kern_tc.c revision 215281
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 */
9
10#include <sys/cdefs.h>
11__FBSDID("$FreeBSD: head/sys/kern/kern_tc.c 215281 2010-11-14 06:09:50Z brucec $");
12
13#include "opt_ntp.h"
14
15#include <sys/param.h>
16#include <sys/kernel.h>
17#include <sys/sysctl.h>
18#include <sys/syslog.h>
19#include <sys/systm.h>
20#include <sys/timepps.h>
21#include <sys/timetc.h>
22#include <sys/timex.h>
23
24/*
25 * A large step happens on boot.  This constant detects such steps.
26 * It is relatively small so that ntp_update_second gets called enough
27 * in the typical 'missed a couple of seconds' case, but doesn't loop
28 * forever when the time step is large.
29 */
30#define LARGE_STEP	200
31
32/*
33 * Implement a dummy timecounter which we can use until we get a real one
34 * in the air.  This allows the console and other early stuff to use
35 * time services.
36 */
37
38static u_int
39dummy_get_timecount(struct timecounter *tc)
40{
41	static u_int now;
42
43	return (++now);
44}
45
46static struct timecounter dummy_timecounter = {
47	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
48};
49
50struct timehands {
51	/* These fields must be initialized by the driver. */
52	struct timecounter	*th_counter;
53	int64_t			th_adjustment;
54	uint64_t		th_scale;
55	u_int	 		th_offset_count;
56	struct bintime		th_offset;
57	struct timeval		th_microtime;
58	struct timespec		th_nanotime;
59	/* Fields not to be copied in tc_windup start with th_generation. */
60	volatile u_int		th_generation;
61	struct timehands	*th_next;
62};
63
64static struct timehands th0;
65static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
66static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
67static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
68static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
69static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
70static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
71static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
72static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
73static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
74static struct timehands th0 = {
75	&dummy_timecounter,
76	0,
77	(uint64_t)-1 / 1000000,
78	0,
79	{1, 0},
80	{0, 0},
81	{0, 0},
82	1,
83	&th1
84};
85
86static struct timehands *volatile timehands = &th0;
87struct timecounter *timecounter = &dummy_timecounter;
88static struct timecounter *timecounters = &dummy_timecounter;
89
90int tc_min_ticktock_freq = 1;
91
92time_t time_second = 1;
93time_t time_uptime = 1;
94
95struct bintime boottimebin;
96struct timeval boottime;
97static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
98SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
99    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
100
101SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
102SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
103
104static int timestepwarnings;
105SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106    &timestepwarnings, 0, "Log time steps");
107
108static void tc_windup(void);
109static void cpu_tick_calibrate(int);
110
111static int
112sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
113{
114#ifdef SCTL_MASK32
115	int tv[2];
116
117	if (req->flags & SCTL_MASK32) {
118		tv[0] = boottime.tv_sec;
119		tv[1] = boottime.tv_usec;
120		return SYSCTL_OUT(req, tv, sizeof(tv));
121	} else
122#endif
123		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
124}
125
126static int
127sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
128{
129	u_int ncount;
130	struct timecounter *tc = arg1;
131
132	ncount = tc->tc_get_timecount(tc);
133	return sysctl_handle_int(oidp, &ncount, 0, req);
134}
135
136static int
137sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
138{
139	uint64_t freq;
140	struct timecounter *tc = arg1;
141
142	freq = tc->tc_frequency;
143	return sysctl_handle_quad(oidp, &freq, 0, req);
144}
145
146/*
147 * Return the difference between the timehands' counter value now and what
148 * was when we copied it to the timehands' offset_count.
149 */
150static __inline u_int
151tc_delta(struct timehands *th)
152{
153	struct timecounter *tc;
154
155	tc = th->th_counter;
156	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
157	    tc->tc_counter_mask);
158}
159
160/*
161 * Functions for reading the time.  We have to loop until we are sure that
162 * the timehands that we operated on was not updated under our feet.  See
163 * the comment in <sys/time.h> for a description of these 12 functions.
164 */
165
166void
167binuptime(struct bintime *bt)
168{
169	struct timehands *th;
170	u_int gen;
171
172	do {
173		th = timehands;
174		gen = th->th_generation;
175		*bt = th->th_offset;
176		bintime_addx(bt, th->th_scale * tc_delta(th));
177	} while (gen == 0 || gen != th->th_generation);
178}
179
180void
181nanouptime(struct timespec *tsp)
182{
183	struct bintime bt;
184
185	binuptime(&bt);
186	bintime2timespec(&bt, tsp);
187}
188
189void
190microuptime(struct timeval *tvp)
191{
192	struct bintime bt;
193
194	binuptime(&bt);
195	bintime2timeval(&bt, tvp);
196}
197
198void
199bintime(struct bintime *bt)
200{
201
202	binuptime(bt);
203	bintime_add(bt, &boottimebin);
204}
205
206void
207nanotime(struct timespec *tsp)
208{
209	struct bintime bt;
210
211	bintime(&bt);
212	bintime2timespec(&bt, tsp);
213}
214
215void
216microtime(struct timeval *tvp)
217{
218	struct bintime bt;
219
220	bintime(&bt);
221	bintime2timeval(&bt, tvp);
222}
223
224void
225getbinuptime(struct bintime *bt)
226{
227	struct timehands *th;
228	u_int gen;
229
230	do {
231		th = timehands;
232		gen = th->th_generation;
233		*bt = th->th_offset;
234	} while (gen == 0 || gen != th->th_generation);
235}
236
237void
238getnanouptime(struct timespec *tsp)
239{
240	struct timehands *th;
241	u_int gen;
242
243	do {
244		th = timehands;
245		gen = th->th_generation;
246		bintime2timespec(&th->th_offset, tsp);
247	} while (gen == 0 || gen != th->th_generation);
248}
249
250void
251getmicrouptime(struct timeval *tvp)
252{
253	struct timehands *th;
254	u_int gen;
255
256	do {
257		th = timehands;
258		gen = th->th_generation;
259		bintime2timeval(&th->th_offset, tvp);
260	} while (gen == 0 || gen != th->th_generation);
261}
262
263void
264getbintime(struct bintime *bt)
265{
266	struct timehands *th;
267	u_int gen;
268
269	do {
270		th = timehands;
271		gen = th->th_generation;
272		*bt = th->th_offset;
273	} while (gen == 0 || gen != th->th_generation);
274	bintime_add(bt, &boottimebin);
275}
276
277void
278getnanotime(struct timespec *tsp)
279{
280	struct timehands *th;
281	u_int gen;
282
283	do {
284		th = timehands;
285		gen = th->th_generation;
286		*tsp = th->th_nanotime;
287	} while (gen == 0 || gen != th->th_generation);
288}
289
290void
291getmicrotime(struct timeval *tvp)
292{
293	struct timehands *th;
294	u_int gen;
295
296	do {
297		th = timehands;
298		gen = th->th_generation;
299		*tvp = th->th_microtime;
300	} while (gen == 0 || gen != th->th_generation);
301}
302
303/*
304 * Initialize a new timecounter and possibly use it.
305 */
306void
307tc_init(struct timecounter *tc)
308{
309	u_int u;
310	struct sysctl_oid *tc_root;
311
312	u = tc->tc_frequency / tc->tc_counter_mask;
313	/* XXX: We need some margin here, 10% is a guess */
314	u *= 11;
315	u /= 10;
316	if (u > hz && tc->tc_quality >= 0) {
317		tc->tc_quality = -2000;
318		if (bootverbose) {
319			printf("Timecounter \"%s\" frequency %ju Hz",
320			    tc->tc_name, (uintmax_t)tc->tc_frequency);
321			printf(" -- Insufficient hz, needs at least %u\n", u);
322		}
323	} else if (tc->tc_quality >= 0 || bootverbose) {
324		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
325		    tc->tc_name, (uintmax_t)tc->tc_frequency,
326		    tc->tc_quality);
327	}
328
329	tc->tc_next = timecounters;
330	timecounters = tc;
331	/*
332	 * Set up sysctl tree for this counter.
333	 */
334	tc_root = SYSCTL_ADD_NODE(NULL,
335	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
336	    CTLFLAG_RW, 0, "timecounter description");
337	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
338	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
339	    "mask for implemented bits");
340	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
341	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
342	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
343	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
344	    "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
345	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
346	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
347	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
348	    "goodness of time counter");
349	/*
350	 * Never automatically use a timecounter with negative quality.
351	 * Even though we run on the dummy counter, switching here may be
352	 * worse since this timecounter may not be monotonous.
353	 */
354	if (tc->tc_quality < 0)
355		return;
356	if (tc->tc_quality < timecounter->tc_quality)
357		return;
358	if (tc->tc_quality == timecounter->tc_quality &&
359	    tc->tc_frequency < timecounter->tc_frequency)
360		return;
361	(void)tc->tc_get_timecount(tc);
362	(void)tc->tc_get_timecount(tc);
363	timecounter = tc;
364}
365
366/* Report the frequency of the current timecounter. */
367uint64_t
368tc_getfrequency(void)
369{
370
371	return (timehands->th_counter->tc_frequency);
372}
373
374/*
375 * Step our concept of UTC.  This is done by modifying our estimate of
376 * when we booted.
377 * XXX: not locked.
378 */
379void
380tc_setclock(struct timespec *ts)
381{
382	struct timespec tbef, taft;
383	struct bintime bt, bt2;
384
385	cpu_tick_calibrate(1);
386	nanotime(&tbef);
387	timespec2bintime(ts, &bt);
388	binuptime(&bt2);
389	bintime_sub(&bt, &bt2);
390	bintime_add(&bt2, &boottimebin);
391	boottimebin = bt;
392	bintime2timeval(&bt, &boottime);
393
394	/* XXX fiddle all the little crinkly bits around the fiords... */
395	tc_windup();
396	nanotime(&taft);
397	if (timestepwarnings) {
398		log(LOG_INFO,
399		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
400		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
401		    (intmax_t)taft.tv_sec, taft.tv_nsec,
402		    (intmax_t)ts->tv_sec, ts->tv_nsec);
403	}
404	cpu_tick_calibrate(1);
405}
406
407/*
408 * Initialize the next struct timehands in the ring and make
409 * it the active timehands.  Along the way we might switch to a different
410 * timecounter and/or do seconds processing in NTP.  Slightly magic.
411 */
412static void
413tc_windup(void)
414{
415	struct bintime bt;
416	struct timehands *th, *tho;
417	uint64_t scale;
418	u_int delta, ncount, ogen;
419	int i;
420	time_t t;
421
422	/*
423	 * Make the next timehands a copy of the current one, but do not
424	 * overwrite the generation or next pointer.  While we update
425	 * the contents, the generation must be zero.
426	 */
427	tho = timehands;
428	th = tho->th_next;
429	ogen = th->th_generation;
430	th->th_generation = 0;
431	bcopy(tho, th, offsetof(struct timehands, th_generation));
432
433	/*
434	 * Capture a timecounter delta on the current timecounter and if
435	 * changing timecounters, a counter value from the new timecounter.
436	 * Update the offset fields accordingly.
437	 */
438	delta = tc_delta(th);
439	if (th->th_counter != timecounter)
440		ncount = timecounter->tc_get_timecount(timecounter);
441	else
442		ncount = 0;
443	th->th_offset_count += delta;
444	th->th_offset_count &= th->th_counter->tc_counter_mask;
445	bintime_addx(&th->th_offset, th->th_scale * delta);
446
447	/*
448	 * Hardware latching timecounters may not generate interrupts on
449	 * PPS events, so instead we poll them.  There is a finite risk that
450	 * the hardware might capture a count which is later than the one we
451	 * got above, and therefore possibly in the next NTP second which might
452	 * have a different rate than the current NTP second.  It doesn't
453	 * matter in practice.
454	 */
455	if (tho->th_counter->tc_poll_pps)
456		tho->th_counter->tc_poll_pps(tho->th_counter);
457
458	/*
459	 * Deal with NTP second processing.  The for loop normally
460	 * iterates at most once, but in extreme situations it might
461	 * keep NTP sane if timeouts are not run for several seconds.
462	 * At boot, the time step can be large when the TOD hardware
463	 * has been read, so on really large steps, we call
464	 * ntp_update_second only twice.  We need to call it twice in
465	 * case we missed a leap second.
466	 */
467	bt = th->th_offset;
468	bintime_add(&bt, &boottimebin);
469	i = bt.sec - tho->th_microtime.tv_sec;
470	if (i > LARGE_STEP)
471		i = 2;
472	for (; i > 0; i--) {
473		t = bt.sec;
474		ntp_update_second(&th->th_adjustment, &bt.sec);
475		if (bt.sec != t)
476			boottimebin.sec += bt.sec - t;
477	}
478	/* Update the UTC timestamps used by the get*() functions. */
479	/* XXX shouldn't do this here.  Should force non-`get' versions. */
480	bintime2timeval(&bt, &th->th_microtime);
481	bintime2timespec(&bt, &th->th_nanotime);
482
483	/* Now is a good time to change timecounters. */
484	if (th->th_counter != timecounter) {
485		th->th_counter = timecounter;
486		th->th_offset_count = ncount;
487		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
488		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
489	}
490
491	/*-
492	 * Recalculate the scaling factor.  We want the number of 1/2^64
493	 * fractions of a second per period of the hardware counter, taking
494	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
495	 * processing provides us with.
496	 *
497	 * The th_adjustment is nanoseconds per second with 32 bit binary
498	 * fraction and we want 64 bit binary fraction of second:
499	 *
500	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
501	 *
502	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
503	 * we can only multiply by about 850 without overflowing, that
504	 * leaves no suitably precise fractions for multiply before divide.
505	 *
506	 * Divide before multiply with a fraction of 2199/512 results in a
507	 * systematic undercompensation of 10PPM of th_adjustment.  On a
508	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
509 	 *
510	 * We happily sacrifice the lowest of the 64 bits of our result
511	 * to the goddess of code clarity.
512	 *
513	 */
514	scale = (uint64_t)1 << 63;
515	scale += (th->th_adjustment / 1024) * 2199;
516	scale /= th->th_counter->tc_frequency;
517	th->th_scale = scale * 2;
518
519	/*
520	 * Now that the struct timehands is again consistent, set the new
521	 * generation number, making sure to not make it zero.
522	 */
523	if (++ogen == 0)
524		ogen = 1;
525	th->th_generation = ogen;
526
527	/* Go live with the new struct timehands. */
528	time_second = th->th_microtime.tv_sec;
529	time_uptime = th->th_offset.sec;
530	timehands = th;
531}
532
533/* Report or change the active timecounter hardware. */
534static int
535sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
536{
537	char newname[32];
538	struct timecounter *newtc, *tc;
539	int error;
540
541	tc = timecounter;
542	strlcpy(newname, tc->tc_name, sizeof(newname));
543
544	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
545	if (error != 0 || req->newptr == NULL ||
546	    strcmp(newname, tc->tc_name) == 0)
547		return (error);
548	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
549		if (strcmp(newname, newtc->tc_name) != 0)
550			continue;
551
552		/* Warm up new timecounter. */
553		(void)newtc->tc_get_timecount(newtc);
554		(void)newtc->tc_get_timecount(newtc);
555
556		timecounter = newtc;
557		return (0);
558	}
559	return (EINVAL);
560}
561
562SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
563    0, 0, sysctl_kern_timecounter_hardware, "A", "Timecounter hardware selected");
564
565
566/* Report or change the active timecounter hardware. */
567static int
568sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
569{
570	char buf[32], *spc;
571	struct timecounter *tc;
572	int error;
573
574	spc = "";
575	error = 0;
576	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
577		sprintf(buf, "%s%s(%d)",
578		    spc, tc->tc_name, tc->tc_quality);
579		error = SYSCTL_OUT(req, buf, strlen(buf));
580		spc = " ";
581	}
582	return (error);
583}
584
585SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
586    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
587
588/*
589 * RFC 2783 PPS-API implementation.
590 */
591
592int
593pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
594{
595	pps_params_t *app;
596	struct pps_fetch_args *fapi;
597#ifdef PPS_SYNC
598	struct pps_kcbind_args *kapi;
599#endif
600
601	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
602	switch (cmd) {
603	case PPS_IOC_CREATE:
604		return (0);
605	case PPS_IOC_DESTROY:
606		return (0);
607	case PPS_IOC_SETPARAMS:
608		app = (pps_params_t *)data;
609		if (app->mode & ~pps->ppscap)
610			return (EINVAL);
611		pps->ppsparam = *app;
612		return (0);
613	case PPS_IOC_GETPARAMS:
614		app = (pps_params_t *)data;
615		*app = pps->ppsparam;
616		app->api_version = PPS_API_VERS_1;
617		return (0);
618	case PPS_IOC_GETCAP:
619		*(int*)data = pps->ppscap;
620		return (0);
621	case PPS_IOC_FETCH:
622		fapi = (struct pps_fetch_args *)data;
623		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
624			return (EINVAL);
625		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
626			return (EOPNOTSUPP);
627		pps->ppsinfo.current_mode = pps->ppsparam.mode;
628		fapi->pps_info_buf = pps->ppsinfo;
629		return (0);
630	case PPS_IOC_KCBIND:
631#ifdef PPS_SYNC
632		kapi = (struct pps_kcbind_args *)data;
633		/* XXX Only root should be able to do this */
634		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
635			return (EINVAL);
636		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
637			return (EINVAL);
638		if (kapi->edge & ~pps->ppscap)
639			return (EINVAL);
640		pps->kcmode = kapi->edge;
641		return (0);
642#else
643		return (EOPNOTSUPP);
644#endif
645	default:
646		return (ENOIOCTL);
647	}
648}
649
650void
651pps_init(struct pps_state *pps)
652{
653	pps->ppscap |= PPS_TSFMT_TSPEC;
654	if (pps->ppscap & PPS_CAPTUREASSERT)
655		pps->ppscap |= PPS_OFFSETASSERT;
656	if (pps->ppscap & PPS_CAPTURECLEAR)
657		pps->ppscap |= PPS_OFFSETCLEAR;
658}
659
660void
661pps_capture(struct pps_state *pps)
662{
663	struct timehands *th;
664
665	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
666	th = timehands;
667	pps->capgen = th->th_generation;
668	pps->capth = th;
669	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
670	if (pps->capgen != th->th_generation)
671		pps->capgen = 0;
672}
673
674void
675pps_event(struct pps_state *pps, int event)
676{
677	struct bintime bt;
678	struct timespec ts, *tsp, *osp;
679	u_int tcount, *pcount;
680	int foff, fhard;
681	pps_seq_t *pseq;
682
683	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
684	/* If the timecounter was wound up underneath us, bail out. */
685	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
686		return;
687
688	/* Things would be easier with arrays. */
689	if (event == PPS_CAPTUREASSERT) {
690		tsp = &pps->ppsinfo.assert_timestamp;
691		osp = &pps->ppsparam.assert_offset;
692		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
693		fhard = pps->kcmode & PPS_CAPTUREASSERT;
694		pcount = &pps->ppscount[0];
695		pseq = &pps->ppsinfo.assert_sequence;
696	} else {
697		tsp = &pps->ppsinfo.clear_timestamp;
698		osp = &pps->ppsparam.clear_offset;
699		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
700		fhard = pps->kcmode & PPS_CAPTURECLEAR;
701		pcount = &pps->ppscount[1];
702		pseq = &pps->ppsinfo.clear_sequence;
703	}
704
705	/*
706	 * If the timecounter changed, we cannot compare the count values, so
707	 * we have to drop the rest of the PPS-stuff until the next event.
708	 */
709	if (pps->ppstc != pps->capth->th_counter) {
710		pps->ppstc = pps->capth->th_counter;
711		*pcount = pps->capcount;
712		pps->ppscount[2] = pps->capcount;
713		return;
714	}
715
716	/* Convert the count to a timespec. */
717	tcount = pps->capcount - pps->capth->th_offset_count;
718	tcount &= pps->capth->th_counter->tc_counter_mask;
719	bt = pps->capth->th_offset;
720	bintime_addx(&bt, pps->capth->th_scale * tcount);
721	bintime_add(&bt, &boottimebin);
722	bintime2timespec(&bt, &ts);
723
724	/* If the timecounter was wound up underneath us, bail out. */
725	if (pps->capgen != pps->capth->th_generation)
726		return;
727
728	*pcount = pps->capcount;
729	(*pseq)++;
730	*tsp = ts;
731
732	if (foff) {
733		timespecadd(tsp, osp);
734		if (tsp->tv_nsec < 0) {
735			tsp->tv_nsec += 1000000000;
736			tsp->tv_sec -= 1;
737		}
738	}
739#ifdef PPS_SYNC
740	if (fhard) {
741		uint64_t scale;
742
743		/*
744		 * Feed the NTP PLL/FLL.
745		 * The FLL wants to know how many (hardware) nanoseconds
746		 * elapsed since the previous event.
747		 */
748		tcount = pps->capcount - pps->ppscount[2];
749		pps->ppscount[2] = pps->capcount;
750		tcount &= pps->capth->th_counter->tc_counter_mask;
751		scale = (uint64_t)1 << 63;
752		scale /= pps->capth->th_counter->tc_frequency;
753		scale *= 2;
754		bt.sec = 0;
755		bt.frac = 0;
756		bintime_addx(&bt, scale * tcount);
757		bintime2timespec(&bt, &ts);
758		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
759	}
760#endif
761}
762
763/*
764 * Timecounters need to be updated every so often to prevent the hardware
765 * counter from overflowing.  Updating also recalculates the cached values
766 * used by the get*() family of functions, so their precision depends on
767 * the update frequency.
768 */
769
770static int tc_tick;
771SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "Approximate number of hardclock ticks in a millisecond");
772
773void
774tc_ticktock(int cnt)
775{
776	static int count;
777
778	count += cnt;
779	if (count < tc_tick)
780		return;
781	count = 0;
782	tc_windup();
783}
784
785static void
786inittimecounter(void *dummy)
787{
788	u_int p;
789
790	/*
791	 * Set the initial timeout to
792	 * max(1, <approx. number of hardclock ticks in a millisecond>).
793	 * People should probably not use the sysctl to set the timeout
794	 * to smaller than its inital value, since that value is the
795	 * smallest reasonable one.  If they want better timestamps they
796	 * should use the non-"get"* functions.
797	 */
798	if (hz > 1000)
799		tc_tick = (hz + 500) / 1000;
800	else
801		tc_tick = 1;
802	p = (tc_tick * 1000000) / hz;
803	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
804
805	/* warm up new timecounter (again) and get rolling. */
806	(void)timecounter->tc_get_timecount(timecounter);
807	(void)timecounter->tc_get_timecount(timecounter);
808	tc_windup();
809}
810
811SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
812
813/* Cpu tick handling -------------------------------------------------*/
814
815static int cpu_tick_variable;
816static uint64_t	cpu_tick_frequency;
817
818static uint64_t
819tc_cpu_ticks(void)
820{
821	static uint64_t base;
822	static unsigned last;
823	unsigned u;
824	struct timecounter *tc;
825
826	tc = timehands->th_counter;
827	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
828	if (u < last)
829		base += (uint64_t)tc->tc_counter_mask + 1;
830	last = u;
831	return (u + base);
832}
833
834void
835cpu_tick_calibration(void)
836{
837	static time_t last_calib;
838
839	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
840		cpu_tick_calibrate(0);
841		last_calib = time_uptime;
842	}
843}
844
845/*
846 * This function gets called every 16 seconds on only one designated
847 * CPU in the system from hardclock() via cpu_tick_calibration()().
848 *
849 * Whenever the real time clock is stepped we get called with reset=1
850 * to make sure we handle suspend/resume and similar events correctly.
851 */
852
853static void
854cpu_tick_calibrate(int reset)
855{
856	static uint64_t c_last;
857	uint64_t c_this, c_delta;
858	static struct bintime  t_last;
859	struct bintime t_this, t_delta;
860	uint32_t divi;
861
862	if (reset) {
863		/* The clock was stepped, abort & reset */
864		t_last.sec = 0;
865		return;
866	}
867
868	/* we don't calibrate fixed rate cputicks */
869	if (!cpu_tick_variable)
870		return;
871
872	getbinuptime(&t_this);
873	c_this = cpu_ticks();
874	if (t_last.sec != 0) {
875		c_delta = c_this - c_last;
876		t_delta = t_this;
877		bintime_sub(&t_delta, &t_last);
878		/*
879		 * Headroom:
880		 * 	2^(64-20) / 16[s] =
881		 * 	2^(44) / 16[s] =
882		 * 	17.592.186.044.416 / 16 =
883		 * 	1.099.511.627.776 [Hz]
884		 */
885		divi = t_delta.sec << 20;
886		divi |= t_delta.frac >> (64 - 20);
887		c_delta <<= 20;
888		c_delta /= divi;
889		if (c_delta > cpu_tick_frequency) {
890			if (0 && bootverbose)
891				printf("cpu_tick increased to %ju Hz\n",
892				    c_delta);
893			cpu_tick_frequency = c_delta;
894		}
895	}
896	c_last = c_this;
897	t_last = t_this;
898}
899
900void
901set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
902{
903
904	if (func == NULL) {
905		cpu_ticks = tc_cpu_ticks;
906	} else {
907		cpu_tick_frequency = freq;
908		cpu_tick_variable = var;
909		cpu_ticks = func;
910	}
911}
912
913uint64_t
914cpu_tickrate(void)
915{
916
917	if (cpu_ticks == tc_cpu_ticks)
918		return (tc_getfrequency());
919	return (cpu_tick_frequency);
920}
921
922/*
923 * We need to be slightly careful converting cputicks to microseconds.
924 * There is plenty of margin in 64 bits of microseconds (half a million
925 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
926 * before divide conversion (to retain precision) we find that the
927 * margin shrinks to 1.5 hours (one millionth of 146y).
928 * With a three prong approach we never lose significant bits, no
929 * matter what the cputick rate and length of timeinterval is.
930 */
931
932uint64_t
933cputick2usec(uint64_t tick)
934{
935
936	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
937		return (tick / (cpu_tickrate() / 1000000LL));
938	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
939		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
940	else
941		return ((tick * 1000000LL) / cpu_tickrate());
942}
943
944cpu_tick_f	*cpu_ticks = tc_cpu_ticks;
945