kern_tc.c revision 12650
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
39 * $Id: kern_clock.c,v 1.21 1995/12/04 16:48:20 phk Exp $
40 */
41
42/* Portions of this software are covered by the following: */
43/******************************************************************************
44 *                                                                            *
45 * Copyright (c) David L. Mills 1993, 1994                                    *
46 *                                                                            *
47 * Permission to use, copy, modify, and distribute this software and its      *
48 * documentation for any purpose and without fee is hereby granted, provided  *
49 * that the above copyright notice appears in all copies and that both the    *
50 * copyright notice and this permission notice appear in supporting           *
51 * documentation, and that the name University of Delaware not be used in     *
52 * advertising or publicity pertaining to distribution of the software        *
53 * without specific, written prior permission.  The University of Delaware    *
54 * makes no representations about the suitability this software for any       *
55 * purpose.  It is provided "as is" without express or implied warranty.      *
56 *                                                                            *
57 *****************************************************************************/
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/dkstat.h>
62#include <sys/callout.h>
63#include <sys/kernel.h>
64#include <sys/proc.h>
65#include <sys/resourcevar.h>
66#include <sys/signalvar.h>
67#include <sys/timex.h>
68#include <vm/vm.h>
69#include <sys/sysctl.h>
70
71#include <machine/cpu.h>
72#include <machine/clock.h>
73
74#ifdef GPROF
75#include <sys/gmon.h>
76#endif
77
78static void initclocks __P((void *dummy));
79SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
80
81/* Does anybody else really care about these? */
82struct callout *callfree, *callout, calltodo;
83
84/* Some of these don't belong here, but it's easiest to concentrate them. */
85long cp_time[CPUSTATES];
86long dk_seek[DK_NDRIVE];
87long dk_time[DK_NDRIVE];
88long dk_wds[DK_NDRIVE];
89long dk_wpms[DK_NDRIVE];
90long dk_xfer[DK_NDRIVE];
91
92int dk_busy;
93int dk_ndrive = 0;
94char dk_names[DK_NDRIVE][DK_NAMELEN];
95
96long tk_cancc;
97long tk_nin;
98long tk_nout;
99long tk_rawcc;
100
101/*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other.  The main clock, running hz times per second, is used to keep
106 * track of real time.  The second timer handles kernel and user profiling,
107 * and does resource use estimation.  If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks.  For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires.  Otherwise, it would never accumulate
111 * cpu ticks.  The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock.  This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling.  This profile clock runs at profhz.  We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics.  (For profiling, every tick counts.)
123 */
124
125/*
126 * TODO:
127 *	allocate more timeout table slots when table overflows.
128 */
129
130/*
131 * Bump a timeval by a small number of usec's.
132 */
133#define BUMPTIME(t, usec) { \
134	register volatile struct timeval *tp = (t); \
135	register long us; \
136 \
137	tp->tv_usec = us = tp->tv_usec + (usec); \
138	if (us >= 1000000) { \
139		tp->tv_usec = us - 1000000; \
140		tp->tv_sec++; \
141	} \
142}
143
144int	stathz;
145int	profhz;
146int	profprocs;
147int	ticks;
148static int psdiv, pscnt;	/* prof => stat divider */
149int	psratio;		/* ratio: prof / stat */
150
151volatile struct	timeval time;
152volatile struct	timeval mono_time;
153
154/*
155 * Phase-lock loop (PLL) definitions
156 *
157 * The following variables are read and set by the ntp_adjtime() system
158 * call.
159 *
160 * time_state shows the state of the system clock, with values defined
161 * in the timex.h header file.
162 *
163 * time_status shows the status of the system clock, with bits defined
164 * in the timex.h header file.
165 *
166 * time_offset is used by the PLL to adjust the system time in small
167 * increments.
168 *
169 * time_constant determines the bandwidth or "stiffness" of the PLL.
170 *
171 * time_tolerance determines maximum frequency error or tolerance of the
172 * CPU clock oscillator and is a property of the architecture; however,
173 * in principle it could change as result of the presence of external
174 * discipline signals, for instance.
175 *
176 * time_precision is usually equal to the kernel tick variable; however,
177 * in cases where a precision clock counter or external clock is
178 * available, the resolution can be much less than this and depend on
179 * whether the external clock is working or not.
180 *
181 * time_maxerror is initialized by a ntp_adjtime() call and increased by
182 * the kernel once each second to reflect the maximum error
183 * bound growth.
184 *
185 * time_esterror is set and read by the ntp_adjtime() call, but
186 * otherwise not used by the kernel.
187 */
188int time_status = STA_UNSYNC;	/* clock status bits */
189int time_state = TIME_OK;	/* clock state */
190long time_offset = 0;		/* time offset (us) */
191long time_constant = 0;		/* pll time constant */
192long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
193long time_precision = 1;	/* clock precision (us) */
194long time_maxerror = MAXPHASE;	/* maximum error (us) */
195long time_esterror = MAXPHASE;	/* estimated error (us) */
196
197/*
198 * The following variables establish the state of the PLL and the
199 * residual time and frequency offset of the local clock. The scale
200 * factors are defined in the timex.h header file.
201 *
202 * time_phase and time_freq are the phase increment and the frequency
203 * increment, respectively, of the kernel time variable at each tick of
204 * the clock.
205 *
206 * time_freq is set via ntp_adjtime() from a value stored in a file when
207 * the synchronization daemon is first started. Its value is retrieved
208 * via ntp_adjtime() and written to the file about once per hour by the
209 * daemon.
210 *
211 * time_adj is the adjustment added to the value of tick at each timer
212 * interrupt and is recomputed at each timer interrupt.
213 *
214 * time_reftime is the second's portion of the system time on the last
215 * call to ntp_adjtime(). It is used to adjust the time_freq variable
216 * and to increase the time_maxerror as the time since last update
217 * increases.
218 */
219long time_phase = 0;		/* phase offset (scaled us) */
220long time_freq = 0;		/* frequency offset (scaled ppm) */
221long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
222long time_reftime = 0;		/* time at last adjustment (s) */
223
224#ifdef PPS_SYNC
225/*
226 * The following variables are used only if the if the kernel PPS
227 * discipline code is configured (PPS_SYNC). The scale factors are
228 * defined in the timex.h header file.
229 *
230 * pps_time contains the time at each calibration interval, as read by
231 * microtime().
232 *
233 * pps_offset is the time offset produced by the time median filter
234 * pps_tf[], while pps_jitter is the dispersion measured by this
235 * filter.
236 *
237 * pps_freq is the frequency offset produced by the frequency median
238 * filter pps_ff[], while pps_stabil is the dispersion measured by
239 * this filter.
240 *
241 * pps_usec is latched from a high resolution counter or external clock
242 * at pps_time. Here we want the hardware counter contents only, not the
243 * contents plus the time_tv.usec as usual.
244 *
245 * pps_valid counts the number of seconds since the last PPS update. It
246 * is used as a watchdog timer to disable the PPS discipline should the
247 * PPS signal be lost.
248 *
249 * pps_glitch counts the number of seconds since the beginning of an
250 * offset burst more than tick/2 from current nominal offset. It is used
251 * mainly to suppress error bursts due to priority conflicts between the
252 * PPS interrupt and timer interrupt.
253 *
254 * pps_count counts the seconds of the calibration interval, the
255 * duration of which is pps_shift in powers of two.
256 *
257 * pps_intcnt counts the calibration intervals for use in the interval-
258 * adaptation algorithm. It's just too complicated for words.
259 */
260struct timeval pps_time;	/* kernel time at last interval */
261long pps_offset = 0;		/* pps time offset (us) */
262long pps_jitter = MAXTIME;	/* pps time dispersion (jitter) (us) */
263long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
264long pps_freq = 0;		/* frequency offset (scaled ppm) */
265long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
266long pps_ff[] = {0, 0, 0};	/* frequency offset median filter */
267long pps_usec = 0;		/* microsec counter at last interval */
268long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
269int pps_glitch = 0;		/* pps signal glitch counter */
270int pps_count = 0;		/* calibration interval counter (s) */
271int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
272int pps_intcnt = 0;		/* intervals at current duration */
273
274/*
275 * PPS signal quality monitors
276 *
277 * pps_jitcnt counts the seconds that have been discarded because the
278 * jitter measured by the time median filter exceeds the limit MAXTIME
279 * (100 us).
280 *
281 * pps_calcnt counts the frequency calibration intervals, which are
282 * variable from 4 s to 256 s.
283 *
284 * pps_errcnt counts the calibration intervals which have been discarded
285 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
286 * calibration interval jitter exceeds two ticks.
287 *
288 * pps_stbcnt counts the calibration intervals that have been discarded
289 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
290 */
291long pps_jitcnt = 0;		/* jitter limit exceeded */
292long pps_calcnt = 0;		/* calibration intervals */
293long pps_errcnt = 0;		/* calibration errors */
294long pps_stbcnt = 0;		/* stability limit exceeded */
295#endif /* PPS_SYNC */
296
297/* XXX none of this stuff works under FreeBSD */
298#ifdef EXT_CLOCK
299/*
300 * External clock definitions
301 *
302 * The following definitions and declarations are used only if an
303 * external clock (HIGHBALL or TPRO) is configured on the system.
304 */
305#define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
306
307/*
308 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
309 * interrupt and decremented once each second.
310 */
311int clock_count = 0;		/* CPU clock counter */
312
313#ifdef HIGHBALL
314/*
315 * The clock_offset and clock_cpu variables are used by the HIGHBALL
316 * interface. The clock_offset variable defines the offset between
317 * system time and the HIGBALL counters. The clock_cpu variable contains
318 * the offset between the system clock and the HIGHBALL clock for use in
319 * disciplining the kernel time variable.
320 */
321extern struct timeval clock_offset; /* Highball clock offset */
322long clock_cpu = 0;		/* CPU clock adjust */
323#endif /* HIGHBALL */
324#endif /* EXT_CLOCK */
325
326/*
327 * hardupdate() - local clock update
328 *
329 * This routine is called by ntp_adjtime() to update the local clock
330 * phase and frequency. This is used to implement an adaptive-parameter,
331 * first-order, type-II phase-lock loop. The code computes new time and
332 * frequency offsets each time it is called. The hardclock() routine
333 * amortizes these offsets at each tick interrupt. If the kernel PPS
334 * discipline code is configured (PPS_SYNC), the PPS signal itself
335 * determines the new time offset, instead of the calling argument.
336 * Presumably, calls to ntp_adjtime() occur only when the caller
337 * believes the local clock is valid within some bound (+-128 ms with
338 * NTP). If the caller's time is far different than the PPS time, an
339 * argument will ensue, and it's not clear who will lose.
340 *
341 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
342 * maximum interval between updates is 4096 s and the maximum frequency
343 * offset is +-31.25 ms/s.
344 *
345 * Note: splclock() is in effect.
346 */
347void
348hardupdate(offset)
349	long offset;
350{
351	long ltemp, mtemp;
352
353	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
354		return;
355	ltemp = offset;
356#ifdef PPS_SYNC
357	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
358		ltemp = pps_offset;
359#endif /* PPS_SYNC */
360	if (ltemp > MAXPHASE)
361		time_offset = MAXPHASE << SHIFT_UPDATE;
362	else if (ltemp < -MAXPHASE)
363		time_offset = -(MAXPHASE << SHIFT_UPDATE);
364	else
365		time_offset = ltemp << SHIFT_UPDATE;
366	mtemp = time.tv_sec - time_reftime;
367	time_reftime = time.tv_sec;
368	if (mtemp > MAXSEC)
369		mtemp = 0;
370
371	/* ugly multiply should be replaced */
372	if (ltemp < 0)
373		time_freq -= (-ltemp * mtemp) >> (time_constant +
374		    time_constant + SHIFT_KF - SHIFT_USEC);
375	else
376		time_freq += (ltemp * mtemp) >> (time_constant +
377		    time_constant + SHIFT_KF - SHIFT_USEC);
378	if (time_freq > time_tolerance)
379		time_freq = time_tolerance;
380	else if (time_freq < -time_tolerance)
381		time_freq = -time_tolerance;
382}
383
384
385
386/*
387 * Initialize clock frequencies and start both clocks running.
388 */
389/* ARGSUSED*/
390static void
391initclocks(dummy)
392	void *dummy;
393{
394	register int i;
395
396	/*
397	 * Set divisors to 1 (normal case) and let the machine-specific
398	 * code do its bit.
399	 */
400	psdiv = pscnt = 1;
401	cpu_initclocks();
402
403	/*
404	 * Compute profhz/stathz, and fix profhz if needed.
405	 */
406	i = stathz ? stathz : hz;
407	if (profhz == 0)
408		profhz = i;
409	psratio = profhz / i;
410}
411
412/*
413 * The real-time timer, interrupting hz times per second.
414 */
415void
416hardclock(frame)
417	register struct clockframe *frame;
418{
419	register struct callout *p1;
420	register struct proc *p;
421	register int needsoft;
422
423	/*
424	 * Update real-time timeout queue.
425	 * At front of queue are some number of events which are ``due''.
426	 * The time to these is <= 0 and if negative represents the
427	 * number of ticks which have passed since it was supposed to happen.
428	 * The rest of the q elements (times > 0) are events yet to happen,
429	 * where the time for each is given as a delta from the previous.
430	 * Decrementing just the first of these serves to decrement the time
431	 * to all events.
432	 */
433	needsoft = 0;
434	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
435		if (--p1->c_time > 0)
436			break;
437		needsoft = 1;
438		if (p1->c_time == 0)
439			break;
440	}
441
442	p = curproc;
443	if (p) {
444		register struct pstats *pstats;
445
446		/*
447		 * Run current process's virtual and profile time, as needed.
448		 */
449		pstats = p->p_stats;
450		if (CLKF_USERMODE(frame) &&
451		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
452		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
453			psignal(p, SIGVTALRM);
454		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
455		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
456			psignal(p, SIGPROF);
457	}
458
459	/*
460	 * If no separate statistics clock is available, run it from here.
461	 */
462	if (stathz == 0)
463		statclock(frame);
464
465	/*
466	 * Increment the time-of-day.
467	 */
468	ticks++;
469	{
470		int time_update;
471		struct timeval newtime = time;
472		long ltemp;
473
474		if (timedelta == 0) {
475			time_update = CPU_THISTICKLEN(tick);
476		} else {
477			time_update = CPU_THISTICKLEN(tick) + tickdelta;
478			timedelta -= tickdelta;
479		}
480		BUMPTIME(&mono_time, time_update);
481
482		/*
483		 * Compute the phase adjustment. If the low-order bits
484		 * (time_phase) of the update overflow, bump the high-order bits
485		 * (time_update).
486		 */
487		time_phase += time_adj;
488		if (time_phase <= -FINEUSEC) {
489		  ltemp = -time_phase >> SHIFT_SCALE;
490		  time_phase += ltemp << SHIFT_SCALE;
491		  time_update -= ltemp;
492		}
493		else if (time_phase >= FINEUSEC) {
494		  ltemp = time_phase >> SHIFT_SCALE;
495		  time_phase -= ltemp << SHIFT_SCALE;
496		  time_update += ltemp;
497		}
498
499		newtime.tv_usec += time_update;
500		/*
501		 * On rollover of the second the phase adjustment to be used for
502		 * the next second is calculated. Also, the maximum error is
503		 * increased by the tolerance. If the PPS frequency discipline
504		 * code is present, the phase is increased to compensate for the
505		 * CPU clock oscillator frequency error.
506		 *
507		 * With SHIFT_SCALE = 23, the maximum frequency adjustment is
508		 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
509		 * Hz. The time contribution is shifted right a minimum of two
510		 * bits, while the frequency contribution is a right shift.
511		 * Thus, overflow is prevented if the frequency contribution is
512		 * limited to half the maximum or 15.625 ms/s.
513		 */
514		if (newtime.tv_usec >= 1000000) {
515		  newtime.tv_usec -= 1000000;
516		  newtime.tv_sec++;
517		  time_maxerror += time_tolerance >> SHIFT_USEC;
518		  if (time_offset < 0) {
519		    ltemp = -time_offset >>
520		      (SHIFT_KG + time_constant);
521		    time_offset += ltemp;
522		    time_adj = -ltemp <<
523		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
524		  } else {
525		    ltemp = time_offset >>
526		      (SHIFT_KG + time_constant);
527		    time_offset -= ltemp;
528		    time_adj = ltemp <<
529		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
530		  }
531#ifdef PPS_SYNC
532		  /*
533		   * Gnaw on the watchdog counter and update the frequency
534		   * computed by the pll and the PPS signal.
535		   */
536		  pps_valid++;
537		  if (pps_valid == PPS_VALID) {
538		    pps_jitter = MAXTIME;
539		    pps_stabil = MAXFREQ;
540		    time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
541				     STA_PPSWANDER | STA_PPSERROR);
542		  }
543		  ltemp = time_freq + pps_freq;
544#else
545		  ltemp = time_freq;
546#endif /* PPS_SYNC */
547		  if (ltemp < 0)
548		    time_adj -= -ltemp >>
549		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
550		  else
551		    time_adj += ltemp >>
552		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
553
554		  /*
555		   * When the CPU clock oscillator frequency is not a
556		   * power of two in Hz, the SHIFT_HZ is only an
557		   * approximate scale factor. In the SunOS kernel, this
558		   * results in a PLL gain factor of 1/1.28 = 0.78 what it
559		   * should be. In the following code the overall gain is
560		   * increased by a factor of 1.25, which results in a
561		   * residual error less than 3 percent.
562		   */
563		  /* Same thing applies for FreeBSD --GAW */
564		  if (hz == 100) {
565		    if (time_adj < 0)
566		      time_adj -= -time_adj >> 2;
567		    else
568		      time_adj += time_adj >> 2;
569		  }
570
571		  /* XXX - this is really bogus, but can't be fixed until
572		     xntpd's idea of the system clock is fixed to know how
573		     the user wants leap seconds handled; in the mean time,
574		     we assume that users of NTP are running without proper
575		     leap second support (this is now the default anyway) */
576		  /*
577		   * Leap second processing. If in leap-insert state at
578		   * the end of the day, the system clock is set back one
579		   * second; if in leap-delete state, the system clock is
580		   * set ahead one second. The microtime() routine or
581		   * external clock driver will insure that reported time
582		   * is always monotonic. The ugly divides should be
583		   * replaced.
584		   */
585		  switch (time_state) {
586
587		  case TIME_OK:
588		    if (time_status & STA_INS)
589		      time_state = TIME_INS;
590		    else if (time_status & STA_DEL)
591		      time_state = TIME_DEL;
592		    break;
593
594		  case TIME_INS:
595		    if (newtime.tv_sec % 86400 == 0) {
596		      newtime.tv_sec--;
597		      time_state = TIME_OOP;
598		    }
599		    break;
600
601		  case TIME_DEL:
602		    if ((newtime.tv_sec + 1) % 86400 == 0) {
603		      newtime.tv_sec++;
604		      time_state = TIME_WAIT;
605		    }
606		    break;
607
608		  case TIME_OOP:
609		    time_state = TIME_WAIT;
610		    break;
611
612		  case TIME_WAIT:
613		    if (!(time_status & (STA_INS | STA_DEL)))
614		      time_state = TIME_OK;
615		  }
616		}
617		CPU_CLOCKUPDATE(&time, &newtime);
618	}
619
620	/*
621	 * Process callouts at a very low cpu priority, so we don't keep the
622	 * relatively high clock interrupt priority any longer than necessary.
623	 */
624	if (needsoft) {
625		if (CLKF_BASEPRI(frame)) {
626			/*
627			 * Save the overhead of a software interrupt;
628			 * it will happen as soon as we return, so do it now.
629			 */
630			(void)splsoftclock();
631			softclock();
632		} else
633			setsoftclock();
634	}
635}
636
637/*
638 * Software (low priority) clock interrupt.
639 * Run periodic events from timeout queue.
640 */
641/*ARGSUSED*/
642void
643softclock()
644{
645	register struct callout *c;
646	register void *arg;
647	register void (*func) __P((void *));
648	register int s;
649
650	s = splhigh();
651	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
652		func = c->c_func;
653		arg = c->c_arg;
654		calltodo.c_next = c->c_next;
655		c->c_next = callfree;
656		callfree = c;
657		splx(s);
658		(*func)(arg);
659		(void) splhigh();
660	}
661	splx(s);
662}
663
664/*
665 * timeout --
666 *	Execute a function after a specified length of time.
667 *
668 * untimeout --
669 *	Cancel previous timeout function call.
670 *
671 *	See AT&T BCI Driver Reference Manual for specification.  This
672 *	implementation differs from that one in that no identification
673 *	value is returned from timeout, rather, the original arguments
674 *	to timeout are used to identify entries for untimeout.
675 */
676void
677timeout(ftn, arg, ticks)
678	timeout_t ftn;
679	void *arg;
680	register int ticks;
681{
682	register struct callout *new, *p, *t;
683	register int s;
684
685	if (ticks <= 0)
686		ticks = 1;
687
688	/* Lock out the clock. */
689	s = splhigh();
690
691	/* Fill in the next free callout structure. */
692	if (callfree == NULL)
693		panic("timeout table full");
694	new = callfree;
695	callfree = new->c_next;
696	new->c_arg = arg;
697	new->c_func = ftn;
698
699	/*
700	 * The time for each event is stored as a difference from the time
701	 * of the previous event on the queue.  Walk the queue, correcting
702	 * the ticks argument for queue entries passed.  Correct the ticks
703	 * value for the queue entry immediately after the insertion point
704	 * as well.  Watch out for negative c_time values; these represent
705	 * overdue events.
706	 */
707	for (p = &calltodo;
708	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
709		if (t->c_time > 0)
710			ticks -= t->c_time;
711	new->c_time = ticks;
712	if (t != NULL)
713		t->c_time -= ticks;
714
715	/* Insert the new entry into the queue. */
716	p->c_next = new;
717	new->c_next = t;
718	splx(s);
719}
720
721void
722untimeout(ftn, arg)
723	timeout_t ftn;
724	void *arg;
725{
726	register struct callout *p, *t;
727	register int s;
728
729	s = splhigh();
730	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
731		if (t->c_func == ftn && t->c_arg == arg) {
732			/* Increment next entry's tick count. */
733			if (t->c_next && t->c_time > 0)
734				t->c_next->c_time += t->c_time;
735
736			/* Move entry from callout queue to callfree queue. */
737			p->c_next = t->c_next;
738			t->c_next = callfree;
739			callfree = t;
740			break;
741		}
742	splx(s);
743}
744
745/*
746 * Compute number of hz until specified time.  Used to
747 * compute third argument to timeout() from an absolute time.
748 */
749int
750hzto(tv)
751	struct timeval *tv;
752{
753	register unsigned long ticks;
754	register long sec, usec;
755	int s;
756
757	/*
758	 * If the number of usecs in the whole seconds part of the time
759	 * difference fits in a long, then the total number of usecs will
760	 * fit in an unsigned long.  Compute the total and convert it to
761	 * ticks, rounding up and adding 1 to allow for the current tick
762	 * to expire.  Rounding also depends on unsigned long arithmetic
763	 * to avoid overflow.
764	 *
765	 * Otherwise, if the number of ticks in the whole seconds part of
766	 * the time difference fits in a long, then convert the parts to
767	 * ticks separately and add, using similar rounding methods and
768	 * overflow avoidance.  This method would work in the previous
769	 * case but it is slightly slower and assumes that hz is integral.
770	 *
771	 * Otherwise, round the time difference down to the maximum
772	 * representable value.
773	 *
774	 * If ints have 32 bits, then the maximum value for any timeout in
775	 * 10ms ticks is 248 days.
776	 */
777	s = splclock();
778	sec = tv->tv_sec - time.tv_sec;
779	usec = tv->tv_usec - time.tv_usec;
780	splx(s);
781	if (usec < 0) {
782		sec--;
783		usec += 1000000;
784	}
785	if (sec < 0) {
786#ifdef DIAGNOSTIC
787		printf("hzto: negative time difference %ld sec %ld usec\n",
788		       sec, usec);
789#endif
790		ticks = 1;
791	} else if (sec <= LONG_MAX / 1000000)
792		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
793			/ tick + 1;
794	else if (sec <= LONG_MAX / hz)
795		ticks = sec * hz
796			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
797	else
798		ticks = LONG_MAX;
799	if (ticks > INT_MAX)
800		ticks = INT_MAX;
801	return (ticks);
802}
803
804/*
805 * Start profiling on a process.
806 *
807 * Kernel profiling passes proc0 which never exits and hence
808 * keeps the profile clock running constantly.
809 */
810void
811startprofclock(p)
812	register struct proc *p;
813{
814	int s;
815
816	if ((p->p_flag & P_PROFIL) == 0) {
817		p->p_flag |= P_PROFIL;
818		if (++profprocs == 1 && stathz != 0) {
819			s = splstatclock();
820			psdiv = pscnt = psratio;
821			setstatclockrate(profhz);
822			splx(s);
823		}
824	}
825}
826
827/*
828 * Stop profiling on a process.
829 */
830void
831stopprofclock(p)
832	register struct proc *p;
833{
834	int s;
835
836	if (p->p_flag & P_PROFIL) {
837		p->p_flag &= ~P_PROFIL;
838		if (--profprocs == 0 && stathz != 0) {
839			s = splstatclock();
840			psdiv = pscnt = 1;
841			setstatclockrate(stathz);
842			splx(s);
843		}
844	}
845}
846
847/*
848 * Statistics clock.  Grab profile sample, and if divider reaches 0,
849 * do process and kernel statistics.
850 */
851void
852statclock(frame)
853	register struct clockframe *frame;
854{
855#ifdef GPROF
856	register struct gmonparam *g;
857#endif
858	register struct proc *p = curproc;
859	register int i;
860
861	if (p) {
862		struct pstats *pstats;
863		struct rusage *ru;
864		struct vmspace *vm;
865
866		/* bump the resource usage of integral space use */
867		if ((pstats = p->p_stats) && (ru = &pstats->p_ru) && (vm = p->p_vmspace)) {
868			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
869			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
870			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
871			if ((vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024) >
872			    ru->ru_maxrss) {
873				ru->ru_maxrss =
874				    vm->vm_pmap.pm_stats.resident_count * PAGE_SIZE / 1024;
875			}
876        	}
877	}
878
879	if (CLKF_USERMODE(frame)) {
880		if (p->p_flag & P_PROFIL)
881			addupc_intr(p, CLKF_PC(frame), 1);
882		if (--pscnt > 0)
883			return;
884		/*
885		 * Came from user mode; CPU was in user state.
886		 * If this process is being profiled record the tick.
887		 */
888		p->p_uticks++;
889		if (p->p_nice > NZERO)
890			cp_time[CP_NICE]++;
891		else
892			cp_time[CP_USER]++;
893	} else {
894#ifdef GPROF
895		/*
896		 * Kernel statistics are just like addupc_intr, only easier.
897		 */
898		g = &_gmonparam;
899		if (g->state == GMON_PROF_ON) {
900			i = CLKF_PC(frame) - g->lowpc;
901			if (i < g->textsize) {
902				i /= HISTFRACTION * sizeof(*g->kcount);
903				g->kcount[i]++;
904			}
905		}
906#endif
907		if (--pscnt > 0)
908			return;
909		/*
910		 * Came from kernel mode, so we were:
911		 * - handling an interrupt,
912		 * - doing syscall or trap work on behalf of the current
913		 *   user process, or
914		 * - spinning in the idle loop.
915		 * Whichever it is, charge the time as appropriate.
916		 * Note that we charge interrupts to the current process,
917		 * regardless of whether they are ``for'' that process,
918		 * so that we know how much of its real time was spent
919		 * in ``non-process'' (i.e., interrupt) work.
920		 */
921		if (CLKF_INTR(frame)) {
922			if (p != NULL)
923				p->p_iticks++;
924			cp_time[CP_INTR]++;
925		} else if (p != NULL) {
926			p->p_sticks++;
927			cp_time[CP_SYS]++;
928		} else
929			cp_time[CP_IDLE]++;
930	}
931	pscnt = psdiv;
932
933	/*
934	 * We maintain statistics shown by user-level statistics
935	 * programs:  the amount of time in each cpu state, and
936	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
937	 *
938	 * XXX	should either run linked list of drives, or (better)
939	 *	grab timestamps in the start & done code.
940	 */
941	for (i = 0; i < DK_NDRIVE; i++)
942		if (dk_busy & (1 << i))
943			dk_time[i]++;
944
945	/*
946	 * We adjust the priority of the current process.  The priority of
947	 * a process gets worse as it accumulates CPU time.  The cpu usage
948	 * estimator (p_estcpu) is increased here.  The formula for computing
949	 * priorities (in kern_synch.c) will compute a different value each
950	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
951	 * quite quickly when the process is running (linearly), and decays
952	 * away exponentially, at a rate which is proportionally slower when
953	 * the system is busy.  The basic principal is that the system will
954	 * 90% forget that the process used a lot of CPU time in 5 * loadav
955	 * seconds.  This causes the system to favor processes which haven't
956	 * run much recently, and to round-robin among other processes.
957	 */
958	if (p != NULL) {
959		p->p_cpticks++;
960		if (++p->p_estcpu == 0)
961			p->p_estcpu--;
962		if ((p->p_estcpu & 3) == 0) {
963			resetpriority(p);
964			if (p->p_priority >= PUSER)
965				p->p_priority = p->p_usrpri;
966		}
967	}
968}
969
970/*
971 * Return information about system clocks.
972 */
973static int
974sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
975{
976	struct clockinfo clkinfo;
977	/*
978	 * Construct clockinfo structure.
979	 */
980	clkinfo.hz = hz;
981	clkinfo.tick = tick;
982	clkinfo.profhz = profhz;
983	clkinfo.stathz = stathz ? stathz : hz;
984	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
985}
986
987SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
988	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
989
990/*#ifdef PPS_SYNC*/
991#if 0
992/* This code is completely bogus; if anybody ever wants to use it, get
993 * the current version from Dave Mills. */
994
995/*
996 * hardpps() - discipline CPU clock oscillator to external pps signal
997 *
998 * This routine is called at each PPS interrupt in order to discipline
999 * the CPU clock oscillator to the PPS signal. It integrates successive
1000 * phase differences between the two oscillators and calculates the
1001 * frequency offset. This is used in hardclock() to discipline the CPU
1002 * clock oscillator so that intrinsic frequency error is cancelled out.
1003 * The code requires the caller to capture the time and hardware
1004 * counter value at the designated PPS signal transition.
1005 */
1006void
1007hardpps(tvp, usec)
1008	struct timeval *tvp;		/* time at PPS */
1009	long usec;			/* hardware counter at PPS */
1010{
1011	long u_usec, v_usec, bigtick;
1012	long cal_sec, cal_usec;
1013
1014	/*
1015	 * During the calibration interval adjust the starting time when
1016	 * the tick overflows. At the end of the interval compute the
1017	 * duration of the interval and the difference of the hardware
1018	 * counters at the beginning and end of the interval. This code
1019	 * is deliciously complicated by the fact valid differences may
1020	 * exceed the value of tick when using long calibration
1021	 * intervals and small ticks. Note that the counter can be
1022	 * greater than tick if caught at just the wrong instant, but
1023	 * the values returned and used here are correct.
1024	 */
1025	bigtick = (long)tick << SHIFT_USEC;
1026	pps_usec -= ntp_pll.ybar;
1027	if (pps_usec >= bigtick)
1028		pps_usec -= bigtick;
1029	if (pps_usec < 0)
1030		pps_usec += bigtick;
1031	pps_time.tv_sec++;
1032	pps_count++;
1033	if (pps_count < (1 << pps_shift))
1034		return;
1035	pps_count = 0;
1036	ntp_pll.calcnt++;
1037	u_usec = usec << SHIFT_USEC;
1038	v_usec = pps_usec - u_usec;
1039	if (v_usec >= bigtick >> 1)
1040		v_usec -= bigtick;
1041	if (v_usec < -(bigtick >> 1))
1042		v_usec += bigtick;
1043	if (v_usec < 0)
1044		v_usec = -(-v_usec >> ntp_pll.shift);
1045	else
1046		v_usec = v_usec >> ntp_pll.shift;
1047	pps_usec = u_usec;
1048	cal_sec = tvp->tv_sec;
1049	cal_usec = tvp->tv_usec;
1050	cal_sec -= pps_time.tv_sec;
1051	cal_usec -= pps_time.tv_usec;
1052	if (cal_usec < 0) {
1053		cal_usec += 1000000;
1054		cal_sec--;
1055	}
1056	pps_time = *tvp;
1057
1058	/*
1059	 * Check for lost interrupts, noise, excessive jitter and
1060	 * excessive frequency error. The number of timer ticks during
1061	 * the interval may vary +-1 tick. Add to this a margin of one
1062	 * tick for the PPS signal jitter and maximum frequency
1063	 * deviation. If the limits are exceeded, the calibration
1064	 * interval is reset to the minimum and we start over.
1065	 */
1066	u_usec = (long)tick << 1;
1067	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1068	    || (cal_sec == 0 && cal_usec < u_usec))
1069	    || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) {
1070		ntp_pll.jitcnt++;
1071		ntp_pll.shift = NTP_PLL.SHIFT;
1072		pps_dispinc = PPS_DISPINC;
1073		ntp_pll.intcnt = 0;
1074		return;
1075	}
1076
1077	/*
1078	 * A three-stage median filter is used to help deglitch the pps
1079	 * signal. The median sample becomes the offset estimate; the
1080	 * difference between the other two samples becomes the
1081	 * dispersion estimate.
1082	 */
1083	pps_mf[2] = pps_mf[1];
1084	pps_mf[1] = pps_mf[0];
1085	pps_mf[0] = v_usec;
1086	if (pps_mf[0] > pps_mf[1]) {
1087		if (pps_mf[1] > pps_mf[2]) {
1088			u_usec = pps_mf[1];		/* 0 1 2 */
1089			v_usec = pps_mf[0] - pps_mf[2];
1090		} else if (pps_mf[2] > pps_mf[0]) {
1091			u_usec = pps_mf[0];		/* 2 0 1 */
1092			v_usec = pps_mf[2] - pps_mf[1];
1093		} else {
1094			u_usec = pps_mf[2];		/* 0 2 1 */
1095			v_usec = pps_mf[0] - pps_mf[1];
1096		}
1097	} else {
1098		if (pps_mf[1] < pps_mf[2]) {
1099			u_usec = pps_mf[1];		/* 2 1 0 */
1100			v_usec = pps_mf[2] - pps_mf[0];
1101		} else  if (pps_mf[2] < pps_mf[0]) {
1102			u_usec = pps_mf[0];		/* 1 0 2 */
1103			v_usec = pps_mf[1] - pps_mf[2];
1104		} else {
1105			u_usec = pps_mf[2];		/* 1 2 0 */
1106			v_usec = pps_mf[1] - pps_mf[0];
1107		}
1108	}
1109
1110	/*
1111	 * Here the dispersion average is updated. If it is less than
1112	 * the threshold pps_dispmax, the frequency average is updated
1113	 * as well, but clamped to the tolerance.
1114	 */
1115	v_usec = (v_usec >> 1) - ntp_pll.disp;
1116	if (v_usec < 0)
1117		ntp_pll.disp -= -v_usec >> PPS_AVG;
1118	else
1119		ntp_pll.disp += v_usec >> PPS_AVG;
1120	if (ntp_pll.disp > pps_dispmax) {
1121		ntp_pll.discnt++;
1122		return;
1123	}
1124	if (u_usec < 0) {
1125		ntp_pll.ybar -= -u_usec >> PPS_AVG;
1126		if (ntp_pll.ybar < -ntp_pll.tolerance)
1127			ntp_pll.ybar = -ntp_pll.tolerance;
1128		u_usec = -u_usec;
1129	} else {
1130		ntp_pll.ybar += u_usec >> PPS_AVG;
1131		if (ntp_pll.ybar > ntp_pll.tolerance)
1132			ntp_pll.ybar = ntp_pll.tolerance;
1133	}
1134
1135	/*
1136	 * Here the calibration interval is adjusted. If the maximum
1137	 * time difference is greater than tick/4, reduce the interval
1138	 * by half. If this is not the case for four consecutive
1139	 * intervals, double the interval.
1140	 */
1141	if (u_usec << ntp_pll.shift > bigtick >> 2) {
1142		ntp_pll.intcnt = 0;
1143		if (ntp_pll.shift > NTP_PLL.SHIFT) {
1144			ntp_pll.shift--;
1145			pps_dispinc <<= 1;
1146		}
1147	} else if (ntp_pll.intcnt >= 4) {
1148		ntp_pll.intcnt = 0;
1149		if (ntp_pll.shift < NTP_PLL.SHIFTMAX) {
1150			ntp_pll.shift++;
1151			pps_dispinc >>= 1;
1152		}
1153	} else
1154		ntp_pll.intcnt++;
1155}
1156#endif /* PPS_SYNC */
1157