kern_synch.c revision 99480
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 99480 2002-07-06 02:45:11Z julian $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup(void *dummy);
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep(void *);
94static void	loadav(void *arg);
95static void	roundrobin(void *arg);
96static void	schedcpu(void *arg);
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
116	"Roundrobin scheduling quantum in microseconds");
117
118/*
119 * Arrange to reschedule if necessary, taking the priorities and
120 * schedulers into account.
121 */
122void
123maybe_resched(struct thread *td)
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (td->td_priority < curthread->td_priority)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	struct thread *td;
260	struct proc *p;
261	struct kse *ke;
262	struct ksegrp *kg;
263	int realstathz;
264	int awake;
265
266	realstathz = stathz ? stathz : hz;
267	sx_slock(&allproc_lock);
268	FOREACH_PROC_IN_SYSTEM(p) {
269		mtx_lock_spin(&sched_lock);
270		p->p_swtime++;
271		FOREACH_KSEGRP_IN_PROC(p, kg) {
272			awake = 0;
273			FOREACH_KSE_IN_GROUP(kg, ke) {
274				/*
275				 * Increment time in/out of memory and sleep
276				 * time (if sleeping).  We ignore overflow;
277				 * with 16-bit int's (remember them?)
278				 * overflow takes 45 days.
279				 */
280				/* XXXKSE **WRONG***/
281				/*
282				 * the kse slptimes are not touched in wakeup
283				 * because the thread may not HAVE a KSE
284				 */
285				if (ke->ke_state == KES_ONRUNQ &&
286				    ke->ke_state == KES_RUNNING) {
287					ke->ke_slptime++;
288				} else {
289					ke->ke_slptime = 0;
290					awake = 1;
291				}
292
293				/*
294				 * pctcpu is only for ps?
295				 * Do it per kse.. and add them up at the end?
296				 * XXXKSE
297				 */
298				ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> FSHIFT;
299				/*
300				 * If the kse has been idle the entire second,
301				 * stop recalculating its priority until
302				 * it wakes up.
303				 */
304				if (ke->ke_slptime > 1) {
305					continue;
306				}
307
308#if	(FSHIFT >= CCPU_SHIFT)
309				ke->ke_pctcpu += (realstathz == 100) ?
310				    ((fixpt_t) ke->ke_cpticks) <<
311				    (FSHIFT - CCPU_SHIFT) :
312				    100 * (((fixpt_t) ke->ke_cpticks) <<
313				    (FSHIFT - CCPU_SHIFT)) / realstathz;
314#else
315				ke->ke_pctcpu += ((FSCALE - ccpu) *
316				    (ke->ke_cpticks * FSCALE / realstathz)) >>
317				    FSHIFT;
318#endif
319				ke->ke_cpticks = 0;
320			} /* end of kse loop */
321			if (awake == 0) {
322				kg->kg_slptime++;
323			} else {
324				kg->kg_slptime = 0;
325			}
326			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
327		      	resetpriority(kg);
328			FOREACH_THREAD_IN_GROUP(kg, td) {
329				int changedqueue;
330				if (td->td_priority >= PUSER) {
331					/*
332					 * Only change the priority
333					 * of threads that are still at their
334					 * user priority.
335					 * XXXKSE This is problematic
336					 * as we may need to re-order
337					 * the threads on the KSEG list.
338					 */
339					changedqueue =
340					    ((td->td_priority / RQ_PPQ) !=
341					     (kg->kg_user_pri / RQ_PPQ));
342
343					td->td_priority = kg->kg_user_pri;
344					if (changedqueue &&
345					    td->td_state == TDS_RUNQ) {
346						/* this could be optimised */
347						remrunqueue(td);
348						td->td_priority =
349						    kg->kg_user_pri;
350						setrunqueue(td);
351					} else {
352						td->td_priority = kg->kg_user_pri;
353					}
354				}
355			}
356		} /* end of ksegrp loop */
357		mtx_unlock_spin(&sched_lock);
358	} /* end of process loop */
359	sx_sunlock(&allproc_lock);
360	wakeup(&lbolt);
361	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
362}
363
364/*
365 * Recalculate the priority of a process after it has slept for a while.
366 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
367 * least six times the loadfactor will decay p_estcpu to zero.
368 */
369void
370updatepri(td)
371	register struct thread *td;
372{
373	register struct ksegrp *kg;
374	register unsigned int newcpu;
375	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
376
377	if (td == NULL)
378		return;
379	kg = td->td_ksegrp;
380	newcpu = kg->kg_estcpu;
381	if (kg->kg_slptime > 5 * loadfac)
382		kg->kg_estcpu = 0;
383	else {
384		kg->kg_slptime--;	/* the first time was done in schedcpu */
385		while (newcpu && --kg->kg_slptime)
386			newcpu = decay_cpu(loadfac, newcpu);
387		kg->kg_estcpu = newcpu;
388	}
389	resetpriority(td->td_ksegrp);
390}
391
392/*
393 * We're only looking at 7 bits of the address; everything is
394 * aligned to 4, lots of things are aligned to greater powers
395 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
396 */
397#define TABLESIZE	128
398static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
399#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
400
401void
402sleepinit(void)
403{
404	int i;
405
406	sched_quantum = hz/10;
407	hogticks = 2 * sched_quantum;
408	for (i = 0; i < TABLESIZE; i++)
409		TAILQ_INIT(&slpque[i]);
410}
411
412/*
413 * General sleep call.  Suspends the current process until a wakeup is
414 * performed on the specified identifier.  The process will then be made
415 * runnable with the specified priority.  Sleeps at most timo/hz seconds
416 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
417 * before and after sleeping, else signals are not checked.  Returns 0 if
418 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
419 * signal needs to be delivered, ERESTART is returned if the current system
420 * call should be restarted if possible, and EINTR is returned if the system
421 * call should be interrupted by the signal (return EINTR).
422 *
423 * The mutex argument is exited before the caller is suspended, and
424 * entered before msleep returns.  If priority includes the PDROP
425 * flag the mutex is not entered before returning.
426 */
427
428int
429msleep(ident, mtx, priority, wmesg, timo)
430	void *ident;
431	struct mtx *mtx;
432	int priority, timo;
433	const char *wmesg;
434{
435	struct thread *td = curthread;
436	struct proc *p = td->td_proc;
437	int sig, catch = priority & PCATCH;
438	int rval = 0;
439	WITNESS_SAVE_DECL(mtx);
440
441#ifdef KTRACE
442	if (KTRPOINT(td, KTR_CSW))
443		ktrcsw(1, 0);
444#endif
445	KASSERT((td->td_kse != NULL), ("msleep: NULL KSE?"));
446	KASSERT((td->td_kse->ke_state == KES_RUNNING), ("msleep: kse state?"));
447	WITNESS_SLEEP(0, &mtx->mtx_object);
448	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
449	    ("sleeping without a mutex"));
450	/*
451	 * If we are capable of async syscalls and there isn't already
452	 * another one ready to return, start a new thread
453	 * and queue it as ready to run. Note that there is danger here
454	 * because we need to make sure that we don't sleep allocating
455	 * the thread (recursion here might be bad).
456	 * Hence the TDF_INMSLEEP flag.
457	 */
458	if (p->p_flag & P_KSES) {
459		/* Just don't bother if we are exiting
460				and not the exiting thread. */
461		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
462			return (EINTR);
463		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
464			/*
465			 * If we have no queued work to do, then
466			 * upcall to the UTS to see if it has more to do.
467			 * We don't need to upcall now, just make it and
468			 * queue it.
469			 */
470			mtx_lock_spin(&sched_lock);
471			if (TAILQ_FIRST(&td->td_ksegrp->kg_runq) == NULL) {
472				/* Don't recurse here! */
473	KASSERT((td->td_kse->ke_state == KES_RUNNING), ("msleep: kse stateX?"));
474				td->td_flags |= TDF_INMSLEEP;
475				thread_schedule_upcall(td, td->td_kse);
476				td->td_flags &= ~TDF_INMSLEEP;
477	KASSERT((td->td_kse->ke_state == KES_RUNNING), ("msleep: kse stateY?"));
478			}
479			mtx_unlock_spin(&sched_lock);
480		}
481		KASSERT((td->td_kse != NULL), ("msleep: NULL KSE2?"));
482		KASSERT((td->td_kse->ke_state == KES_RUNNING),
483		    ("msleep: kse state2?"));
484		KASSERT((td->td_kse->ke_thread == td),
485		    ("msleep: kse/thread mismatch?"));
486	}
487	mtx_lock_spin(&sched_lock);
488	if (cold || panicstr) {
489		/*
490		 * After a panic, or during autoconfiguration,
491		 * just give interrupts a chance, then just return;
492		 * don't run any other procs or panic below,
493		 * in case this is the idle process and already asleep.
494		 */
495		if (mtx != NULL && priority & PDROP)
496			mtx_unlock(mtx);
497		mtx_unlock_spin(&sched_lock);
498		return (0);
499	}
500
501	DROP_GIANT();
502
503	if (mtx != NULL) {
504		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
505		WITNESS_SAVE(&mtx->mtx_object, mtx);
506		mtx_unlock(mtx);
507		if (priority & PDROP)
508			mtx = NULL;
509	}
510
511	KASSERT(p != NULL, ("msleep1"));
512	KASSERT(ident != NULL && td->td_state == TDS_RUNNING, ("msleep"));
513
514	td->td_wchan = ident;
515	td->td_wmesg = wmesg;
516	td->td_kse->ke_slptime = 0;	/* XXXKSE */
517	td->td_ksegrp->kg_slptime = 0;
518	td->td_priority = priority & PRIMASK;
519	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
520	    td, p->p_pid, p->p_comm, wmesg, ident);
521	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
522	if (timo)
523		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
524	/*
525	 * We put ourselves on the sleep queue and start our timeout
526	 * before calling thread_suspend_check, as we could stop there, and
527	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
528	 * without resuming us, thus we must be ready for sleep
529	 * when cursig is called.  If the wakeup happens while we're
530	 * stopped, td->td_wchan will be 0 upon return from cursig.
531	 */
532	if (catch) {
533		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
534		    p->p_pid, p->p_comm);
535		td->td_flags |= TDF_SINTR;
536		mtx_unlock_spin(&sched_lock);
537		PROC_LOCK(p);
538		sig = cursig(td);
539		if (sig == 0) {
540			if (thread_suspend_check(1)) {
541				sig = SIGSTOP;
542				rval = ERESTART;
543			}
544		}
545		mtx_lock_spin(&sched_lock);
546		PROC_UNLOCK(p);
547		if (sig != 0) {
548			if (td->td_wchan != NULL)
549				unsleep(td);
550		} else if (td->td_wchan == NULL)
551			catch = 0;
552	} else {
553		sig = 0;
554	}
555	if (td->td_wchan != NULL) {
556		p->p_stats->p_ru.ru_nvcsw++;
557		td->td_state = TDS_SLP;
558		mi_switch();
559	}
560	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
561	    p->p_comm);
562	KASSERT(td->td_state == TDS_RUNNING, ("running but not TDS_RUNNING"));
563	td->td_flags &= ~TDF_SINTR;
564	if (td->td_flags & TDF_TIMEOUT) {
565		td->td_flags &= ~TDF_TIMEOUT;
566		if (sig == 0)
567			rval = EWOULDBLOCK;
568	} else if (td->td_flags & TDF_TIMOFAIL) {
569		td->td_flags &= ~TDF_TIMOFAIL;
570	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
571		/*
572		 * This isn't supposed to be pretty.  If we are here, then
573		 * the endtsleep() callout is currently executing on another
574		 * CPU and is either spinning on the sched_lock or will be
575		 * soon.  If we don't synchronize here, there is a chance
576		 * that this process may msleep() again before the callout
577		 * has a chance to run and the callout may end up waking up
578		 * the wrong msleep().  Yuck.
579		 */
580		td->td_flags |= TDF_TIMEOUT;
581		td->td_state = TDS_SLP;
582		p->p_stats->p_ru.ru_nivcsw++;
583		mi_switch();
584	}
585	mtx_unlock_spin(&sched_lock);
586
587	if (rval == 0 && catch) {
588		PROC_LOCK(p);
589		/* XXX: shouldn't we always be calling cursig() */
590		if (sig != 0 || (sig = cursig(td))) {
591			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
592				rval = EINTR;
593			else
594				rval = ERESTART;
595		}
596		PROC_UNLOCK(p);
597	}
598#ifdef KTRACE
599	if (KTRPOINT(td, KTR_CSW))
600		ktrcsw(0, 0);
601#endif
602	PICKUP_GIANT();
603	if (mtx != NULL) {
604		mtx_lock(mtx);
605		WITNESS_RESTORE(&mtx->mtx_object, mtx);
606	}
607	return (rval);
608}
609
610/*
611 * Implement timeout for msleep()
612 *
613 * If process hasn't been awakened (wchan non-zero),
614 * set timeout flag and undo the sleep.  If proc
615 * is stopped, just unsleep so it will remain stopped.
616 * MP-safe, called without the Giant mutex.
617 */
618static void
619endtsleep(arg)
620	void *arg;
621{
622	register struct thread *td = arg;
623
624	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
625	    td->td_proc->p_comm);
626	mtx_lock_spin(&sched_lock);
627	/*
628	 * This is the other half of the synchronization with msleep()
629	 * described above.  If the PS_TIMEOUT flag is set, we lost the
630	 * race and just need to put the process back on the runqueue.
631	 */
632	if ((td->td_flags & TDF_TIMEOUT) != 0) {
633		td->td_flags &= ~TDF_TIMEOUT;
634		setrunqueue(td);
635	} else if (td->td_wchan != NULL) {
636		if (td->td_state == TDS_SLP)  /* XXXKSE */
637			setrunnable(td);
638		else
639			unsleep(td);
640		td->td_flags |= TDF_TIMEOUT;
641	} else {
642		td->td_flags |= TDF_TIMOFAIL;
643	}
644	mtx_unlock_spin(&sched_lock);
645}
646
647/*
648 * Abort a thread, as if an interrupt had occured.  Only abort
649 * interruptable waits (unfortunatly it isn't only safe to abort others).
650 * This is about identical to cv_abort().
651 * Think about merging them?
652 * Also, whatever the signal code does...
653 */
654void
655abortsleep(struct thread *td)
656{
657
658	mtx_lock_spin(&sched_lock);
659	/*
660	 * If the TDF_TIMEOUT flag is set, just leave. A
661	 * timeout is scheduled anyhow.
662	 */
663	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
664		if (td->td_wchan != NULL) {
665			if (td->td_state == TDS_SLP) {  /* XXXKSE */
666				setrunnable(td);
667			} else {
668				/*
669				 * Probably in a suspended state..
670				 * um.. dunno XXXKSE
671				 */
672				unsleep(td);
673			}
674		}
675	}
676	mtx_unlock_spin(&sched_lock);
677}
678
679/*
680 * Remove a process from its wait queue
681 */
682void
683unsleep(struct thread *td)
684{
685
686	mtx_lock_spin(&sched_lock);
687	if (td->td_wchan != NULL) {
688		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
689		td->td_wchan = NULL;
690	}
691	mtx_unlock_spin(&sched_lock);
692}
693
694/*
695 * Make all processes sleeping on the specified identifier runnable.
696 */
697void
698wakeup(ident)
699	register void *ident;
700{
701	register struct slpquehead *qp;
702	register struct thread *td;
703	struct thread *ntd;
704	struct proc *p;
705
706	mtx_lock_spin(&sched_lock);
707	qp = &slpque[LOOKUP(ident)];
708restart:
709	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
710		ntd = TAILQ_NEXT(td, td_slpq);
711		p = td->td_proc;
712		if (td->td_wchan == ident) {
713			TAILQ_REMOVE(qp, td, td_slpq);
714			td->td_wchan = NULL;
715			if (td->td_state == TDS_SLP) {
716				/* OPTIMIZED EXPANSION OF setrunnable(p); */
717				CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
718				    td, p->p_pid, p->p_comm);
719				if (td->td_ksegrp->kg_slptime > 1)
720					updatepri(td);
721				td->td_ksegrp->kg_slptime = 0;
722				if (p->p_sflag & PS_INMEM) {
723					setrunqueue(td);
724					maybe_resched(td);
725				} else {
726/* XXXKSE Wrong! */			td->td_state = TDS_RUNQ;
727					p->p_sflag |= PS_SWAPINREQ;
728					wakeup(&proc0);
729				}
730				/* END INLINE EXPANSION */
731			}
732			goto restart;
733		}
734	}
735	mtx_unlock_spin(&sched_lock);
736}
737
738/*
739 * Make a process sleeping on the specified identifier runnable.
740 * May wake more than one process if a target process is currently
741 * swapped out.
742 */
743void
744wakeup_one(ident)
745	register void *ident;
746{
747	register struct slpquehead *qp;
748	register struct thread *td;
749	register struct proc *p;
750	struct thread *ntd;
751
752	mtx_lock_spin(&sched_lock);
753	qp = &slpque[LOOKUP(ident)];
754restart:
755	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
756		ntd = TAILQ_NEXT(td, td_slpq);
757		p = td->td_proc;
758		if (td->td_wchan == ident) {
759			TAILQ_REMOVE(qp, td, td_slpq);
760			td->td_wchan = NULL;
761			if (td->td_state == TDS_SLP) {
762				/* OPTIMIZED EXPANSION OF setrunnable(p); */
763				CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
764				    td, p->p_pid, p->p_comm);
765				if (td->td_ksegrp->kg_slptime > 1)
766					updatepri(td);
767				td->td_ksegrp->kg_slptime = 0;
768				if (p->p_sflag & PS_INMEM) {
769					setrunqueue(td);
770					maybe_resched(td);
771					break;
772				} else {
773/* XXXKSE Wrong */			td->td_state = TDS_RUNQ;
774					p->p_sflag |= PS_SWAPINREQ;
775					wakeup(&proc0);
776				}
777				/* END INLINE EXPANSION */
778				goto restart;
779			}
780		}
781	}
782	mtx_unlock_spin(&sched_lock);
783}
784
785/*
786 * The machine independent parts of mi_switch().
787 */
788void
789mi_switch()
790{
791	struct bintime new_switchtime;
792	struct thread *td = curthread;	/* XXX */
793	struct proc *p = td->td_proc;	/* XXX */
794	struct kse *ke = td->td_kse;
795#if 0
796	register struct rlimit *rlim;
797#endif
798	u_int sched_nest;
799
800	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
801	KASSERT((ke->ke_state == KES_RUNNING), ("mi_switch: kse state?"));
802#ifdef INVARIANTS
803	if (td->td_state != TDS_MTX &&
804	    td->td_state != TDS_RUNQ &&
805	    td->td_state != TDS_RUNNING)
806		mtx_assert(&Giant, MA_NOTOWNED);
807#endif
808
809	/*
810	 * Compute the amount of time during which the current
811	 * process was running, and add that to its total so far.
812	 */
813	binuptime(&new_switchtime);
814	bintime_add(&p->p_runtime, &new_switchtime);
815	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
816
817#ifdef DDB
818	/*
819	 * Don't perform context switches from the debugger.
820	 */
821	if (db_active) {
822		mtx_unlock_spin(&sched_lock);
823		db_error("Context switches not allowed in the debugger.");
824	}
825#endif
826
827#if 0
828	/*
829	 * Check if the process exceeds its cpu resource allocation.
830	 * If over max, kill it.
831	 *
832	 * XXX drop sched_lock, pickup Giant
833	 */
834	if (p->p_state != PRS_ZOMBIE &&
835	    p->p_limit->p_cpulimit != RLIM_INFINITY &&
836	    p->p_runtime > p->p_limit->p_cpulimit) {
837		rlim = &p->p_rlimit[RLIMIT_CPU];
838		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
839			mtx_unlock_spin(&sched_lock);
840			PROC_LOCK(p);
841			killproc(p, "exceeded maximum CPU limit");
842			mtx_lock_spin(&sched_lock);
843			PROC_UNLOCK(p);
844		} else {
845			mtx_unlock_spin(&sched_lock);
846			PROC_LOCK(p);
847			psignal(p, SIGXCPU);
848			mtx_lock_spin(&sched_lock);
849			PROC_UNLOCK(p);
850			if (rlim->rlim_cur < rlim->rlim_max) {
851				/* XXX: we should make a private copy */
852				rlim->rlim_cur += 5;
853			}
854		}
855	}
856#endif
857
858	/*
859	 * Pick a new current process and record its start time.
860	 */
861	cnt.v_swtch++;
862	PCPU_SET(switchtime, new_switchtime);
863	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
864	    p->p_comm);
865	sched_nest = sched_lock.mtx_recurse;
866	td->td_lastcpu = ke->ke_oncpu;
867	ke->ke_oncpu = NOCPU;
868	ke->ke_flags &= ~KEF_NEEDRESCHED;
869	/*
870	 * At the last moment: if this KSE is not on the run queue,
871	 * it needs to be freed correctly and the thread treated accordingly.
872	 */
873	if ((td->td_state == TDS_RUNNING) &&
874	    ((ke->ke_flags & KEF_IDLEKSE) == 0)) {
875		/* Put us back on the run queue (kse and all). */
876		setrunqueue(td);
877	} else if ((td->td_flags & TDF_UNBOUND) &&
878	    (td->td_state != TDS_RUNQ)) { /* in case of old code */
879		/*
880		 * We will not be on the run queue.
881		 * Someone else can use the KSE if they need it.
882		 */
883		td->td_kse = NULL;
884		kse_reassign(ke);
885	}
886	cpu_switch();
887	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
888	td->td_kse->ke_state = KES_RUNNING;
889	sched_lock.mtx_recurse = sched_nest;
890	sched_lock.mtx_lock = (uintptr_t)td;
891	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
892	    p->p_comm);
893	if (PCPU_GET(switchtime.sec) == 0)
894		binuptime(PCPU_PTR(switchtime));
895	PCPU_SET(switchticks, ticks);
896}
897
898/*
899 * Change process state to be runnable,
900 * placing it on the run queue if it is in memory,
901 * and awakening the swapper if it isn't in memory.
902 */
903void
904setrunnable(struct thread *td)
905{
906	struct proc *p = td->td_proc;
907
908	mtx_assert(&sched_lock, MA_OWNED);
909	switch (p->p_state) {
910	case PRS_ZOMBIE:
911		panic("setrunnable(1)");
912	default:
913		break;
914	}
915	switch (td->td_state) {
916	case 0:
917	case TDS_RUNNING:
918	case TDS_IWAIT:
919	default:
920		printf("state is %d", td->td_state);
921		panic("setrunnable(2)");
922	case TDS_SUSPENDED:
923		thread_unsuspend(p);
924		break;
925	case TDS_SLP:			/* e.g. when sending signals */
926		if (td->td_flags & TDF_CVWAITQ)
927			cv_waitq_remove(td);
928		else
929			unsleep(td);
930	case TDS_UNQUEUED:  /* being put back onto the queue */
931	case TDS_NEW:	/* not yet had time to suspend */
932	case TDS_RUNQ:	/* not yet had time to suspend */
933		break;
934	}
935	if (td->td_ksegrp->kg_slptime > 1)
936		updatepri(td);
937	td->td_ksegrp->kg_slptime = 0;
938	if ((p->p_sflag & PS_INMEM) == 0) {
939		td->td_state = TDS_RUNQ; /* XXXKSE not a good idea */
940		p->p_sflag |= PS_SWAPINREQ;
941		wakeup(&proc0);
942	} else {
943		if (td->td_state != TDS_RUNQ)
944			setrunqueue(td); /* XXXKSE */
945		maybe_resched(td);
946	}
947}
948
949/*
950 * Compute the priority of a process when running in user mode.
951 * Arrange to reschedule if the resulting priority is better
952 * than that of the current process.
953 */
954void
955resetpriority(kg)
956	register struct ksegrp *kg;
957{
958	register unsigned int newpriority;
959	struct thread *td;
960
961	mtx_lock_spin(&sched_lock);
962	if (kg->kg_pri_class == PRI_TIMESHARE) {
963		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
964		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
965		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
966		    PRI_MAX_TIMESHARE);
967		kg->kg_user_pri = newpriority;
968	}
969	FOREACH_THREAD_IN_GROUP(kg, td) {
970		maybe_resched(td);			/* XXXKSE silly */
971	}
972	mtx_unlock_spin(&sched_lock);
973}
974
975/*
976 * Compute a tenex style load average of a quantity on
977 * 1, 5 and 15 minute intervals.
978 * XXXKSE   Needs complete rewrite when correct info is available.
979 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
980 */
981static void
982loadav(void *arg)
983{
984	int i, nrun;
985	struct loadavg *avg;
986	struct proc *p;
987	struct thread *td;
988
989	avg = &averunnable;
990	sx_slock(&allproc_lock);
991	nrun = 0;
992	FOREACH_PROC_IN_SYSTEM(p) {
993		FOREACH_THREAD_IN_PROC(p, td) {
994			switch (td->td_state) {
995			case TDS_RUNQ:
996			case TDS_RUNNING:
997				if ((p->p_flag & P_NOLOAD) != 0)
998					goto nextproc;
999				nrun++; /* XXXKSE */
1000			default:
1001				break;
1002			}
1003nextproc:
1004			continue;
1005		}
1006	}
1007	sx_sunlock(&allproc_lock);
1008	for (i = 0; i < 3; i++)
1009		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1010		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1011
1012	/*
1013	 * Schedule the next update to occur after 5 seconds, but add a
1014	 * random variation to avoid synchronisation with processes that
1015	 * run at regular intervals.
1016	 */
1017	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
1018	    loadav, NULL);
1019}
1020
1021/* ARGSUSED */
1022static void
1023sched_setup(dummy)
1024	void *dummy;
1025{
1026
1027	callout_init(&schedcpu_callout, 1);
1028	callout_init(&roundrobin_callout, 0);
1029	callout_init(&loadav_callout, 0);
1030
1031	/* Kick off timeout driven events by calling first time. */
1032	roundrobin(NULL);
1033	schedcpu(NULL);
1034	loadav(NULL);
1035}
1036
1037/*
1038 * We adjust the priority of the current process.  The priority of
1039 * a process gets worse as it accumulates CPU time.  The cpu usage
1040 * estimator (p_estcpu) is increased here.  resetpriority() will
1041 * compute a different priority each time p_estcpu increases by
1042 * INVERSE_ESTCPU_WEIGHT
1043 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1044 * quite quickly when the process is running (linearly), and decays
1045 * away exponentially, at a rate which is proportionally slower when
1046 * the system is busy.  The basic principle is that the system will
1047 * 90% forget that the process used a lot of CPU time in 5 * loadav
1048 * seconds.  This causes the system to favor processes which haven't
1049 * run much recently, and to round-robin among other processes.
1050 */
1051void
1052schedclock(td)
1053	struct thread *td;
1054{
1055	struct kse *ke;
1056	struct ksegrp *kg;
1057
1058	KASSERT((td != NULL), ("schedlock: null thread pointer"));
1059	ke = td->td_kse;
1060	kg = td->td_ksegrp;
1061	ke->ke_cpticks++;
1062	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
1063	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1064		resetpriority(kg);
1065		if (td->td_priority >= PUSER)
1066			td->td_priority = kg->kg_user_pri;
1067	}
1068}
1069
1070/*
1071 * General purpose yield system call
1072 */
1073int
1074yield(struct thread *td, struct yield_args *uap)
1075{
1076	struct ksegrp *kg = td->td_ksegrp;
1077
1078	mtx_assert(&Giant, MA_NOTOWNED);
1079	mtx_lock_spin(&sched_lock);
1080	td->td_priority = PRI_MAX_TIMESHARE;
1081	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
1082	mi_switch();
1083	mtx_unlock_spin(&sched_lock);
1084	td->td_retval[0] = 0;
1085
1086	return (0);
1087}
1088
1089