kern_thread.c revision 113641
1/*
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 *
28 * $FreeBSD: head/sys/kern/kern_thread.c 113641 2003-04-18 00:16:13Z julian $
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/lock.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/proc.h>
38#include <sys/smp.h>
39#include <sys/sysctl.h>
40#include <sys/sysproto.h>
41#include <sys/filedesc.h>
42#include <sys/sched.h>
43#include <sys/signalvar.h>
44#include <sys/sx.h>
45#include <sys/tty.h>
46#include <sys/user.h>
47#include <sys/jail.h>
48#include <sys/kse.h>
49#include <sys/ktr.h>
50#include <sys/ucontext.h>
51
52#include <vm/vm.h>
53#include <vm/vm_object.h>
54#include <vm/pmap.h>
55#include <vm/uma.h>
56#include <vm/vm_map.h>
57
58#include <machine/frame.h>
59
60/*
61 * KSEGRP related storage.
62 */
63static uma_zone_t ksegrp_zone;
64static uma_zone_t kse_zone;
65static uma_zone_t thread_zone;
66static uma_zone_t upcall_zone;
67
68/* DEBUG ONLY */
69SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
70static int thread_debug = 0;
71SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
72	&thread_debug, 0, "thread debug");
73
74static int max_threads_per_proc = 30;
75SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
76	&max_threads_per_proc, 0, "Limit on threads per proc");
77
78static int max_groups_per_proc = 5;
79SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
80	&max_groups_per_proc, 0, "Limit on thread groups per proc");
81
82static int max_threads_hits;
83SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
84	&max_threads_hits, 0, "");
85
86static int virtual_cpu;
87
88#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
89
90TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
91TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
92TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
93TAILQ_HEAD(, kse_upcall) zombie_upcalls =
94	TAILQ_HEAD_INITIALIZER(zombie_upcalls);
95struct mtx kse_zombie_lock;
96MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
97
98static void kse_purge(struct proc *p, struct thread *td);
99static void kse_purge_group(struct thread *td);
100static int thread_update_usr_ticks(struct thread *td, int user);
101static void thread_alloc_spare(struct thread *td, struct thread *spare);
102
103static int
104sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
105{
106	int error, new_val;
107	int def_val;
108
109#ifdef SMP
110	def_val = mp_ncpus;
111#else
112	def_val = 1;
113#endif
114	if (virtual_cpu == 0)
115		new_val = def_val;
116	else
117		new_val = virtual_cpu;
118	error = sysctl_handle_int(oidp, &new_val, 0, req);
119        if (error != 0 || req->newptr == NULL)
120		return (error);
121	if (new_val < 0)
122		return (EINVAL);
123	virtual_cpu = new_val;
124	return (0);
125}
126
127/* DEBUG ONLY */
128SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
129	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
130	"debug virtual cpus");
131
132/*
133 * Prepare a thread for use.
134 */
135static void
136thread_ctor(void *mem, int size, void *arg)
137{
138	struct thread	*td;
139
140	td = (struct thread *)mem;
141	td->td_state = TDS_INACTIVE;
142	td->td_oncpu	= NOCPU;
143}
144
145/*
146 * Reclaim a thread after use.
147 */
148static void
149thread_dtor(void *mem, int size, void *arg)
150{
151	struct thread	*td;
152
153	td = (struct thread *)mem;
154
155#ifdef INVARIANTS
156	/* Verify that this thread is in a safe state to free. */
157	switch (td->td_state) {
158	case TDS_INHIBITED:
159	case TDS_RUNNING:
160	case TDS_CAN_RUN:
161	case TDS_RUNQ:
162		/*
163		 * We must never unlink a thread that is in one of
164		 * these states, because it is currently active.
165		 */
166		panic("bad state for thread unlinking");
167		/* NOTREACHED */
168	case TDS_INACTIVE:
169		break;
170	default:
171		panic("bad thread state");
172		/* NOTREACHED */
173	}
174#endif
175}
176
177/*
178 * Initialize type-stable parts of a thread (when newly created).
179 */
180static void
181thread_init(void *mem, int size)
182{
183	struct thread	*td;
184
185	td = (struct thread *)mem;
186	mtx_lock(&Giant);
187	pmap_new_thread(td, 0);
188	mtx_unlock(&Giant);
189	cpu_thread_setup(td);
190	td->td_sched = (struct td_sched *)&td[1];
191}
192
193/*
194 * Tear down type-stable parts of a thread (just before being discarded).
195 */
196static void
197thread_fini(void *mem, int size)
198{
199	struct thread	*td;
200
201	td = (struct thread *)mem;
202	pmap_dispose_thread(td);
203}
204
205/*
206 * Initialize type-stable parts of a kse (when newly created).
207 */
208static void
209kse_init(void *mem, int size)
210{
211	struct kse	*ke;
212
213	ke = (struct kse *)mem;
214	ke->ke_sched = (struct ke_sched *)&ke[1];
215}
216
217/*
218 * Initialize type-stable parts of a ksegrp (when newly created).
219 */
220static void
221ksegrp_init(void *mem, int size)
222{
223	struct ksegrp	*kg;
224
225	kg = (struct ksegrp *)mem;
226	kg->kg_sched = (struct kg_sched *)&kg[1];
227}
228
229/*
230 * KSE is linked into kse group.
231 */
232void
233kse_link(struct kse *ke, struct ksegrp *kg)
234{
235	struct proc *p = kg->kg_proc;
236
237	TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
238	kg->kg_kses++;
239	ke->ke_state	= KES_UNQUEUED;
240	ke->ke_proc	= p;
241	ke->ke_ksegrp	= kg;
242	ke->ke_thread	= NULL;
243	ke->ke_oncpu	= NOCPU;
244	ke->ke_flags	= 0;
245}
246
247void
248kse_unlink(struct kse *ke)
249{
250	struct ksegrp *kg;
251
252	mtx_assert(&sched_lock, MA_OWNED);
253	kg = ke->ke_ksegrp;
254	TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
255	if (ke->ke_state == KES_IDLE) {
256		TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
257		kg->kg_idle_kses--;
258	}
259	if (--kg->kg_kses == 0)
260		ksegrp_unlink(kg);
261	/*
262	 * Aggregate stats from the KSE
263	 */
264	kse_stash(ke);
265}
266
267void
268ksegrp_link(struct ksegrp *kg, struct proc *p)
269{
270
271	TAILQ_INIT(&kg->kg_threads);
272	TAILQ_INIT(&kg->kg_runq);	/* links with td_runq */
273	TAILQ_INIT(&kg->kg_slpq);	/* links with td_runq */
274	TAILQ_INIT(&kg->kg_kseq);	/* all kses in ksegrp */
275	TAILQ_INIT(&kg->kg_iq);		/* all idle kses in ksegrp */
276	TAILQ_INIT(&kg->kg_upcalls);	/* all upcall structure in ksegrp */
277	kg->kg_proc = p;
278	/*
279	 * the following counters are in the -zero- section
280	 * and may not need clearing
281	 */
282	kg->kg_numthreads = 0;
283	kg->kg_runnable   = 0;
284	kg->kg_kses       = 0;
285	kg->kg_runq_kses  = 0; /* XXXKSE change name */
286	kg->kg_idle_kses  = 0;
287	kg->kg_numupcalls = 0;
288	/* link it in now that it's consistent */
289	p->p_numksegrps++;
290	TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
291}
292
293void
294ksegrp_unlink(struct ksegrp *kg)
295{
296	struct proc *p;
297
298	mtx_assert(&sched_lock, MA_OWNED);
299	KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
300	KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
301	KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
302
303	p = kg->kg_proc;
304	TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
305	p->p_numksegrps--;
306	/*
307	 * Aggregate stats from the KSE
308	 */
309	ksegrp_stash(kg);
310}
311
312struct kse_upcall *
313upcall_alloc(void)
314{
315	struct kse_upcall *ku;
316
317	ku = uma_zalloc(upcall_zone, M_WAITOK);
318	bzero(ku, sizeof(*ku));
319	return (ku);
320}
321
322void
323upcall_free(struct kse_upcall *ku)
324{
325
326	uma_zfree(upcall_zone, ku);
327}
328
329void
330upcall_link(struct kse_upcall *ku, struct ksegrp *kg)
331{
332
333	mtx_assert(&sched_lock, MA_OWNED);
334	TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link);
335	ku->ku_ksegrp = kg;
336	kg->kg_numupcalls++;
337}
338
339void
340upcall_unlink(struct kse_upcall *ku)
341{
342	struct ksegrp *kg = ku->ku_ksegrp;
343
344	mtx_assert(&sched_lock, MA_OWNED);
345	KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__));
346	TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link);
347	kg->kg_numupcalls--;
348	upcall_stash(ku);
349}
350
351void
352upcall_remove(struct thread *td)
353{
354
355	if (td->td_upcall) {
356		td->td_upcall->ku_owner = NULL;
357		upcall_unlink(td->td_upcall);
358		td->td_upcall = 0;
359	}
360}
361
362/*
363 * For a newly created process,
364 * link up all the structures and its initial threads etc.
365 */
366void
367proc_linkup(struct proc *p, struct ksegrp *kg,
368	    struct kse *ke, struct thread *td)
369{
370
371	TAILQ_INIT(&p->p_ksegrps);	     /* all ksegrps in proc */
372	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
373	TAILQ_INIT(&p->p_suspended);	     /* Threads suspended */
374	p->p_numksegrps = 0;
375	p->p_numthreads = 0;
376
377	ksegrp_link(kg, p);
378	kse_link(ke, kg);
379	thread_link(td, kg);
380}
381
382/*
383struct kse_thr_interrupt_args {
384	struct kse_thr_mailbox * tmbx;
385};
386*/
387int
388kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
389{
390	struct proc *p;
391	struct thread *td2;
392
393	p = td->td_proc;
394	if (!(p->p_flag & P_THREADED) || (uap->tmbx == NULL))
395		return (EINVAL);
396	mtx_lock_spin(&sched_lock);
397	FOREACH_THREAD_IN_PROC(p, td2) {
398		if (td2->td_mailbox == uap->tmbx) {
399			td2->td_flags |= TDF_INTERRUPT;
400			if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) {
401				if (td2->td_flags & TDF_CVWAITQ)
402					cv_abort(td2);
403				else
404					abortsleep(td2);
405			}
406			mtx_unlock_spin(&sched_lock);
407			return (0);
408		}
409	}
410	mtx_unlock_spin(&sched_lock);
411	return (ESRCH);
412}
413
414/*
415struct kse_exit_args {
416	register_t dummy;
417};
418*/
419int
420kse_exit(struct thread *td, struct kse_exit_args *uap)
421{
422	struct proc *p;
423	struct ksegrp *kg;
424	struct kse *ke;
425
426	p = td->td_proc;
427	/*
428	 * Only UTS can call the syscall and current group
429	 * should be a threaded group.
430	 */
431	if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0))
432		return (EINVAL);
433	KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__));
434
435	kg = td->td_ksegrp;
436	/* Serialize removing upcall */
437	PROC_LOCK(p);
438	mtx_lock_spin(&sched_lock);
439	if ((kg->kg_numupcalls == 1) && (kg->kg_numthreads > 1)) {
440		mtx_unlock_spin(&sched_lock);
441		PROC_UNLOCK(p);
442		return (EDEADLK);
443	}
444	ke = td->td_kse;
445	upcall_remove(td);
446	if (p->p_numthreads == 1) {
447		kse_purge(p, td);
448		p->p_flag &= ~P_THREADED;
449		mtx_unlock_spin(&sched_lock);
450		PROC_UNLOCK(p);
451	} else {
452		if (kg->kg_numthreads == 1) { /* Shutdown a group */
453			kse_purge_group(td);
454			ke->ke_flags |= KEF_EXIT;
455		}
456		thread_stopped(p);
457		thread_exit();
458		/* NOTREACHED */
459	}
460	return (0);
461}
462
463/*
464 * Either becomes an upcall or waits for an awakening event and
465 * then becomes an upcall. Only error cases return.
466 */
467/*
468struct kse_release_args {
469	struct timespec *timeout;
470};
471*/
472int
473kse_release(struct thread *td, struct kse_release_args *uap)
474{
475	struct proc *p;
476	struct ksegrp *kg;
477	struct timespec ts, ts2, ts3, timeout;
478	struct timeval tv;
479	int error;
480
481	p = td->td_proc;
482	kg = td->td_ksegrp;
483	/*
484	 * Only UTS can call the syscall and current group
485	 * should be a threaded group.
486	 */
487	if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0))
488		return (EINVAL);
489	KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__));
490	if (uap->timeout != NULL) {
491		if ((error = copyin(uap->timeout, &timeout, sizeof(timeout))))
492			return (error);
493		getnanouptime(&ts);
494		timespecadd(&ts, &timeout);
495		TIMESPEC_TO_TIMEVAL(&tv, &timeout);
496	}
497	mtx_lock_spin(&sched_lock);
498	/* Change OURSELF to become an upcall. */
499	td->td_flags = TDF_UPCALLING;
500#if 0	/* XXX This shouldn't be necessary */
501	if (p->p_sflag & PS_NEEDSIGCHK)
502		td->td_flags |= TDF_ASTPENDING;
503#endif
504	mtx_unlock_spin(&sched_lock);
505	PROC_LOCK(p);
506	while ((td->td_upcall->ku_flags & KUF_DOUPCALL) == 0 &&
507	       (kg->kg_completed == NULL)) {
508		kg->kg_upsleeps++;
509		error = msleep(&kg->kg_completed, &p->p_mtx, PPAUSE|PCATCH,
510			"kse_rel", (uap->timeout ? tvtohz(&tv) : 0));
511		kg->kg_upsleeps--;
512		PROC_UNLOCK(p);
513		if (uap->timeout == NULL || error != EWOULDBLOCK)
514			return (0);
515		getnanouptime(&ts2);
516		if (timespeccmp(&ts2, &ts, >=))
517			return (0);
518		ts3 = ts;
519		timespecsub(&ts3, &ts2);
520		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
521		PROC_LOCK(p);
522	}
523	PROC_UNLOCK(p);
524	return (0);
525}
526
527/* struct kse_wakeup_args {
528	struct kse_mailbox *mbx;
529}; */
530int
531kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
532{
533	struct proc *p;
534	struct ksegrp *kg;
535	struct kse_upcall *ku;
536	struct thread *td2;
537
538	p = td->td_proc;
539	td2 = NULL;
540	ku = NULL;
541	/* KSE-enabled processes only, please. */
542	if (!(p->p_flag & P_THREADED))
543		return (EINVAL);
544	PROC_LOCK(p);
545	mtx_lock_spin(&sched_lock);
546	if (uap->mbx) {
547		FOREACH_KSEGRP_IN_PROC(p, kg) {
548			FOREACH_UPCALL_IN_GROUP(kg, ku) {
549				if (ku->ku_mailbox == uap->mbx)
550					break;
551			}
552			if (ku)
553				break;
554		}
555	} else {
556		kg = td->td_ksegrp;
557		if (kg->kg_upsleeps) {
558			wakeup_one(&kg->kg_completed);
559			mtx_unlock_spin(&sched_lock);
560			PROC_UNLOCK(p);
561			return (0);
562		}
563		ku = TAILQ_FIRST(&kg->kg_upcalls);
564	}
565	if (ku) {
566		if ((td2 = ku->ku_owner) == NULL) {
567			panic("%s: no owner", __func__);
568		} else if (TD_ON_SLEEPQ(td2) &&
569		           (td2->td_wchan == &kg->kg_completed)) {
570			abortsleep(td2);
571		} else {
572			ku->ku_flags |= KUF_DOUPCALL;
573		}
574		mtx_unlock_spin(&sched_lock);
575		PROC_UNLOCK(p);
576		return (0);
577	}
578	mtx_unlock_spin(&sched_lock);
579	PROC_UNLOCK(p);
580	return (ESRCH);
581}
582
583/*
584 * No new KSEG: first call: use current KSE, don't schedule an upcall
585 * All other situations, do allocate max new KSEs and schedule an upcall.
586 */
587/* struct kse_create_args {
588	struct kse_mailbox *mbx;
589	int newgroup;
590}; */
591int
592kse_create(struct thread *td, struct kse_create_args *uap)
593{
594	struct kse *newke;
595	struct ksegrp *newkg;
596	struct ksegrp *kg;
597	struct proc *p;
598	struct kse_mailbox mbx;
599	struct kse_upcall *newku;
600	int err, ncpus;
601
602	p = td->td_proc;
603	if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
604		return (err);
605
606	/* Too bad, why hasn't kernel always a cpu counter !? */
607#ifdef SMP
608	ncpus = mp_ncpus;
609#else
610	ncpus = 1;
611#endif
612	if (thread_debug && virtual_cpu != 0)
613		ncpus = virtual_cpu;
614
615	/* Easier to just set it than to test and set */
616	PROC_LOCK(p);
617	p->p_flag |= P_THREADED;
618	PROC_UNLOCK(p);
619	kg = td->td_ksegrp;
620	if (uap->newgroup) {
621		/* Have race condition but it is cheap */
622		if (p->p_numksegrps >= max_groups_per_proc)
623			return (EPROCLIM);
624		/*
625		 * If we want a new KSEGRP it doesn't matter whether
626		 * we have already fired up KSE mode before or not.
627		 * We put the process in KSE mode and create a new KSEGRP.
628		 */
629		newkg = ksegrp_alloc();
630		bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
631		      kg_startzero, kg_endzero));
632		bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
633		      RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
634		mtx_lock_spin(&sched_lock);
635		if (p->p_numksegrps >= max_groups_per_proc) {
636			mtx_unlock_spin(&sched_lock);
637			ksegrp_free(newkg);
638			return (EPROCLIM);
639		}
640		ksegrp_link(newkg, p);
641		mtx_unlock_spin(&sched_lock);
642	} else {
643		newkg = kg;
644	}
645
646	/*
647	 * Creating upcalls more than number of physical cpu does
648	 * not help performance.
649	 */
650	if (newkg->kg_numupcalls >= ncpus)
651		return (EPROCLIM);
652
653	if (newkg->kg_numupcalls == 0) {
654		/*
655		 * Initialize KSE group, optimized for MP.
656		 * Create KSEs as many as physical cpus, this increases
657		 * concurrent even if userland is not MP safe and can only run
658		 * on single CPU (for early version of libpthread, it is true).
659		 * In ideal world, every physical cpu should execute a thread.
660		 * If there is enough KSEs, threads in kernel can be
661		 * executed parallel on different cpus with full speed,
662		 * Concurrent in kernel shouldn't be restricted by number of
663		 * upcalls userland provides.
664		 * Adding more upcall structures only increases concurrent
665		 * in userland.
666		 * Highest performance configuration is:
667		 * N kses = N upcalls = N phyiscal cpus
668		 */
669		while (newkg->kg_kses < ncpus) {
670			newke = kse_alloc();
671			bzero(&newke->ke_startzero, RANGEOF(struct kse,
672			      ke_startzero, ke_endzero));
673#if 0
674			mtx_lock_spin(&sched_lock);
675			bcopy(&ke->ke_startcopy, &newke->ke_startcopy,
676			      RANGEOF(struct kse, ke_startcopy, ke_endcopy));
677			mtx_unlock_spin(&sched_lock);
678#endif
679			mtx_lock_spin(&sched_lock);
680			kse_link(newke, newkg);
681			/* Add engine */
682			kse_reassign(newke);
683			mtx_unlock_spin(&sched_lock);
684		}
685	}
686	newku = upcall_alloc();
687	newku->ku_mailbox = uap->mbx;
688	newku->ku_func = mbx.km_func;
689	bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t));
690
691	/* For the first call this may not have been set */
692	if (td->td_standin == NULL)
693		thread_alloc_spare(td, NULL);
694
695	mtx_lock_spin(&sched_lock);
696	if (newkg->kg_numupcalls >= ncpus) {
697		mtx_unlock_spin(&sched_lock);
698		upcall_free(newku);
699		return (EPROCLIM);
700	}
701	upcall_link(newku, newkg);
702	if (mbx.km_quantum)
703		newkg->kg_upquantum = max(1, mbx.km_quantum/tick);
704
705	/*
706	 * Each upcall structure has an owner thread, find which
707	 * one owns it.
708	 */
709	if (uap->newgroup) {
710		/*
711		 * Because new ksegrp hasn't thread,
712		 * create an initial upcall thread to own it.
713		 */
714		thread_schedule_upcall(td, newku);
715	} else {
716		/*
717		 * If current thread hasn't an upcall structure,
718		 * just assign the upcall to it.
719		 */
720		if (td->td_upcall == NULL) {
721			newku->ku_owner = td;
722			td->td_upcall = newku;
723		} else {
724			/*
725			 * Create a new upcall thread to own it.
726			 */
727			thread_schedule_upcall(td, newku);
728		}
729	}
730	mtx_unlock_spin(&sched_lock);
731	return (0);
732}
733
734/*
735 * Fill a ucontext_t with a thread's context information.
736 *
737 * This is an analogue to getcontext(3).
738 */
739void
740thread_getcontext(struct thread *td, ucontext_t *uc)
741{
742
743/*
744 * XXX this is declared in a MD include file, i386/include/ucontext.h but
745 * is used in MI code.
746 */
747#ifdef __i386__
748	get_mcontext(td, &uc->uc_mcontext);
749#endif
750	PROC_LOCK(td->td_proc);
751	uc->uc_sigmask = td->td_sigmask;
752	PROC_UNLOCK(td->td_proc);
753}
754
755/*
756 * Set a thread's context from a ucontext_t.
757 *
758 * This is an analogue to setcontext(3).
759 */
760int
761thread_setcontext(struct thread *td, ucontext_t *uc)
762{
763	int ret;
764
765/*
766 * XXX this is declared in a MD include file, i386/include/ucontext.h but
767 * is used in MI code.
768 */
769#ifdef __i386__
770	ret = set_mcontext(td, &uc->uc_mcontext);
771#else
772	ret = ENOSYS;
773#endif
774	if (ret == 0) {
775		SIG_CANTMASK(uc->uc_sigmask);
776		PROC_LOCK(td->td_proc);
777		td->td_sigmask = uc->uc_sigmask;
778		PROC_UNLOCK(td->td_proc);
779	}
780	return (ret);
781}
782
783/*
784 * Initialize global thread allocation resources.
785 */
786void
787threadinit(void)
788{
789
790#ifndef __ia64__
791	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
792	    thread_ctor, thread_dtor, thread_init, thread_fini,
793	    UMA_ALIGN_CACHE, 0);
794#else
795	/*
796	 * XXX the ia64 kstack allocator is really lame and is at the mercy
797	 * of contigmallloc().  This hackery is to pre-construct a whole
798	 * pile of thread structures with associated kernel stacks early
799	 * in the system startup while contigmalloc() still works. Once we
800	 * have them, keep them.  Sigh.
801	 */
802	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
803	    thread_ctor, thread_dtor, thread_init, thread_fini,
804	    UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
805	uma_prealloc(thread_zone, 512);		/* XXX arbitary */
806#endif
807	ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
808	    NULL, NULL, ksegrp_init, NULL,
809	    UMA_ALIGN_CACHE, 0);
810	kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
811	    NULL, NULL, kse_init, NULL,
812	    UMA_ALIGN_CACHE, 0);
813	upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
814	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
815}
816
817/*
818 * Stash an embarasingly extra thread into the zombie thread queue.
819 */
820void
821thread_stash(struct thread *td)
822{
823	mtx_lock_spin(&kse_zombie_lock);
824	TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
825	mtx_unlock_spin(&kse_zombie_lock);
826}
827
828/*
829 * Stash an embarasingly extra kse into the zombie kse queue.
830 */
831void
832kse_stash(struct kse *ke)
833{
834	mtx_lock_spin(&kse_zombie_lock);
835	TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
836	mtx_unlock_spin(&kse_zombie_lock);
837}
838
839/*
840 * Stash an embarasingly extra upcall into the zombie upcall queue.
841 */
842
843void
844upcall_stash(struct kse_upcall *ku)
845{
846	mtx_lock_spin(&kse_zombie_lock);
847	TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link);
848	mtx_unlock_spin(&kse_zombie_lock);
849}
850
851/*
852 * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
853 */
854void
855ksegrp_stash(struct ksegrp *kg)
856{
857	mtx_lock_spin(&kse_zombie_lock);
858	TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
859	mtx_unlock_spin(&kse_zombie_lock);
860}
861
862/*
863 * Reap zombie kse resource.
864 */
865void
866thread_reap(void)
867{
868	struct thread *td_first, *td_next;
869	struct kse *ke_first, *ke_next;
870	struct ksegrp *kg_first, * kg_next;
871	struct kse_upcall *ku_first, *ku_next;
872
873	/*
874	 * Don't even bother to lock if none at this instant,
875	 * we really don't care about the next instant..
876	 */
877	if ((!TAILQ_EMPTY(&zombie_threads))
878	    || (!TAILQ_EMPTY(&zombie_kses))
879	    || (!TAILQ_EMPTY(&zombie_ksegrps))
880	    || (!TAILQ_EMPTY(&zombie_upcalls))) {
881		mtx_lock_spin(&kse_zombie_lock);
882		td_first = TAILQ_FIRST(&zombie_threads);
883		ke_first = TAILQ_FIRST(&zombie_kses);
884		kg_first = TAILQ_FIRST(&zombie_ksegrps);
885		ku_first = TAILQ_FIRST(&zombie_upcalls);
886		if (td_first)
887			TAILQ_INIT(&zombie_threads);
888		if (ke_first)
889			TAILQ_INIT(&zombie_kses);
890		if (kg_first)
891			TAILQ_INIT(&zombie_ksegrps);
892		if (ku_first)
893			TAILQ_INIT(&zombie_upcalls);
894		mtx_unlock_spin(&kse_zombie_lock);
895		while (td_first) {
896			td_next = TAILQ_NEXT(td_first, td_runq);
897			if (td_first->td_ucred)
898				crfree(td_first->td_ucred);
899			thread_free(td_first);
900			td_first = td_next;
901		}
902		while (ke_first) {
903			ke_next = TAILQ_NEXT(ke_first, ke_procq);
904			kse_free(ke_first);
905			ke_first = ke_next;
906		}
907		while (kg_first) {
908			kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
909			ksegrp_free(kg_first);
910			kg_first = kg_next;
911		}
912		while (ku_first) {
913			ku_next = TAILQ_NEXT(ku_first, ku_link);
914			upcall_free(ku_first);
915			ku_first = ku_next;
916		}
917	}
918}
919
920/*
921 * Allocate a ksegrp.
922 */
923struct ksegrp *
924ksegrp_alloc(void)
925{
926	return (uma_zalloc(ksegrp_zone, M_WAITOK));
927}
928
929/*
930 * Allocate a kse.
931 */
932struct kse *
933kse_alloc(void)
934{
935	return (uma_zalloc(kse_zone, M_WAITOK));
936}
937
938/*
939 * Allocate a thread.
940 */
941struct thread *
942thread_alloc(void)
943{
944	thread_reap(); /* check if any zombies to get */
945	return (uma_zalloc(thread_zone, M_WAITOK));
946}
947
948/*
949 * Deallocate a ksegrp.
950 */
951void
952ksegrp_free(struct ksegrp *td)
953{
954	uma_zfree(ksegrp_zone, td);
955}
956
957/*
958 * Deallocate a kse.
959 */
960void
961kse_free(struct kse *td)
962{
963	uma_zfree(kse_zone, td);
964}
965
966/*
967 * Deallocate a thread.
968 */
969void
970thread_free(struct thread *td)
971{
972
973	cpu_thread_clean(td);
974	uma_zfree(thread_zone, td);
975}
976
977/*
978 * Store the thread context in the UTS's mailbox.
979 * then add the mailbox at the head of a list we are building in user space.
980 * The list is anchored in the ksegrp structure.
981 */
982int
983thread_export_context(struct thread *td)
984{
985	struct proc *p;
986	struct ksegrp *kg;
987	uintptr_t mbx;
988	void *addr;
989	int error,temp;
990	ucontext_t uc;
991
992	p = td->td_proc;
993	kg = td->td_ksegrp;
994
995	/* Export the user/machine context. */
996	addr = (void *)(&td->td_mailbox->tm_context);
997	error = copyin(addr, &uc, sizeof(ucontext_t));
998	if (error)
999		goto bad;
1000
1001	thread_getcontext(td, &uc);
1002	error = copyout(&uc, addr, sizeof(ucontext_t));
1003	if (error)
1004		goto bad;
1005
1006	/* Exports clock ticks in kernel mode */
1007	addr = (caddr_t)(&td->td_mailbox->tm_sticks);
1008	temp = fuword(addr) + td->td_usticks;
1009	if (suword(addr, temp))
1010		goto bad;
1011
1012	/* Get address in latest mbox of list pointer */
1013	addr = (void *)(&td->td_mailbox->tm_next);
1014	/*
1015	 * Put the saved address of the previous first
1016	 * entry into this one
1017	 */
1018	for (;;) {
1019		mbx = (uintptr_t)kg->kg_completed;
1020		if (suword(addr, mbx)) {
1021			error = EFAULT;
1022			goto bad;
1023		}
1024		PROC_LOCK(p);
1025		if (mbx == (uintptr_t)kg->kg_completed) {
1026			kg->kg_completed = td->td_mailbox;
1027			/*
1028			 * The thread context may be taken away by
1029			 * other upcall threads when we unlock
1030			 * process lock. it's no longer valid to
1031			 * use it again in any other places.
1032			 */
1033			td->td_mailbox = NULL;
1034			PROC_UNLOCK(p);
1035			break;
1036		}
1037		PROC_UNLOCK(p);
1038	}
1039	td->td_usticks = 0;
1040	return (0);
1041
1042bad:
1043	PROC_LOCK(p);
1044	psignal(p, SIGSEGV);
1045	PROC_UNLOCK(p);
1046	/* The mailbox is bad, don't use it */
1047	td->td_mailbox = NULL;
1048	td->td_usticks = 0;
1049	return (error);
1050}
1051
1052/*
1053 * Take the list of completed mailboxes for this KSEGRP and put them on this
1054 * upcall's mailbox as it's the next one going up.
1055 */
1056static int
1057thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku)
1058{
1059	struct proc *p = kg->kg_proc;
1060	void *addr;
1061	uintptr_t mbx;
1062
1063	addr = (void *)(&ku->ku_mailbox->km_completed);
1064	for (;;) {
1065		mbx = (uintptr_t)kg->kg_completed;
1066		if (suword(addr, mbx)) {
1067			PROC_LOCK(p);
1068			psignal(p, SIGSEGV);
1069			PROC_UNLOCK(p);
1070			return (EFAULT);
1071		}
1072		PROC_LOCK(p);
1073		if (mbx == (uintptr_t)kg->kg_completed) {
1074			kg->kg_completed = NULL;
1075			PROC_UNLOCK(p);
1076			break;
1077		}
1078		PROC_UNLOCK(p);
1079	}
1080	return (0);
1081}
1082
1083/*
1084 * This function should be called at statclock interrupt time
1085 */
1086int
1087thread_statclock(int user)
1088{
1089	struct thread *td = curthread;
1090
1091	if (td->td_ksegrp->kg_numupcalls == 0)
1092		return (-1);
1093	if (user) {
1094		/* Current always do via ast() */
1095		mtx_lock_spin(&sched_lock);
1096		td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING);
1097		mtx_unlock_spin(&sched_lock);
1098		td->td_uuticks++;
1099	} else {
1100		if (td->td_mailbox != NULL)
1101			td->td_usticks++;
1102		else {
1103			/* XXXKSE
1104		 	 * We will call thread_user_enter() for every
1105			 * kernel entry in future, so if the thread mailbox
1106			 * is NULL, it must be a UTS kernel, don't account
1107			 * clock ticks for it.
1108			 */
1109		}
1110	}
1111	return (0);
1112}
1113
1114/*
1115 * Export state clock ticks for userland
1116 */
1117static int
1118thread_update_usr_ticks(struct thread *td, int user)
1119{
1120	struct proc *p = td->td_proc;
1121	struct kse_thr_mailbox *tmbx;
1122	struct kse_upcall *ku;
1123	struct ksegrp *kg;
1124	caddr_t addr;
1125	uint uticks;
1126
1127	if ((ku = td->td_upcall) == NULL)
1128		return (-1);
1129
1130	tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1131	if ((tmbx == NULL) || (tmbx == (void *)-1))
1132		return (-1);
1133	if (user) {
1134		uticks = td->td_uuticks;
1135		td->td_uuticks = 0;
1136		addr = (caddr_t)&tmbx->tm_uticks;
1137	} else {
1138		uticks = td->td_usticks;
1139		td->td_usticks = 0;
1140		addr = (caddr_t)&tmbx->tm_sticks;
1141	}
1142	if (uticks) {
1143		if (suword(addr, uticks+fuword(addr))) {
1144			PROC_LOCK(p);
1145			psignal(p, SIGSEGV);
1146			PROC_UNLOCK(p);
1147			return (-2);
1148		}
1149	}
1150	kg = td->td_ksegrp;
1151	if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) {
1152		mtx_lock_spin(&sched_lock);
1153		td->td_upcall->ku_flags |= KUF_DOUPCALL;
1154		mtx_unlock_spin(&sched_lock);
1155	}
1156	return (0);
1157}
1158
1159/*
1160 * Discard the current thread and exit from its context.
1161 *
1162 * Because we can't free a thread while we're operating under its context,
1163 * push the current thread into our CPU's deadthread holder. This means
1164 * we needn't worry about someone else grabbing our context before we
1165 * do a cpu_throw().
1166 */
1167void
1168thread_exit(void)
1169{
1170	struct thread *td;
1171	struct kse *ke;
1172	struct proc *p;
1173	struct ksegrp	*kg;
1174
1175	td = curthread;
1176	kg = td->td_ksegrp;
1177	p = td->td_proc;
1178	ke = td->td_kse;
1179
1180	mtx_assert(&sched_lock, MA_OWNED);
1181	KASSERT(p != NULL, ("thread exiting without a process"));
1182	KASSERT(ke != NULL, ("thread exiting without a kse"));
1183	KASSERT(kg != NULL, ("thread exiting without a kse group"));
1184	PROC_LOCK_ASSERT(p, MA_OWNED);
1185	CTR1(KTR_PROC, "thread_exit: thread %p", td);
1186	KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));
1187
1188	if (td->td_standin != NULL) {
1189		thread_stash(td->td_standin);
1190		td->td_standin = NULL;
1191	}
1192
1193	cpu_thread_exit(td);	/* XXXSMP */
1194
1195	/*
1196	 * The last thread is left attached to the process
1197	 * So that the whole bundle gets recycled. Skip
1198	 * all this stuff.
1199	 */
1200	if (p->p_numthreads > 1) {
1201		thread_unlink(td);
1202		if (p->p_maxthrwaits)
1203			wakeup(&p->p_numthreads);
1204		/*
1205		 * The test below is NOT true if we are the
1206		 * sole exiting thread. P_STOPPED_SNGL is unset
1207		 * in exit1() after it is the only survivor.
1208		 */
1209		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1210			if (p->p_numthreads == p->p_suspcount) {
1211				thread_unsuspend_one(p->p_singlethread);
1212			}
1213		}
1214
1215		/*
1216		 * Because each upcall structure has an owner thread,
1217		 * owner thread exits only when process is in exiting
1218		 * state, so upcall to userland is no longer needed,
1219		 * deleting upcall structure is safe here.
1220		 * So when all threads in a group is exited, all upcalls
1221		 * in the group should be automatically freed.
1222		 */
1223		if (td->td_upcall)
1224			upcall_remove(td);
1225
1226		ke->ke_state = KES_UNQUEUED;
1227		ke->ke_thread = NULL;
1228		/*
1229		 * Decide what to do with the KSE attached to this thread.
1230		 */
1231		if (ke->ke_flags & KEF_EXIT)
1232			kse_unlink(ke);
1233		else
1234			kse_reassign(ke);
1235		PROC_UNLOCK(p);
1236		td->td_kse	= NULL;
1237		td->td_state	= TDS_INACTIVE;
1238#if 0
1239		td->td_proc	= NULL;
1240#endif
1241		td->td_ksegrp	= NULL;
1242		td->td_last_kse	= NULL;
1243		PCPU_SET(deadthread, td);
1244	} else {
1245		PROC_UNLOCK(p);
1246	}
1247	/* XXX Shouldn't cpu_throw() here. */
1248	mtx_assert(&sched_lock, MA_OWNED);
1249#if defined(__i386__) || defined(__sparc64__)
1250	cpu_throw(td, choosethread());
1251#else
1252	cpu_throw();
1253#endif
1254	panic("I'm a teapot!");
1255	/* NOTREACHED */
1256}
1257
1258/*
1259 * Do any thread specific cleanups that may be needed in wait()
1260 * called with Giant held, proc and schedlock not held.
1261 */
1262void
1263thread_wait(struct proc *p)
1264{
1265	struct thread *td;
1266
1267	KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()"));
1268	KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()"));
1269	FOREACH_THREAD_IN_PROC(p, td) {
1270		if (td->td_standin != NULL) {
1271			thread_free(td->td_standin);
1272			td->td_standin = NULL;
1273		}
1274		cpu_thread_clean(td);
1275	}
1276	thread_reap();	/* check for zombie threads etc. */
1277}
1278
1279/*
1280 * Link a thread to a process.
1281 * set up anything that needs to be initialized for it to
1282 * be used by the process.
1283 *
1284 * Note that we do not link to the proc's ucred here.
1285 * The thread is linked as if running but no KSE assigned.
1286 */
1287void
1288thread_link(struct thread *td, struct ksegrp *kg)
1289{
1290	struct proc *p;
1291
1292	p = kg->kg_proc;
1293	td->td_state    = TDS_INACTIVE;
1294	td->td_proc     = p;
1295	td->td_ksegrp   = kg;
1296	td->td_last_kse = NULL;
1297	td->td_flags    = 0;
1298	td->td_kse      = NULL;
1299
1300	LIST_INIT(&td->td_contested);
1301	callout_init(&td->td_slpcallout, 1);
1302	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
1303	TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
1304	p->p_numthreads++;
1305	kg->kg_numthreads++;
1306}
1307
1308void
1309thread_unlink(struct thread *td)
1310{
1311	struct proc *p = td->td_proc;
1312	struct ksegrp *kg = td->td_ksegrp;
1313
1314	TAILQ_REMOVE(&p->p_threads, td, td_plist);
1315	p->p_numthreads--;
1316	TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
1317	kg->kg_numthreads--;
1318	/* could clear a few other things here */
1319}
1320
1321/*
1322 * Purge a ksegrp resource. When a ksegrp is preparing to
1323 * exit, it calls this function.
1324 */
1325void
1326kse_purge_group(struct thread *td)
1327{
1328	struct ksegrp *kg;
1329	struct kse *ke;
1330
1331	kg = td->td_ksegrp;
1332 	KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
1333	while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1334		KASSERT(ke->ke_state == KES_IDLE,
1335			("%s: wrong idle KSE state", __func__));
1336		kse_unlink(ke);
1337	}
1338	KASSERT((kg->kg_kses == 1),
1339		("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
1340	KASSERT((kg->kg_numupcalls == 0),
1341	        ("%s: ksegrp still has %d upcall datas",
1342		__func__, kg->kg_numupcalls));
1343}
1344
1345/*
1346 * Purge a process's KSE resource. When a process is preparing to
1347 * exit, it calls kse_purge to release any extra KSE resources in
1348 * the process.
1349 */
1350void
1351kse_purge(struct proc *p, struct thread *td)
1352{
1353	struct ksegrp *kg;
1354	struct kse *ke;
1355
1356 	KASSERT(p->p_numthreads == 1, ("bad thread number"));
1357	mtx_lock_spin(&sched_lock);
1358	while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
1359		TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
1360		p->p_numksegrps--;
1361		/*
1362		 * There is no ownership for KSE, after all threads
1363		 * in the group exited, it is possible that some KSEs
1364		 * were left in idle queue, gc them now.
1365		 */
1366		while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1367			KASSERT(ke->ke_state == KES_IDLE,
1368			   ("%s: wrong idle KSE state", __func__));
1369			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
1370			kg->kg_idle_kses--;
1371			TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
1372			kg->kg_kses--;
1373			kse_stash(ke);
1374		}
1375		KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
1376		        ((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
1377		        ("ksegrp has wrong kg_kses: %d", kg->kg_kses));
1378		KASSERT((kg->kg_numupcalls == 0),
1379		        ("%s: ksegrp still has %d upcall datas",
1380			__func__, kg->kg_numupcalls));
1381
1382		if (kg != td->td_ksegrp)
1383			ksegrp_stash(kg);
1384	}
1385	TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
1386	p->p_numksegrps++;
1387	mtx_unlock_spin(&sched_lock);
1388}
1389
1390/*
1391 * This function is intended to be used to initialize a spare thread
1392 * for upcall. Initialize thread's large data area outside sched_lock
1393 * for thread_schedule_upcall().
1394 */
1395void
1396thread_alloc_spare(struct thread *td, struct thread *spare)
1397{
1398	if (td->td_standin)
1399		return;
1400	if (spare == NULL)
1401		spare = thread_alloc();
1402	td->td_standin = spare;
1403	bzero(&spare->td_startzero,
1404	    (unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
1405	spare->td_proc = td->td_proc;
1406	spare->td_ucred = crhold(td->td_ucred);
1407}
1408
1409/*
1410 * Create a thread and schedule it for upcall on the KSE given.
1411 * Use our thread's standin so that we don't have to allocate one.
1412 */
1413struct thread *
1414thread_schedule_upcall(struct thread *td, struct kse_upcall *ku)
1415{
1416	struct thread *td2;
1417
1418	mtx_assert(&sched_lock, MA_OWNED);
1419
1420	/*
1421	 * Schedule an upcall thread on specified kse_upcall,
1422	 * the kse_upcall must be free.
1423	 * td must have a spare thread.
1424	 */
1425	KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__));
1426	if ((td2 = td->td_standin) != NULL) {
1427		td->td_standin = NULL;
1428	} else {
1429		panic("no reserve thread when scheduling an upcall");
1430		return (NULL);
1431	}
1432	CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
1433	     td2, td->td_proc->p_pid, td->td_proc->p_comm);
1434	bcopy(&td->td_startcopy, &td2->td_startcopy,
1435	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
1436	thread_link(td2, ku->ku_ksegrp);
1437	/* inherit blocked thread's context */
1438	bcopy(td->td_frame, td2->td_frame, sizeof(struct trapframe));
1439	cpu_set_upcall(td2, td->td_pcb);
1440	/* Let the new thread become owner of the upcall */
1441	ku->ku_owner   = td2;
1442	td2->td_upcall = ku;
1443	td2->td_flags  = TDF_UPCALLING;
1444#if 0	/* XXX This shouldn't be necessary */
1445	if (td->td_proc->p_sflag & PS_NEEDSIGCHK)
1446		td2->td_flags |= TDF_ASTPENDING;
1447#endif
1448	td2->td_kse    = NULL;
1449	td2->td_state  = TDS_CAN_RUN;
1450	td2->td_inhibitors = 0;
1451	setrunqueue(td2);
1452	return (td2);	/* bogus.. should be a void function */
1453}
1454
1455void
1456thread_signal_add(struct thread *td, int sig)
1457{
1458	struct kse_upcall *ku;
1459	struct proc *p;
1460	sigset_t ss;
1461	int error;
1462
1463	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
1464	td = curthread;
1465	ku = td->td_upcall;
1466	p = td->td_proc;
1467
1468	PROC_UNLOCK(p);
1469	error = copyin(&ku->ku_mailbox->km_sigscaught, &ss, sizeof(sigset_t));
1470	if (error)
1471		goto error;
1472
1473	SIGADDSET(ss, sig);
1474
1475	error = copyout(&ss, &ku->ku_mailbox->km_sigscaught, sizeof(sigset_t));
1476	if (error)
1477		goto error;
1478
1479	PROC_LOCK(p);
1480	return;
1481error:
1482	PROC_LOCK(p);
1483	sigexit(td, SIGILL);
1484}
1485
1486
1487/*
1488 * Schedule an upcall to notify a KSE process recieved signals.
1489 *
1490 */
1491void
1492thread_signal_upcall(struct thread *td)
1493{
1494	mtx_lock_spin(&sched_lock);
1495	td->td_flags |= TDF_UPCALLING;
1496	mtx_unlock_spin(&sched_lock);
1497
1498	return;
1499}
1500
1501void
1502thread_switchout(struct thread *td)
1503{
1504	struct kse_upcall *ku;
1505
1506	mtx_assert(&sched_lock, MA_OWNED);
1507
1508	/*
1509	 * If the outgoing thread is in threaded group and has never
1510	 * scheduled an upcall, decide whether this is a short
1511	 * or long term event and thus whether or not to schedule
1512	 * an upcall.
1513	 * If it is a short term event, just suspend it in
1514	 * a way that takes its KSE with it.
1515	 * Select the events for which we want to schedule upcalls.
1516	 * For now it's just sleep.
1517	 * XXXKSE eventually almost any inhibition could do.
1518	 */
1519	if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) {
1520		/*
1521		 * Release ownership of upcall, and schedule an upcall
1522		 * thread, this new upcall thread becomes the owner of
1523		 * the upcall structure.
1524		 */
1525		ku = td->td_upcall;
1526		ku->ku_owner = NULL;
1527		td->td_upcall = NULL;
1528		td->td_flags &= ~TDF_CAN_UNBIND;
1529		thread_schedule_upcall(td, ku);
1530	}
1531}
1532
1533/*
1534 * Setup done on the thread when it enters the kernel.
1535 * XXXKSE Presently only for syscalls but eventually all kernel entries.
1536 */
1537void
1538thread_user_enter(struct proc *p, struct thread *td)
1539{
1540	struct ksegrp *kg;
1541	struct kse_upcall *ku;
1542
1543	kg = td->td_ksegrp;
1544	/*
1545	 * First check that we shouldn't just abort.
1546	 * But check if we are the single thread first!
1547	 * XXX p_singlethread not locked, but should be safe.
1548	 */
1549	if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1550		PROC_LOCK(p);
1551		mtx_lock_spin(&sched_lock);
1552		thread_stopped(p);
1553		thread_exit();
1554		/* NOTREACHED */
1555	}
1556
1557	/*
1558	 * If we are doing a syscall in a KSE environment,
1559	 * note where our mailbox is. There is always the
1560	 * possibility that we could do this lazily (in kse_reassign()),
1561	 * but for now do it every time.
1562	 */
1563	kg = td->td_ksegrp;
1564	if (kg->kg_numupcalls) {
1565		ku = td->td_upcall;
1566		KASSERT(ku, ("%s: no upcall owned", __func__));
1567		KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__));
1568		td->td_mailbox =
1569		    (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1570		if ((td->td_mailbox == NULL) ||
1571		    (td->td_mailbox == (void *)-1)) {
1572		    	/* Don't schedule upcall when blocked */
1573			td->td_mailbox = NULL;
1574			mtx_lock_spin(&sched_lock);
1575			td->td_flags &= ~TDF_CAN_UNBIND;
1576			mtx_unlock_spin(&sched_lock);
1577		} else {
1578			if (td->td_standin == NULL)
1579				thread_alloc_spare(td, NULL);
1580			mtx_lock_spin(&sched_lock);
1581			td->td_flags |= TDF_CAN_UNBIND;
1582			mtx_unlock_spin(&sched_lock);
1583		}
1584	}
1585}
1586
1587/*
1588 * The extra work we go through if we are a threaded process when we
1589 * return to userland.
1590 *
1591 * If we are a KSE process and returning to user mode, check for
1592 * extra work to do before we return (e.g. for more syscalls
1593 * to complete first).  If we were in a critical section, we should
1594 * just return to let it finish. Same if we were in the UTS (in
1595 * which case the mailbox's context's busy indicator will be set).
1596 * The only traps we suport will have set the mailbox.
1597 * We will clear it here.
1598 */
1599int
1600thread_userret(struct thread *td, struct trapframe *frame)
1601{
1602	int error = 0, upcalls;
1603	struct kse_upcall *ku;
1604	struct ksegrp *kg, *kg2;
1605	struct proc *p;
1606	struct timespec ts;
1607
1608	p = td->td_proc;
1609	kg = td->td_ksegrp;
1610
1611
1612	/* Nothing to do with non-threaded group/process */
1613	if (td->td_ksegrp->kg_numupcalls == 0)
1614		return (0);
1615
1616	/*
1617	 * Stat clock interrupt hit in userland, it
1618	 * is returning from interrupt, charge thread's
1619	 * userland time for UTS.
1620	 */
1621	if (td->td_flags & TDF_USTATCLOCK) {
1622		thread_update_usr_ticks(td, 1);
1623		mtx_lock_spin(&sched_lock);
1624		td->td_flags &= ~TDF_USTATCLOCK;
1625		mtx_unlock_spin(&sched_lock);
1626		if (kg->kg_completed ||
1627		    (td->td_upcall->ku_flags & KUF_DOUPCALL))
1628			thread_user_enter(p, td);
1629	}
1630
1631	/*
1632	 * Optimisation:
1633	 * This thread has not started any upcall.
1634	 * If there is no work to report other than ourself,
1635	 * then it can return direct to userland.
1636	 */
1637	if (TD_CAN_UNBIND(td)) {
1638		mtx_lock_spin(&sched_lock);
1639		td->td_flags &= ~TDF_CAN_UNBIND;
1640		ku = td->td_upcall;
1641		if ((td->td_flags & TDF_NEEDSIGCHK) == 0 &&
1642		    (kg->kg_completed == NULL) &&
1643		    (ku->ku_flags & KUF_DOUPCALL) == 0 &&
1644		    (kg->kg_upquantum && ticks >= kg->kg_nextupcall)) {
1645			mtx_unlock_spin(&sched_lock);
1646			thread_update_usr_ticks(td, 0);
1647			nanotime(&ts);
1648			error = copyout(&ts,
1649				(caddr_t)&ku->ku_mailbox->km_timeofday,
1650				sizeof(ts));
1651			td->td_mailbox = 0;
1652			if (error)
1653				goto out;
1654			return (0);
1655		}
1656		mtx_unlock_spin(&sched_lock);
1657		error = thread_export_context(td);
1658		if (error) {
1659			/*
1660			 * Failing to do the KSE operation just defaults
1661			 * back to synchonous operation, so just return from
1662			 * the syscall.
1663			 */
1664			return (0);
1665		}
1666		/*
1667		 * There is something to report, and we own an upcall
1668		 * strucuture, we can go to userland.
1669		 * Turn ourself into an upcall thread.
1670		 */
1671		mtx_lock_spin(&sched_lock);
1672		td->td_flags |= TDF_UPCALLING;
1673		mtx_unlock_spin(&sched_lock);
1674	} else if (td->td_mailbox) {
1675		error = thread_export_context(td);
1676		/* possibly upcall with error? */
1677		PROC_LOCK(p);
1678		/*
1679		 * There are upcall threads waiting for
1680		 * work to do, wake one of them up.
1681		 * XXXKSE Maybe wake all of them up.
1682		 */
1683		if (!error && kg->kg_upsleeps)
1684			wakeup_one(&kg->kg_completed);
1685		mtx_lock_spin(&sched_lock);
1686		thread_stopped(p);
1687		thread_exit();
1688		/* NOTREACHED */
1689	}
1690
1691	KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind"));
1692
1693	if (p->p_numthreads > max_threads_per_proc) {
1694		max_threads_hits++;
1695		PROC_LOCK(p);
1696		while (p->p_numthreads > max_threads_per_proc) {
1697			if (P_SHOULDSTOP(p))
1698				break;
1699			upcalls = 0;
1700			mtx_lock_spin(&sched_lock);
1701			FOREACH_KSEGRP_IN_PROC(p, kg2) {
1702				if (kg2->kg_numupcalls == 0)
1703					upcalls++;
1704				else
1705					upcalls += kg2->kg_numupcalls;
1706			}
1707			mtx_unlock_spin(&sched_lock);
1708			if (upcalls >= max_threads_per_proc)
1709				break;
1710			p->p_maxthrwaits++;
1711			msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH,
1712			    "maxthreads", NULL);
1713			p->p_maxthrwaits--;
1714		}
1715		PROC_UNLOCK(p);
1716	}
1717
1718	if (td->td_flags & TDF_UPCALLING) {
1719		kg->kg_nextupcall = ticks+kg->kg_upquantum;
1720		ku = td->td_upcall;
1721		/*
1722		 * There is no more work to do and we are going to ride
1723		 * this thread up to userland as an upcall.
1724		 * Do the last parts of the setup needed for the upcall.
1725		 */
1726		CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
1727		    td, td->td_proc->p_pid, td->td_proc->p_comm);
1728
1729		/*
1730		 * Set user context to the UTS.
1731		 * Will use Giant in cpu_thread_clean() because it uses
1732		 * kmem_free(kernel_map, ...)
1733		 */
1734		cpu_set_upcall_kse(td, ku);
1735		mtx_lock_spin(&sched_lock);
1736		td->td_flags &= ~TDF_UPCALLING;
1737		if (ku->ku_flags & KUF_DOUPCALL)
1738			ku->ku_flags &= ~KUF_DOUPCALL;
1739		mtx_unlock_spin(&sched_lock);
1740
1741		/*
1742		 * Unhook the list of completed threads.
1743		 * anything that completes after this gets to
1744		 * come in next time.
1745		 * Put the list of completed thread mailboxes on
1746		 * this KSE's mailbox.
1747		 */
1748		error = thread_link_mboxes(kg, ku);
1749		if (error)
1750			goto out;
1751
1752		/*
1753		 * Set state and clear the  thread mailbox pointer.
1754		 * From now on we are just a bound outgoing process.
1755		 * **Problem** userret is often called several times.
1756		 * it would be nice if this all happenned only on the first
1757		 * time through. (the scan for extra work etc.)
1758		 */
1759		error = suword((caddr_t)&ku->ku_mailbox->km_curthread, 0);
1760		if (error)
1761			goto out;
1762
1763		/* Export current system time */
1764		nanotime(&ts);
1765		error = copyout(&ts, (caddr_t)&ku->ku_mailbox->km_timeofday,
1766			sizeof(ts));
1767	}
1768
1769out:
1770	if (error) {
1771		/*
1772		 * Things are going to be so screwed we should just kill
1773		 * the process.
1774		 * how do we do that?
1775		 */
1776		PROC_LOCK(td->td_proc);
1777		psignal(td->td_proc, SIGSEGV);
1778		PROC_UNLOCK(td->td_proc);
1779	} else {
1780		/*
1781		 * Optimisation:
1782		 * Ensure that we have a spare thread available,
1783		 * for when we re-enter the kernel.
1784		 */
1785		if (td->td_standin == NULL)
1786			thread_alloc_spare(td, NULL);
1787	}
1788
1789	/*
1790	 * Clear thread mailbox first, then clear system tick count.
1791	 * The order is important because thread_statclock() use
1792	 * mailbox pointer to see if it is an userland thread or
1793	 * an UTS kernel thread.
1794	 */
1795	td->td_mailbox = NULL;
1796	td->td_usticks = 0;
1797	return (error);	/* go sync */
1798}
1799
1800/*
1801 * Enforce single-threading.
1802 *
1803 * Returns 1 if the caller must abort (another thread is waiting to
1804 * exit the process or similar). Process is locked!
1805 * Returns 0 when you are successfully the only thread running.
1806 * A process has successfully single threaded in the suspend mode when
1807 * There are no threads in user mode. Threads in the kernel must be
1808 * allowed to continue until they get to the user boundary. They may even
1809 * copy out their return values and data before suspending. They may however be
1810 * accellerated in reaching the user boundary as we will wake up
1811 * any sleeping threads that are interruptable. (PCATCH).
1812 */
1813int
1814thread_single(int force_exit)
1815{
1816	struct thread *td;
1817	struct thread *td2;
1818	struct proc *p;
1819
1820	td = curthread;
1821	p = td->td_proc;
1822	mtx_assert(&Giant, MA_OWNED);
1823	PROC_LOCK_ASSERT(p, MA_OWNED);
1824	KASSERT((td != NULL), ("curthread is NULL"));
1825
1826	if ((p->p_flag & P_THREADED) == 0 && p->p_numthreads == 1)
1827		return (0);
1828
1829	/* Is someone already single threading? */
1830	if (p->p_singlethread)
1831		return (1);
1832
1833	if (force_exit == SINGLE_EXIT) {
1834		p->p_flag |= P_SINGLE_EXIT;
1835	} else
1836		p->p_flag &= ~P_SINGLE_EXIT;
1837	p->p_flag |= P_STOPPED_SINGLE;
1838	p->p_singlethread = td;
1839	/* XXXKSE Which lock protects the below values? */
1840	while ((p->p_numthreads - p->p_suspcount) != 1) {
1841		mtx_lock_spin(&sched_lock);
1842		FOREACH_THREAD_IN_PROC(p, td2) {
1843			if (td2 == td)
1844				continue;
1845			td->td_flags |= TDF_ASTPENDING;
1846			if (TD_IS_INHIBITED(td2)) {
1847				if (force_exit == SINGLE_EXIT) {
1848					if (TD_IS_SUSPENDED(td2)) {
1849						thread_unsuspend_one(td2);
1850					}
1851					if (TD_ON_SLEEPQ(td2) &&
1852					    (td2->td_flags & TDF_SINTR)) {
1853						if (td2->td_flags & TDF_CVWAITQ)
1854							cv_abort(td2);
1855						else
1856							abortsleep(td2);
1857					}
1858				} else {
1859					if (TD_IS_SUSPENDED(td2))
1860						continue;
1861					/*
1862					 * maybe other inhibitted states too?
1863					 * XXXKSE Is it totally safe to
1864					 * suspend a non-interruptable thread?
1865					 */
1866					if (td2->td_inhibitors &
1867					    (TDI_SLEEPING | TDI_SWAPPED))
1868						thread_suspend_one(td2);
1869				}
1870			}
1871		}
1872		/*
1873		 * Maybe we suspended some threads.. was it enough?
1874		 */
1875		if ((p->p_numthreads - p->p_suspcount) == 1) {
1876			mtx_unlock_spin(&sched_lock);
1877			break;
1878		}
1879
1880		/*
1881		 * Wake us up when everyone else has suspended.
1882		 * In the mean time we suspend as well.
1883		 */
1884		thread_suspend_one(td);
1885		/* XXX If you recursed this is broken. */
1886		mtx_unlock(&Giant);
1887		PROC_UNLOCK(p);
1888		p->p_stats->p_ru.ru_nvcsw++;
1889		mi_switch();
1890		mtx_unlock_spin(&sched_lock);
1891		mtx_lock(&Giant);
1892		PROC_LOCK(p);
1893	}
1894	if (force_exit == SINGLE_EXIT) {
1895		if (td->td_upcall) {
1896			mtx_lock_spin(&sched_lock);
1897			upcall_remove(td);
1898			mtx_unlock_spin(&sched_lock);
1899		}
1900		kse_purge(p, td);
1901	}
1902	return (0);
1903}
1904
1905/*
1906 * Called in from locations that can safely check to see
1907 * whether we have to suspend or at least throttle for a
1908 * single-thread event (e.g. fork).
1909 *
1910 * Such locations include userret().
1911 * If the "return_instead" argument is non zero, the thread must be able to
1912 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1913 *
1914 * The 'return_instead' argument tells the function if it may do a
1915 * thread_exit() or suspend, or whether the caller must abort and back
1916 * out instead.
1917 *
1918 * If the thread that set the single_threading request has set the
1919 * P_SINGLE_EXIT bit in the process flags then this call will never return
1920 * if 'return_instead' is false, but will exit.
1921 *
1922 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1923 *---------------+--------------------+---------------------
1924 *       0       | returns 0          |   returns 0 or 1
1925 *               | when ST ends       |   immediatly
1926 *---------------+--------------------+---------------------
1927 *       1       | thread exits       |   returns 1
1928 *               |                    |  immediatly
1929 * 0 = thread_exit() or suspension ok,
1930 * other = return error instead of stopping the thread.
1931 *
1932 * While a full suspension is under effect, even a single threading
1933 * thread would be suspended if it made this call (but it shouldn't).
1934 * This call should only be made from places where
1935 * thread_exit() would be safe as that may be the outcome unless
1936 * return_instead is set.
1937 */
1938int
1939thread_suspend_check(int return_instead)
1940{
1941	struct thread *td;
1942	struct proc *p;
1943	struct ksegrp *kg;
1944
1945	td = curthread;
1946	p = td->td_proc;
1947	kg = td->td_ksegrp;
1948	PROC_LOCK_ASSERT(p, MA_OWNED);
1949	while (P_SHOULDSTOP(p)) {
1950		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1951			KASSERT(p->p_singlethread != NULL,
1952			    ("singlethread not set"));
1953			/*
1954			 * The only suspension in action is a
1955			 * single-threading. Single threader need not stop.
1956			 * XXX Should be safe to access unlocked
1957			 * as it can only be set to be true by us.
1958			 */
1959			if (p->p_singlethread == td)
1960				return (0);	/* Exempt from stopping. */
1961		}
1962		if (return_instead)
1963			return (1);
1964
1965		mtx_lock_spin(&sched_lock);
1966		thread_stopped(p);
1967		/*
1968		 * If the process is waiting for us to exit,
1969		 * this thread should just suicide.
1970		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1971		 */
1972		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1973			while (mtx_owned(&Giant))
1974				mtx_unlock(&Giant);
1975			if (p->p_flag & P_THREADED)
1976				thread_exit();
1977			else
1978				thr_exit1();
1979		}
1980
1981		mtx_assert(&Giant, MA_NOTOWNED);
1982		/*
1983		 * When a thread suspends, it just
1984		 * moves to the processes's suspend queue
1985		 * and stays there.
1986		 */
1987		thread_suspend_one(td);
1988		PROC_UNLOCK(p);
1989		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1990			if (p->p_numthreads == p->p_suspcount) {
1991				thread_unsuspend_one(p->p_singlethread);
1992			}
1993		}
1994		p->p_stats->p_ru.ru_nivcsw++;
1995		mi_switch();
1996		mtx_unlock_spin(&sched_lock);
1997		PROC_LOCK(p);
1998	}
1999	return (0);
2000}
2001
2002void
2003thread_suspend_one(struct thread *td)
2004{
2005	struct proc *p = td->td_proc;
2006
2007	mtx_assert(&sched_lock, MA_OWNED);
2008	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
2009	p->p_suspcount++;
2010	TD_SET_SUSPENDED(td);
2011	TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
2012	/*
2013	 * Hack: If we are suspending but are on the sleep queue
2014	 * then we are in msleep or the cv equivalent. We
2015	 * want to look like we have two Inhibitors.
2016	 * May already be set.. doesn't matter.
2017	 */
2018	if (TD_ON_SLEEPQ(td))
2019		TD_SET_SLEEPING(td);
2020}
2021
2022void
2023thread_unsuspend_one(struct thread *td)
2024{
2025	struct proc *p = td->td_proc;
2026
2027	mtx_assert(&sched_lock, MA_OWNED);
2028	TAILQ_REMOVE(&p->p_suspended, td, td_runq);
2029	TD_CLR_SUSPENDED(td);
2030	p->p_suspcount--;
2031	setrunnable(td);
2032}
2033
2034/*
2035 * Allow all threads blocked by single threading to continue running.
2036 */
2037void
2038thread_unsuspend(struct proc *p)
2039{
2040	struct thread *td;
2041
2042	mtx_assert(&sched_lock, MA_OWNED);
2043	PROC_LOCK_ASSERT(p, MA_OWNED);
2044	if (!P_SHOULDSTOP(p)) {
2045		while (( td = TAILQ_FIRST(&p->p_suspended))) {
2046			thread_unsuspend_one(td);
2047		}
2048	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
2049	    (p->p_numthreads == p->p_suspcount)) {
2050		/*
2051		 * Stopping everything also did the job for the single
2052		 * threading request. Now we've downgraded to single-threaded,
2053		 * let it continue.
2054		 */
2055		thread_unsuspend_one(p->p_singlethread);
2056	}
2057}
2058
2059void
2060thread_single_end(void)
2061{
2062	struct thread *td;
2063	struct proc *p;
2064
2065	td = curthread;
2066	p = td->td_proc;
2067	PROC_LOCK_ASSERT(p, MA_OWNED);
2068	p->p_flag &= ~P_STOPPED_SINGLE;
2069	p->p_singlethread = NULL;
2070	/*
2071	 * If there are other threads they mey now run,
2072	 * unless of course there is a blanket 'stop order'
2073	 * on the process. The single threader must be allowed
2074	 * to continue however as this is a bad place to stop.
2075	 */
2076	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
2077		mtx_lock_spin(&sched_lock);
2078		while (( td = TAILQ_FIRST(&p->p_suspended))) {
2079			thread_unsuspend_one(td);
2080		}
2081		mtx_unlock_spin(&sched_lock);
2082	}
2083}
2084
2085
2086