kern_synch.c revision 85368
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 85368 2001-10-23 17:52:49Z jhb $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup __P((void *dummy));
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep __P((void *));
94static void	loadav __P((void *arg));
95static void	roundrobin __P((void *arg));
96static void	schedcpu __P((void *arg));
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
116
117/*
118 * Arrange to reschedule if necessary, taking the priorities and
119 * schedulers into account.
120 */
121void
122maybe_resched(kg)
123	struct ksegrp *kg;
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (kg->kg_pri.pri_level < curthread->td_ksegrp->kg_pri.pri_level)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	register struct proc *p;
260	register struct kse *ke;
261	register struct ksegrp *kg;
262	register int realstathz;
263	int awake;
264
265	realstathz = stathz ? stathz : hz;
266	sx_slock(&allproc_lock);
267	FOREACH_PROC_IN_SYSTEM(p) {
268		mtx_lock_spin(&sched_lock);
269		p->p_swtime++;
270		FOREACH_KSEGRP_IN_PROC(p, kg) {
271			awake = 0;
272			FOREACH_KSE_IN_GROUP(kg, ke) {
273				/*
274				 * Increment time in/out of memory and sleep
275				 * time (if sleeping).  We ignore overflow;
276				 * with 16-bit int's (remember them?)
277				 * overflow takes 45 days.
278				 */
279				/* XXXKSE */
280			/*	if ((ke->ke_flags & KEF_ONRUNQ) == 0) */
281				if (p->p_stat == SSLEEP || p->p_stat == SSTOP) {
282					ke->ke_slptime++;
283				} else {
284					ke->ke_slptime = 0;
285					awake = 1;
286				}
287
288				/*
289				 * pctcpu is only for ps?
290				 * Do it per kse.. and add them up at the end?
291				 * XXXKSE
292				 */
293				ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> FSHIFT;
294				/*
295				 * If the kse has been idle the entire second,
296				 * stop recalculating its priority until
297				 * it wakes up.
298				 */
299				if (ke->ke_slptime > 1) {
300					continue;
301				}
302
303#if	(FSHIFT >= CCPU_SHIFT)
304				ke->ke_pctcpu += (realstathz == 100) ?
305				    ((fixpt_t) ke->ke_cpticks) <<
306				    (FSHIFT - CCPU_SHIFT) :
307				    100 * (((fixpt_t) ke->ke_cpticks) <<
308				    (FSHIFT - CCPU_SHIFT)) / realstathz;
309#else
310				ke->ke_pctcpu += ((FSCALE - ccpu) *
311				    (ke->ke_cpticks * FSCALE / realstathz)) >>
312				    FSHIFT;
313#endif
314				ke->ke_cpticks = 0;
315			} /* end of kse loop */
316			if (awake == 0) {
317				kg->kg_slptime++;
318			} else {
319				kg->kg_slptime = 0;
320			}
321			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
322		      	resetpriority(kg);
323		      	if (kg->kg_pri.pri_level >= PUSER &&
324			    (p->p_sflag & PS_INMEM)) {
325				int changedqueue =
326				    ((kg->kg_pri.pri_level / RQ_PPQ) !=
327				     (kg->kg_pri.pri_user / RQ_PPQ));
328
329				kg->kg_pri.pri_level = kg->kg_pri.pri_user;
330				FOREACH_KSE_IN_GROUP(kg, ke) {
331					if ((ke->ke_oncpu == NOCPU) && 	/* idle */
332					    (p->p_stat == SRUN) && /* XXXKSE */
333					    changedqueue) {
334						remrunqueue(ke->ke_thread);
335						setrunqueue(ke->ke_thread);
336					}
337				}
338			}
339		} /* end of ksegrp loop */
340		mtx_unlock_spin(&sched_lock);
341	} /* end of process loop */
342	sx_sunlock(&allproc_lock);
343	wakeup((caddr_t)&lbolt);
344	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
345}
346
347/*
348 * Recalculate the priority of a process after it has slept for a while.
349 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
350 * least six times the loadfactor will decay p_estcpu to zero.
351 */
352void
353updatepri(td)
354	register struct thread *td;
355{
356	register struct ksegrp *kg;
357	register unsigned int newcpu;
358	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
359
360	if (td == NULL)
361		return;
362	kg = td->td_ksegrp;
363	newcpu = kg->kg_estcpu;
364	if (kg->kg_slptime > 5 * loadfac)
365		kg->kg_estcpu = 0;
366	else {
367		kg->kg_slptime--;	/* the first time was done in schedcpu */
368		while (newcpu && --kg->kg_slptime)
369			newcpu = decay_cpu(loadfac, newcpu);
370		kg->kg_estcpu = newcpu;
371	}
372	resetpriority(td->td_ksegrp);
373}
374
375/*
376 * We're only looking at 7 bits of the address; everything is
377 * aligned to 4, lots of things are aligned to greater powers
378 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
379 */
380#define TABLESIZE	128
381static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
382#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
383
384void
385sleepinit(void)
386{
387	int i;
388
389	sched_quantum = hz/10;
390	hogticks = 2 * sched_quantum;
391	for (i = 0; i < TABLESIZE; i++)
392		TAILQ_INIT(&slpque[i]);
393}
394
395/*
396 * General sleep call.  Suspends the current process until a wakeup is
397 * performed on the specified identifier.  The process will then be made
398 * runnable with the specified priority.  Sleeps at most timo/hz seconds
399 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
400 * before and after sleeping, else signals are not checked.  Returns 0 if
401 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
402 * signal needs to be delivered, ERESTART is returned if the current system
403 * call should be restarted if possible, and EINTR is returned if the system
404 * call should be interrupted by the signal (return EINTR).
405 *
406 * The mutex argument is exited before the caller is suspended, and
407 * entered before msleep returns.  If priority includes the PDROP
408 * flag the mutex is not entered before returning.
409 */
410int
411msleep(ident, mtx, priority, wmesg, timo)
412	void *ident;
413	struct mtx *mtx;
414	int priority, timo;
415	const char *wmesg;
416{
417	struct proc *p = curproc;
418	struct thread *td = curthread;
419	int sig, catch = priority & PCATCH;
420	int rval = 0;
421	WITNESS_SAVE_DECL(mtx);
422
423#ifdef KTRACE
424	if (p && KTRPOINT(p, KTR_CSW))
425		ktrcsw(p->p_tracep, 1, 0);
426#endif
427	WITNESS_SLEEP(0, &mtx->mtx_object);
428	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
429	    ("sleeping without a mutex"));
430	mtx_lock_spin(&sched_lock);
431	if (cold || panicstr) {
432		/*
433		 * After a panic, or during autoconfiguration,
434		 * just give interrupts a chance, then just return;
435		 * don't run any other procs or panic below,
436		 * in case this is the idle process and already asleep.
437		 */
438		if (mtx != NULL && priority & PDROP)
439			mtx_unlock_flags(mtx, MTX_NOSWITCH);
440		mtx_unlock_spin(&sched_lock);
441		return (0);
442	}
443
444	DROP_GIANT_NOSWITCH();
445
446	if (mtx != NULL) {
447		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
448		WITNESS_SAVE(&mtx->mtx_object, mtx);
449		mtx_unlock_flags(mtx, MTX_NOSWITCH);
450		if (priority & PDROP)
451			mtx = NULL;
452	}
453
454	KASSERT(p != NULL, ("msleep1"));
455	KASSERT(ident != NULL && td->td_proc->p_stat == SRUN, ("msleep"));
456
457	td->td_wchan = ident;
458	td->td_wmesg = wmesg;
459	td->td_kse->ke_slptime = 0;	/* XXXKSE */
460	td->td_ksegrp->kg_slptime = 0;
461	td->td_ksegrp->kg_pri.pri_level = priority & PRIMASK;
462	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
463	    td, p->p_pid, p->p_comm, wmesg, ident);
464	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
465	if (timo)
466		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
467	/*
468	 * We put ourselves on the sleep queue and start our timeout
469	 * before calling CURSIG, as we could stop there, and a wakeup
470	 * or a SIGCONT (or both) could occur while we were stopped.
471	 * A SIGCONT would cause us to be marked as SSLEEP
472	 * without resuming us, thus we must be ready for sleep
473	 * when CURSIG is called.  If the wakeup happens while we're
474	 * stopped, td->td_wchan will be 0 upon return from CURSIG.
475	 */
476	if (catch) {
477		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
478		    p->p_pid, p->p_comm);
479		td->td_flags |= TDF_SINTR;
480		mtx_unlock_spin(&sched_lock);
481		PROC_LOCK(p);
482		sig = CURSIG(p);
483		mtx_lock_spin(&sched_lock);
484		PROC_UNLOCK_NOSWITCH(p);
485		if (sig != 0) {
486			if (td->td_wchan != NULL)
487				unsleep(td);
488		} else if (td->td_wchan == NULL)
489			catch = 0;
490	} else
491		sig = 0;
492	if (td->td_wchan != NULL) {
493		td->td_proc->p_stat = SSLEEP;
494		p->p_stats->p_ru.ru_nvcsw++;
495		mi_switch();
496	}
497	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", td, p->p_pid,
498	    p->p_comm);
499	KASSERT(td->td_proc->p_stat == SRUN, ("running but not SRUN"));
500	td->td_flags &= ~TDF_SINTR;
501	if (td->td_flags & TDF_TIMEOUT) {
502		td->td_flags &= ~TDF_TIMEOUT;
503		if (sig == 0)
504			rval = EWOULDBLOCK;
505	} else if (td->td_flags & TDF_TIMOFAIL)
506		td->td_flags &= ~TDF_TIMOFAIL;
507	else if (timo && callout_stop(&td->td_slpcallout) == 0) {
508		/*
509		 * This isn't supposed to be pretty.  If we are here, then
510		 * the endtsleep() callout is currently executing on another
511		 * CPU and is either spinning on the sched_lock or will be
512		 * soon.  If we don't synchronize here, there is a chance
513		 * that this process may msleep() again before the callout
514		 * has a chance to run and the callout may end up waking up
515		 * the wrong msleep().  Yuck.
516		 */
517		td->td_flags |= TDF_TIMEOUT;
518		p->p_stats->p_ru.ru_nivcsw++;
519		mi_switch();
520	}
521	mtx_unlock_spin(&sched_lock);
522
523	if (rval == 0 && catch) {
524		PROC_LOCK(p);
525		/* XXX: shouldn't we always be calling CURSIG() */
526		if (sig != 0 || (sig = CURSIG(p))) {
527			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
528				rval = EINTR;
529			else
530				rval = ERESTART;
531		}
532		PROC_UNLOCK(p);
533	}
534	PICKUP_GIANT();
535#ifdef KTRACE
536	mtx_lock(&Giant);
537	if (KTRPOINT(p, KTR_CSW))
538		ktrcsw(p->p_tracep, 0, 0);
539	mtx_unlock(&Giant);
540#endif
541	if (mtx != NULL) {
542		mtx_lock(mtx);
543		WITNESS_RESTORE(&mtx->mtx_object, mtx);
544	}
545	return (rval);
546}
547
548/*
549 * Implement timeout for msleep()
550 *
551 * If process hasn't been awakened (wchan non-zero),
552 * set timeout flag and undo the sleep.  If proc
553 * is stopped, just unsleep so it will remain stopped.
554 * MP-safe, called without the Giant mutex.
555 */
556static void
557endtsleep(arg)
558	void *arg;
559{
560	register struct thread *td = arg;
561
562	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
563	    td->td_proc->p_comm);
564	mtx_lock_spin(&sched_lock);
565	/*
566	 * This is the other half of the synchronization with msleep()
567	 * described above.  If the PS_TIMEOUT flag is set, we lost the
568	 * race and just need to put the process back on the runqueue.
569	 */
570	if ((td->td_flags & TDF_TIMEOUT) != 0) {
571		td->td_flags &= ~TDF_TIMEOUT;
572		setrunqueue(td);
573	} else if (td->td_wchan != NULL) {
574		if (td->td_proc->p_stat == SSLEEP)  /* XXXKSE */
575			setrunnable(td);
576		else
577			unsleep(td);
578		td->td_flags |= TDF_TIMEOUT;
579	} else {
580		td->td_flags |= TDF_TIMOFAIL;
581	}
582	mtx_unlock_spin(&sched_lock);
583}
584
585/*
586 * Remove a process from its wait queue
587 */
588void
589unsleep(struct thread *td)
590{
591
592	mtx_lock_spin(&sched_lock);
593	if (td->td_wchan != NULL) {
594		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
595		td->td_wchan = NULL;
596	}
597	mtx_unlock_spin(&sched_lock);
598}
599
600/*
601 * Make all processes sleeping on the specified identifier runnable.
602 */
603void
604wakeup(ident)
605	register void *ident;
606{
607	register struct slpquehead *qp;
608	register struct thread *td;
609	struct proc *p;
610
611	mtx_lock_spin(&sched_lock);
612	qp = &slpque[LOOKUP(ident)];
613restart:
614	TAILQ_FOREACH(td, qp, td_slpq) {
615		p = td->td_proc;
616		if (td->td_wchan == ident) {
617			TAILQ_REMOVE(qp, td, td_slpq);
618			td->td_wchan = NULL;
619			if (td->td_proc->p_stat == SSLEEP) {
620				/* OPTIMIZED EXPANSION OF setrunnable(p); */
621				CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
622				    td, p->p_pid, p->p_comm);
623				if (td->td_ksegrp->kg_slptime > 1)
624					updatepri(td);
625				td->td_ksegrp->kg_slptime = 0;
626				td->td_kse->ke_slptime = 0;
627				td->td_proc->p_stat = SRUN;
628				if (p->p_sflag & PS_INMEM) {
629					setrunqueue(td);
630					maybe_resched(td->td_ksegrp);
631				} else {
632					p->p_sflag |= PS_SWAPINREQ;
633					wakeup((caddr_t)&proc0);
634				}
635				/* END INLINE EXPANSION */
636				goto restart;
637			}
638		}
639	}
640	mtx_unlock_spin(&sched_lock);
641}
642
643/*
644 * Make a process sleeping on the specified identifier runnable.
645 * May wake more than one process if a target process is currently
646 * swapped out.
647 */
648void
649wakeup_one(ident)
650	register void *ident;
651{
652	register struct slpquehead *qp;
653	register struct thread *td;
654	register struct proc *p;
655
656	mtx_lock_spin(&sched_lock);
657	qp = &slpque[LOOKUP(ident)];
658
659	TAILQ_FOREACH(td, qp, td_slpq) {
660		p = td->td_proc;
661		if (td->td_wchan == ident) {
662			TAILQ_REMOVE(qp, td, td_slpq);
663			td->td_wchan = NULL;
664			if (td->td_proc->p_stat == SSLEEP) {
665				/* OPTIMIZED EXPANSION OF setrunnable(p); */
666				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
667				    p, p->p_pid, p->p_comm);
668				if (td->td_ksegrp->kg_slptime > 1)
669					updatepri(td);
670				td->td_ksegrp->kg_slptime = 0;
671				td->td_kse->ke_slptime = 0;
672				td->td_proc->p_stat = SRUN;
673				if (p->p_sflag & PS_INMEM) {
674					setrunqueue(td);
675					maybe_resched(td->td_ksegrp);
676					break;
677				} else {
678					p->p_sflag |= PS_SWAPINREQ;
679					wakeup((caddr_t)&proc0);
680				}
681				/* END INLINE EXPANSION */
682			}
683		}
684	}
685	mtx_unlock_spin(&sched_lock);
686}
687
688/*
689 * The machine independent parts of mi_switch().
690 */
691void
692mi_switch()
693{
694	struct timeval new_switchtime;
695	struct thread *td = curthread;	/* XXX */
696	register struct proc *p = td->td_proc;	/* XXX */
697#if 0
698	register struct rlimit *rlim;
699#endif
700	critical_t sched_crit;
701	u_int sched_nest;
702
703	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
704#ifdef INVARIANTS
705	if (p->p_stat != SMTX && p->p_stat != SRUN)
706		mtx_assert(&Giant, MA_NOTOWNED);
707#endif
708
709	/*
710	 * Compute the amount of time during which the current
711	 * process was running, and add that to its total so far.
712	 */
713	microuptime(&new_switchtime);
714	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
715#if 0
716		/* XXX: This doesn't play well with sched_lock right now. */
717		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
718		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
719		    new_switchtime.tv_sec, new_switchtime.tv_usec);
720#endif
721		new_switchtime = PCPU_GET(switchtime);
722	} else {
723		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
724		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
725		    (int64_t)1000000;
726	}
727
728#ifdef DDB
729	/*
730	 * Don't perform context switches from the debugger.
731	 */
732	if (db_active) {
733		mtx_unlock_spin(&sched_lock);
734		db_error("Context switches not allowed in the debugger.");
735	}
736#endif
737
738#if 0
739	/*
740	 * Check if the process exceeds its cpu resource allocation.
741	 * If over max, kill it.
742	 *
743	 * XXX drop sched_lock, pickup Giant
744	 */
745	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
746	    p->p_runtime > p->p_limit->p_cpulimit) {
747		rlim = &p->p_rlimit[RLIMIT_CPU];
748		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
749			mtx_unlock_spin(&sched_lock);
750			PROC_LOCK(p);
751			killproc(p, "exceeded maximum CPU limit");
752			mtx_lock_spin(&sched_lock);
753			PROC_UNLOCK_NOSWITCH(p);
754		} else {
755			mtx_unlock_spin(&sched_lock);
756			PROC_LOCK(p);
757			psignal(p, SIGXCPU);
758			mtx_lock_spin(&sched_lock);
759			PROC_UNLOCK_NOSWITCH(p);
760			if (rlim->rlim_cur < rlim->rlim_max) {
761				/* XXX: we should make a private copy */
762				rlim->rlim_cur += 5;
763			}
764		}
765	}
766#endif
767
768	/*
769	 * Pick a new current process and record its start time.
770	 */
771	cnt.v_swtch++;
772	PCPU_SET(switchtime, new_switchtime);
773	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
774	    p->p_comm);
775	sched_crit = sched_lock.mtx_savecrit;
776	sched_nest = sched_lock.mtx_recurse;
777	td->td_lastcpu = td->td_kse->ke_oncpu;
778	td->td_kse->ke_oncpu = NOCPU;
779	td->td_kse->ke_flags &= ~KEF_NEEDRESCHED;
780	cpu_switch();
781	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
782	sched_lock.mtx_savecrit = sched_crit;
783	sched_lock.mtx_recurse = sched_nest;
784	sched_lock.mtx_lock = (uintptr_t)td;
785	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
786	    p->p_comm);
787	if (PCPU_GET(switchtime.tv_sec) == 0)
788		microuptime(PCPU_PTR(switchtime));
789	PCPU_SET(switchticks, ticks);
790}
791
792/*
793 * Change process state to be runnable,
794 * placing it on the run queue if it is in memory,
795 * and awakening the swapper if it isn't in memory.
796 */
797void
798setrunnable(struct thread *td)
799{
800	struct proc *p = td->td_proc;
801
802	mtx_lock_spin(&sched_lock);
803	switch (p->p_stat) {
804	case SZOMB: /* not a thread flag XXXKSE */
805		panic("setrunnable(1)");
806	}
807	switch (td->td_proc->p_stat) {
808	case 0:
809	case SRUN:
810	case SWAIT:
811	default:
812		panic("setrunnable(2)");
813	case SSTOP:
814	case SSLEEP:			/* e.g. when sending signals */
815		if (td->td_flags & TDF_CVWAITQ)
816			cv_waitq_remove(td);
817		else
818			unsleep(td);
819		break;
820
821	case SIDL:
822		break;
823	}
824	td->td_proc->p_stat = SRUN;
825	if (td->td_ksegrp->kg_slptime > 1)
826		updatepri(td);
827	td->td_ksegrp->kg_slptime = 0;
828	td->td_kse->ke_slptime = 0;
829	if ((p->p_sflag & PS_INMEM) == 0) {
830		p->p_sflag |= PS_SWAPINREQ;
831		wakeup((caddr_t)&proc0);
832	} else {
833		setrunqueue(td);
834		maybe_resched(td->td_ksegrp);
835	}
836	mtx_unlock_spin(&sched_lock);
837}
838
839/*
840 * Compute the priority of a process when running in user mode.
841 * Arrange to reschedule if the resulting priority is better
842 * than that of the current process.
843 */
844void
845resetpriority(kg)
846	register struct ksegrp *kg;
847{
848	register unsigned int newpriority;
849
850	mtx_lock_spin(&sched_lock);
851	if (kg->kg_pri.pri_class == PRI_TIMESHARE) {
852		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
853		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
854		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
855		    PRI_MAX_TIMESHARE);
856		kg->kg_pri.pri_user = newpriority;
857	}
858	maybe_resched(kg);
859	mtx_unlock_spin(&sched_lock);
860}
861
862/*
863 * Compute a tenex style load average of a quantity on
864 * 1, 5 and 15 minute intervals.
865 * XXXKSE   Needs complete rewrite when correct info is available.
866 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
867 */
868static void
869loadav(void *arg)
870{
871	int i, nrun;
872	struct loadavg *avg;
873	struct proc *p;
874	struct ksegrp *kg;
875
876	avg = &averunnable;
877	sx_slock(&allproc_lock);
878	nrun = 0;
879	FOREACH_PROC_IN_SYSTEM(p) {
880		FOREACH_KSEGRP_IN_PROC(p, kg) {
881			switch (p->p_stat) {
882			case SRUN:
883				if ((p->p_flag & P_NOLOAD) != 0)
884					goto nextproc;
885				/* FALLTHROUGH */
886			case SIDL:
887				nrun++;
888			}
889nextproc:
890		}
891	}
892	sx_sunlock(&allproc_lock);
893	for (i = 0; i < 3; i++)
894		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
895		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
896
897	/*
898	 * Schedule the next update to occur after 5 seconds, but add a
899	 * random variation to avoid synchronisation with processes that
900	 * run at regular intervals.
901	 */
902	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
903	    loadav, NULL);
904}
905
906/* ARGSUSED */
907static void
908sched_setup(dummy)
909	void *dummy;
910{
911
912	callout_init(&schedcpu_callout, 1);
913	callout_init(&roundrobin_callout, 0);
914	callout_init(&loadav_callout, 0);
915
916	/* Kick off timeout driven events by calling first time. */
917	roundrobin(NULL);
918	schedcpu(NULL);
919	loadav(NULL);
920}
921
922/*
923 * We adjust the priority of the current process.  The priority of
924 * a process gets worse as it accumulates CPU time.  The cpu usage
925 * estimator (p_estcpu) is increased here.  resetpriority() will
926 * compute a different priority each time p_estcpu increases by
927 * INVERSE_ESTCPU_WEIGHT
928 * (until MAXPRI is reached).  The cpu usage estimator ramps up
929 * quite quickly when the process is running (linearly), and decays
930 * away exponentially, at a rate which is proportionally slower when
931 * the system is busy.  The basic principle is that the system will
932 * 90% forget that the process used a lot of CPU time in 5 * loadav
933 * seconds.  This causes the system to favor processes which haven't
934 * run much recently, and to round-robin among other processes.
935 */
936void
937schedclock(td)
938	struct thread *td;
939{
940	struct kse *ke = td->td_kse;
941	struct ksegrp *kg = td->td_ksegrp;
942
943	if (td) {
944		ke->ke_cpticks++;
945		kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
946		if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
947			resetpriority(td->td_ksegrp);
948			if (kg->kg_pri.pri_level >= PUSER)
949				kg->kg_pri.pri_level = kg->kg_pri.pri_user;
950		}
951	} else {
952		panic("schedclock");
953	}
954}
955
956/*
957 * General purpose yield system call
958 */
959int
960yield(struct thread *td, struct yield_args *uap)
961{
962	struct ksegrp *kg = td->td_ksegrp;
963
964	mtx_assert(&Giant, MA_NOTOWNED);
965	mtx_lock_spin(&sched_lock);
966	kg->kg_pri.pri_level = PRI_MAX_TIMESHARE;
967	setrunqueue(td);
968	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
969	mi_switch();
970	mtx_unlock_spin(&sched_lock);
971	td->td_retval[0] = 0;
972
973	return (0);
974}
975
976