited after cpu_throw().
246 */
247void
248thread_stash(struct thread *td)
249{
250	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
251	thread_zombie(td);
252}
253
254/*
255 * Reap zombie resources.
256 */
257void
258thread_reap(void)
259{
260	struct thread *td_first, *td_next;
261
262	/*
263	 * Don't even bother to lock if none at this instant,
264	 * we really don't care about the next instant..
265	 */
266	if (!TAILQ_EMPTY(&zombie_threads)) {
267		mtx_lock_spin(&zombie_lock);
268		td_first = TAILQ_FIRST(&zombie_threads);
269		if (td_first)
270			TAILQ_INIT(&zombie_threads);
271		mtx_unlock_spin(&zombie_lock);
272		while (td_first) {
273			td_next = TAILQ_NEXT(td_first, td_slpq);
274			if (td_first->td_ucred)
275				crfree(td_first->td_ucred);
276			thread_free(td_first);
277			td_first = td_next;
278		}
279	}
280}
281
282/*
283 * Allocate a thread.
284 */
285struct thread *
286thread_alloc(int pages)
287{
288	struct thread *td;
289
290	thread_reap(); /* check if any zombies to get */
291
292	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
293	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
294	if (!vm_thread_new(td, pages)) {
295		uma_zfree(thread_zone, td);
296		return (NULL);
297	}
298	cpu_thread_alloc(td);
299	return (td);
300}
301
302int
303thread_alloc_stack(struct thread *td, int pages)
304{
305
306	KASSERT(td->td_kstack == 0,
307	    ("thread_alloc_stack called on a thread with kstack"));
308	if (!vm_thread_new(td, pages))
309		return (0);
310	cpu_thread_alloc(td);
311	return (1);
312}
313
314/*
315 * Deallocate a thread.
316 */
317void
318thread_free(struct thread *td)
319{
320
321	lock_profile_thread_exit(td);
322	if (td->td_cpuset)
323		cpuset_rel(td->td_cpuset);
324	td->td_cpuset = NULL;
325	cpu_thread_free(td);
326	if (td->td_kstack != 0)
327		vm_thread_dispose(td);
328	uma_zfree(thread_zone, td);
329}
330
331/*
332 * Discard the current thread and exit from its context.
333 * Always called with scheduler locked.
334 *
335 * Because we can't free a thread while we're operating under its context,
336 * push the current thread into our CPU's deadthread holder. This means
337 * we needn't worry about someone else grabbing our context before we
338 * do a cpu_throw().
339 */
340void
341thread_exit(void)
342{
343	uint64_t new_switchtime;
344	struct thread *td;
345	struct thread *td2;
346	struct proc *p;
347	int wakeup_swapper;
348
349	td = curthread;
350	p = td->td_proc;
351
352	PROC_SLOCK_ASSERT(p, MA_OWNED);
353	mtx_assert(&Giant, MA_NOTOWNED);
354
355	PROC_LOCK_ASSERT(p, MA_OWNED);
356	KASSERT(p != NULL, ("thread exiting without a process"));
357	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
358	    (long)p->p_pid, td->td_name);
359	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
360
361#ifdef AUDIT
362	AUDIT_SYSCALL_EXIT(0, td);
363#endif
364	umtx_thread_exit(td);
365	/*
366	 * drop FPU & debug register state storage, or any other
367	 * architecture specific resources that
368	 * would not be on a new untouched process.
369	 */
370	cpu_thread_exit(td);	/* XXXSMP */
371
372	/* Do the same timestamp bookkeeping that mi_switch() would do. */
373	new_switchtime = cpu_ticks();
374	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
375	PCPU_SET(switchtime, new_switchtime);
376	PCPU_SET(switchticks, ticks);
377	PCPU_INC(cnt.v_swtch);
378	/* Save our resource usage in our process. */
379	td->td_ru.ru_nvcsw++;
380	rucollect(&p->p_ru, &td->td_ru);
381	/*
382	 * The last thread is left attached to the process
383	 * So that the whole bundle gets recycled. Skip
384	 * all this stuff if we never had threads.
385	 * EXIT clears all sign of other threads when
386	 * it goes to single threading, so the last thread always
387	 * takes the short path.
388	 */
389	if (p->p_flag & P_HADTHREADS) {
390		if (p->p_numthreads > 1) {
391			thread_unlink(td);
392			td2 = FIRST_THREAD_IN_PROC(p);
393			sched_exit_thread(td2, td);
394
395			/*
396			 * The test below is NOT true if we are the
397			 * sole exiting thread. P_STOPPED_SNGL is unset
398			 * in exit1() after it is the only survivor.
399			 */
400			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
401				if (p->p_numthreads == p->p_suspcount) {
402					thread_lock(p->p_singlethread);
403					wakeup_swapper = thread_unsuspend_one(
404						p->p_singlethread);
405					thread_unlock(p->p_singlethread);
406					if (wakeup_swapper)
407						kick_proc0();
408				}
409			}
410
411			atomic_add_int(&td->td_proc->p_exitthreads, 1);
412			PCPU_SET(deadthread, td);
413		} else {
414			/*
415			 * The last thread is exiting.. but not through exit()
416			 */
417			panic ("thread_exit: Last thread exiting on its own");
418		}
419	}
420	PROC_UNLOCK(p);
421	thread_lock(td);
422	/* Save our tick information with both the thread and proc locked */
423	ruxagg(&p->p_rux, td);
424	PROC_SUNLOCK(p);
425	td->td_state = TDS_INACTIVE;
426#ifdef WITNESS
427	witness_thread_exit(td);
428#endif
429	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
430	sched_throw(td);
431	panic("I'm a teapot!");
432	/* NOTREACHED */
433}
434
435/*
436 * Do any thread specific cleanups that may be needed in wait()
437 * called with Giant, proc and schedlock not held.
438 */
439void
440thread_wait(struct proc *p)
441{
442	struct thread *td;
443
444	mtx_assert(&Giant, MA_NOTOWNED);
445	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
446	td = FIRST_THREAD_IN_PROC(p);
447	/* Lock the last thread so we spin until it exits cpu_throw(). */
448	thread_lock(td);
449	thread_unlock(td);
450	/* Wait for any remaining threads to exit cpu_throw(). */
451	while (p->p_exitthreads)
452		sched_relinquish(curthread);
453	lock_profile_thread_exit(td);
454	cpuset_rel(td->td_cpuset);
455	td->td_cpuset = NULL;
456	cpu_thread_clean(td);
457	crfree(td->td_ucred);
458	thread_reap();	/* check for zombie threads etc. */
459}
460
461/*
462 * Link a thread to a process.
463 * set up anything that needs to be initialized for it to
464 * be used by the process.
465 */
466void
467thread_link(struct thread *td, struct proc *p)
468{
469
470	/*
471	 * XXX This can't be enabled because it's called for proc0 before
472	 * its lock has been created.
473	 * PROC_LOCK_ASSERT(p, MA_OWNED);
474	 */
475	td->td_state    = TDS_INACTIVE;
476	td->td_proc     = p;
477	td->td_flags    = TDF_INMEM;
478
479	LIST_INIT(&td->td_contested);
480	LIST_INIT(&td->td_lprof[0]);
481	LIST_INIT(&td->td_lprof[1]);
482	sigqueue_init(&td->td_sigqueue, p);
483	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
484	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
485	p->p_numthreads++;
486}
487
488/*
489 * Convert a process with one thread to an unthreaded process.
490 */
491void
492thread_unthread(struct thread *td)
493{
494	struct proc *p = td->td_proc;
495
496	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
497	p->p_flag &= ~P_HADTHREADS;
498}
499
500/*
501 * Called from:
502 *  thread_exit()
503 */
504void
505thread_unlink(struct thread *td)
506{
507	struct proc *p = td->td_proc;
508
509	PROC_LOCK_ASSERT(p, MA_OWNED);
510	TAILQ_REMOVE(&p->p_threads, td, td_plist);
511	p->p_numthreads--;
512	/* could clear a few other things here */
513	/* Must  NOT clear links to proc! */
514}
515
516static int
517calc_remaining(struct proc *p, int mode)
518{
519	int remaining;
520
521	if (mode == SINGLE_EXIT)
522		remaining = p->p_numthreads;
523	else if (mode == SINGLE_BOUNDARY)
524		remaining = p->p_numthreads - p->p_boundary_count;
525	else if (mode == SINGLE_NO_EXIT)
526		remaining = p->p_numthreads - p->p_suspcount;
527	else
528		panic("calc_remaining: wrong mode %d", mode);
529	return (remaining);
530}
531
532/*
533 * Enforce single-threading.
534 *
535 * Returns 1 if the caller must abort (another thread is waiting to
536 * exit the process or similar). Process is locked!
537 * Returns 0 when you are successfully the only thread running.
538 * A process has successfully single threaded in the suspend mode when
539 * There are no threads in user mode. Threads in the kernel must be
540 * allowed to continue until they get to the user boundary. They may even
541 * copy out their return values and data before suspending. They may however be
542 * accelerated in reaching the user boundary as we will wake up
543 * any sleeping threads that are interruptable. (PCATCH).
544 */
545int
546thread_single(int mode)
547{
548	struct thread *td;
549	struct thread *td2;
550	struct proc *p;
551	int remaining, wakeup_swapper;
552
553	td = curthread;
554	p = td->td_proc;
555	mtx_assert(&Giant, MA_NOTOWNED);
556	PROC_LOCK_ASSERT(p, MA_OWNED);
557	KASSERT((td != NULL), ("curthread is NULL"));
558
559	if ((p->p_flag & P_HADTHREADS) == 0)
560		return (0);
561
562	/* Is someone already single threading? */
563	if (p->p_singlethread != NULL && p->p_singlethread != td)
564		return (1);
565
566	if (mode == SINGLE_EXIT) {
567		p->p_flag |= P_SINGLE_EXIT;
568		p->p_flag &= ~P_SINGLE_BOUNDARY;
569	} else {
570		p->p_flag &= ~P_SINGLE_EXIT;
571		if (mode == SINGLE_BOUNDARY)
572			p->p_flag |= P_SINGLE_BOUNDARY;
573		else
574			p->p_flag &= ~P_SINGLE_BOUNDARY;
575	}
576	p->p_flag |= P_STOPPED_SINGLE;
577	PROC_SLOCK(p);
578	p->p_singlethread = td;
579	remaining = calc_remaining(p, mode);
580	while (remaining != 1) {
581		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
582			goto stopme;
583		wakeup_swapper = 0;
584		FOREACH_THREAD_IN_PROC(p, td2) {
585			if (td2 == td)
586				continue;
587			thread_lock(td2);
588			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
589			if (TD_IS_INHIBITED(td2)) {
590				switch (mode) {
591				case SINGLE_EXIT:
592					if (TD_IS_SUSPENDED(td2))
593						wakeup_swapper |=
594						    thread_unsuspend_one(td2);
595					if (TD_ON_SLEEPQ(td2) &&
596					    (td2->td_flags & TDF_SINTR))
597						wakeup_swapper |=
598						    sleepq_abort(td2, EINTR);
599					break;
600				case SINGLE_BOUNDARY:
601					if (TD_IS_SUSPENDED(td2) &&
602					    !(td2->td_flags & TDF_BOUNDARY))
603						wakeup_swapper |=
604						    thread_unsuspend_one(td2);
605					if (TD_ON_SLEEPQ(td2) &&
606					    (td2->td_flags & TDF_SINTR))
607						wakeup_swapper |=
608						    sleepq_abort(td2, ERESTART);
609					break;
610				case SINGLE_NO_EXIT:
611					if (TD_IS_SUSPENDED(td2) &&
612					    !(td2->td_flags & TDF_BOUNDARY))
613						wakeup_swapper |=
614						    thread_unsuspend_one(td2);
615					if (TD_ON_SLEEPQ(td2) &&
616					    (td2->td_flags & TDF_SINTR))
617						wakeup_swapper |=
618						    sleepq_abort(td2, ERESTART);
619					break;
620				default:
621					break;
622				}
623			}
624#ifdef SMP
625			else if (TD_IS_RUNNING(td2) && td != td2) {
626				forward_signal(td2);
627			}
628#endif
629			thread_unlock(td2);
630		}
631		if (wakeup_swapper)
632			kick_proc0();
633		remaining = calc_remaining(p, mode);
634
635		/*
636		 * Maybe we suspended some threads.. was it enough?
637		 */
638		if (remaining == 1)
639			break;
640
641stopme:
642		/*
643		 * Wake us up when everyone else has suspended.
644		 * In the mean time we suspend as well.
645		 */
646		thread_suspend_switch(td);
647		remaining = calc_remaining(p, mode);
648	}
649	if (mode == SINGLE_EXIT) {
650		/*
651		 * We have gotten rid of all the other threads and we
652		 * are about to either exit or exec. In either case,
653		 * we try our utmost  to revert to being a non-threaded
654		 * process.
655		 */
656		p->p_singlethread = NULL;
657		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
658		thread_unthread(td);
659	}
660	PROC_SUNLOCK(p);
661	return (0);
662}
663
664/*
665 * Called in from locations that can safely check to see
666 * whether we have to suspend or at least throttle for a
667 * single-thread event (e.g. fork).
668 *
669 * Such locations include userret().
670 * If the "return_instead" argument is non zero, the thread must be able to
671 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
672 *
673 * The 'return_instead' argument tells the function if it may do a
674 * thread_exit() or suspend, or whether the caller must abort and back
675 * out instead.
676 *
677 * If the thread that set the single_threading request has set the
678 * P_SINGLE_EXIT bit in the process flags then this call will never return
679 * if 'return_instead' is false, but will exit.
680 *
681 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
682 *---------------+--------------------+---------------------
683 *       0       | returns 0          |   returns 0 or 1
684 *               | when ST ends       |   immediatly
685 *---------------+--------------------+---------------------
686 *       1       | thread exits       |   returns 1
687 *               |                    |  immediatly
688 * 0 = thread_exit() or suspension ok,
689 * other = return error instead of stopping the thread.
690 *
691 * While a full suspension is under effect, even a single threading
692 * thread would be suspended if it made this call (but it shouldn't).
693 * This call should only be made from places where
694 * thread_exit() would be safe as that may be the outcome unless
695 * return_instead is set.
696 */
697int
698thread_suspend_check(int return_instead)
699{
700	struct thread *td;
701	struct proc *p;
702	int wakeup_swapper;
703
704	td = curthread;
705	p = td->td_proc;
706	mtx_assert(&Giant, MA_NOTOWNED);
707	PROC_LOCK_ASSERT(p, MA_OWNED);
708	while (P_SHOULDSTOP(p) ||
709	      ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
710		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
711			KASSERT(p->p_singlethread != NULL,
712			    ("singlethread not set"));
713			/*
714			 * The only suspension in action is a
715			 * single-threading. Single threader need not stop.
716			 * XXX Should be safe to access unlocked
717			 * as it can only be set to be true by us.
718			 */
719			if (p->p_singlethread == td)
720				return (0);	/* Exempt from stopping. */
721		}
722		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
723			return (EINTR);
724
725		/* Should we goto user boundary if we didn't come from there? */
726		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
727		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
728			return (ERESTART);
729
730		/* If thread will exit, flush its pending signals */
731		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
732			sigqueue_flush(&td->td_sigqueue);
733
734		PROC_SLOCK(p);
735		thread_stopped(p);
736		/*
737		 * If the process is waiting for us to exit,
738		 * this thread should just suicide.
739		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
740		 */
741		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
742			thread_exit();
743		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
744			if (p->p_numthreads == p->p_suspcount + 1) {
745				thread_lock(p->p_singlethread);
746				wakeup_swapper =
747				    thread_unsuspend_one(p->p_singlethread);
748				thread_unlock(p->p_singlethread);
749				if (wakeup_swapper)
750					kick_proc0();
751			}
752		}
753		PROC_UNLOCK(p);
754		thread_lock(td);
755		/*
756		 * When a thread suspends, it just
757		 * gets taken off all queues.
758		 */
759		thread_suspend_one(td);
760		if (return_instead == 0) {
761			p->p_boundary_count++;
762			td->td_flags |= TDF_BOUNDARY;
763		}
764		PROC_SUNLOCK(p);
765		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
766		if (return_instead == 0)
767			td->td_flags &= ~TDF_BOUNDARY;
768		thread_unlock(td);
769		PROC_LOCK(p);
770		if (return_instead == 0)
771			p->p_boundary_count--;
772	}
773	return (0);
774}
775
776void
777thread_suspend_switch(struct thread *td)
778{
779	struct proc *p;
780
781	p = td->td_proc;
782	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
783	PROC_LOCK_ASSERT(p, MA_OWNED);
784	PROC_SLOCK_ASSERT(p, MA_OWNED);
785	/*
786	 * We implement thread_suspend_one in stages here to avoid
787	 * dropping the proc lock while the thread lock is owned.
788	 */
789	thread_stopped(p);
790	p->p_suspcount++;
791	PROC_UNLOCK(p);
792	thread_lock(td);
793	td->td_flags &= ~TDF_NEEDSUSPCHK;
794	TD_SET_SUSPENDED(td);
795	sched_sleep(td, 0);
796	PROC_SUNLOCK(p);
797	DROP_GIANT();
798	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
799	thread_unlock(td);
800	PICKUP_GIANT();
801	PROC_LOCK(p);
802	PROC_SLOCK(p);
803}
804
805void
806thread_suspend_one(struct thread *td)
807{
808	struct proc *p = td->td_proc;
809
810	PROC_SLOCK_ASSERT(p, MA_OWNED);
811	THREAD_LOCK_ASSERT(td, MA_OWNED);
812	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
813	p->p_suspcount++;
814	td->td_flags &= ~TDF_NEEDSUSPCHK;
815	TD_SET_SUSPENDED(td);
816	sched_sleep(td, 0);
817}
818
819int
820thread_unsuspend_one(struct thread *td)
821{
822	struct proc *p = td->td_proc;
823
824	PROC_SLOCK_ASSERT(p, MA_OWNED);
825	THREAD_LOCK_ASSERT(td, MA_OWNED);
826	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
827	TD_CLR_SUSPENDED(td);
828	p->p_suspcount--;
829	return (setrunnable(td));
830}
831
832/*
833 * Allow all threads blocked by single threading to continue running.
834 */
835void
836thread_unsuspend(struct proc *p)
837{
838	struct thread *td;
839	int wakeup_swapper;
840
841	PROC_LOCK_ASSERT(p, MA_OWNED);
842	PROC_SLOCK_ASSERT(p, MA_OWNED);
843	wakeup_swapper = 0;
844	if (!P_SHOULDSTOP(p)) {
845                FOREACH_THREAD_IN_PROC(p, td) {
846			thread_lock(td);
847			if (TD_IS_SUSPENDED(td)) {
848				wakeup_swapper |= thread_unsuspend_one(td);
849			}
850			thread_unlock(td);
851		}
852	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
853	    (p->p_numthreads == p->p_suspcount)) {
854		/*
855		 * Stopping everything also did the job for the single
856		 * threading request. Now we've downgraded to single-threaded,
857		 * let it continue.
858		 */
859		thread_lock(p->p_singlethread);
860		wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
861		thread_unlock(p->p_singlethread);
862	}
863	if (wakeup_swapper)
864		kick_proc0();
865}
866
867/*
868 * End the single threading mode..
869 */
870void
871thread_single_end(void)
872{
873	struct thread *td;
874	struct proc *p;
875	int wakeup_swapper;
876
877	td = curthread;
878	p = td->td_proc;
879	PROC_LOCK_ASSERT(p, MA_OWNED);
880	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
881	PROC_SLOCK(p);
882	p->p_singlethread = NULL;
883	wakeup_swapper = 0;
884	/*
885	 * If there are other threads they may now run,
886	 * unless of course there is a blanket 'stop order'
887	 * on the process. The single threader must be allowed
888	 * to continue however as this is a bad place to stop.
889	 */
890	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
891                FOREACH_THREAD_IN_PROC(p, td) {
892			thread_lock(td);
893			if (TD_IS_SUSPENDED(td)) {
894				wakeup_swapper |= thread_unsuspend_one(td);
895			}
896			thread_unlock(td);
897		}
898	}
899	PROC_SUNLOCK(p);
900	if (wakeup_swapper)
901		kick_proc0();
902}
903
904struct thread *
905thread_find(struct proc *p, lwpid_t tid)
906{
907	struct thread *td;
908
909	PROC_LOCK_ASSERT(p, MA_OWNED);
910	FOREACH_THREAD_IN_PROC(p, td) {
911		if (td->td_tid == tid)
912			break;
913	}
914	return (td);
915}
916