kern_thread.c revision 153253
1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: head/sys/kern/kern_thread.c 153253 2005-12-09 02:27:55Z davidxu $");
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/proc.h>
38#include <sys/smp.h>
39#include <sys/sysctl.h>
40#include <sys/sched.h>
41#include <sys/sleepqueue.h>
42#include <sys/turnstile.h>
43#include <sys/ktr.h>
44#include <sys/umtx.h>
45
46#include <vm/vm.h>
47#include <vm/vm_extern.h>
48#include <vm/uma.h>
49
50/*
51 * KSEGRP related storage.
52 */
53static uma_zone_t ksegrp_zone;
54static uma_zone_t thread_zone;
55
56/* DEBUG ONLY */
57SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
58static int thread_debug = 0;
59SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
60	&thread_debug, 0, "thread debug");
61
62int max_threads_per_proc = 1500;
63SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
64	&max_threads_per_proc, 0, "Limit on threads per proc");
65
66int max_groups_per_proc = 1500;
67SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
68	&max_groups_per_proc, 0, "Limit on thread groups per proc");
69
70int max_threads_hits;
71SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
72	&max_threads_hits, 0, "");
73
74int virtual_cpu;
75
76TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
77TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
78struct mtx kse_zombie_lock;
79MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
80
81static int
82sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
83{
84	int error, new_val;
85	int def_val;
86
87	def_val = mp_ncpus;
88	if (virtual_cpu == 0)
89		new_val = def_val;
90	else
91		new_val = virtual_cpu;
92	error = sysctl_handle_int(oidp, &new_val, 0, req);
93	if (error != 0 || req->newptr == NULL)
94		return (error);
95	if (new_val < 0)
96		return (EINVAL);
97	virtual_cpu = new_val;
98	return (0);
99}
100
101/* DEBUG ONLY */
102SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
103	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
104	"debug virtual cpus");
105
106struct mtx tid_lock;
107static struct unrhdr *tid_unrhdr;
108
109/*
110 * Prepare a thread for use.
111 */
112static int
113thread_ctor(void *mem, int size, void *arg, int flags)
114{
115	struct thread	*td;
116
117	td = (struct thread *)mem;
118	td->td_state = TDS_INACTIVE;
119	td->td_oncpu = NOCPU;
120
121	td->td_tid = alloc_unr(tid_unrhdr);
122
123	/*
124	 * Note that td_critnest begins life as 1 because the thread is not
125	 * running and is thereby implicitly waiting to be on the receiving
126	 * end of a context switch.  A context switch must occur inside a
127	 * critical section, and in fact, includes hand-off of the sched_lock.
128	 * After a context switch to a newly created thread, it will release
129	 * sched_lock for the first time, and its td_critnest will hit 0 for
130	 * the first time.  This happens on the far end of a context switch,
131	 * and when it context switches away from itself, it will in fact go
132	 * back into a critical section, and hand off the sched lock to the
133	 * next thread.
134	 */
135	td->td_critnest = 1;
136	return (0);
137}
138
139/*
140 * Reclaim a thread after use.
141 */
142static void
143thread_dtor(void *mem, int size, void *arg)
144{
145	struct thread *td;
146
147	td = (struct thread *)mem;
148
149#ifdef INVARIANTS
150	/* Verify that this thread is in a safe state to free. */
151	switch (td->td_state) {
152	case TDS_INHIBITED:
153	case TDS_RUNNING:
154	case TDS_CAN_RUN:
155	case TDS_RUNQ:
156		/*
157		 * We must never unlink a thread that is in one of
158		 * these states, because it is currently active.
159		 */
160		panic("bad state for thread unlinking");
161		/* NOTREACHED */
162	case TDS_INACTIVE:
163		break;
164	default:
165		panic("bad thread state");
166		/* NOTREACHED */
167	}
168#endif
169
170	free_unr(tid_unrhdr, td->td_tid);
171	sched_newthread(td);
172}
173
174/*
175 * Initialize type-stable parts of a thread (when newly created).
176 */
177static int
178thread_init(void *mem, int size, int flags)
179{
180	struct thread *td;
181
182	td = (struct thread *)mem;
183
184	vm_thread_new(td, 0);
185	cpu_thread_setup(td);
186	td->td_sleepqueue = sleepq_alloc();
187	td->td_turnstile = turnstile_alloc();
188	td->td_umtxq = umtxq_alloc();
189	td->td_sched = (struct td_sched *)&td[1];
190	sched_newthread(td);
191	return (0);
192}
193
194/*
195 * Tear down type-stable parts of a thread (just before being discarded).
196 */
197static void
198thread_fini(void *mem, int size)
199{
200	struct thread *td;
201
202	td = (struct thread *)mem;
203	turnstile_free(td->td_turnstile);
204	sleepq_free(td->td_sleepqueue);
205	umtxq_free(td->td_umtxq);
206	vm_thread_dispose(td);
207}
208
209/*
210 * Initialize type-stable parts of a ksegrp (when newly created).
211 */
212static int
213ksegrp_ctor(void *mem, int size, void *arg, int flags)
214{
215	struct ksegrp	*kg;
216
217	kg = (struct ksegrp *)mem;
218	bzero(mem, size);
219	kg->kg_sched = (struct kg_sched *)&kg[1];
220	return (0);
221}
222
223void
224ksegrp_link(struct ksegrp *kg, struct proc *p)
225{
226
227	TAILQ_INIT(&kg->kg_threads);
228	TAILQ_INIT(&kg->kg_runq);	/* links with td_runq */
229	TAILQ_INIT(&kg->kg_upcalls);	/* all upcall structure in ksegrp */
230	kg->kg_proc = p;
231	/*
232	 * the following counters are in the -zero- section
233	 * and may not need clearing
234	 */
235	kg->kg_numthreads = 0;
236	kg->kg_numupcalls = 0;
237	/* link it in now that it's consistent */
238	p->p_numksegrps++;
239	TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
240}
241
242/*
243 * Called from:
244 *   thread-exit()
245 */
246void
247ksegrp_unlink(struct ksegrp *kg)
248{
249	struct proc *p;
250
251	mtx_assert(&sched_lock, MA_OWNED);
252	KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
253	KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
254
255	p = kg->kg_proc;
256	TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
257	p->p_numksegrps--;
258	/*
259	 * Aggregate stats from the KSE
260	 */
261	if (p->p_procscopegrp == kg)
262		p->p_procscopegrp = NULL;
263}
264
265/*
266 * For a newly created process,
267 * link up all the structures and its initial threads etc.
268 * called from:
269 * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
270 * proc_dtor() (should go away)
271 * proc_init()
272 */
273void
274proc_linkup(struct proc *p, struct ksegrp *kg, struct thread *td)
275{
276
277	TAILQ_INIT(&p->p_ksegrps);	     /* all ksegrps in proc */
278	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
279	TAILQ_INIT(&p->p_suspended);	     /* Threads suspended */
280	sigqueue_init(&p->p_sigqueue, p);
281	p->p_ksi = ksiginfo_alloc(1);
282	if (p->p_ksi != NULL) {
283		/* XXX p_ksi may be null if ksiginfo zone is not ready */
284		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
285	}
286	LIST_INIT(&p->p_mqnotifier);
287	p->p_numksegrps = 0;
288	p->p_numthreads = 0;
289
290	ksegrp_link(kg, p);
291	thread_link(td, kg);
292}
293
294/*
295 * Initialize global thread allocation resources.
296 */
297void
298threadinit(void)
299{
300
301	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
302	tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
303
304	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
305	    thread_ctor, thread_dtor, thread_init, thread_fini,
306	    UMA_ALIGN_CACHE, 0);
307	ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
308	    ksegrp_ctor, NULL, NULL, NULL,
309	    UMA_ALIGN_CACHE, 0);
310	kseinit();	/* set up kse specific stuff  e.g. upcall zone*/
311}
312
313/*
314 * Stash an embarasingly extra thread into the zombie thread queue.
315 */
316void
317thread_stash(struct thread *td)
318{
319	mtx_lock_spin(&kse_zombie_lock);
320	TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
321	mtx_unlock_spin(&kse_zombie_lock);
322}
323
324/*
325 * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
326 */
327void
328ksegrp_stash(struct ksegrp *kg)
329{
330	mtx_lock_spin(&kse_zombie_lock);
331	TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
332	mtx_unlock_spin(&kse_zombie_lock);
333}
334
335/*
336 * Reap zombie kse resource.
337 */
338void
339thread_reap(void)
340{
341	struct thread *td_first, *td_next;
342	struct ksegrp *kg_first, * kg_next;
343
344	/*
345	 * Don't even bother to lock if none at this instant,
346	 * we really don't care about the next instant..
347	 */
348	if ((!TAILQ_EMPTY(&zombie_threads))
349	    || (!TAILQ_EMPTY(&zombie_ksegrps))) {
350		mtx_lock_spin(&kse_zombie_lock);
351		td_first = TAILQ_FIRST(&zombie_threads);
352		kg_first = TAILQ_FIRST(&zombie_ksegrps);
353		if (td_first)
354			TAILQ_INIT(&zombie_threads);
355		if (kg_first)
356			TAILQ_INIT(&zombie_ksegrps);
357		mtx_unlock_spin(&kse_zombie_lock);
358		while (td_first) {
359			td_next = TAILQ_NEXT(td_first, td_runq);
360			if (td_first->td_ucred)
361				crfree(td_first->td_ucred);
362			thread_free(td_first);
363			td_first = td_next;
364		}
365		while (kg_first) {
366			kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
367			ksegrp_free(kg_first);
368			kg_first = kg_next;
369		}
370		/*
371		 * there will always be a thread on the list if one of these
372		 * is there.
373		 */
374		kse_GC();
375	}
376}
377
378/*
379 * Allocate a ksegrp.
380 */
381struct ksegrp *
382ksegrp_alloc(void)
383{
384	return (uma_zalloc(ksegrp_zone, M_WAITOK));
385}
386
387/*
388 * Allocate a thread.
389 */
390struct thread *
391thread_alloc(void)
392{
393	thread_reap(); /* check if any zombies to get */
394	return (uma_zalloc(thread_zone, M_WAITOK));
395}
396
397/*
398 * Deallocate a ksegrp.
399 */
400void
401ksegrp_free(struct ksegrp *td)
402{
403	uma_zfree(ksegrp_zone, td);
404}
405
406/*
407 * Deallocate a thread.
408 */
409void
410thread_free(struct thread *td)
411{
412
413	cpu_thread_clean(td);
414	uma_zfree(thread_zone, td);
415}
416
417/*
418 * Discard the current thread and exit from its context.
419 * Always called with scheduler locked.
420 *
421 * Because we can't free a thread while we're operating under its context,
422 * push the current thread into our CPU's deadthread holder. This means
423 * we needn't worry about someone else grabbing our context before we
424 * do a cpu_throw().  This may not be needed now as we are under schedlock.
425 * Maybe we can just do a thread_stash() as thr_exit1 does.
426 */
427/*  XXX
428 * libthr expects its thread exit to return for the last
429 * thread, meaning that the program is back to non-threaded
430 * mode I guess. Because we do this (cpu_throw) unconditionally
431 * here, they have their own version of it. (thr_exit1())
432 * that doesn't do it all if this was the last thread.
433 * It is also called from thread_suspend_check().
434 * Of course in the end, they end up coming here through exit1
435 * anyhow..  After fixing 'thr' to play by the rules we should be able
436 * to merge these two functions together.
437 *
438 * called from:
439 * exit1()
440 * kse_exit()
441 * thr_exit()
442 * thread_user_enter()
443 * thread_userret()
444 * thread_suspend_check()
445 */
446void
447thread_exit(void)
448{
449	struct thread *td;
450	struct proc *p;
451	struct ksegrp	*kg;
452
453	td = curthread;
454	kg = td->td_ksegrp;
455	p = td->td_proc;
456
457	mtx_assert(&sched_lock, MA_OWNED);
458	mtx_assert(&Giant, MA_NOTOWNED);
459	PROC_LOCK_ASSERT(p, MA_OWNED);
460	KASSERT(p != NULL, ("thread exiting without a process"));
461	KASSERT(kg != NULL, ("thread exiting without a kse group"));
462	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
463	    (long)p->p_pid, p->p_comm);
464	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
465
466	if (td->td_standin != NULL) {
467		/*
468		 * Note that we don't need to free the cred here as it
469		 * is done in thread_reap().
470		 */
471		thread_stash(td->td_standin);
472		td->td_standin = NULL;
473	}
474
475	/*
476	 * drop FPU & debug register state storage, or any other
477	 * architecture specific resources that
478	 * would not be on a new untouched process.
479	 */
480	cpu_thread_exit(td);	/* XXXSMP */
481
482	/*
483	 * The thread is exiting. scheduler can release its stuff
484	 * and collect stats etc.
485	 */
486	sched_thread_exit(td);
487
488	/*
489	 * The last thread is left attached to the process
490	 * So that the whole bundle gets recycled. Skip
491	 * all this stuff if we never had threads.
492	 * EXIT clears all sign of other threads when
493	 * it goes to single threading, so the last thread always
494	 * takes the short path.
495	 */
496	if (p->p_flag & P_HADTHREADS) {
497		if (p->p_numthreads > 1) {
498			thread_unlink(td);
499
500			/* XXX first arg not used in 4BSD or ULE */
501			sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
502
503			/*
504			 * The test below is NOT true if we are the
505			 * sole exiting thread. P_STOPPED_SNGL is unset
506			 * in exit1() after it is the only survivor.
507			 */
508			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
509				if (p->p_numthreads == p->p_suspcount) {
510					thread_unsuspend_one(p->p_singlethread);
511				}
512			}
513
514			/*
515			 * Because each upcall structure has an owner thread,
516			 * owner thread exits only when process is in exiting
517			 * state, so upcall to userland is no longer needed,
518			 * deleting upcall structure is safe here.
519			 * So when all threads in a group is exited, all upcalls
520			 * in the group should be automatically freed.
521			 *  XXXKSE This is a KSE thing and should be exported
522			 * there somehow.
523			 */
524			upcall_remove(td);
525
526			/*
527			 * If the thread we unlinked above was the last one,
528			 * then this ksegrp should go away too.
529			 */
530			if (kg->kg_numthreads == 0) {
531				/*
532				 * let the scheduler know about this in case
533				 * it needs to recover stats or resources.
534				 * Theoretically we could let
535				 * sched_exit_ksegrp()  do the equivalent of
536				 * setting the concurrency to 0
537				 * but don't do it yet to avoid changing
538				 * the existing scheduler code until we
539				 * are ready.
540				 * We supply a random other ksegrp
541				 * as the recipient of any built up
542				 * cpu usage etc. (If the scheduler wants it).
543				 * XXXKSE
544				 * This is probably not fair so think of
545 				 * a better answer.
546				 */
547				sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td);
548				sched_set_concurrency(kg, 0); /* XXX TEMP */
549				ksegrp_unlink(kg);
550				ksegrp_stash(kg);
551			}
552			PROC_UNLOCK(p);
553			td->td_ksegrp	= NULL;
554			PCPU_SET(deadthread, td);
555		} else {
556			/*
557			 * The last thread is exiting.. but not through exit()
558			 * what should we do?
559			 * Theoretically this can't happen
560 			 * exit1() - clears threading flags before coming here
561 			 * kse_exit() - treats last thread specially
562 			 * thr_exit() - treats last thread specially
563 			 * thread_user_enter() - only if more exist
564 			 * thread_userret() - only if more exist
565 			 * thread_suspend_check() - only if more exist
566			 */
567			panic ("thread_exit: Last thread exiting on its own");
568		}
569	} else {
570		/*
571		 * non threaded process comes here.
572		 * This includes an EX threaded process that is coming
573		 * here via exit1(). (exit1 dethreads the proc first).
574		 */
575		PROC_UNLOCK(p);
576	}
577	td->td_state = TDS_INACTIVE;
578	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
579	cpu_throw(td, choosethread());
580	panic("I'm a teapot!");
581	/* NOTREACHED */
582}
583
584/*
585 * Do any thread specific cleanups that may be needed in wait()
586 * called with Giant, proc and schedlock not held.
587 */
588void
589thread_wait(struct proc *p)
590{
591	struct thread *td;
592
593	mtx_assert(&Giant, MA_NOTOWNED);
594	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
595	KASSERT((p->p_numksegrps == 1), ("Multiple ksegrps in wait1()"));
596	FOREACH_THREAD_IN_PROC(p, td) {
597		if (td->td_standin != NULL) {
598			if (td->td_standin->td_ucred != NULL) {
599				crfree(td->td_standin->td_ucred);
600				td->td_standin->td_ucred = NULL;
601			}
602			thread_free(td->td_standin);
603			td->td_standin = NULL;
604		}
605		cpu_thread_clean(td);
606		crfree(td->td_ucred);
607	}
608	thread_reap();	/* check for zombie threads etc. */
609}
610
611/*
612 * Link a thread to a process.
613 * set up anything that needs to be initialized for it to
614 * be used by the process.
615 *
616 * Note that we do not link to the proc's ucred here.
617 * The thread is linked as if running but no KSE assigned.
618 * Called from:
619 *  proc_linkup()
620 *  thread_schedule_upcall()
621 *  thr_create()
622 */
623void
624thread_link(struct thread *td, struct ksegrp *kg)
625{
626	struct proc *p;
627
628	p = kg->kg_proc;
629	td->td_state    = TDS_INACTIVE;
630	td->td_proc     = p;
631	td->td_ksegrp   = kg;
632	td->td_flags    = 0;
633	td->td_kflags	= 0;
634
635	LIST_INIT(&td->td_contested);
636	sigqueue_init(&td->td_sigqueue, p);
637	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
638	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
639	TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
640	p->p_numthreads++;
641	kg->kg_numthreads++;
642}
643
644/*
645 * Convert a process with one thread to an unthreaded process.
646 * Called from:
647 *  thread_single(exit)  (called from execve and exit)
648 *  kse_exit()		XXX may need cleaning up wrt KSE stuff
649 */
650void
651thread_unthread(struct thread *td)
652{
653	struct proc *p = td->td_proc;
654
655	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
656	upcall_remove(td);
657	p->p_flag &= ~(P_SA|P_HADTHREADS);
658	td->td_mailbox = NULL;
659	td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
660	if (td->td_standin != NULL) {
661		thread_stash(td->td_standin);
662		td->td_standin = NULL;
663	}
664	sched_set_concurrency(td->td_ksegrp, 1);
665}
666
667/*
668 * Called from:
669 *  thread_exit()
670 */
671void
672thread_unlink(struct thread *td)
673{
674	struct proc *p = td->td_proc;
675	struct ksegrp *kg = td->td_ksegrp;
676
677	mtx_assert(&sched_lock, MA_OWNED);
678	TAILQ_REMOVE(&p->p_threads, td, td_plist);
679	p->p_numthreads--;
680	TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
681	kg->kg_numthreads--;
682	/* could clear a few other things here */
683	/* Must  NOT clear links to proc and ksegrp! */
684}
685
686/*
687 * Enforce single-threading.
688 *
689 * Returns 1 if the caller must abort (another thread is waiting to
690 * exit the process or similar). Process is locked!
691 * Returns 0 when you are successfully the only thread running.
692 * A process has successfully single threaded in the suspend mode when
693 * There are no threads in user mode. Threads in the kernel must be
694 * allowed to continue until they get to the user boundary. They may even
695 * copy out their return values and data before suspending. They may however be
696 * accellerated in reaching the user boundary as we will wake up
697 * any sleeping threads that are interruptable. (PCATCH).
698 */
699int
700thread_single(int mode)
701{
702	struct thread *td;
703	struct thread *td2;
704	struct proc *p;
705	int remaining;
706
707	td = curthread;
708	p = td->td_proc;
709	mtx_assert(&Giant, MA_NOTOWNED);
710	PROC_LOCK_ASSERT(p, MA_OWNED);
711	KASSERT((td != NULL), ("curthread is NULL"));
712
713	if ((p->p_flag & P_HADTHREADS) == 0)
714		return (0);
715
716	/* Is someone already single threading? */
717	if (p->p_singlethread != NULL && p->p_singlethread != td)
718		return (1);
719
720	if (mode == SINGLE_EXIT) {
721		p->p_flag |= P_SINGLE_EXIT;
722		p->p_flag &= ~P_SINGLE_BOUNDARY;
723	} else {
724		p->p_flag &= ~P_SINGLE_EXIT;
725		if (mode == SINGLE_BOUNDARY)
726			p->p_flag |= P_SINGLE_BOUNDARY;
727		else
728			p->p_flag &= ~P_SINGLE_BOUNDARY;
729	}
730	p->p_flag |= P_STOPPED_SINGLE;
731	mtx_lock_spin(&sched_lock);
732	p->p_singlethread = td;
733	if (mode == SINGLE_EXIT)
734		remaining = p->p_numthreads;
735	else if (mode == SINGLE_BOUNDARY)
736		remaining = p->p_numthreads - p->p_boundary_count;
737	else
738		remaining = p->p_numthreads - p->p_suspcount;
739	while (remaining != 1) {
740		FOREACH_THREAD_IN_PROC(p, td2) {
741			if (td2 == td)
742				continue;
743			td2->td_flags |= TDF_ASTPENDING;
744			if (TD_IS_INHIBITED(td2)) {
745				switch (mode) {
746				case SINGLE_EXIT:
747					if (td->td_flags & TDF_DBSUSPEND)
748						td->td_flags &= ~TDF_DBSUSPEND;
749					if (TD_IS_SUSPENDED(td2))
750						thread_unsuspend_one(td2);
751					if (TD_ON_SLEEPQ(td2) &&
752					    (td2->td_flags & TDF_SINTR))
753						sleepq_abort(td2);
754					break;
755				case SINGLE_BOUNDARY:
756					if (TD_IS_SUSPENDED(td2) &&
757					    !(td2->td_flags & TDF_BOUNDARY))
758						thread_unsuspend_one(td2);
759					if (TD_ON_SLEEPQ(td2) &&
760					    (td2->td_flags & TDF_SINTR))
761						sleepq_abort(td2);
762					break;
763				default:
764					if (TD_IS_SUSPENDED(td2))
765						continue;
766					/*
767					 * maybe other inhibitted states too?
768					 */
769					if ((td2->td_flags & TDF_SINTR) &&
770					    (td2->td_inhibitors &
771					    (TDI_SLEEPING | TDI_SWAPPED)))
772						thread_suspend_one(td2);
773					break;
774				}
775			}
776		}
777		if (mode == SINGLE_EXIT)
778			remaining = p->p_numthreads;
779		else if (mode == SINGLE_BOUNDARY)
780			remaining = p->p_numthreads - p->p_boundary_count;
781		else
782			remaining = p->p_numthreads - p->p_suspcount;
783
784		/*
785		 * Maybe we suspended some threads.. was it enough?
786		 */
787		if (remaining == 1)
788			break;
789
790		/*
791		 * Wake us up when everyone else has suspended.
792		 * In the mean time we suspend as well.
793		 */
794		thread_suspend_one(td);
795		PROC_UNLOCK(p);
796		mi_switch(SW_VOL, NULL);
797		mtx_unlock_spin(&sched_lock);
798		PROC_LOCK(p);
799		mtx_lock_spin(&sched_lock);
800		if (mode == SINGLE_EXIT)
801			remaining = p->p_numthreads;
802		else if (mode == SINGLE_BOUNDARY)
803			remaining = p->p_numthreads - p->p_boundary_count;
804		else
805			remaining = p->p_numthreads - p->p_suspcount;
806	}
807	if (mode == SINGLE_EXIT) {
808		/*
809		 * We have gotten rid of all the other threads and we
810		 * are about to either exit or exec. In either case,
811		 * we try our utmost  to revert to being a non-threaded
812		 * process.
813		 */
814		p->p_singlethread = NULL;
815		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
816		thread_unthread(td);
817	}
818	mtx_unlock_spin(&sched_lock);
819	return (0);
820}
821
822/*
823 * Called in from locations that can safely check to see
824 * whether we have to suspend or at least throttle for a
825 * single-thread event (e.g. fork).
826 *
827 * Such locations include userret().
828 * If the "return_instead" argument is non zero, the thread must be able to
829 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
830 *
831 * The 'return_instead' argument tells the function if it may do a
832 * thread_exit() or suspend, or whether the caller must abort and back
833 * out instead.
834 *
835 * If the thread that set the single_threading request has set the
836 * P_SINGLE_EXIT bit in the process flags then this call will never return
837 * if 'return_instead' is false, but will exit.
838 *
839 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
840 *---------------+--------------------+---------------------
841 *       0       | returns 0          |   returns 0 or 1
842 *               | when ST ends       |   immediatly
843 *---------------+--------------------+---------------------
844 *       1       | thread exits       |   returns 1
845 *               |                    |  immediatly
846 * 0 = thread_exit() or suspension ok,
847 * other = return error instead of stopping the thread.
848 *
849 * While a full suspension is under effect, even a single threading
850 * thread would be suspended if it made this call (but it shouldn't).
851 * This call should only be made from places where
852 * thread_exit() would be safe as that may be the outcome unless
853 * return_instead is set.
854 */
855int
856thread_suspend_check(int return_instead)
857{
858	struct thread *td;
859	struct proc *p;
860
861	td = curthread;
862	p = td->td_proc;
863	mtx_assert(&Giant, MA_NOTOWNED);
864	PROC_LOCK_ASSERT(p, MA_OWNED);
865	while (P_SHOULDSTOP(p) ||
866	      ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
867		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
868			KASSERT(p->p_singlethread != NULL,
869			    ("singlethread not set"));
870			/*
871			 * The only suspension in action is a
872			 * single-threading. Single threader need not stop.
873			 * XXX Should be safe to access unlocked
874			 * as it can only be set to be true by us.
875			 */
876			if (p->p_singlethread == td)
877				return (0);	/* Exempt from stopping. */
878		}
879		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
880			return (1);
881
882		/* Should we goto user boundary if we didn't come from there? */
883		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
884		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
885			return (1);
886
887		/* If thread will exit, flush its pending signals */
888		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
889			sigqueue_flush(&td->td_sigqueue);
890
891		mtx_lock_spin(&sched_lock);
892		thread_stopped(p);
893		/*
894		 * If the process is waiting for us to exit,
895		 * this thread should just suicide.
896		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
897		 */
898		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
899			thread_exit();
900
901		/*
902		 * When a thread suspends, it just
903		 * moves to the processes's suspend queue
904		 * and stays there.
905		 */
906		thread_suspend_one(td);
907		if (return_instead == 0) {
908			p->p_boundary_count++;
909			td->td_flags |= TDF_BOUNDARY;
910		}
911		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
912			if (p->p_numthreads == p->p_suspcount)
913				thread_unsuspend_one(p->p_singlethread);
914		}
915		PROC_UNLOCK(p);
916		mi_switch(SW_INVOL, NULL);
917		if (return_instead == 0) {
918			p->p_boundary_count--;
919			td->td_flags &= ~TDF_BOUNDARY;
920		}
921		mtx_unlock_spin(&sched_lock);
922		PROC_LOCK(p);
923	}
924	return (0);
925}
926
927void
928thread_suspend_one(struct thread *td)
929{
930	struct proc *p = td->td_proc;
931
932	mtx_assert(&sched_lock, MA_OWNED);
933	PROC_LOCK_ASSERT(p, MA_OWNED);
934	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
935	p->p_suspcount++;
936	TD_SET_SUSPENDED(td);
937	TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
938}
939
940void
941thread_unsuspend_one(struct thread *td)
942{
943	struct proc *p = td->td_proc;
944
945	mtx_assert(&sched_lock, MA_OWNED);
946	PROC_LOCK_ASSERT(p, MA_OWNED);
947	TAILQ_REMOVE(&p->p_suspended, td, td_runq);
948	TD_CLR_SUSPENDED(td);
949	p->p_suspcount--;
950	setrunnable(td);
951}
952
953/*
954 * Allow all threads blocked by single threading to continue running.
955 */
956void
957thread_unsuspend(struct proc *p)
958{
959	struct thread *td;
960
961	mtx_assert(&sched_lock, MA_OWNED);
962	PROC_LOCK_ASSERT(p, MA_OWNED);
963	if (!P_SHOULDSTOP(p)) {
964		while ((td = TAILQ_FIRST(&p->p_suspended))) {
965			thread_unsuspend_one(td);
966		}
967	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
968	    (p->p_numthreads == p->p_suspcount)) {
969		/*
970		 * Stopping everything also did the job for the single
971		 * threading request. Now we've downgraded to single-threaded,
972		 * let it continue.
973		 */
974		thread_unsuspend_one(p->p_singlethread);
975	}
976}
977
978/*
979 * End the single threading mode..
980 */
981void
982thread_single_end(void)
983{
984	struct thread *td;
985	struct proc *p;
986
987	td = curthread;
988	p = td->td_proc;
989	PROC_LOCK_ASSERT(p, MA_OWNED);
990	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
991	mtx_lock_spin(&sched_lock);
992	p->p_singlethread = NULL;
993	p->p_procscopegrp = NULL;
994	/*
995	 * If there are other threads they mey now run,
996	 * unless of course there is a blanket 'stop order'
997	 * on the process. The single threader must be allowed
998	 * to continue however as this is a bad place to stop.
999	 */
1000	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
1001		while ((td = TAILQ_FIRST(&p->p_suspended))) {
1002			thread_unsuspend_one(td);
1003		}
1004	}
1005	mtx_unlock_spin(&sched_lock);
1006}
1007
1008/*
1009 * Called before going into an interruptible sleep to see if we have been
1010 * interrupted or requested to exit.
1011 */
1012int
1013thread_sleep_check(struct thread *td)
1014{
1015	struct proc *p;
1016
1017	p = td->td_proc;
1018	mtx_assert(&sched_lock, MA_OWNED);
1019	if (p->p_flag & P_HADTHREADS) {
1020		if (p->p_singlethread != td) {
1021			if (p->p_flag & P_SINGLE_EXIT)
1022				return (EINTR);
1023			if (p->p_flag & P_SINGLE_BOUNDARY)
1024				return (ERESTART);
1025		}
1026		if (td->td_flags & TDF_INTERRUPT)
1027			return (td->td_intrval);
1028	}
1029	return (0);
1030}
1031
1032struct thread *
1033thread_find(struct proc *p, lwpid_t tid)
1034{
1035	struct thread *td;
1036
1037	PROC_LOCK_ASSERT(p, MA_OWNED);
1038	mtx_lock_spin(&sched_lock);
1039	FOREACH_THREAD_IN_PROC(p, td) {
1040		if (td->td_tid == tid)
1041			break;
1042	}
1043	mtx_unlock_spin(&sched_lock);
1044	return (td);
1045}
1046