kern_thread.c revision 172207
1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: head/sys/kern/kern_thread.c 172207 2007-09-17 05:31:39Z jeff $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/proc.h>
38#include <sys/resourcevar.h>
39#include <sys/smp.h>
40#include <sys/sysctl.h>
41#include <sys/sched.h>
42#include <sys/sleepqueue.h>
43#include <sys/turnstile.h>
44#include <sys/ktr.h>
45#include <sys/umtx.h>
46
47#include <security/audit/audit.h>
48
49#include <vm/vm.h>
50#include <vm/vm_extern.h>
51#include <vm/uma.h>
52
53/*
54 * thread related storage.
55 */
56static uma_zone_t thread_zone;
57
58SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
59
60int max_threads_per_proc = 1500;
61SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
62	&max_threads_per_proc, 0, "Limit on threads per proc");
63
64int max_threads_hits;
65SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
66	&max_threads_hits, 0, "");
67
68#ifdef KSE
69int virtual_cpu;
70
71#endif
72TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
73struct mtx zombie_lock;
74MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
75
76static void thread_zombie(struct thread *);
77
78#ifdef KSE
79static int
80sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
81{
82	int error, new_val;
83	int def_val;
84
85	def_val = mp_ncpus;
86	if (virtual_cpu == 0)
87		new_val = def_val;
88	else
89		new_val = virtual_cpu;
90	error = sysctl_handle_int(oidp, &new_val, 0, req);
91	if (error != 0 || req->newptr == NULL)
92		return (error);
93	if (new_val < 0)
94		return (EINVAL);
95	virtual_cpu = new_val;
96	return (0);
97}
98
99/* DEBUG ONLY */
100SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
101	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
102	"debug virtual cpus");
103#endif
104
105struct mtx tid_lock;
106static struct unrhdr *tid_unrhdr;
107
108/*
109 * Prepare a thread for use.
110 */
111static int
112thread_ctor(void *mem, int size, void *arg, int flags)
113{
114	struct thread	*td;
115
116	td = (struct thread *)mem;
117	td->td_state = TDS_INACTIVE;
118	td->td_oncpu = NOCPU;
119
120	td->td_tid = alloc_unr(tid_unrhdr);
121	td->td_syscalls = 0;
122
123	/*
124	 * Note that td_critnest begins life as 1 because the thread is not
125	 * running and is thereby implicitly waiting to be on the receiving
126	 * end of a context switch.
127	 */
128	td->td_critnest = 1;
129
130#ifdef AUDIT
131	audit_thread_alloc(td);
132#endif
133	umtx_thread_alloc(td);
134	return (0);
135}
136
137/*
138 * Reclaim a thread after use.
139 */
140static void
141thread_dtor(void *mem, int size, void *arg)
142{
143	struct thread *td;
144
145	td = (struct thread *)mem;
146
147#ifdef INVARIANTS
148	/* Verify that this thread is in a safe state to free. */
149	switch (td->td_state) {
150	case TDS_INHIBITED:
151	case TDS_RUNNING:
152	case TDS_CAN_RUN:
153	case TDS_RUNQ:
154		/*
155		 * We must never unlink a thread that is in one of
156		 * these states, because it is currently active.
157		 */
158		panic("bad state for thread unlinking");
159		/* NOTREACHED */
160	case TDS_INACTIVE:
161		break;
162	default:
163		panic("bad thread state");
164		/* NOTREACHED */
165	}
166#endif
167#ifdef AUDIT
168	audit_thread_free(td);
169#endif
170	free_unr(tid_unrhdr, td->td_tid);
171	sched_newthread(td);
172}
173
174/*
175 * Initialize type-stable parts of a thread (when newly created).
176 */
177static int
178thread_init(void *mem, int size, int flags)
179{
180	struct thread *td;
181
182	td = (struct thread *)mem;
183
184	vm_thread_new(td, 0);
185	cpu_thread_setup(td);
186	td->td_sleepqueue = sleepq_alloc();
187	td->td_turnstile = turnstile_alloc();
188	td->td_sched = (struct td_sched *)&td[1];
189	sched_newthread(td);
190	umtx_thread_init(td);
191	return (0);
192}
193
194/*
195 * Tear down type-stable parts of a thread (just before being discarded).
196 */
197static void
198thread_fini(void *mem, int size)
199{
200	struct thread *td;
201
202	td = (struct thread *)mem;
203	turnstile_free(td->td_turnstile);
204	sleepq_free(td->td_sleepqueue);
205	umtx_thread_fini(td);
206	vm_thread_dispose(td);
207}
208
209/*
210 * For a newly created process,
211 * link up all the structures and its initial threads etc.
212 * called from:
213 * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
214 * proc_dtor() (should go away)
215 * proc_init()
216 */
217void
218proc_linkup(struct proc *p, struct thread *td)
219{
220
221	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
222#ifdef KSE
223	TAILQ_INIT(&p->p_upcalls);	     /* upcall list */
224#endif
225	sigqueue_init(&p->p_sigqueue, p);
226	p->p_ksi = ksiginfo_alloc(1);
227	if (p->p_ksi != NULL) {
228		/* XXX p_ksi may be null if ksiginfo zone is not ready */
229		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
230	}
231	LIST_INIT(&p->p_mqnotifier);
232	p->p_numthreads = 0;
233	thread_link(td, p);
234}
235
236/*
237 * Initialize global thread allocation resources.
238 */
239void
240threadinit(void)
241{
242
243	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
244	tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
245
246	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
247	    thread_ctor, thread_dtor, thread_init, thread_fini,
248	    16 - 1, 0);
249#ifdef KSE
250	kseinit();	/* set up kse specific stuff  e.g. upcall zone*/
251#endif
252}
253
254/*
255 * Place an unused thread on the zombie list.
256 * Use the slpq as that must be unused by now.
257 */
258void
259thread_zombie(struct thread *td)
260{
261	mtx_lock_spin(&zombie_lock);
262	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
263	mtx_unlock_spin(&zombie_lock);
264}
265
266/*
267 * Release a thread that has exited after cpu_throw().
268 */
269void
270thread_stash(struct thread *td)
271{
272	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
273	thread_zombie(td);
274}
275
276/*
277 * Reap zombie kse resource.
278 */
279void
280thread_reap(void)
281{
282	struct thread *td_first, *td_next;
283
284	/*
285	 * Don't even bother to lock if none at this instant,
286	 * we really don't care about the next instant..
287	 */
288	if (!TAILQ_EMPTY(&zombie_threads)) {
289		mtx_lock_spin(&zombie_lock);
290		td_first = TAILQ_FIRST(&zombie_threads);
291		if (td_first)
292			TAILQ_INIT(&zombie_threads);
293		mtx_unlock_spin(&zombie_lock);
294		while (td_first) {
295			td_next = TAILQ_NEXT(td_first, td_slpq);
296			if (td_first->td_ucred)
297				crfree(td_first->td_ucred);
298			thread_free(td_first);
299			td_first = td_next;
300		}
301	}
302#ifdef KSE
303	upcall_reap();
304#endif
305}
306
307/*
308 * Allocate a thread.
309 */
310struct thread *
311thread_alloc(void)
312{
313
314	thread_reap(); /* check if any zombies to get */
315	return (uma_zalloc(thread_zone, M_WAITOK));
316}
317
318
319/*
320 * Deallocate a thread.
321 */
322void
323thread_free(struct thread *td)
324{
325
326	cpu_thread_clean(td);
327	uma_zfree(thread_zone, td);
328}
329
330/*
331 * Discard the current thread and exit from its context.
332 * Always called with scheduler locked.
333 *
334 * Because we can't free a thread while we're operating under its context,
335 * push the current thread into our CPU's deadthread holder. This means
336 * we needn't worry about someone else grabbing our context before we
337 * do a cpu_throw().  This may not be needed now as we are under schedlock.
338 * Maybe we can just do a thread_stash() as thr_exit1 does.
339 */
340/*  XXX
341 * libthr expects its thread exit to return for the last
342 * thread, meaning that the program is back to non-threaded
343 * mode I guess. Because we do this (cpu_throw) unconditionally
344 * here, they have their own version of it. (thr_exit1())
345 * that doesn't do it all if this was the last thread.
346 * It is also called from thread_suspend_check().
347 * Of course in the end, they end up coming here through exit1
348 * anyhow..  After fixing 'thr' to play by the rules we should be able
349 * to merge these two functions together.
350 *
351 * called from:
352 * exit1()
353 * kse_exit()
354 * thr_exit()
355 * ifdef KSE
356 * thread_user_enter()
357 * thread_userret()
358 * endif
359 * thread_suspend_check()
360 */
361void
362thread_exit(void)
363{
364	uint64_t new_switchtime;
365	struct thread *td;
366	struct thread *td2;
367	struct proc *p;
368
369	td = curthread;
370	p = td->td_proc;
371
372	PROC_SLOCK_ASSERT(p, MA_OWNED);
373	mtx_assert(&Giant, MA_NOTOWNED);
374
375	PROC_LOCK_ASSERT(p, MA_OWNED);
376	KASSERT(p != NULL, ("thread exiting without a process"));
377	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
378	    (long)p->p_pid, p->p_comm);
379	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
380
381#ifdef AUDIT
382	AUDIT_SYSCALL_EXIT(0, td);
383#endif
384
385#ifdef KSE
386	if (td->td_standin != NULL) {
387		/*
388		 * Note that we don't need to free the cred here as it
389		 * is done in thread_reap().
390		 */
391		thread_zombie(td->td_standin);
392		td->td_standin = NULL;
393	}
394#endif
395
396	umtx_thread_exit(td);
397
398	/*
399	 * drop FPU & debug register state storage, or any other
400	 * architecture specific resources that
401	 * would not be on a new untouched process.
402	 */
403	cpu_thread_exit(td);	/* XXXSMP */
404
405	/* Do the same timestamp bookkeeping that mi_switch() would do. */
406	new_switchtime = cpu_ticks();
407	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
408	PCPU_SET(switchtime, new_switchtime);
409	PCPU_SET(switchticks, ticks);
410	PCPU_INC(cnt.v_swtch);
411	/* Save our resource usage in our process. */
412	td->td_ru.ru_nvcsw++;
413	rucollect(&p->p_ru, &td->td_ru);
414	/*
415	 * The last thread is left attached to the process
416	 * So that the whole bundle gets recycled. Skip
417	 * all this stuff if we never had threads.
418	 * EXIT clears all sign of other threads when
419	 * it goes to single threading, so the last thread always
420	 * takes the short path.
421	 */
422	if (p->p_flag & P_HADTHREADS) {
423		if (p->p_numthreads > 1) {
424			thread_lock(td);
425#ifdef KSE
426			kse_unlink(td);
427#else
428			thread_unlink(td);
429#endif
430			thread_unlock(td);
431			td2 = FIRST_THREAD_IN_PROC(p);
432			sched_exit_thread(td2, td);
433
434			/*
435			 * The test below is NOT true if we are the
436			 * sole exiting thread. P_STOPPED_SNGL is unset
437			 * in exit1() after it is the only survivor.
438			 */
439			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
440				if (p->p_numthreads == p->p_suspcount) {
441					thread_lock(p->p_singlethread);
442					thread_unsuspend_one(p->p_singlethread);
443					thread_unlock(p->p_singlethread);
444				}
445			}
446
447			atomic_add_int(&td->td_proc->p_exitthreads, 1);
448			PCPU_SET(deadthread, td);
449		} else {
450			/*
451			 * The last thread is exiting.. but not through exit()
452			 * what should we do?
453			 * Theoretically this can't happen
454 			 * exit1() - clears threading flags before coming here
455 			 * kse_exit() - treats last thread specially
456 			 * thr_exit() - treats last thread specially
457			 * ifdef KSE
458 			 * thread_user_enter() - only if more exist
459 			 * thread_userret() - only if more exist
460			 * endif
461 			 * thread_suspend_check() - only if more exist
462			 */
463			panic ("thread_exit: Last thread exiting on its own");
464		}
465	}
466	PROC_UNLOCK(p);
467	thread_lock(td);
468	/* Save our tick information with both the thread and proc locked */
469	ruxagg(&p->p_rux, td);
470	PROC_SUNLOCK(p);
471	td->td_state = TDS_INACTIVE;
472	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
473	sched_throw(td);
474	panic("I'm a teapot!");
475	/* NOTREACHED */
476}
477
478/*
479 * Do any thread specific cleanups that may be needed in wait()
480 * called with Giant, proc and schedlock not held.
481 */
482void
483thread_wait(struct proc *p)
484{
485	struct thread *td;
486
487	mtx_assert(&Giant, MA_NOTOWNED);
488	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
489	td = FIRST_THREAD_IN_PROC(p);
490#ifdef KSE
491	if (td->td_standin != NULL) {
492		if (td->td_standin->td_ucred != NULL) {
493			crfree(td->td_standin->td_ucred);
494			td->td_standin->td_ucred = NULL;
495		}
496		thread_free(td->td_standin);
497		td->td_standin = NULL;
498	}
499#endif
500	/* Lock the last thread so we spin until it exits cpu_throw(). */
501	thread_lock(td);
502	thread_unlock(td);
503	/* Wait for any remaining threads to exit cpu_throw(). */
504	while (p->p_exitthreads)
505		sched_relinquish(curthread);
506	cpu_thread_clean(td);
507	crfree(td->td_ucred);
508	thread_reap();	/* check for zombie threads etc. */
509}
510
511/*
512 * Link a thread to a process.
513 * set up anything that needs to be initialized for it to
514 * be used by the process.
515 *
516 * Note that we do not link to the proc's ucred here.
517 * The thread is linked as if running but no KSE assigned.
518 * Called from:
519 *  proc_linkup()
520 *  thread_schedule_upcall()
521 *  thr_create()
522 */
523void
524thread_link(struct thread *td, struct proc *p)
525{
526
527	/*
528	 * XXX This can't be enabled because it's called for proc0 before
529	 * it's spinlock has been created.
530	 * PROC_SLOCK_ASSERT(p, MA_OWNED);
531	 */
532	td->td_state    = TDS_INACTIVE;
533	td->td_proc     = p;
534	td->td_flags    = TDF_INMEM;
535
536	LIST_INIT(&td->td_contested);
537	sigqueue_init(&td->td_sigqueue, p);
538	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
539	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
540	p->p_numthreads++;
541}
542
543/*
544 * Convert a process with one thread to an unthreaded process.
545 * Called from:
546 *  thread_single(exit)  (called from execve and exit)
547 *  kse_exit()		XXX may need cleaning up wrt KSE stuff
548 */
549void
550thread_unthread(struct thread *td)
551{
552	struct proc *p = td->td_proc;
553
554	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
555#ifdef KSE
556	thread_lock(td);
557	upcall_remove(td);
558	thread_unlock(td);
559	p->p_flag &= ~(P_SA|P_HADTHREADS);
560	td->td_mailbox = NULL;
561	td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
562	if (td->td_standin != NULL) {
563		thread_zombie(td->td_standin);
564		td->td_standin = NULL;
565	}
566#else
567	p->p_flag &= ~P_HADTHREADS;
568#endif
569}
570
571/*
572 * Called from:
573 *  thread_exit()
574 */
575void
576thread_unlink(struct thread *td)
577{
578	struct proc *p = td->td_proc;
579
580	PROC_SLOCK_ASSERT(p, MA_OWNED);
581	TAILQ_REMOVE(&p->p_threads, td, td_plist);
582	p->p_numthreads--;
583	/* could clear a few other things here */
584	/* Must  NOT clear links to proc! */
585}
586
587/*
588 * Enforce single-threading.
589 *
590 * Returns 1 if the caller must abort (another thread is waiting to
591 * exit the process or similar). Process is locked!
592 * Returns 0 when you are successfully the only thread running.
593 * A process has successfully single threaded in the suspend mode when
594 * There are no threads in user mode. Threads in the kernel must be
595 * allowed to continue until they get to the user boundary. They may even
596 * copy out their return values and data before suspending. They may however be
597 * accelerated in reaching the user boundary as we will wake up
598 * any sleeping threads that are interruptable. (PCATCH).
599 */
600int
601thread_single(int mode)
602{
603	struct thread *td;
604	struct thread *td2;
605	struct proc *p;
606	int remaining;
607
608	td = curthread;
609	p = td->td_proc;
610	mtx_assert(&Giant, MA_NOTOWNED);
611	PROC_LOCK_ASSERT(p, MA_OWNED);
612	KASSERT((td != NULL), ("curthread is NULL"));
613
614	if ((p->p_flag & P_HADTHREADS) == 0)
615		return (0);
616
617	/* Is someone already single threading? */
618	if (p->p_singlethread != NULL && p->p_singlethread != td)
619		return (1);
620
621	if (mode == SINGLE_EXIT) {
622		p->p_flag |= P_SINGLE_EXIT;
623		p->p_flag &= ~P_SINGLE_BOUNDARY;
624	} else {
625		p->p_flag &= ~P_SINGLE_EXIT;
626		if (mode == SINGLE_BOUNDARY)
627			p->p_flag |= P_SINGLE_BOUNDARY;
628		else
629			p->p_flag &= ~P_SINGLE_BOUNDARY;
630	}
631	p->p_flag |= P_STOPPED_SINGLE;
632	PROC_SLOCK(p);
633	p->p_singlethread = td;
634	if (mode == SINGLE_EXIT)
635		remaining = p->p_numthreads;
636	else if (mode == SINGLE_BOUNDARY)
637		remaining = p->p_numthreads - p->p_boundary_count;
638	else
639		remaining = p->p_numthreads - p->p_suspcount;
640	while (remaining != 1) {
641		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
642			goto stopme;
643		FOREACH_THREAD_IN_PROC(p, td2) {
644			if (td2 == td)
645				continue;
646			thread_lock(td2);
647			td2->td_flags |= TDF_ASTPENDING;
648			if (TD_IS_INHIBITED(td2)) {
649				switch (mode) {
650				case SINGLE_EXIT:
651					if (td->td_flags & TDF_DBSUSPEND)
652						td->td_flags &= ~TDF_DBSUSPEND;
653					if (TD_IS_SUSPENDED(td2))
654						thread_unsuspend_one(td2);
655					if (TD_ON_SLEEPQ(td2) &&
656					    (td2->td_flags & TDF_SINTR))
657						sleepq_abort(td2, EINTR);
658					break;
659				case SINGLE_BOUNDARY:
660					if (TD_IS_SUSPENDED(td2) &&
661					    !(td2->td_flags & TDF_BOUNDARY))
662						thread_unsuspend_one(td2);
663					if (TD_ON_SLEEPQ(td2) &&
664					    (td2->td_flags & TDF_SINTR))
665						sleepq_abort(td2, ERESTART);
666					break;
667				default:
668					if (TD_IS_SUSPENDED(td2)) {
669						thread_unlock(td2);
670						continue;
671					}
672					/*
673					 * maybe other inhibited states too?
674					 */
675					if ((td2->td_flags & TDF_SINTR) &&
676					    (td2->td_inhibitors &
677					    (TDI_SLEEPING | TDI_SWAPPED)))
678						thread_suspend_one(td2);
679					break;
680				}
681			}
682#ifdef SMP
683			else if (TD_IS_RUNNING(td2) && td != td2) {
684				forward_signal(td2);
685			}
686#endif
687			thread_unlock(td2);
688		}
689		if (mode == SINGLE_EXIT)
690			remaining = p->p_numthreads;
691		else if (mode == SINGLE_BOUNDARY)
692			remaining = p->p_numthreads - p->p_boundary_count;
693		else
694			remaining = p->p_numthreads - p->p_suspcount;
695
696		/*
697		 * Maybe we suspended some threads.. was it enough?
698		 */
699		if (remaining == 1)
700			break;
701
702stopme:
703		/*
704		 * Wake us up when everyone else has suspended.
705		 * In the mean time we suspend as well.
706		 */
707		thread_suspend_switch(td);
708		if (mode == SINGLE_EXIT)
709			remaining = p->p_numthreads;
710		else if (mode == SINGLE_BOUNDARY)
711			remaining = p->p_numthreads - p->p_boundary_count;
712		else
713			remaining = p->p_numthreads - p->p_suspcount;
714	}
715	if (mode == SINGLE_EXIT) {
716		/*
717		 * We have gotten rid of all the other threads and we
718		 * are about to either exit or exec. In either case,
719		 * we try our utmost  to revert to being a non-threaded
720		 * process.
721		 */
722		p->p_singlethread = NULL;
723		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
724		thread_unthread(td);
725	}
726	PROC_SUNLOCK(p);
727	return (0);
728}
729
730/*
731 * Called in from locations that can safely check to see
732 * whether we have to suspend or at least throttle for a
733 * single-thread event (e.g. fork).
734 *
735 * Such locations include userret().
736 * If the "return_instead" argument is non zero, the thread must be able to
737 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
738 *
739 * The 'return_instead' argument tells the function if it may do a
740 * thread_exit() or suspend, or whether the caller must abort and back
741 * out instead.
742 *
743 * If the thread that set the single_threading request has set the
744 * P_SINGLE_EXIT bit in the process flags then this call will never return
745 * if 'return_instead' is false, but will exit.
746 *
747 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
748 *---------------+--------------------+---------------------
749 *       0       | returns 0          |   returns 0 or 1
750 *               | when ST ends       |   immediatly
751 *---------------+--------------------+---------------------
752 *       1       | thread exits       |   returns 1
753 *               |                    |  immediatly
754 * 0 = thread_exit() or suspension ok,
755 * other = return error instead of stopping the thread.
756 *
757 * While a full suspension is under effect, even a single threading
758 * thread would be suspended if it made this call (but it shouldn't).
759 * This call should only be made from places where
760 * thread_exit() would be safe as that may be the outcome unless
761 * return_instead is set.
762 */
763int
764thread_suspend_check(int return_instead)
765{
766	struct thread *td;
767	struct proc *p;
768
769	td = curthread;
770	p = td->td_proc;
771	mtx_assert(&Giant, MA_NOTOWNED);
772	PROC_LOCK_ASSERT(p, MA_OWNED);
773	while (P_SHOULDSTOP(p) ||
774	      ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
775		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
776			KASSERT(p->p_singlethread != NULL,
777			    ("singlethread not set"));
778			/*
779			 * The only suspension in action is a
780			 * single-threading. Single threader need not stop.
781			 * XXX Should be safe to access unlocked
782			 * as it can only be set to be true by us.
783			 */
784			if (p->p_singlethread == td)
785				return (0);	/* Exempt from stopping. */
786		}
787		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
788			return (EINTR);
789
790		/* Should we goto user boundary if we didn't come from there? */
791		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
792		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
793			return (ERESTART);
794
795		/* If thread will exit, flush its pending signals */
796		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
797			sigqueue_flush(&td->td_sigqueue);
798
799		PROC_SLOCK(p);
800		thread_stopped(p);
801		/*
802		 * If the process is waiting for us to exit,
803		 * this thread should just suicide.
804		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
805		 */
806		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
807			thread_exit();
808		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
809			if (p->p_numthreads == p->p_suspcount + 1) {
810				thread_lock(p->p_singlethread);
811				thread_unsuspend_one(p->p_singlethread);
812				thread_unlock(p->p_singlethread);
813			}
814		}
815		PROC_UNLOCK(p);
816		thread_lock(td);
817		/*
818		 * When a thread suspends, it just
819		 * gets taken off all queues.
820		 */
821		thread_suspend_one(td);
822		if (return_instead == 0) {
823			p->p_boundary_count++;
824			td->td_flags |= TDF_BOUNDARY;
825		}
826		PROC_SUNLOCK(p);
827		mi_switch(SW_INVOL, NULL);
828		if (return_instead == 0)
829			td->td_flags &= ~TDF_BOUNDARY;
830		thread_unlock(td);
831		PROC_LOCK(p);
832		if (return_instead == 0)
833			p->p_boundary_count--;
834	}
835	return (0);
836}
837
838void
839thread_suspend_switch(struct thread *td)
840{
841	struct proc *p;
842
843	p = td->td_proc;
844	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
845	PROC_LOCK_ASSERT(p, MA_OWNED);
846	PROC_SLOCK_ASSERT(p, MA_OWNED);
847	/*
848	 * We implement thread_suspend_one in stages here to avoid
849	 * dropping the proc lock while the thread lock is owned.
850	 */
851	thread_stopped(p);
852	p->p_suspcount++;
853	PROC_UNLOCK(p);
854	thread_lock(td);
855	TD_SET_SUSPENDED(td);
856	PROC_SUNLOCK(p);
857	DROP_GIANT();
858	mi_switch(SW_VOL, NULL);
859	thread_unlock(td);
860	PICKUP_GIANT();
861	PROC_LOCK(p);
862	PROC_SLOCK(p);
863}
864
865void
866thread_suspend_one(struct thread *td)
867{
868	struct proc *p = td->td_proc;
869
870	PROC_SLOCK_ASSERT(p, MA_OWNED);
871	THREAD_LOCK_ASSERT(td, MA_OWNED);
872	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
873	p->p_suspcount++;
874	TD_SET_SUSPENDED(td);
875}
876
877void
878thread_unsuspend_one(struct thread *td)
879{
880	struct proc *p = td->td_proc;
881
882	PROC_SLOCK_ASSERT(p, MA_OWNED);
883	THREAD_LOCK_ASSERT(td, MA_OWNED);
884	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
885	TD_CLR_SUSPENDED(td);
886	p->p_suspcount--;
887	setrunnable(td);
888}
889
890/*
891 * Allow all threads blocked by single threading to continue running.
892 */
893void
894thread_unsuspend(struct proc *p)
895{
896	struct thread *td;
897
898	PROC_LOCK_ASSERT(p, MA_OWNED);
899	PROC_SLOCK_ASSERT(p, MA_OWNED);
900	if (!P_SHOULDSTOP(p)) {
901                FOREACH_THREAD_IN_PROC(p, td) {
902			thread_lock(td);
903			if (TD_IS_SUSPENDED(td)) {
904				thread_unsuspend_one(td);
905			}
906			thread_unlock(td);
907		}
908	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
909	    (p->p_numthreads == p->p_suspcount)) {
910		/*
911		 * Stopping everything also did the job for the single
912		 * threading request. Now we've downgraded to single-threaded,
913		 * let it continue.
914		 */
915		thread_lock(p->p_singlethread);
916		thread_unsuspend_one(p->p_singlethread);
917		thread_unlock(p->p_singlethread);
918	}
919}
920
921/*
922 * End the single threading mode..
923 */
924void
925thread_single_end(void)
926{
927	struct thread *td;
928	struct proc *p;
929
930	td = curthread;
931	p = td->td_proc;
932	PROC_LOCK_ASSERT(p, MA_OWNED);
933	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
934	PROC_SLOCK(p);
935	p->p_singlethread = NULL;
936	/*
937	 * If there are other threads they mey now run,
938	 * unless of course there is a blanket 'stop order'
939	 * on the process. The single threader must be allowed
940	 * to continue however as this is a bad place to stop.
941	 */
942	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
943                FOREACH_THREAD_IN_PROC(p, td) {
944			thread_lock(td);
945			if (TD_IS_SUSPENDED(td)) {
946				thread_unsuspend_one(td);
947			}
948			thread_unlock(td);
949		}
950	}
951	PROC_SUNLOCK(p);
952}
953
954struct thread *
955thread_find(struct proc *p, lwpid_t tid)
956{
957	struct thread *td;
958
959	PROC_LOCK_ASSERT(p, MA_OWNED);
960	PROC_SLOCK(p);
961	FOREACH_THREAD_IN_PROC(p, td) {
962		if (td->td_tid == tid)
963			break;
964	}
965	PROC_SUNLOCK(p);
966	return (td);
967}
968