kern_thread.c revision 115790
1/*
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 *
28 * $FreeBSD: head/sys/kern/kern_thread.c 115790 2003-06-04 00:12:57Z julian $
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/lock.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/proc.h>
38#include <sys/smp.h>
39#include <sys/sysctl.h>
40#include <sys/sysproto.h>
41#include <sys/filedesc.h>
42#include <sys/sched.h>
43#include <sys/signalvar.h>
44#include <sys/sx.h>
45#include <sys/tty.h>
46#include <sys/user.h>
47#include <sys/jail.h>
48#include <sys/kse.h>
49#include <sys/ktr.h>
50#include <sys/ucontext.h>
51
52#include <vm/vm.h>
53#include <vm/vm_object.h>
54#include <vm/pmap.h>
55#include <vm/uma.h>
56#include <vm/vm_map.h>
57
58#include <machine/frame.h>
59
60/*
61 * KSEGRP related storage.
62 */
63static uma_zone_t ksegrp_zone;
64static uma_zone_t kse_zone;
65static uma_zone_t thread_zone;
66static uma_zone_t upcall_zone;
67
68/* DEBUG ONLY */
69SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
70static int thread_debug = 0;
71SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
72	&thread_debug, 0, "thread debug");
73
74static int max_threads_per_proc = 150;
75SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
76	&max_threads_per_proc, 0, "Limit on threads per proc");
77
78static int max_groups_per_proc = 50;
79SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
80	&max_groups_per_proc, 0, "Limit on thread groups per proc");
81
82static int max_threads_hits;
83SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
84	&max_threads_hits, 0, "");
85
86static int virtual_cpu;
87
88#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
89
90TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
91TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses);
92TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
93TAILQ_HEAD(, kse_upcall) zombie_upcalls =
94	TAILQ_HEAD_INITIALIZER(zombie_upcalls);
95struct mtx kse_zombie_lock;
96MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
97
98static void kse_purge(struct proc *p, struct thread *td);
99static void kse_purge_group(struct thread *td);
100static int thread_update_usr_ticks(struct thread *td, int user);
101static void thread_alloc_spare(struct thread *td, struct thread *spare);
102
103static int
104sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
105{
106	int error, new_val;
107	int def_val;
108
109#ifdef SMP
110	def_val = mp_ncpus;
111#else
112	def_val = 1;
113#endif
114	if (virtual_cpu == 0)
115		new_val = def_val;
116	else
117		new_val = virtual_cpu;
118	error = sysctl_handle_int(oidp, &new_val, 0, req);
119        if (error != 0 || req->newptr == NULL)
120		return (error);
121	if (new_val < 0)
122		return (EINVAL);
123	virtual_cpu = new_val;
124	return (0);
125}
126
127/* DEBUG ONLY */
128SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
129	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
130	"debug virtual cpus");
131
132/*
133 * Prepare a thread for use.
134 */
135static void
136thread_ctor(void *mem, int size, void *arg)
137{
138	struct thread	*td;
139
140	td = (struct thread *)mem;
141	td->td_state = TDS_INACTIVE;
142	td->td_oncpu	= NOCPU;
143}
144
145/*
146 * Reclaim a thread after use.
147 */
148static void
149thread_dtor(void *mem, int size, void *arg)
150{
151	struct thread	*td;
152
153	td = (struct thread *)mem;
154
155#ifdef INVARIANTS
156	/* Verify that this thread is in a safe state to free. */
157	switch (td->td_state) {
158	case TDS_INHIBITED:
159	case TDS_RUNNING:
160	case TDS_CAN_RUN:
161	case TDS_RUNQ:
162		/*
163		 * We must never unlink a thread that is in one of
164		 * these states, because it is currently active.
165		 */
166		panic("bad state for thread unlinking");
167		/* NOTREACHED */
168	case TDS_INACTIVE:
169		break;
170	default:
171		panic("bad thread state");
172		/* NOTREACHED */
173	}
174#endif
175}
176
177/*
178 * Initialize type-stable parts of a thread (when newly created).
179 */
180static void
181thread_init(void *mem, int size)
182{
183	struct thread	*td;
184
185	td = (struct thread *)mem;
186	mtx_lock(&Giant);
187	pmap_new_thread(td, 0);
188	mtx_unlock(&Giant);
189	cpu_thread_setup(td);
190	td->td_sched = (struct td_sched *)&td[1];
191}
192
193/*
194 * Tear down type-stable parts of a thread (just before being discarded).
195 */
196static void
197thread_fini(void *mem, int size)
198{
199	struct thread	*td;
200
201	td = (struct thread *)mem;
202	pmap_dispose_thread(td);
203}
204
205/*
206 * Initialize type-stable parts of a kse (when newly created).
207 */
208static void
209kse_init(void *mem, int size)
210{
211	struct kse	*ke;
212
213	ke = (struct kse *)mem;
214	ke->ke_sched = (struct ke_sched *)&ke[1];
215}
216
217/*
218 * Initialize type-stable parts of a ksegrp (when newly created).
219 */
220static void
221ksegrp_init(void *mem, int size)
222{
223	struct ksegrp	*kg;
224
225	kg = (struct ksegrp *)mem;
226	kg->kg_sched = (struct kg_sched *)&kg[1];
227}
228
229/*
230 * KSE is linked into kse group.
231 */
232void
233kse_link(struct kse *ke, struct ksegrp *kg)
234{
235	struct proc *p = kg->kg_proc;
236
237	TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist);
238	kg->kg_kses++;
239	ke->ke_state	= KES_UNQUEUED;
240	ke->ke_proc	= p;
241	ke->ke_ksegrp	= kg;
242	ke->ke_thread	= NULL;
243	ke->ke_oncpu	= NOCPU;
244	ke->ke_flags	= 0;
245}
246
247void
248kse_unlink(struct kse *ke)
249{
250	struct ksegrp *kg;
251
252	mtx_assert(&sched_lock, MA_OWNED);
253	kg = ke->ke_ksegrp;
254	TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
255	if (ke->ke_state == KES_IDLE) {
256		TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
257		kg->kg_idle_kses--;
258	}
259	if (--kg->kg_kses == 0)
260		ksegrp_unlink(kg);
261	/*
262	 * Aggregate stats from the KSE
263	 */
264	kse_stash(ke);
265}
266
267void
268ksegrp_link(struct ksegrp *kg, struct proc *p)
269{
270
271	TAILQ_INIT(&kg->kg_threads);
272	TAILQ_INIT(&kg->kg_runq);	/* links with td_runq */
273	TAILQ_INIT(&kg->kg_slpq);	/* links with td_runq */
274	TAILQ_INIT(&kg->kg_kseq);	/* all kses in ksegrp */
275	TAILQ_INIT(&kg->kg_iq);		/* all idle kses in ksegrp */
276	TAILQ_INIT(&kg->kg_upcalls);	/* all upcall structure in ksegrp */
277	kg->kg_proc = p;
278	/*
279	 * the following counters are in the -zero- section
280	 * and may not need clearing
281	 */
282	kg->kg_numthreads = 0;
283	kg->kg_runnable   = 0;
284	kg->kg_kses       = 0;
285	kg->kg_runq_kses  = 0; /* XXXKSE change name */
286	kg->kg_idle_kses  = 0;
287	kg->kg_numupcalls = 0;
288	/* link it in now that it's consistent */
289	p->p_numksegrps++;
290	TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
291}
292
293void
294ksegrp_unlink(struct ksegrp *kg)
295{
296	struct proc *p;
297
298	mtx_assert(&sched_lock, MA_OWNED);
299	KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
300	KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses"));
301	KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
302
303	p = kg->kg_proc;
304	TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
305	p->p_numksegrps--;
306	/*
307	 * Aggregate stats from the KSE
308	 */
309	ksegrp_stash(kg);
310}
311
312struct kse_upcall *
313upcall_alloc(void)
314{
315	struct kse_upcall *ku;
316
317	ku = uma_zalloc(upcall_zone, M_WAITOK);
318	bzero(ku, sizeof(*ku));
319	return (ku);
320}
321
322void
323upcall_free(struct kse_upcall *ku)
324{
325
326	uma_zfree(upcall_zone, ku);
327}
328
329void
330upcall_link(struct kse_upcall *ku, struct ksegrp *kg)
331{
332
333	mtx_assert(&sched_lock, MA_OWNED);
334	TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link);
335	ku->ku_ksegrp = kg;
336	kg->kg_numupcalls++;
337}
338
339void
340upcall_unlink(struct kse_upcall *ku)
341{
342	struct ksegrp *kg = ku->ku_ksegrp;
343
344	mtx_assert(&sched_lock, MA_OWNED);
345	KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__));
346	TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link);
347	kg->kg_numupcalls--;
348	upcall_stash(ku);
349}
350
351void
352upcall_remove(struct thread *td)
353{
354
355	if (td->td_upcall) {
356		td->td_upcall->ku_owner = NULL;
357		upcall_unlink(td->td_upcall);
358		td->td_upcall = 0;
359	}
360}
361
362/*
363 * For a newly created process,
364 * link up all the structures and its initial threads etc.
365 */
366void
367proc_linkup(struct proc *p, struct ksegrp *kg,
368	    struct kse *ke, struct thread *td)
369{
370
371	TAILQ_INIT(&p->p_ksegrps);	     /* all ksegrps in proc */
372	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
373	TAILQ_INIT(&p->p_suspended);	     /* Threads suspended */
374	p->p_numksegrps = 0;
375	p->p_numthreads = 0;
376
377	ksegrp_link(kg, p);
378	kse_link(ke, kg);
379	thread_link(td, kg);
380}
381
382/*
383struct kse_thr_interrupt_args {
384	struct kse_thr_mailbox * tmbx;
385};
386*/
387int
388kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
389{
390	struct proc *p;
391	struct thread *td2;
392
393	p = td->td_proc;
394	if (!(p->p_flag & P_THREADED) || (uap->tmbx == NULL))
395		return (EINVAL);
396	mtx_lock_spin(&sched_lock);
397	FOREACH_THREAD_IN_PROC(p, td2) {
398		if (td2->td_mailbox == uap->tmbx) {
399			td2->td_flags |= TDF_INTERRUPT;
400			if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) {
401				if (td2->td_flags & TDF_CVWAITQ)
402					cv_abort(td2);
403				else
404					abortsleep(td2);
405			}
406			mtx_unlock_spin(&sched_lock);
407			return (0);
408		}
409	}
410	mtx_unlock_spin(&sched_lock);
411	return (ESRCH);
412}
413
414/*
415struct kse_exit_args {
416	register_t dummy;
417};
418*/
419int
420kse_exit(struct thread *td, struct kse_exit_args *uap)
421{
422	struct proc *p;
423	struct ksegrp *kg;
424	struct kse *ke;
425	struct kse_upcall *ku, *ku2;
426	int    error, count;
427
428	p = td->td_proc;
429	if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
430		return (EINVAL);
431	kg = td->td_ksegrp;
432	count = 0;
433	PROC_LOCK(p);
434	mtx_lock_spin(&sched_lock);
435	FOREACH_UPCALL_IN_GROUP(kg, ku2) {
436		if (ku2->ku_flags & KUF_EXITING)
437			count++;
438	}
439	if ((kg->kg_numupcalls - count) == 1 &&
440	    (kg->kg_numthreads > 1)) {
441		mtx_unlock_spin(&sched_lock);
442		PROC_UNLOCK(p);
443		return (EDEADLK);
444	}
445	ku->ku_flags |= KUF_EXITING;
446	mtx_unlock_spin(&sched_lock);
447	PROC_UNLOCK(p);
448	error = suword(&ku->ku_mailbox->km_flags, ku->ku_mflags|KMF_DONE);
449	PROC_LOCK(p);
450	if (error)
451		psignal(p, SIGSEGV);
452	mtx_lock_spin(&sched_lock);
453	upcall_remove(td);
454	ke = td->td_kse;
455	if (p->p_numthreads == 1) {
456		kse_purge(p, td);
457		p->p_flag &= ~P_THREADED;
458		mtx_unlock_spin(&sched_lock);
459		PROC_UNLOCK(p);
460	} else {
461		if (kg->kg_numthreads == 1) { /* Shutdown a group */
462			kse_purge_group(td);
463			ke->ke_flags |= KEF_EXIT;
464		}
465		thread_stopped(p);
466		thread_exit();
467		/* NOTREACHED */
468	}
469	return (0);
470}
471
472/*
473 * Either becomes an upcall or waits for an awakening event and
474 * then becomes an upcall. Only error cases return.
475 */
476/*
477struct kse_release_args {
478	struct timespec *timeout;
479};
480*/
481int
482kse_release(struct thread *td, struct kse_release_args *uap)
483{
484	struct proc *p;
485	struct ksegrp *kg;
486	struct timespec ts, ts2, ts3, timeout;
487	struct timeval tv;
488	int error;
489
490	p = td->td_proc;
491	kg = td->td_ksegrp;
492	if (td->td_upcall == NULL || TD_CAN_UNBIND(td))
493		return (EINVAL);
494	if (uap->timeout != NULL) {
495		if ((error = copyin(uap->timeout, &timeout, sizeof(timeout))))
496			return (error);
497		getnanouptime(&ts);
498		timespecadd(&ts, &timeout);
499		TIMESPEC_TO_TIMEVAL(&tv, &timeout);
500	}
501	mtx_lock_spin(&sched_lock);
502	/* Change OURSELF to become an upcall. */
503	td->td_flags = TDF_UPCALLING;
504#if 0	/* XXX This shouldn't be necessary */
505	if (p->p_sflag & PS_NEEDSIGCHK)
506		td->td_flags |= TDF_ASTPENDING;
507#endif
508	mtx_unlock_spin(&sched_lock);
509	PROC_LOCK(p);
510	while ((td->td_upcall->ku_flags & KUF_DOUPCALL) == 0 &&
511	       (kg->kg_completed == NULL)) {
512		kg->kg_upsleeps++;
513		error = msleep(&kg->kg_completed, &p->p_mtx, PPAUSE|PCATCH,
514			"kse_rel", (uap->timeout ? tvtohz(&tv) : 0));
515		kg->kg_upsleeps--;
516		PROC_UNLOCK(p);
517		if (uap->timeout == NULL || error != EWOULDBLOCK)
518			return (0);
519		getnanouptime(&ts2);
520		if (timespeccmp(&ts2, &ts, >=))
521			return (0);
522		ts3 = ts;
523		timespecsub(&ts3, &ts2);
524		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
525		PROC_LOCK(p);
526	}
527	PROC_UNLOCK(p);
528	return (0);
529}
530
531/* struct kse_wakeup_args {
532	struct kse_mailbox *mbx;
533}; */
534int
535kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
536{
537	struct proc *p;
538	struct ksegrp *kg;
539	struct kse_upcall *ku;
540	struct thread *td2;
541
542	p = td->td_proc;
543	td2 = NULL;
544	ku = NULL;
545	/* KSE-enabled processes only, please. */
546	if (!(p->p_flag & P_THREADED))
547		return (EINVAL);
548	PROC_LOCK(p);
549	mtx_lock_spin(&sched_lock);
550	if (uap->mbx) {
551		FOREACH_KSEGRP_IN_PROC(p, kg) {
552			FOREACH_UPCALL_IN_GROUP(kg, ku) {
553				if (ku->ku_mailbox == uap->mbx)
554					break;
555			}
556			if (ku)
557				break;
558		}
559	} else {
560		kg = td->td_ksegrp;
561		if (kg->kg_upsleeps) {
562			wakeup_one(&kg->kg_completed);
563			mtx_unlock_spin(&sched_lock);
564			PROC_UNLOCK(p);
565			return (0);
566		}
567		ku = TAILQ_FIRST(&kg->kg_upcalls);
568	}
569	if (ku) {
570		if ((td2 = ku->ku_owner) == NULL) {
571			panic("%s: no owner", __func__);
572		} else if (TD_ON_SLEEPQ(td2) &&
573		           (td2->td_wchan == &kg->kg_completed)) {
574			abortsleep(td2);
575		} else {
576			ku->ku_flags |= KUF_DOUPCALL;
577		}
578		mtx_unlock_spin(&sched_lock);
579		PROC_UNLOCK(p);
580		return (0);
581	}
582	mtx_unlock_spin(&sched_lock);
583	PROC_UNLOCK(p);
584	return (ESRCH);
585}
586
587/*
588 * No new KSEG: first call: use current KSE, don't schedule an upcall
589 * All other situations, do allocate max new KSEs and schedule an upcall.
590 */
591/* struct kse_create_args {
592	struct kse_mailbox *mbx;
593	int newgroup;
594}; */
595int
596kse_create(struct thread *td, struct kse_create_args *uap)
597{
598	struct kse *newke;
599	struct ksegrp *newkg;
600	struct ksegrp *kg;
601	struct proc *p;
602	struct kse_mailbox mbx;
603	struct kse_upcall *newku;
604	int err, ncpus;
605
606	p = td->td_proc;
607	if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
608		return (err);
609
610	/* Too bad, why hasn't kernel always a cpu counter !? */
611#ifdef SMP
612	ncpus = mp_ncpus;
613#else
614	ncpus = 1;
615#endif
616	if (thread_debug && virtual_cpu != 0)
617		ncpus = virtual_cpu;
618
619	/* Easier to just set it than to test and set */
620	PROC_LOCK(p);
621	p->p_flag |= P_THREADED;
622	PROC_UNLOCK(p);
623	kg = td->td_ksegrp;
624	if (uap->newgroup) {
625		/* Have race condition but it is cheap */
626		if (p->p_numksegrps >= max_groups_per_proc)
627			return (EPROCLIM);
628		/*
629		 * If we want a new KSEGRP it doesn't matter whether
630		 * we have already fired up KSE mode before or not.
631		 * We put the process in KSE mode and create a new KSEGRP.
632		 */
633		newkg = ksegrp_alloc();
634		bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
635		      kg_startzero, kg_endzero));
636		bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
637		      RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
638		mtx_lock_spin(&sched_lock);
639		if (p->p_numksegrps >= max_groups_per_proc) {
640			mtx_unlock_spin(&sched_lock);
641			ksegrp_free(newkg);
642			return (EPROCLIM);
643		}
644		ksegrp_link(newkg, p);
645		mtx_unlock_spin(&sched_lock);
646	} else {
647		newkg = kg;
648	}
649
650	/*
651	 * Creating upcalls more than number of physical cpu does
652	 * not help performance.
653	 */
654	if (newkg->kg_numupcalls >= ncpus)
655		return (EPROCLIM);
656
657	if (newkg->kg_numupcalls == 0) {
658		/*
659		 * Initialize KSE group, optimized for MP.
660		 * Create KSEs as many as physical cpus, this increases
661		 * concurrent even if userland is not MP safe and can only run
662		 * on single CPU (for early version of libpthread, it is true).
663		 * In ideal world, every physical cpu should execute a thread.
664		 * If there is enough KSEs, threads in kernel can be
665		 * executed parallel on different cpus with full speed,
666		 * Concurrent in kernel shouldn't be restricted by number of
667		 * upcalls userland provides.
668		 * Adding more upcall structures only increases concurrent
669		 * in userland.
670		 * Highest performance configuration is:
671		 * N kses = N upcalls = N phyiscal cpus
672		 */
673		while (newkg->kg_kses < ncpus) {
674			newke = kse_alloc();
675			bzero(&newke->ke_startzero, RANGEOF(struct kse,
676			      ke_startzero, ke_endzero));
677#if 0
678			mtx_lock_spin(&sched_lock);
679			bcopy(&ke->ke_startcopy, &newke->ke_startcopy,
680			      RANGEOF(struct kse, ke_startcopy, ke_endcopy));
681			mtx_unlock_spin(&sched_lock);
682#endif
683			mtx_lock_spin(&sched_lock);
684			kse_link(newke, newkg);
685			/* Add engine */
686			kse_reassign(newke);
687			mtx_unlock_spin(&sched_lock);
688		}
689	}
690	newku = upcall_alloc();
691	newku->ku_mailbox = uap->mbx;
692	newku->ku_func = mbx.km_func;
693	bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t));
694
695	/* For the first call this may not have been set */
696	if (td->td_standin == NULL)
697		thread_alloc_spare(td, NULL);
698
699	mtx_lock_spin(&sched_lock);
700	if (newkg->kg_numupcalls >= ncpus) {
701		mtx_unlock_spin(&sched_lock);
702		upcall_free(newku);
703		return (EPROCLIM);
704	}
705	upcall_link(newku, newkg);
706	if (mbx.km_quantum)
707		newkg->kg_upquantum = max(1, mbx.km_quantum/tick);
708
709	/*
710	 * Each upcall structure has an owner thread, find which
711	 * one owns it.
712	 */
713	if (uap->newgroup) {
714		/*
715		 * Because new ksegrp hasn't thread,
716		 * create an initial upcall thread to own it.
717		 */
718		thread_schedule_upcall(td, newku);
719	} else {
720		/*
721		 * If current thread hasn't an upcall structure,
722		 * just assign the upcall to it.
723		 */
724		if (td->td_upcall == NULL) {
725			newku->ku_owner = td;
726			td->td_upcall = newku;
727		} else {
728			/*
729			 * Create a new upcall thread to own it.
730			 */
731			thread_schedule_upcall(td, newku);
732		}
733	}
734	mtx_unlock_spin(&sched_lock);
735	return (0);
736}
737
738/*
739 * Initialize global thread allocation resources.
740 */
741void
742threadinit(void)
743{
744
745	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
746	    thread_ctor, thread_dtor, thread_init, thread_fini,
747	    UMA_ALIGN_CACHE, 0);
748	ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
749	    NULL, NULL, ksegrp_init, NULL,
750	    UMA_ALIGN_CACHE, 0);
751	kse_zone = uma_zcreate("KSE", sched_sizeof_kse(),
752	    NULL, NULL, kse_init, NULL,
753	    UMA_ALIGN_CACHE, 0);
754	upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
755	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
756}
757
758/*
759 * Stash an embarasingly extra thread into the zombie thread queue.
760 */
761void
762thread_stash(struct thread *td)
763{
764	mtx_lock_spin(&kse_zombie_lock);
765	TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
766	mtx_unlock_spin(&kse_zombie_lock);
767}
768
769/*
770 * Stash an embarasingly extra kse into the zombie kse queue.
771 */
772void
773kse_stash(struct kse *ke)
774{
775	mtx_lock_spin(&kse_zombie_lock);
776	TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq);
777	mtx_unlock_spin(&kse_zombie_lock);
778}
779
780/*
781 * Stash an embarasingly extra upcall into the zombie upcall queue.
782 */
783
784void
785upcall_stash(struct kse_upcall *ku)
786{
787	mtx_lock_spin(&kse_zombie_lock);
788	TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link);
789	mtx_unlock_spin(&kse_zombie_lock);
790}
791
792/*
793 * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
794 */
795void
796ksegrp_stash(struct ksegrp *kg)
797{
798	mtx_lock_spin(&kse_zombie_lock);
799	TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
800	mtx_unlock_spin(&kse_zombie_lock);
801}
802
803/*
804 * Reap zombie kse resource.
805 */
806void
807thread_reap(void)
808{
809	struct thread *td_first, *td_next;
810	struct kse *ke_first, *ke_next;
811	struct ksegrp *kg_first, * kg_next;
812	struct kse_upcall *ku_first, *ku_next;
813
814	/*
815	 * Don't even bother to lock if none at this instant,
816	 * we really don't care about the next instant..
817	 */
818	if ((!TAILQ_EMPTY(&zombie_threads))
819	    || (!TAILQ_EMPTY(&zombie_kses))
820	    || (!TAILQ_EMPTY(&zombie_ksegrps))
821	    || (!TAILQ_EMPTY(&zombie_upcalls))) {
822		mtx_lock_spin(&kse_zombie_lock);
823		td_first = TAILQ_FIRST(&zombie_threads);
824		ke_first = TAILQ_FIRST(&zombie_kses);
825		kg_first = TAILQ_FIRST(&zombie_ksegrps);
826		ku_first = TAILQ_FIRST(&zombie_upcalls);
827		if (td_first)
828			TAILQ_INIT(&zombie_threads);
829		if (ke_first)
830			TAILQ_INIT(&zombie_kses);
831		if (kg_first)
832			TAILQ_INIT(&zombie_ksegrps);
833		if (ku_first)
834			TAILQ_INIT(&zombie_upcalls);
835		mtx_unlock_spin(&kse_zombie_lock);
836		while (td_first) {
837			td_next = TAILQ_NEXT(td_first, td_runq);
838			if (td_first->td_ucred)
839				crfree(td_first->td_ucred);
840			thread_free(td_first);
841			td_first = td_next;
842		}
843		while (ke_first) {
844			ke_next = TAILQ_NEXT(ke_first, ke_procq);
845			kse_free(ke_first);
846			ke_first = ke_next;
847		}
848		while (kg_first) {
849			kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
850			ksegrp_free(kg_first);
851			kg_first = kg_next;
852		}
853		while (ku_first) {
854			ku_next = TAILQ_NEXT(ku_first, ku_link);
855			upcall_free(ku_first);
856			ku_first = ku_next;
857		}
858	}
859}
860
861/*
862 * Allocate a ksegrp.
863 */
864struct ksegrp *
865ksegrp_alloc(void)
866{
867	return (uma_zalloc(ksegrp_zone, M_WAITOK));
868}
869
870/*
871 * Allocate a kse.
872 */
873struct kse *
874kse_alloc(void)
875{
876	return (uma_zalloc(kse_zone, M_WAITOK));
877}
878
879/*
880 * Allocate a thread.
881 */
882struct thread *
883thread_alloc(void)
884{
885	thread_reap(); /* check if any zombies to get */
886	return (uma_zalloc(thread_zone, M_WAITOK));
887}
888
889/*
890 * Deallocate a ksegrp.
891 */
892void
893ksegrp_free(struct ksegrp *td)
894{
895	uma_zfree(ksegrp_zone, td);
896}
897
898/*
899 * Deallocate a kse.
900 */
901void
902kse_free(struct kse *td)
903{
904	uma_zfree(kse_zone, td);
905}
906
907/*
908 * Deallocate a thread.
909 */
910void
911thread_free(struct thread *td)
912{
913
914	cpu_thread_clean(td);
915	uma_zfree(thread_zone, td);
916}
917
918/*
919 * Store the thread context in the UTS's mailbox.
920 * then add the mailbox at the head of a list we are building in user space.
921 * The list is anchored in the ksegrp structure.
922 */
923int
924thread_export_context(struct thread *td)
925{
926	struct proc *p;
927	struct ksegrp *kg;
928	uintptr_t mbx;
929	void *addr;
930	int error,temp;
931	mcontext_t mc;
932
933	p = td->td_proc;
934	kg = td->td_ksegrp;
935
936	/* Export the user/machine context. */
937	get_mcontext(td, &mc, 0);
938	addr = (void *)(&td->td_mailbox->tm_context.uc_mcontext);
939	error = copyout(&mc, addr, sizeof(mcontext_t));
940	if (error)
941		goto bad;
942
943	/* Exports clock ticks in kernel mode */
944	addr = (caddr_t)(&td->td_mailbox->tm_sticks);
945	temp = fuword(addr) + td->td_usticks;
946	if (suword(addr, temp)) {
947		error = EFAULT;
948		goto bad;
949	}
950
951	/* Get address in latest mbox of list pointer */
952	addr = (void *)(&td->td_mailbox->tm_next);
953	/*
954	 * Put the saved address of the previous first
955	 * entry into this one
956	 */
957	for (;;) {
958		mbx = (uintptr_t)kg->kg_completed;
959		if (suword(addr, mbx)) {
960			error = EFAULT;
961			goto bad;
962		}
963		PROC_LOCK(p);
964		if (mbx == (uintptr_t)kg->kg_completed) {
965			kg->kg_completed = td->td_mailbox;
966			/*
967			 * The thread context may be taken away by
968			 * other upcall threads when we unlock
969			 * process lock. it's no longer valid to
970			 * use it again in any other places.
971			 */
972			td->td_mailbox = NULL;
973			PROC_UNLOCK(p);
974			break;
975		}
976		PROC_UNLOCK(p);
977	}
978	td->td_usticks = 0;
979	return (0);
980
981bad:
982	PROC_LOCK(p);
983	psignal(p, SIGSEGV);
984	PROC_UNLOCK(p);
985	/* The mailbox is bad, don't use it */
986	td->td_mailbox = NULL;
987	td->td_usticks = 0;
988	return (error);
989}
990
991/*
992 * Take the list of completed mailboxes for this KSEGRP and put them on this
993 * upcall's mailbox as it's the next one going up.
994 */
995static int
996thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku)
997{
998	struct proc *p = kg->kg_proc;
999	void *addr;
1000	uintptr_t mbx;
1001
1002	addr = (void *)(&ku->ku_mailbox->km_completed);
1003	for (;;) {
1004		mbx = (uintptr_t)kg->kg_completed;
1005		if (suword(addr, mbx)) {
1006			PROC_LOCK(p);
1007			psignal(p, SIGSEGV);
1008			PROC_UNLOCK(p);
1009			return (EFAULT);
1010		}
1011		PROC_LOCK(p);
1012		if (mbx == (uintptr_t)kg->kg_completed) {
1013			kg->kg_completed = NULL;
1014			PROC_UNLOCK(p);
1015			break;
1016		}
1017		PROC_UNLOCK(p);
1018	}
1019	return (0);
1020}
1021
1022/*
1023 * This function should be called at statclock interrupt time
1024 */
1025int
1026thread_statclock(int user)
1027{
1028	struct thread *td = curthread;
1029
1030	if (td->td_ksegrp->kg_numupcalls == 0)
1031		return (-1);
1032	if (user) {
1033		/* Current always do via ast() */
1034		mtx_lock_spin(&sched_lock);
1035		td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING);
1036		mtx_unlock_spin(&sched_lock);
1037		td->td_uuticks++;
1038	} else {
1039		if (td->td_mailbox != NULL)
1040			td->td_usticks++;
1041		else {
1042			/* XXXKSE
1043		 	 * We will call thread_user_enter() for every
1044			 * kernel entry in future, so if the thread mailbox
1045			 * is NULL, it must be a UTS kernel, don't account
1046			 * clock ticks for it.
1047			 */
1048		}
1049	}
1050	return (0);
1051}
1052
1053/*
1054 * Export state clock ticks for userland
1055 */
1056static int
1057thread_update_usr_ticks(struct thread *td, int user)
1058{
1059	struct proc *p = td->td_proc;
1060	struct kse_thr_mailbox *tmbx;
1061	struct kse_upcall *ku;
1062	struct ksegrp *kg;
1063	caddr_t addr;
1064	uint uticks;
1065
1066	if ((ku = td->td_upcall) == NULL)
1067		return (-1);
1068
1069	tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1070	if ((tmbx == NULL) || (tmbx == (void *)-1))
1071		return (-1);
1072	if (user) {
1073		uticks = td->td_uuticks;
1074		td->td_uuticks = 0;
1075		addr = (caddr_t)&tmbx->tm_uticks;
1076	} else {
1077		uticks = td->td_usticks;
1078		td->td_usticks = 0;
1079		addr = (caddr_t)&tmbx->tm_sticks;
1080	}
1081	if (uticks) {
1082		if (suword(addr, uticks+fuword(addr))) {
1083			PROC_LOCK(p);
1084			psignal(p, SIGSEGV);
1085			PROC_UNLOCK(p);
1086			return (-2);
1087		}
1088	}
1089	kg = td->td_ksegrp;
1090	if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) {
1091		mtx_lock_spin(&sched_lock);
1092		td->td_upcall->ku_flags |= KUF_DOUPCALL;
1093		mtx_unlock_spin(&sched_lock);
1094	}
1095	return (0);
1096}
1097
1098/*
1099 * Discard the current thread and exit from its context.
1100 *
1101 * Because we can't free a thread while we're operating under its context,
1102 * push the current thread into our CPU's deadthread holder. This means
1103 * we needn't worry about someone else grabbing our context before we
1104 * do a cpu_throw().
1105 */
1106void
1107thread_exit(void)
1108{
1109	struct thread *td;
1110	struct kse *ke;
1111	struct proc *p;
1112	struct ksegrp	*kg;
1113
1114	td = curthread;
1115	kg = td->td_ksegrp;
1116	p = td->td_proc;
1117	ke = td->td_kse;
1118
1119	mtx_assert(&sched_lock, MA_OWNED);
1120	KASSERT(p != NULL, ("thread exiting without a process"));
1121	KASSERT(ke != NULL, ("thread exiting without a kse"));
1122	KASSERT(kg != NULL, ("thread exiting without a kse group"));
1123	PROC_LOCK_ASSERT(p, MA_OWNED);
1124	CTR1(KTR_PROC, "thread_exit: thread %p", td);
1125	KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));
1126
1127	if (td->td_standin != NULL) {
1128		thread_stash(td->td_standin);
1129		td->td_standin = NULL;
1130	}
1131
1132	cpu_thread_exit(td);	/* XXXSMP */
1133
1134	/*
1135	 * The last thread is left attached to the process
1136	 * So that the whole bundle gets recycled. Skip
1137	 * all this stuff.
1138	 */
1139	if (p->p_numthreads > 1) {
1140		thread_unlink(td);
1141		if (p->p_maxthrwaits)
1142			wakeup(&p->p_numthreads);
1143		/*
1144		 * The test below is NOT true if we are the
1145		 * sole exiting thread. P_STOPPED_SNGL is unset
1146		 * in exit1() after it is the only survivor.
1147		 */
1148		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1149			if (p->p_numthreads == p->p_suspcount) {
1150				thread_unsuspend_one(p->p_singlethread);
1151			}
1152		}
1153
1154		/*
1155		 * Because each upcall structure has an owner thread,
1156		 * owner thread exits only when process is in exiting
1157		 * state, so upcall to userland is no longer needed,
1158		 * deleting upcall structure is safe here.
1159		 * So when all threads in a group is exited, all upcalls
1160		 * in the group should be automatically freed.
1161		 */
1162		if (td->td_upcall)
1163			upcall_remove(td);
1164
1165		ke->ke_state = KES_UNQUEUED;
1166		ke->ke_thread = NULL;
1167		/*
1168		 * Decide what to do with the KSE attached to this thread.
1169		 */
1170		if (ke->ke_flags & KEF_EXIT)
1171			kse_unlink(ke);
1172		else
1173			kse_reassign(ke);
1174		PROC_UNLOCK(p);
1175		td->td_kse	= NULL;
1176		td->td_state	= TDS_INACTIVE;
1177#if 0
1178		td->td_proc	= NULL;
1179#endif
1180		td->td_ksegrp	= NULL;
1181		td->td_last_kse	= NULL;
1182		PCPU_SET(deadthread, td);
1183	} else {
1184		PROC_UNLOCK(p);
1185	}
1186	/* XXX Shouldn't cpu_throw() here. */
1187	mtx_assert(&sched_lock, MA_OWNED);
1188#if !defined(__alpha__) && !defined(__powerpc__)
1189	cpu_throw(td, choosethread());
1190#else
1191	cpu_throw();
1192#endif
1193	panic("I'm a teapot!");
1194	/* NOTREACHED */
1195}
1196
1197/*
1198 * Do any thread specific cleanups that may be needed in wait()
1199 * called with Giant held, proc and schedlock not held.
1200 */
1201void
1202thread_wait(struct proc *p)
1203{
1204	struct thread *td;
1205
1206	KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()"));
1207	KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()"));
1208	FOREACH_THREAD_IN_PROC(p, td) {
1209		if (td->td_standin != NULL) {
1210			thread_free(td->td_standin);
1211			td->td_standin = NULL;
1212		}
1213		cpu_thread_clean(td);
1214	}
1215	thread_reap();	/* check for zombie threads etc. */
1216}
1217
1218/*
1219 * Link a thread to a process.
1220 * set up anything that needs to be initialized for it to
1221 * be used by the process.
1222 *
1223 * Note that we do not link to the proc's ucred here.
1224 * The thread is linked as if running but no KSE assigned.
1225 */
1226void
1227thread_link(struct thread *td, struct ksegrp *kg)
1228{
1229	struct proc *p;
1230
1231	p = kg->kg_proc;
1232	td->td_state    = TDS_INACTIVE;
1233	td->td_proc     = p;
1234	td->td_ksegrp   = kg;
1235	td->td_last_kse = NULL;
1236	td->td_flags    = 0;
1237	td->td_kse      = NULL;
1238
1239	LIST_INIT(&td->td_contested);
1240	callout_init(&td->td_slpcallout, 1);
1241	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
1242	TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
1243	p->p_numthreads++;
1244	kg->kg_numthreads++;
1245}
1246
1247void
1248thread_unlink(struct thread *td)
1249{
1250	struct proc *p = td->td_proc;
1251	struct ksegrp *kg = td->td_ksegrp;
1252
1253	mtx_assert(&sched_lock, MA_OWNED);
1254	TAILQ_REMOVE(&p->p_threads, td, td_plist);
1255	p->p_numthreads--;
1256	TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
1257	kg->kg_numthreads--;
1258	/* could clear a few other things here */
1259}
1260
1261/*
1262 * Purge a ksegrp resource. When a ksegrp is preparing to
1263 * exit, it calls this function.
1264 */
1265static void
1266kse_purge_group(struct thread *td)
1267{
1268	struct ksegrp *kg;
1269	struct kse *ke;
1270
1271	kg = td->td_ksegrp;
1272 	KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__));
1273	while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1274		KASSERT(ke->ke_state == KES_IDLE,
1275			("%s: wrong idle KSE state", __func__));
1276		kse_unlink(ke);
1277	}
1278	KASSERT((kg->kg_kses == 1),
1279		("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses));
1280	KASSERT((kg->kg_numupcalls == 0),
1281	        ("%s: ksegrp still has %d upcall datas",
1282		__func__, kg->kg_numupcalls));
1283}
1284
1285/*
1286 * Purge a process's KSE resource. When a process is preparing to
1287 * exit, it calls kse_purge to release any extra KSE resources in
1288 * the process.
1289 */
1290static void
1291kse_purge(struct proc *p, struct thread *td)
1292{
1293	struct ksegrp *kg;
1294	struct kse *ke;
1295
1296 	KASSERT(p->p_numthreads == 1, ("bad thread number"));
1297	while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) {
1298		TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
1299		p->p_numksegrps--;
1300		/*
1301		 * There is no ownership for KSE, after all threads
1302		 * in the group exited, it is possible that some KSEs
1303		 * were left in idle queue, gc them now.
1304		 */
1305		while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) {
1306			KASSERT(ke->ke_state == KES_IDLE,
1307			   ("%s: wrong idle KSE state", __func__));
1308			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
1309			kg->kg_idle_kses--;
1310			TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist);
1311			kg->kg_kses--;
1312			kse_stash(ke);
1313		}
1314		KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) ||
1315		        ((kg->kg_kses == 1) && (kg == td->td_ksegrp)),
1316		        ("ksegrp has wrong kg_kses: %d", kg->kg_kses));
1317		KASSERT((kg->kg_numupcalls == 0),
1318		        ("%s: ksegrp still has %d upcall datas",
1319			__func__, kg->kg_numupcalls));
1320
1321		if (kg != td->td_ksegrp)
1322			ksegrp_stash(kg);
1323	}
1324	TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp);
1325	p->p_numksegrps++;
1326}
1327
1328/*
1329 * This function is intended to be used to initialize a spare thread
1330 * for upcall. Initialize thread's large data area outside sched_lock
1331 * for thread_schedule_upcall().
1332 */
1333void
1334thread_alloc_spare(struct thread *td, struct thread *spare)
1335{
1336	if (td->td_standin)
1337		return;
1338	if (spare == NULL)
1339		spare = thread_alloc();
1340	td->td_standin = spare;
1341	bzero(&spare->td_startzero,
1342	    (unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
1343	spare->td_proc = td->td_proc;
1344	spare->td_ucred = crhold(td->td_ucred);
1345}
1346
1347/*
1348 * Create a thread and schedule it for upcall on the KSE given.
1349 * Use our thread's standin so that we don't have to allocate one.
1350 */
1351struct thread *
1352thread_schedule_upcall(struct thread *td, struct kse_upcall *ku)
1353{
1354	struct thread *td2;
1355
1356	mtx_assert(&sched_lock, MA_OWNED);
1357
1358	/*
1359	 * Schedule an upcall thread on specified kse_upcall,
1360	 * the kse_upcall must be free.
1361	 * td must have a spare thread.
1362	 */
1363	KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__));
1364	if ((td2 = td->td_standin) != NULL) {
1365		td->td_standin = NULL;
1366	} else {
1367		panic("no reserve thread when scheduling an upcall");
1368		return (NULL);
1369	}
1370	CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
1371	     td2, td->td_proc->p_pid, td->td_proc->p_comm);
1372	bcopy(&td->td_startcopy, &td2->td_startcopy,
1373	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
1374	thread_link(td2, ku->ku_ksegrp);
1375	/* inherit blocked thread's context */
1376	bcopy(td->td_frame, td2->td_frame, sizeof(struct trapframe));
1377	cpu_set_upcall(td2, td->td_pcb);
1378	/* Let the new thread become owner of the upcall */
1379	ku->ku_owner   = td2;
1380	td2->td_upcall = ku;
1381	td2->td_flags  = TDF_UPCALLING;
1382#if 0	/* XXX This shouldn't be necessary */
1383	if (td->td_proc->p_sflag & PS_NEEDSIGCHK)
1384		td2->td_flags |= TDF_ASTPENDING;
1385#endif
1386	td2->td_kse    = NULL;
1387	td2->td_state  = TDS_CAN_RUN;
1388	td2->td_inhibitors = 0;
1389	setrunqueue(td2);
1390	return (td2);	/* bogus.. should be a void function */
1391}
1392
1393void
1394thread_signal_add(struct thread *td, int sig)
1395{
1396	struct kse_upcall *ku;
1397	struct proc *p;
1398	sigset_t ss;
1399	int error;
1400
1401	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
1402	td = curthread;
1403	ku = td->td_upcall;
1404	p = td->td_proc;
1405
1406	PROC_UNLOCK(p);
1407	error = copyin(&ku->ku_mailbox->km_sigscaught, &ss, sizeof(sigset_t));
1408	if (error)
1409		goto error;
1410
1411	SIGADDSET(ss, sig);
1412
1413	error = copyout(&ss, &ku->ku_mailbox->km_sigscaught, sizeof(sigset_t));
1414	if (error)
1415		goto error;
1416
1417	PROC_LOCK(p);
1418	return;
1419error:
1420	PROC_LOCK(p);
1421	sigexit(td, SIGILL);
1422}
1423
1424
1425/*
1426 * Schedule an upcall to notify a KSE process recieved signals.
1427 *
1428 */
1429void
1430thread_signal_upcall(struct thread *td)
1431{
1432	mtx_lock_spin(&sched_lock);
1433	td->td_flags |= TDF_UPCALLING;
1434	mtx_unlock_spin(&sched_lock);
1435
1436	return;
1437}
1438
1439void
1440thread_switchout(struct thread *td)
1441{
1442	struct kse_upcall *ku;
1443
1444	mtx_assert(&sched_lock, MA_OWNED);
1445
1446	/*
1447	 * If the outgoing thread is in threaded group and has never
1448	 * scheduled an upcall, decide whether this is a short
1449	 * or long term event and thus whether or not to schedule
1450	 * an upcall.
1451	 * If it is a short term event, just suspend it in
1452	 * a way that takes its KSE with it.
1453	 * Select the events for which we want to schedule upcalls.
1454	 * For now it's just sleep.
1455	 * XXXKSE eventually almost any inhibition could do.
1456	 */
1457	if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) {
1458		/*
1459		 * Release ownership of upcall, and schedule an upcall
1460		 * thread, this new upcall thread becomes the owner of
1461		 * the upcall structure.
1462		 */
1463		ku = td->td_upcall;
1464		ku->ku_owner = NULL;
1465		td->td_upcall = NULL;
1466		td->td_flags &= ~TDF_CAN_UNBIND;
1467		thread_schedule_upcall(td, ku);
1468	}
1469}
1470
1471/*
1472 * Setup done on the thread when it enters the kernel.
1473 * XXXKSE Presently only for syscalls but eventually all kernel entries.
1474 */
1475void
1476thread_user_enter(struct proc *p, struct thread *td)
1477{
1478	struct ksegrp *kg;
1479	struct kse_upcall *ku;
1480	struct kse_thr_mailbox *tmbx;
1481
1482	kg = td->td_ksegrp;
1483
1484	/*
1485	 * First check that we shouldn't just abort.
1486	 * But check if we are the single thread first!
1487	 */
1488	PROC_LOCK(p);
1489	if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1490		mtx_lock_spin(&sched_lock);
1491		thread_stopped(p);
1492		thread_exit();
1493		/* NOTREACHED */
1494	}
1495	PROC_UNLOCK(p);
1496
1497	/*
1498	 * If we are doing a syscall in a KSE environment,
1499	 * note where our mailbox is. There is always the
1500	 * possibility that we could do this lazily (in kse_reassign()),
1501	 * but for now do it every time.
1502	 */
1503	kg = td->td_ksegrp;
1504	if (kg->kg_numupcalls) {
1505		ku = td->td_upcall;
1506		KASSERT(ku, ("%s: no upcall owned", __func__));
1507		KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__));
1508		KASSERT(!TD_CAN_UNBIND(td), ("%s: can unbind", __func__));
1509		ku->ku_mflags = fuword((void *)&ku->ku_mailbox->km_flags);
1510		tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
1511		if ((tmbx == NULL) || (tmbx == (void *)-1)) {
1512			td->td_mailbox = NULL;
1513		} else {
1514			td->td_mailbox = tmbx;
1515			if (td->td_standin == NULL)
1516				thread_alloc_spare(td, NULL);
1517			mtx_lock_spin(&sched_lock);
1518			if (ku->ku_mflags & KMF_NOUPCALL)
1519				td->td_flags &= ~TDF_CAN_UNBIND;
1520			else
1521				td->td_flags |= TDF_CAN_UNBIND;
1522			mtx_unlock_spin(&sched_lock);
1523		}
1524	}
1525}
1526
1527/*
1528 * The extra work we go through if we are a threaded process when we
1529 * return to userland.
1530 *
1531 * If we are a KSE process and returning to user mode, check for
1532 * extra work to do before we return (e.g. for more syscalls
1533 * to complete first).  If we were in a critical section, we should
1534 * just return to let it finish. Same if we were in the UTS (in
1535 * which case the mailbox's context's busy indicator will be set).
1536 * The only traps we suport will have set the mailbox.
1537 * We will clear it here.
1538 */
1539int
1540thread_userret(struct thread *td, struct trapframe *frame)
1541{
1542	int error = 0, upcalls, uts_crit;
1543	struct kse_upcall *ku;
1544	struct ksegrp *kg, *kg2;
1545	struct proc *p;
1546	struct timespec ts;
1547
1548	p = td->td_proc;
1549	kg = td->td_ksegrp;
1550
1551	/* Nothing to do with non-threaded group/process */
1552	if (td->td_ksegrp->kg_numupcalls == 0)
1553		return (0);
1554
1555	/*
1556	 * Stat clock interrupt hit in userland, it
1557	 * is returning from interrupt, charge thread's
1558	 * userland time for UTS.
1559	 */
1560	if (td->td_flags & TDF_USTATCLOCK) {
1561		thread_update_usr_ticks(td, 1);
1562		mtx_lock_spin(&sched_lock);
1563		td->td_flags &= ~TDF_USTATCLOCK;
1564		mtx_unlock_spin(&sched_lock);
1565		if (kg->kg_completed ||
1566		    (td->td_upcall->ku_flags & KUF_DOUPCALL))
1567			thread_user_enter(p, td);
1568	}
1569
1570	uts_crit = (td->td_mailbox == NULL);
1571	ku = td->td_upcall;
1572	/*
1573	 * Optimisation:
1574	 * This thread has not started any upcall.
1575	 * If there is no work to report other than ourself,
1576	 * then it can return direct to userland.
1577	 */
1578	if (TD_CAN_UNBIND(td)) {
1579		mtx_lock_spin(&sched_lock);
1580		td->td_flags &= ~TDF_CAN_UNBIND;
1581		if ((td->td_flags & TDF_NEEDSIGCHK) == 0 &&
1582		    (kg->kg_completed == NULL) &&
1583		    (ku->ku_flags & KUF_DOUPCALL) == 0 &&
1584		    (kg->kg_upquantum && ticks < kg->kg_nextupcall)) {
1585			mtx_unlock_spin(&sched_lock);
1586			thread_update_usr_ticks(td, 0);
1587			nanotime(&ts);
1588			error = copyout(&ts,
1589				(caddr_t)&ku->ku_mailbox->km_timeofday,
1590				sizeof(ts));
1591			td->td_mailbox = 0;
1592			ku->ku_mflags = 0;
1593			if (error)
1594				goto out;
1595			return (0);
1596		}
1597		mtx_unlock_spin(&sched_lock);
1598		error = thread_export_context(td);
1599		if (error) {
1600			/*
1601			 * Failing to do the KSE operation just defaults
1602			 * back to synchonous operation, so just return from
1603			 * the syscall.
1604			 */
1605			goto out;
1606		}
1607		/*
1608		 * There is something to report, and we own an upcall
1609		 * strucuture, we can go to userland.
1610		 * Turn ourself into an upcall thread.
1611		 */
1612		mtx_lock_spin(&sched_lock);
1613		td->td_flags |= TDF_UPCALLING;
1614		mtx_unlock_spin(&sched_lock);
1615	} else if (td->td_mailbox && (ku == NULL)) {
1616		error = thread_export_context(td);
1617		/* possibly upcall with error? */
1618		PROC_LOCK(p);
1619		/*
1620		 * There are upcall threads waiting for
1621		 * work to do, wake one of them up.
1622		 * XXXKSE Maybe wake all of them up.
1623		 */
1624		if (!error && kg->kg_upsleeps)
1625			wakeup_one(&kg->kg_completed);
1626		mtx_lock_spin(&sched_lock);
1627		thread_stopped(p);
1628		thread_exit();
1629		/* NOTREACHED */
1630	}
1631
1632	KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind"));
1633
1634	if (p->p_numthreads > max_threads_per_proc) {
1635		max_threads_hits++;
1636		PROC_LOCK(p);
1637		mtx_lock_spin(&sched_lock);
1638		while (p->p_numthreads > max_threads_per_proc) {
1639			if (P_SHOULDSTOP(p))
1640				break;
1641			upcalls = 0;
1642			FOREACH_KSEGRP_IN_PROC(p, kg2) {
1643				if (kg2->kg_numupcalls == 0)
1644					upcalls++;
1645				else
1646					upcalls += kg2->kg_numupcalls;
1647			}
1648			if (upcalls >= max_threads_per_proc)
1649				break;
1650			mtx_unlock_spin(&sched_lock);
1651			p->p_maxthrwaits++;
1652			msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH,
1653			    "maxthreads", NULL);
1654			p->p_maxthrwaits--;
1655			mtx_lock_spin(&sched_lock);
1656		}
1657		mtx_unlock_spin(&sched_lock);
1658		PROC_UNLOCK(p);
1659	}
1660
1661	if (td->td_flags & TDF_UPCALLING) {
1662		uts_crit = 0;
1663		kg->kg_nextupcall = ticks+kg->kg_upquantum;
1664		/*
1665		 * There is no more work to do and we are going to ride
1666		 * this thread up to userland as an upcall.
1667		 * Do the last parts of the setup needed for the upcall.
1668		 */
1669		CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
1670		    td, td->td_proc->p_pid, td->td_proc->p_comm);
1671
1672		mtx_lock_spin(&sched_lock);
1673		td->td_flags &= ~TDF_UPCALLING;
1674		if (ku->ku_flags & KUF_DOUPCALL)
1675			ku->ku_flags &= ~KUF_DOUPCALL;
1676		mtx_unlock_spin(&sched_lock);
1677
1678		/*
1679		 * Set user context to the UTS
1680		 */
1681		if (!(ku->ku_mflags & KMF_NOUPCALL)) {
1682			cpu_set_upcall_kse(td, ku);
1683			error = suword(&ku->ku_mailbox->km_curthread, 0);
1684			if (error)
1685				goto out;
1686		}
1687
1688		/*
1689		 * Unhook the list of completed threads.
1690		 * anything that completes after this gets to
1691		 * come in next time.
1692		 * Put the list of completed thread mailboxes on
1693		 * this KSE's mailbox.
1694		 */
1695		if (!(ku->ku_mflags & KMF_NOCOMPLETED) &&
1696		    (error = thread_link_mboxes(kg, ku)) != 0)
1697			goto out;
1698	}
1699	if (!uts_crit) {
1700		nanotime(&ts);
1701		error = copyout(&ts, &ku->ku_mailbox->km_timeofday, sizeof(ts));
1702	}
1703
1704out:
1705	if (error) {
1706		/*
1707		 * Things are going to be so screwed we should just kill
1708		 * the process.
1709		 * how do we do that?
1710		 */
1711		PROC_LOCK(td->td_proc);
1712		psignal(td->td_proc, SIGSEGV);
1713		PROC_UNLOCK(td->td_proc);
1714	} else {
1715		/*
1716		 * Optimisation:
1717		 * Ensure that we have a spare thread available,
1718		 * for when we re-enter the kernel.
1719		 */
1720		if (td->td_standin == NULL)
1721			thread_alloc_spare(td, NULL);
1722	}
1723
1724	ku->ku_mflags = 0;
1725	/*
1726	 * Clear thread mailbox first, then clear system tick count.
1727	 * The order is important because thread_statclock() use
1728	 * mailbox pointer to see if it is an userland thread or
1729	 * an UTS kernel thread.
1730	 */
1731	td->td_mailbox = NULL;
1732	td->td_usticks = 0;
1733	return (error);	/* go sync */
1734}
1735
1736/*
1737 * Enforce single-threading.
1738 *
1739 * Returns 1 if the caller must abort (another thread is waiting to
1740 * exit the process or similar). Process is locked!
1741 * Returns 0 when you are successfully the only thread running.
1742 * A process has successfully single threaded in the suspend mode when
1743 * There are no threads in user mode. Threads in the kernel must be
1744 * allowed to continue until they get to the user boundary. They may even
1745 * copy out their return values and data before suspending. They may however be
1746 * accellerated in reaching the user boundary as we will wake up
1747 * any sleeping threads that are interruptable. (PCATCH).
1748 */
1749int
1750thread_single(int force_exit)
1751{
1752	struct thread *td;
1753	struct thread *td2;
1754	struct proc *p;
1755
1756	td = curthread;
1757	p = td->td_proc;
1758	mtx_assert(&Giant, MA_OWNED);
1759	PROC_LOCK_ASSERT(p, MA_OWNED);
1760	KASSERT((td != NULL), ("curthread is NULL"));
1761
1762	if ((p->p_flag & P_THREADED) == 0 && p->p_numthreads == 1)
1763		return (0);
1764
1765	/* Is someone already single threading? */
1766	if (p->p_singlethread)
1767		return (1);
1768
1769	if (force_exit == SINGLE_EXIT) {
1770		p->p_flag |= P_SINGLE_EXIT;
1771	} else
1772		p->p_flag &= ~P_SINGLE_EXIT;
1773	p->p_flag |= P_STOPPED_SINGLE;
1774	mtx_lock_spin(&sched_lock);
1775	p->p_singlethread = td;
1776	while ((p->p_numthreads - p->p_suspcount) != 1) {
1777		FOREACH_THREAD_IN_PROC(p, td2) {
1778			if (td2 == td)
1779				continue;
1780			td2->td_flags |= TDF_ASTPENDING;
1781			if (TD_IS_INHIBITED(td2)) {
1782				if (force_exit == SINGLE_EXIT) {
1783					if (TD_IS_SUSPENDED(td2)) {
1784						thread_unsuspend_one(td2);
1785					}
1786					if (TD_ON_SLEEPQ(td2) &&
1787					    (td2->td_flags & TDF_SINTR)) {
1788						if (td2->td_flags & TDF_CVWAITQ)
1789							cv_abort(td2);
1790						else
1791							abortsleep(td2);
1792					}
1793				} else {
1794					if (TD_IS_SUSPENDED(td2))
1795						continue;
1796					/*
1797					 * maybe other inhibitted states too?
1798					 * XXXKSE Is it totally safe to
1799					 * suspend a non-interruptable thread?
1800					 */
1801					if (td2->td_inhibitors &
1802					    (TDI_SLEEPING | TDI_SWAPPED))
1803						thread_suspend_one(td2);
1804				}
1805			}
1806		}
1807		/*
1808		 * Maybe we suspended some threads.. was it enough?
1809		 */
1810		if ((p->p_numthreads - p->p_suspcount) == 1)
1811			break;
1812
1813		/*
1814		 * Wake us up when everyone else has suspended.
1815		 * In the mean time we suspend as well.
1816		 */
1817		thread_suspend_one(td);
1818		DROP_GIANT();
1819		PROC_UNLOCK(p);
1820		p->p_stats->p_ru.ru_nvcsw++;
1821		mi_switch();
1822		mtx_unlock_spin(&sched_lock);
1823		PICKUP_GIANT();
1824		PROC_LOCK(p);
1825		mtx_lock_spin(&sched_lock);
1826	}
1827	if (force_exit == SINGLE_EXIT) {
1828		if (td->td_upcall)
1829			upcall_remove(td);
1830		kse_purge(p, td);
1831	}
1832	mtx_unlock_spin(&sched_lock);
1833	return (0);
1834}
1835
1836/*
1837 * Called in from locations that can safely check to see
1838 * whether we have to suspend or at least throttle for a
1839 * single-thread event (e.g. fork).
1840 *
1841 * Such locations include userret().
1842 * If the "return_instead" argument is non zero, the thread must be able to
1843 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1844 *
1845 * The 'return_instead' argument tells the function if it may do a
1846 * thread_exit() or suspend, or whether the caller must abort and back
1847 * out instead.
1848 *
1849 * If the thread that set the single_threading request has set the
1850 * P_SINGLE_EXIT bit in the process flags then this call will never return
1851 * if 'return_instead' is false, but will exit.
1852 *
1853 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1854 *---------------+--------------------+---------------------
1855 *       0       | returns 0          |   returns 0 or 1
1856 *               | when ST ends       |   immediatly
1857 *---------------+--------------------+---------------------
1858 *       1       | thread exits       |   returns 1
1859 *               |                    |  immediatly
1860 * 0 = thread_exit() or suspension ok,
1861 * other = return error instead of stopping the thread.
1862 *
1863 * While a full suspension is under effect, even a single threading
1864 * thread would be suspended if it made this call (but it shouldn't).
1865 * This call should only be made from places where
1866 * thread_exit() would be safe as that may be the outcome unless
1867 * return_instead is set.
1868 */
1869int
1870thread_suspend_check(int return_instead)
1871{
1872	struct thread *td;
1873	struct proc *p;
1874
1875	td = curthread;
1876	p = td->td_proc;
1877	PROC_LOCK_ASSERT(p, MA_OWNED);
1878	while (P_SHOULDSTOP(p)) {
1879		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1880			KASSERT(p->p_singlethread != NULL,
1881			    ("singlethread not set"));
1882			/*
1883			 * The only suspension in action is a
1884			 * single-threading. Single threader need not stop.
1885			 * XXX Should be safe to access unlocked
1886			 * as it can only be set to be true by us.
1887			 */
1888			if (p->p_singlethread == td)
1889				return (0);	/* Exempt from stopping. */
1890		}
1891		if (return_instead)
1892			return (1);
1893
1894		mtx_lock_spin(&sched_lock);
1895		thread_stopped(p);
1896		/*
1897		 * If the process is waiting for us to exit,
1898		 * this thread should just suicide.
1899		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1900		 */
1901		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1902			while (mtx_owned(&Giant))
1903				mtx_unlock(&Giant);
1904			if (p->p_flag & P_THREADED)
1905				thread_exit();
1906			else
1907				thr_exit1();
1908		}
1909
1910		/*
1911		 * When a thread suspends, it just
1912		 * moves to the processes's suspend queue
1913		 * and stays there.
1914		 */
1915		thread_suspend_one(td);
1916		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1917			if (p->p_numthreads == p->p_suspcount) {
1918				thread_unsuspend_one(p->p_singlethread);
1919			}
1920		}
1921		DROP_GIANT();
1922		PROC_UNLOCK(p);
1923		p->p_stats->p_ru.ru_nivcsw++;
1924		mi_switch();
1925		mtx_unlock_spin(&sched_lock);
1926		PICKUP_GIANT();
1927		PROC_LOCK(p);
1928	}
1929	return (0);
1930}
1931
1932void
1933thread_suspend_one(struct thread *td)
1934{
1935	struct proc *p = td->td_proc;
1936
1937	mtx_assert(&sched_lock, MA_OWNED);
1938	PROC_LOCK_ASSERT(p, MA_OWNED);
1939	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1940	p->p_suspcount++;
1941	TD_SET_SUSPENDED(td);
1942	TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
1943	/*
1944	 * Hack: If we are suspending but are on the sleep queue
1945	 * then we are in msleep or the cv equivalent. We
1946	 * want to look like we have two Inhibitors.
1947	 * May already be set.. doesn't matter.
1948	 */
1949	if (TD_ON_SLEEPQ(td))
1950		TD_SET_SLEEPING(td);
1951}
1952
1953void
1954thread_unsuspend_one(struct thread *td)
1955{
1956	struct proc *p = td->td_proc;
1957
1958	mtx_assert(&sched_lock, MA_OWNED);
1959	PROC_LOCK_ASSERT(p, MA_OWNED);
1960	TAILQ_REMOVE(&p->p_suspended, td, td_runq);
1961	TD_CLR_SUSPENDED(td);
1962	p->p_suspcount--;
1963	setrunnable(td);
1964}
1965
1966/*
1967 * Allow all threads blocked by single threading to continue running.
1968 */
1969void
1970thread_unsuspend(struct proc *p)
1971{
1972	struct thread *td;
1973
1974	mtx_assert(&sched_lock, MA_OWNED);
1975	PROC_LOCK_ASSERT(p, MA_OWNED);
1976	if (!P_SHOULDSTOP(p)) {
1977		while (( td = TAILQ_FIRST(&p->p_suspended))) {
1978			thread_unsuspend_one(td);
1979		}
1980	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
1981	    (p->p_numthreads == p->p_suspcount)) {
1982		/*
1983		 * Stopping everything also did the job for the single
1984		 * threading request. Now we've downgraded to single-threaded,
1985		 * let it continue.
1986		 */
1987		thread_unsuspend_one(p->p_singlethread);
1988	}
1989}
1990
1991void
1992thread_single_end(void)
1993{
1994	struct thread *td;
1995	struct proc *p;
1996
1997	td = curthread;
1998	p = td->td_proc;
1999	PROC_LOCK_ASSERT(p, MA_OWNED);
2000	p->p_flag &= ~P_STOPPED_SINGLE;
2001	mtx_lock_spin(&sched_lock);
2002	p->p_singlethread = NULL;
2003	/*
2004	 * If there are other threads they mey now run,
2005	 * unless of course there is a blanket 'stop order'
2006	 * on the process. The single threader must be allowed
2007	 * to continue however as this is a bad place to stop.
2008	 */
2009	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
2010		while (( td = TAILQ_FIRST(&p->p_suspended))) {
2011			thread_unsuspend_one(td);
2012		}
2013	}
2014	mtx_unlock_spin(&sched_lock);
2015}
2016
2017
2018