kern_synch.c revision 99072
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 99072 2002-06-29 17:26:22Z julian $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup(void *dummy);
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep(void *);
94static void	loadav(void *arg);
95static void	roundrobin(void *arg);
96static void	schedcpu(void *arg);
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
116	"Roundrobin scheduling quantum in microseconds");
117
118/*
119 * Arrange to reschedule if necessary, taking the priorities and
120 * schedulers into account.
121 */
122void
123maybe_resched(struct thread *td)
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (td->td_priority < curthread->td_priority)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	struct thread *td;
260	struct proc *p;
261	struct kse *ke;
262	struct ksegrp *kg;
263	int realstathz;
264	int awake;
265
266	realstathz = stathz ? stathz : hz;
267	sx_slock(&allproc_lock);
268	FOREACH_PROC_IN_SYSTEM(p) {
269		mtx_lock_spin(&sched_lock);
270		p->p_swtime++;
271		FOREACH_KSEGRP_IN_PROC(p, kg) {
272			awake = 0;
273			FOREACH_KSE_IN_GROUP(kg, ke) {
274				/*
275				 * Increment time in/out of memory and sleep
276				 * time (if sleeping).  We ignore overflow;
277				 * with 16-bit int's (remember them?)
278				 * overflow takes 45 days.
279				 */
280				/* XXXKSE **WRONG***/
281				/*
282				 * the kse slptimes are not touched in wakeup
283				 * because the thread may not HAVE a KSE
284				 */
285				if (ke->ke_state == KES_ONRUNQ &&
286				    ke->ke_state == KES_RUNNING) {
287					ke->ke_slptime++;
288				} else {
289					ke->ke_slptime = 0;
290					awake = 1;
291				}
292
293				/*
294				 * pctcpu is only for ps?
295				 * Do it per kse.. and add them up at the end?
296				 * XXXKSE
297				 */
298				ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> FSHIFT;
299				/*
300				 * If the kse has been idle the entire second,
301				 * stop recalculating its priority until
302				 * it wakes up.
303				 */
304				if (ke->ke_slptime > 1) {
305					continue;
306				}
307
308#if	(FSHIFT >= CCPU_SHIFT)
309				ke->ke_pctcpu += (realstathz == 100) ?
310				    ((fixpt_t) ke->ke_cpticks) <<
311				    (FSHIFT - CCPU_SHIFT) :
312				    100 * (((fixpt_t) ke->ke_cpticks) <<
313				    (FSHIFT - CCPU_SHIFT)) / realstathz;
314#else
315				ke->ke_pctcpu += ((FSCALE - ccpu) *
316				    (ke->ke_cpticks * FSCALE / realstathz)) >>
317				    FSHIFT;
318#endif
319				ke->ke_cpticks = 0;
320			} /* end of kse loop */
321			if (awake == 0) {
322				kg->kg_slptime++;
323			} else {
324				kg->kg_slptime = 0;
325			}
326			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
327		      	resetpriority(kg);
328			FOREACH_THREAD_IN_GROUP(kg, td) {
329				int changedqueue;
330				if (td->td_priority >= PUSER) {
331					/*
332					 * Only change the priority
333					 * of threads that are still at their
334					 * user priority.
335					 * XXXKSE This is problematic
336					 * as we may need to re-order
337					 * the threads on the KSEG list.
338					 */
339					changedqueue =
340					    ((td->td_priority / RQ_PPQ) !=
341					     (kg->kg_user_pri / RQ_PPQ));
342
343					td->td_priority = kg->kg_user_pri;
344					if (changedqueue &&
345					    td->td_state == TDS_RUNQ) {
346						/* this could be optimised */
347						remrunqueue(td);
348						td->td_priority =
349						    kg->kg_user_pri;
350						setrunqueue(td);
351					} else {
352						td->td_priority = kg->kg_user_pri;
353					}
354				}
355			}
356		} /* end of ksegrp loop */
357		mtx_unlock_spin(&sched_lock);
358	} /* end of process loop */
359	sx_sunlock(&allproc_lock);
360	wakeup(&lbolt);
361	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
362}
363
364/*
365 * Recalculate the priority of a process after it has slept for a while.
366 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
367 * least six times the loadfactor will decay p_estcpu to zero.
368 */
369void
370updatepri(td)
371	register struct thread *td;
372{
373	register struct ksegrp *kg;
374	register unsigned int newcpu;
375	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
376
377	if (td == NULL)
378		return;
379	kg = td->td_ksegrp;
380	newcpu = kg->kg_estcpu;
381	if (kg->kg_slptime > 5 * loadfac)
382		kg->kg_estcpu = 0;
383	else {
384		kg->kg_slptime--;	/* the first time was done in schedcpu */
385		while (newcpu && --kg->kg_slptime)
386			newcpu = decay_cpu(loadfac, newcpu);
387		kg->kg_estcpu = newcpu;
388	}
389	resetpriority(td->td_ksegrp);
390}
391
392/*
393 * We're only looking at 7 bits of the address; everything is
394 * aligned to 4, lots of things are aligned to greater powers
395 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
396 */
397#define TABLESIZE	128
398static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
399#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
400
401void
402sleepinit(void)
403{
404	int i;
405
406	sched_quantum = hz/10;
407	hogticks = 2 * sched_quantum;
408	for (i = 0; i < TABLESIZE; i++)
409		TAILQ_INIT(&slpque[i]);
410}
411
412/*
413 * General sleep call.  Suspends the current process until a wakeup is
414 * performed on the specified identifier.  The process will then be made
415 * runnable with the specified priority.  Sleeps at most timo/hz seconds
416 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
417 * before and after sleeping, else signals are not checked.  Returns 0 if
418 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
419 * signal needs to be delivered, ERESTART is returned if the current system
420 * call should be restarted if possible, and EINTR is returned if the system
421 * call should be interrupted by the signal (return EINTR).
422 *
423 * The mutex argument is exited before the caller is suspended, and
424 * entered before msleep returns.  If priority includes the PDROP
425 * flag the mutex is not entered before returning.
426 */
427
428int
429msleep(ident, mtx, priority, wmesg, timo)
430	void *ident;
431	struct mtx *mtx;
432	int priority, timo;
433	const char *wmesg;
434{
435	struct thread *td = curthread;
436	struct proc *p = td->td_proc;
437	int sig, catch = priority & PCATCH;
438	int rval = 0;
439	WITNESS_SAVE_DECL(mtx);
440
441#ifdef KTRACE
442	if (KTRPOINT(td, KTR_CSW))
443		ktrcsw(1, 0);
444#endif
445	KASSERT((td->td_kse != NULL), ("msleep: NULL KSE?"));
446	KASSERT((td->td_kse->ke_state == KES_RUNNING), ("msleep: kse state?"));
447	WITNESS_SLEEP(0, &mtx->mtx_object);
448	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
449	    ("sleeping without a mutex"));
450	/*
451	 * If we are capable of async syscalls and there isn't already
452	 * another one ready to return, start a new thread
453	 * and queue it as ready to run. Note that there is danger here
454	 * because we need to make sure that we don't sleep allocating
455	 * the thread (recursion here might be bad).
456	 * Hence the TDF_INMSLEEP flag.
457	 */
458	if (p->p_flag & P_KSES) {
459		/* Just don't bother if we are exiting
460				and not the exiting thread. */
461		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
462			return (EINTR);
463		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
464			/*
465			 * If we have no queued work to do, then
466			 * upcall to the UTS to see if it has more to do.
467			 * We don't need to upcall now, just make it and
468			 * queue it.
469			 */
470			mtx_lock_spin(&sched_lock);
471			if (TAILQ_FIRST(&td->td_ksegrp->kg_runq) == NULL) {
472				/* Don't recurse here! */
473	KASSERT((td->td_kse->ke_state == KES_RUNNING), ("msleep: kse stateX?"));
474				td->td_flags |= TDF_INMSLEEP;
475				thread_schedule_upcall(td, td->td_kse);
476				td->td_flags &= ~TDF_INMSLEEP;
477	KASSERT((td->td_kse->ke_state == KES_RUNNING), ("msleep: kse stateY?"));
478			}
479			mtx_unlock_spin(&sched_lock);
480		}
481		KASSERT((td->td_kse != NULL), ("msleep: NULL KSE2?"));
482		KASSERT((td->td_kse->ke_state == KES_RUNNING),
483		    ("msleep: kse state2?"));
484		KASSERT((td->td_kse->ke_thread == td),
485		    ("msleep: kse/thread mismatch?"));
486	}
487	mtx_lock_spin(&sched_lock);
488	if (cold || panicstr) {
489		/*
490		 * After a panic, or during autoconfiguration,
491		 * just give interrupts a chance, then just return;
492		 * don't run any other procs or panic below,
493		 * in case this is the idle process and already asleep.
494		 */
495		if (mtx != NULL && priority & PDROP)
496			mtx_unlock(mtx);
497		mtx_unlock_spin(&sched_lock);
498		return (0);
499	}
500
501	DROP_GIANT();
502
503	if (mtx != NULL) {
504		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
505		WITNESS_SAVE(&mtx->mtx_object, mtx);
506		mtx_unlock(mtx);
507		if (priority & PDROP)
508			mtx = NULL;
509	}
510
511	KASSERT(p != NULL, ("msleep1"));
512	KASSERT(ident != NULL && td->td_state == TDS_RUNNING, ("msleep"));
513
514	td->td_wchan = ident;
515	td->td_wmesg = wmesg;
516	td->td_kse->ke_slptime = 0;	/* XXXKSE */
517	td->td_ksegrp->kg_slptime = 0;
518	td->td_priority = priority & PRIMASK;
519	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
520	    td, p->p_pid, p->p_comm, wmesg, ident);
521	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
522	if (timo)
523		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
524	/*
525	 * We put ourselves on the sleep queue and start our timeout
526	 * before calling thread_suspend_check, as we could stop there, and
527	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
528	 * without resuming us, thus we must be ready for sleep
529	 * when cursig is called.  If the wakeup happens while we're
530	 * stopped, td->td_wchan will be 0 upon return from cursig.
531	 */
532	if (catch) {
533		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
534		    p->p_pid, p->p_comm);
535		td->td_flags |= TDF_SINTR;
536		mtx_unlock_spin(&sched_lock);
537		PROC_LOCK(p);
538		sig = cursig(td);
539		if (thread_suspend_check(1)) {
540			sig = EINTR;
541			rval = EINTR;
542		}
543		mtx_lock_spin(&sched_lock);
544		PROC_UNLOCK(p);
545		if (sig != 0) {
546			if (td->td_wchan != NULL)
547				unsleep(td);
548		} else if (td->td_wchan == NULL)
549			catch = 0;
550	} else
551		sig = 0;
552	if (td->td_wchan != NULL) {
553		p->p_stats->p_ru.ru_nvcsw++;
554		td->td_state = TDS_SLP;
555		mi_switch();
556	}
557	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
558	    p->p_comm);
559	KASSERT(td->td_state == TDS_RUNNING, ("running but not TDS_RUNNING"));
560	td->td_flags &= ~TDF_SINTR;
561	if (td->td_flags & TDF_TIMEOUT) {
562		td->td_flags &= ~TDF_TIMEOUT;
563		if (sig == 0)
564			rval = EWOULDBLOCK;
565	} else if (td->td_flags & TDF_TIMOFAIL)
566		td->td_flags &= ~TDF_TIMOFAIL;
567	else if (timo && callout_stop(&td->td_slpcallout) == 0) {
568		/*
569		 * This isn't supposed to be pretty.  If we are here, then
570		 * the endtsleep() callout is currently executing on another
571		 * CPU and is either spinning on the sched_lock or will be
572		 * soon.  If we don't synchronize here, there is a chance
573		 * that this process may msleep() again before the callout
574		 * has a chance to run and the callout may end up waking up
575		 * the wrong msleep().  Yuck.
576		 */
577		td->td_flags |= TDF_TIMEOUT;
578		p->p_stats->p_ru.ru_nivcsw++;
579		mi_switch();
580	}
581	mtx_unlock_spin(&sched_lock);
582
583	if (rval == 0 && catch) {
584		PROC_LOCK(p);
585		/* XXX: shouldn't we always be calling cursig() */
586		if (sig != 0 || (sig = cursig(td))) {
587			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
588				rval = EINTR;
589			else
590				rval = ERESTART;
591		}
592		PROC_UNLOCK(p);
593	}
594#ifdef KTRACE
595	if (KTRPOINT(td, KTR_CSW))
596		ktrcsw(0, 0);
597#endif
598	PICKUP_GIANT();
599	if (mtx != NULL) {
600		mtx_lock(mtx);
601		WITNESS_RESTORE(&mtx->mtx_object, mtx);
602	}
603	return (rval);
604}
605
606/*
607 * Implement timeout for msleep()
608 *
609 * If process hasn't been awakened (wchan non-zero),
610 * set timeout flag and undo the sleep.  If proc
611 * is stopped, just unsleep so it will remain stopped.
612 * MP-safe, called without the Giant mutex.
613 */
614static void
615endtsleep(arg)
616	void *arg;
617{
618	register struct thread *td = arg;
619
620	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
621	    td->td_proc->p_comm);
622	mtx_lock_spin(&sched_lock);
623	/*
624	 * This is the other half of the synchronization with msleep()
625	 * described above.  If the PS_TIMEOUT flag is set, we lost the
626	 * race and just need to put the process back on the runqueue.
627	 */
628	if ((td->td_flags & TDF_TIMEOUT) != 0) {
629		td->td_flags &= ~TDF_TIMEOUT;
630		setrunqueue(td);
631	} else if (td->td_wchan != NULL) {
632		if (td->td_state == TDS_SLP)  /* XXXKSE */
633			setrunnable(td);
634		else
635			unsleep(td);
636		td->td_flags |= TDF_TIMEOUT;
637	} else {
638		td->td_flags |= TDF_TIMOFAIL;
639	}
640	mtx_unlock_spin(&sched_lock);
641}
642
643/*
644 * Abort a thread, as if an interrupt had occured.  Only abort
645 * interruptable waits (unfortunatly it isn't only safe to abort others).
646 * This is about identical to cv_abort().
647 * Think about merging them?
648 * Also, whatever the signal code does...
649 */
650void
651abortsleep(struct thread *td)
652{
653
654	mtx_lock_spin(&sched_lock);
655	/*
656	 * If the TDF_TIMEOUT flag is set, just leave. A
657	 * timeout is scheduled anyhow.
658	 */
659	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
660		if (td->td_wchan != NULL) {
661			if (td->td_state == TDS_SLP) {  /* XXXKSE */
662				setrunnable(td);
663			} else {
664				/*
665				 * Probably in a suspended state..
666				 * um.. dunno XXXKSE
667				 */
668				unsleep(td);
669			}
670		}
671	}
672	mtx_unlock_spin(&sched_lock);
673}
674
675/*
676 * Remove a process from its wait queue
677 */
678void
679unsleep(struct thread *td)
680{
681
682	mtx_lock_spin(&sched_lock);
683	if (td->td_wchan != NULL) {
684		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
685		td->td_wchan = NULL;
686	}
687	mtx_unlock_spin(&sched_lock);
688}
689
690/*
691 * Make all processes sleeping on the specified identifier runnable.
692 */
693void
694wakeup(ident)
695	register void *ident;
696{
697	register struct slpquehead *qp;
698	register struct thread *td;
699	struct thread *ntd;
700	struct proc *p;
701
702	mtx_lock_spin(&sched_lock);
703	qp = &slpque[LOOKUP(ident)];
704restart:
705	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
706		ntd = TAILQ_NEXT(td, td_slpq);
707		p = td->td_proc;
708		if (td->td_wchan == ident) {
709			TAILQ_REMOVE(qp, td, td_slpq);
710			td->td_wchan = NULL;
711			if (td->td_state == TDS_SLP) {
712				/* OPTIMIZED EXPANSION OF setrunnable(p); */
713				CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
714				    td, p->p_pid, p->p_comm);
715				if (td->td_ksegrp->kg_slptime > 1)
716					updatepri(td);
717				td->td_ksegrp->kg_slptime = 0;
718				if (p->p_sflag & PS_INMEM) {
719					setrunqueue(td);
720					maybe_resched(td);
721				} else {
722/* XXXKSE Wrong! */			td->td_state = TDS_RUNQ;
723					p->p_sflag |= PS_SWAPINREQ;
724					wakeup(&proc0);
725				}
726				/* END INLINE EXPANSION */
727			}
728			goto restart;
729		}
730	}
731	mtx_unlock_spin(&sched_lock);
732}
733
734/*
735 * Make a process sleeping on the specified identifier runnable.
736 * May wake more than one process if a target process is currently
737 * swapped out.
738 */
739void
740wakeup_one(ident)
741	register void *ident;
742{
743	register struct slpquehead *qp;
744	register struct thread *td;
745	register struct proc *p;
746	struct thread *ntd;
747
748	mtx_lock_spin(&sched_lock);
749	qp = &slpque[LOOKUP(ident)];
750restart:
751	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
752		ntd = TAILQ_NEXT(td, td_slpq);
753		p = td->td_proc;
754		if (td->td_wchan == ident) {
755			TAILQ_REMOVE(qp, td, td_slpq);
756			td->td_wchan = NULL;
757			if (td->td_state == TDS_SLP) {
758				/* OPTIMIZED EXPANSION OF setrunnable(p); */
759				CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
760				    td, p->p_pid, p->p_comm);
761				if (td->td_ksegrp->kg_slptime > 1)
762					updatepri(td);
763				td->td_ksegrp->kg_slptime = 0;
764				if (p->p_sflag & PS_INMEM) {
765					setrunqueue(td);
766					maybe_resched(td);
767					break;
768				} else {
769/* XXXKSE Wrong */			td->td_state = TDS_RUNQ;
770					p->p_sflag |= PS_SWAPINREQ;
771					wakeup(&proc0);
772				}
773				/* END INLINE EXPANSION */
774				goto restart;
775			}
776		}
777	}
778	mtx_unlock_spin(&sched_lock);
779}
780
781/*
782 * The machine independent parts of mi_switch().
783 */
784void
785mi_switch()
786{
787	struct bintime new_switchtime;
788	struct thread *td = curthread;	/* XXX */
789	struct proc *p = td->td_proc;	/* XXX */
790	struct kse *ke = td->td_kse;
791#if 0
792	register struct rlimit *rlim;
793#endif
794	u_int sched_nest;
795
796	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
797	KASSERT((ke->ke_state == KES_RUNNING), ("mi_switch: kse state?"));
798#ifdef INVARIANTS
799	if (td->td_state != TDS_MTX &&
800	    td->td_state != TDS_RUNQ &&
801	    td->td_state != TDS_RUNNING)
802		mtx_assert(&Giant, MA_NOTOWNED);
803#endif
804
805	/*
806	 * Compute the amount of time during which the current
807	 * process was running, and add that to its total so far.
808	 */
809	binuptime(&new_switchtime);
810	bintime_add(&p->p_runtime, &new_switchtime);
811	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
812
813#ifdef DDB
814	/*
815	 * Don't perform context switches from the debugger.
816	 */
817	if (db_active) {
818		mtx_unlock_spin(&sched_lock);
819		db_error("Context switches not allowed in the debugger.");
820	}
821#endif
822
823#if 0
824	/*
825	 * Check if the process exceeds its cpu resource allocation.
826	 * If over max, kill it.
827	 *
828	 * XXX drop sched_lock, pickup Giant
829	 */
830	if (p->p_state != PRS_ZOMBIE &&
831	    p->p_limit->p_cpulimit != RLIM_INFINITY &&
832	    p->p_runtime > p->p_limit->p_cpulimit) {
833		rlim = &p->p_rlimit[RLIMIT_CPU];
834		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
835			mtx_unlock_spin(&sched_lock);
836			PROC_LOCK(p);
837			killproc(p, "exceeded maximum CPU limit");
838			mtx_lock_spin(&sched_lock);
839			PROC_UNLOCK(p);
840		} else {
841			mtx_unlock_spin(&sched_lock);
842			PROC_LOCK(p);
843			psignal(p, SIGXCPU);
844			mtx_lock_spin(&sched_lock);
845			PROC_UNLOCK(p);
846			if (rlim->rlim_cur < rlim->rlim_max) {
847				/* XXX: we should make a private copy */
848				rlim->rlim_cur += 5;
849			}
850		}
851	}
852#endif
853
854	/*
855	 * Pick a new current process and record its start time.
856	 */
857	cnt.v_swtch++;
858	PCPU_SET(switchtime, new_switchtime);
859	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
860	    p->p_comm);
861	sched_nest = sched_lock.mtx_recurse;
862	td->td_lastcpu = ke->ke_oncpu;
863	ke->ke_oncpu = NOCPU;
864	ke->ke_flags &= ~KEF_NEEDRESCHED;
865	/*
866	 * At the last moment: if this KSE is not on the run queue,
867	 * it needs to be freed correctly and the thread treated accordingly.
868	 */
869	if ((td->td_state == TDS_RUNNING) &&
870	    ((ke->ke_flags & KEF_IDLEKSE) == 0)) {
871		/* Put us back on the run queue (kse and all). */
872		setrunqueue(td);
873	} else if ((td->td_flags & TDF_UNBOUND) &&
874	    (td->td_state != TDS_RUNQ)) { /* in case of old code */
875		/*
876		 * We will not be on the run queue.
877		 * Someone else can use the KSE if they need it.
878		 */
879		td->td_kse = NULL;
880		kse_reassign(ke);
881	}
882	cpu_switch();
883	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
884	td->td_kse->ke_state = KES_RUNNING;
885	sched_lock.mtx_recurse = sched_nest;
886	sched_lock.mtx_lock = (uintptr_t)td;
887	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
888	    p->p_comm);
889	if (PCPU_GET(switchtime.sec) == 0)
890		binuptime(PCPU_PTR(switchtime));
891	PCPU_SET(switchticks, ticks);
892}
893
894/*
895 * Change process state to be runnable,
896 * placing it on the run queue if it is in memory,
897 * and awakening the swapper if it isn't in memory.
898 */
899void
900setrunnable(struct thread *td)
901{
902	struct proc *p = td->td_proc;
903
904	mtx_lock_spin(&sched_lock);
905	switch (p->p_state) {
906	case PRS_ZOMBIE:
907		panic("setrunnable(1)");
908	default:
909		break;
910	}
911	switch (td->td_state) {
912	case 0:
913	case TDS_RUNNING:
914	case TDS_IWAIT:
915	default:
916		printf("state is %d", td->td_state);
917		panic("setrunnable(2)");
918	case TDS_SUSPENDED:
919		thread_unsuspend(p);
920		break;
921	case TDS_SLP:			/* e.g. when sending signals */
922		if (td->td_flags & TDF_CVWAITQ)
923			cv_waitq_remove(td);
924		else
925			unsleep(td);
926	case TDS_UNQUEUED:  /* being put back onto the queue */
927	case TDS_NEW:	/* not yet had time to suspend */
928	case TDS_RUNQ:	/* not yet had time to suspend */
929		break;
930	}
931	if (td->td_ksegrp->kg_slptime > 1)
932		updatepri(td);
933	td->td_ksegrp->kg_slptime = 0;
934	if ((p->p_sflag & PS_INMEM) == 0) {
935		td->td_state = TDS_RUNQ; /* XXXKSE not a good idea */
936		p->p_sflag |= PS_SWAPINREQ;
937		wakeup(&proc0);
938	} else {
939		if (td->td_state != TDS_RUNQ)
940			setrunqueue(td); /* XXXKSE */
941		maybe_resched(td);
942	}
943	mtx_unlock_spin(&sched_lock);
944}
945
946/*
947 * Compute the priority of a process when running in user mode.
948 * Arrange to reschedule if the resulting priority is better
949 * than that of the current process.
950 */
951void
952resetpriority(kg)
953	register struct ksegrp *kg;
954{
955	register unsigned int newpriority;
956	struct thread *td;
957
958	mtx_lock_spin(&sched_lock);
959	if (kg->kg_pri_class == PRI_TIMESHARE) {
960		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
961		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
962		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
963		    PRI_MAX_TIMESHARE);
964		kg->kg_user_pri = newpriority;
965	}
966	FOREACH_THREAD_IN_GROUP(kg, td) {
967		maybe_resched(td);			/* XXXKSE silly */
968	}
969	mtx_unlock_spin(&sched_lock);
970}
971
972/*
973 * Compute a tenex style load average of a quantity on
974 * 1, 5 and 15 minute intervals.
975 * XXXKSE   Needs complete rewrite when correct info is available.
976 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
977 */
978static void
979loadav(void *arg)
980{
981	int i, nrun;
982	struct loadavg *avg;
983	struct proc *p;
984	struct thread *td;
985
986	avg = &averunnable;
987	sx_slock(&allproc_lock);
988	nrun = 0;
989	FOREACH_PROC_IN_SYSTEM(p) {
990		FOREACH_THREAD_IN_PROC(p, td) {
991			switch (td->td_state) {
992			case TDS_RUNQ:
993			case TDS_RUNNING:
994				if ((p->p_flag & P_NOLOAD) != 0)
995					goto nextproc;
996				nrun++; /* XXXKSE */
997			default:
998				break;
999			}
1000nextproc:
1001			continue;
1002		}
1003	}
1004	sx_sunlock(&allproc_lock);
1005	for (i = 0; i < 3; i++)
1006		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1007		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1008
1009	/*
1010	 * Schedule the next update to occur after 5 seconds, but add a
1011	 * random variation to avoid synchronisation with processes that
1012	 * run at regular intervals.
1013	 */
1014	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
1015	    loadav, NULL);
1016}
1017
1018/* ARGSUSED */
1019static void
1020sched_setup(dummy)
1021	void *dummy;
1022{
1023
1024	callout_init(&schedcpu_callout, 1);
1025	callout_init(&roundrobin_callout, 0);
1026	callout_init(&loadav_callout, 0);
1027
1028	/* Kick off timeout driven events by calling first time. */
1029	roundrobin(NULL);
1030	schedcpu(NULL);
1031	loadav(NULL);
1032}
1033
1034/*
1035 * We adjust the priority of the current process.  The priority of
1036 * a process gets worse as it accumulates CPU time.  The cpu usage
1037 * estimator (p_estcpu) is increased here.  resetpriority() will
1038 * compute a different priority each time p_estcpu increases by
1039 * INVERSE_ESTCPU_WEIGHT
1040 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1041 * quite quickly when the process is running (linearly), and decays
1042 * away exponentially, at a rate which is proportionally slower when
1043 * the system is busy.  The basic principle is that the system will
1044 * 90% forget that the process used a lot of CPU time in 5 * loadav
1045 * seconds.  This causes the system to favor processes which haven't
1046 * run much recently, and to round-robin among other processes.
1047 */
1048void
1049schedclock(td)
1050	struct thread *td;
1051{
1052	struct kse *ke;
1053	struct ksegrp *kg;
1054
1055	KASSERT((td != NULL), ("schedlock: null thread pointer"));
1056	ke = td->td_kse;
1057	kg = td->td_ksegrp;
1058	ke->ke_cpticks++;
1059	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
1060	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1061		resetpriority(kg);
1062		if (td->td_priority >= PUSER)
1063			td->td_priority = kg->kg_user_pri;
1064	}
1065}
1066
1067/*
1068 * General purpose yield system call
1069 */
1070int
1071yield(struct thread *td, struct yield_args *uap)
1072{
1073	struct ksegrp *kg = td->td_ksegrp;
1074
1075	mtx_assert(&Giant, MA_NOTOWNED);
1076	mtx_lock_spin(&sched_lock);
1077	td->td_priority = PRI_MAX_TIMESHARE;
1078	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
1079	mi_switch();
1080	mtx_unlock_spin(&sched_lock);
1081	td->td_retval[0] = 0;
1082
1083	return (0);
1084}
1085
1086