kern_synch.c revision 83786
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 83786 2001-09-21 19:16:12Z jhb $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#include <vm/vm.h>
61#include <vm/vm_extern.h>
62#ifdef DDB
63#include <ddb/ddb.h>
64#endif
65#ifdef KTRACE
66#include <sys/uio.h>
67#include <sys/ktrace.h>
68#endif
69
70#include <machine/cpu.h>
71
72static void sched_setup __P((void *dummy));
73SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74
75int	hogticks;
76int	lbolt;
77int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
78
79static struct callout schedcpu_callout;
80static struct callout roundrobin_callout;
81
82static void	endtsleep __P((void *));
83static void	roundrobin __P((void *arg));
84static void	schedcpu __P((void *arg));
85
86static int
87sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
88{
89	int error, new_val;
90
91	new_val = sched_quantum * tick;
92	error = sysctl_handle_int(oidp, &new_val, 0, req);
93        if (error != 0 || req->newptr == NULL)
94		return (error);
95	if (new_val < tick)
96		return (EINVAL);
97	sched_quantum = new_val / tick;
98	hogticks = 2 * sched_quantum;
99	return (0);
100}
101
102SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
103	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
104
105/*
106 * Arrange to reschedule if necessary, taking the priorities and
107 * schedulers into account.
108 */
109void
110maybe_resched(kg)
111	struct ksegrp *kg;
112{
113
114	mtx_assert(&sched_lock, MA_OWNED);
115	if (kg->kg_pri.pri_level < curthread->td_ksegrp->kg_pri.pri_level)
116		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
117}
118
119int
120roundrobin_interval(void)
121{
122	return (sched_quantum);
123}
124
125/*
126 * Force switch among equal priority processes every 100ms.
127 * We don't actually need to force a context switch of the current process.
128 * The act of firing the event triggers a context switch to softclock() and
129 * then switching back out again which is equivalent to a preemption, thus
130 * no further work is needed on the local CPU.
131 */
132/* ARGSUSED */
133static void
134roundrobin(arg)
135	void *arg;
136{
137
138#ifdef SMP
139	mtx_lock_spin(&sched_lock);
140	forward_roundrobin();
141	mtx_unlock_spin(&sched_lock);
142#endif
143
144	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
145}
146
147/*
148 * Constants for digital decay and forget:
149 *	90% of (p_estcpu) usage in 5 * loadav time
150 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
151 *          Note that, as ps(1) mentions, this can let percentages
152 *          total over 100% (I've seen 137.9% for 3 processes).
153 *
154 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
155 *
156 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
157 * That is, the system wants to compute a value of decay such
158 * that the following for loop:
159 * 	for (i = 0; i < (5 * loadavg); i++)
160 * 		p_estcpu *= decay;
161 * will compute
162 * 	p_estcpu *= 0.1;
163 * for all values of loadavg:
164 *
165 * Mathematically this loop can be expressed by saying:
166 * 	decay ** (5 * loadavg) ~= .1
167 *
168 * The system computes decay as:
169 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
170 *
171 * We wish to prove that the system's computation of decay
172 * will always fulfill the equation:
173 * 	decay ** (5 * loadavg) ~= .1
174 *
175 * If we compute b as:
176 * 	b = 2 * loadavg
177 * then
178 * 	decay = b / (b + 1)
179 *
180 * We now need to prove two things:
181 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
182 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
183 *
184 * Facts:
185 *         For x close to zero, exp(x) =~ 1 + x, since
186 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
187 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
188 *         For x close to zero, ln(1+x) =~ x, since
189 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
190 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
191 *         ln(.1) =~ -2.30
192 *
193 * Proof of (1):
194 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
195 *	solving for factor,
196 *      ln(factor) =~ (-2.30/5*loadav), or
197 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
198 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
199 *
200 * Proof of (2):
201 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
202 *	solving for power,
203 *      power*ln(b/(b+1)) =~ -2.30, or
204 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
205 *
206 * Actual power values for the implemented algorithm are as follows:
207 *      loadav: 1       2       3       4
208 *      power:  5.68    10.32   14.94   19.55
209 */
210
211/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
212#define	loadfactor(loadav)	(2 * (loadav))
213#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
214
215/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
216static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
217SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
218
219/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
220static int	fscale __unused = FSCALE;
221SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
222
223/*
224 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
225 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
226 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
227 *
228 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
229 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
230 *
231 * If you don't want to bother with the faster/more-accurate formula, you
232 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
233 * (more general) method of calculating the %age of CPU used by a process.
234 */
235#define	CCPU_SHIFT	11
236
237/*
238 * Recompute process priorities, every hz ticks.
239 * MP-safe, called without the Giant mutex.
240 */
241/* ARGSUSED */
242static void
243schedcpu(arg)
244	void *arg;
245{
246	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
247	register struct proc *p;
248	register struct kse *ke;
249	register struct ksegrp *kg;
250	register int realstathz;
251	int awake;
252
253	realstathz = stathz ? stathz : hz;
254	sx_slock(&allproc_lock);
255	FOREACH_PROC_IN_SYSTEM(p) {
256		mtx_lock_spin(&sched_lock);
257		p->p_swtime++;
258		FOREACH_KSEGRP_IN_PROC(p, kg) {
259			awake = 0;
260			FOREACH_KSE_IN_GROUP(kg, ke) {
261				/*
262				 * Increment time in/out of memory and sleep
263				 * time (if sleeping).  We ignore overflow;
264				 * with 16-bit int's (remember them?)
265				 * overflow takes 45 days.
266				 */
267				/* XXXKSE */
268			/*	if ((ke->ke_flags & KEF_ONRUNQ) == 0) */
269				if (p->p_stat == SSLEEP || p->p_stat == SSTOP) {
270					ke->ke_slptime++;
271				} else {
272					ke->ke_slptime = 0;
273					awake = 1;
274				}
275
276				/*
277				 * pctcpu is only for ps?
278				 * Do it per kse.. and add them up at the end?
279				 * XXXKSE
280				 */
281				ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> FSHIFT;
282				/*
283				 * If the kse has been idle the entire second,
284				 * stop recalculating its priority until
285				 * it wakes up.
286				 */
287				if (ke->ke_slptime > 1) {
288					continue;
289				}
290
291#if	(FSHIFT >= CCPU_SHIFT)
292				ke->ke_pctcpu += (realstathz == 100) ?
293				    ((fixpt_t) ke->ke_cpticks) <<
294				    (FSHIFT - CCPU_SHIFT) :
295				    100 * (((fixpt_t) ke->ke_cpticks) <<
296				    (FSHIFT - CCPU_SHIFT)) / realstathz;
297#else
298				ke->ke_pctcpu += ((FSCALE - ccpu) *
299				    (ke->ke_cpticks * FSCALE / realstathz)) >>
300				    FSHIFT;
301#endif
302				ke->ke_cpticks = 0;
303			} /* end of kse loop */
304			if (awake == 0) {
305				kg->kg_slptime++;
306			} else {
307				kg->kg_slptime = 0;
308			}
309			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
310		      	resetpriority(kg);
311		      	if (kg->kg_pri.pri_level >= PUSER &&
312			    (p->p_sflag & PS_INMEM)) {
313				int changedqueue =
314				    ((kg->kg_pri.pri_level / RQ_PPQ) !=
315				     (kg->kg_pri.pri_user / RQ_PPQ));
316
317				kg->kg_pri.pri_level = kg->kg_pri.pri_user;
318				FOREACH_KSE_IN_GROUP(kg, ke) {
319					if ((ke->ke_oncpu == NOCPU) && 	/* idle */
320					    (p->p_stat == SRUN) && /* XXXKSE */
321					    changedqueue) {
322						remrunqueue(ke->ke_thread);
323						setrunqueue(ke->ke_thread);
324					}
325				}
326			}
327		} /* end of ksegrp loop */
328		mtx_unlock_spin(&sched_lock);
329	} /* end of process loop */
330	sx_sunlock(&allproc_lock);
331	vmmeter();
332	wakeup((caddr_t)&lbolt);
333	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
334}
335
336/*
337 * Recalculate the priority of a process after it has slept for a while.
338 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
339 * least six times the loadfactor will decay p_estcpu to zero.
340 */
341void
342updatepri(td)
343	register struct thread *td;
344{
345	register struct ksegrp *kg;
346	register unsigned int newcpu;
347	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
348
349	if (td == NULL)
350		return;
351	kg = td->td_ksegrp;
352	newcpu = kg->kg_estcpu;
353	if (kg->kg_slptime > 5 * loadfac)
354		kg->kg_estcpu = 0;
355	else {
356		kg->kg_slptime--;	/* the first time was done in schedcpu */
357		while (newcpu && --kg->kg_slptime)
358			newcpu = decay_cpu(loadfac, newcpu);
359		kg->kg_estcpu = newcpu;
360	}
361	resetpriority(td->td_ksegrp);
362}
363
364/*
365 * We're only looking at 7 bits of the address; everything is
366 * aligned to 4, lots of things are aligned to greater powers
367 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
368 */
369#define TABLESIZE	128
370static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
371#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
372
373void
374sleepinit(void)
375{
376	int i;
377
378	sched_quantum = hz/10;
379	hogticks = 2 * sched_quantum;
380	for (i = 0; i < TABLESIZE; i++)
381		TAILQ_INIT(&slpque[i]);
382}
383
384/*
385 * General sleep call.  Suspends the current process until a wakeup is
386 * performed on the specified identifier.  The process will then be made
387 * runnable with the specified priority.  Sleeps at most timo/hz seconds
388 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
389 * before and after sleeping, else signals are not checked.  Returns 0 if
390 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
391 * signal needs to be delivered, ERESTART is returned if the current system
392 * call should be restarted if possible, and EINTR is returned if the system
393 * call should be interrupted by the signal (return EINTR).
394 *
395 * The mutex argument is exited before the caller is suspended, and
396 * entered before msleep returns.  If priority includes the PDROP
397 * flag the mutex is not entered before returning.
398 */
399int
400msleep(ident, mtx, priority, wmesg, timo)
401	void *ident;
402	struct mtx *mtx;
403	int priority, timo;
404	const char *wmesg;
405{
406	struct proc *p = curproc;
407	struct thread *td = curthread;
408	int sig, catch = priority & PCATCH;
409	int rval = 0;
410	WITNESS_SAVE_DECL(mtx);
411
412#ifdef KTRACE
413	if (p && KTRPOINT(p, KTR_CSW))
414		ktrcsw(p->p_tracep, 1, 0);
415#endif
416	WITNESS_SLEEP(0, &mtx->mtx_object);
417	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
418	    ("sleeping without a mutex"));
419	mtx_lock_spin(&sched_lock);
420	if (cold || panicstr) {
421		/*
422		 * After a panic, or during autoconfiguration,
423		 * just give interrupts a chance, then just return;
424		 * don't run any other procs or panic below,
425		 * in case this is the idle process and already asleep.
426		 */
427		if (mtx != NULL && priority & PDROP)
428			mtx_unlock_flags(mtx, MTX_NOSWITCH);
429		mtx_unlock_spin(&sched_lock);
430		return (0);
431	}
432
433	DROP_GIANT_NOSWITCH();
434
435	if (mtx != NULL) {
436		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
437		WITNESS_SAVE(&mtx->mtx_object, mtx);
438		mtx_unlock_flags(mtx, MTX_NOSWITCH);
439		if (priority & PDROP)
440			mtx = NULL;
441	}
442
443	KASSERT(p != NULL, ("msleep1"));
444	KASSERT(ident != NULL && td->td_proc->p_stat == SRUN, ("msleep"));
445
446	td->td_wchan = ident;
447	td->td_wmesg = wmesg;
448	td->td_kse->ke_slptime = 0;	/* XXXKSE */
449	td->td_ksegrp->kg_slptime = 0;
450	td->td_ksegrp->kg_pri.pri_level = priority & PRIMASK;
451	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
452	    td, p->p_pid, p->p_comm, wmesg, ident);
453	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
454	if (timo)
455		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
456	/*
457	 * We put ourselves on the sleep queue and start our timeout
458	 * before calling CURSIG, as we could stop there, and a wakeup
459	 * or a SIGCONT (or both) could occur while we were stopped.
460	 * A SIGCONT would cause us to be marked as SSLEEP
461	 * without resuming us, thus we must be ready for sleep
462	 * when CURSIG is called.  If the wakeup happens while we're
463	 * stopped, td->td_wchan will be 0 upon return from CURSIG.
464	 */
465	if (catch) {
466		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
467		    p->p_pid, p->p_comm);
468		td->td_flags |= TDF_SINTR;
469		mtx_unlock_spin(&sched_lock);
470		PROC_LOCK(p);
471		sig = CURSIG(p);
472		mtx_lock_spin(&sched_lock);
473		PROC_UNLOCK_NOSWITCH(p);
474		if (sig != 0) {
475			if (td->td_wchan != NULL)
476				unsleep(td);
477		} else if (td->td_wchan == NULL)
478			catch = 0;
479	} else
480		sig = 0;
481	if (td->td_wchan != NULL) {
482		td->td_proc->p_stat = SSLEEP;
483		p->p_stats->p_ru.ru_nvcsw++;
484		mi_switch();
485	}
486	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", td, p->p_pid,
487	    p->p_comm);
488	KASSERT(td->td_proc->p_stat == SRUN, ("running but not SRUN"));
489	td->td_flags &= ~TDF_SINTR;
490	if (td->td_flags & TDF_TIMEOUT) {
491		td->td_flags &= ~TDF_TIMEOUT;
492		if (sig == 0)
493			rval = EWOULDBLOCK;
494	} else if (td->td_flags & TDF_TIMOFAIL)
495		td->td_flags &= ~TDF_TIMOFAIL;
496	else if (timo && callout_stop(&td->td_slpcallout) == 0) {
497		/*
498		 * This isn't supposed to be pretty.  If we are here, then
499		 * the endtsleep() callout is currently executing on another
500		 * CPU and is either spinning on the sched_lock or will be
501		 * soon.  If we don't synchronize here, there is a chance
502		 * that this process may msleep() again before the callout
503		 * has a chance to run and the callout may end up waking up
504		 * the wrong msleep().  Yuck.
505		 */
506		td->td_flags |= TDF_TIMEOUT;
507		p->p_stats->p_ru.ru_nivcsw++;
508		mi_switch();
509	}
510	mtx_unlock_spin(&sched_lock);
511
512	if (rval == 0 && catch) {
513		PROC_LOCK(p);
514		/* XXX: shouldn't we always be calling CURSIG() */
515		if (sig != 0 || (sig = CURSIG(p))) {
516			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
517				rval = EINTR;
518			else
519				rval = ERESTART;
520		}
521		PROC_UNLOCK(p);
522	}
523	PICKUP_GIANT();
524#ifdef KTRACE
525	mtx_lock(&Giant);
526	if (KTRPOINT(p, KTR_CSW))
527		ktrcsw(p->p_tracep, 0, 0);
528	mtx_unlock(&Giant);
529#endif
530	if (mtx != NULL) {
531		mtx_lock(mtx);
532		WITNESS_RESTORE(&mtx->mtx_object, mtx);
533	}
534	return (rval);
535}
536
537/*
538 * Implement timeout for msleep()
539 *
540 * If process hasn't been awakened (wchan non-zero),
541 * set timeout flag and undo the sleep.  If proc
542 * is stopped, just unsleep so it will remain stopped.
543 * MP-safe, called without the Giant mutex.
544 */
545static void
546endtsleep(arg)
547	void *arg;
548{
549	register struct thread *td = arg;
550
551	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
552	    td->td_proc->p_comm);
553	mtx_lock_spin(&sched_lock);
554	/*
555	 * This is the other half of the synchronization with msleep()
556	 * described above.  If the PS_TIMEOUT flag is set, we lost the
557	 * race and just need to put the process back on the runqueue.
558	 */
559	if ((td->td_flags & TDF_TIMEOUT) != 0) {
560		td->td_flags &= ~TDF_TIMEOUT;
561		setrunqueue(td);
562	} else if (td->td_wchan != NULL) {
563		if (td->td_proc->p_stat == SSLEEP)  /* XXXKSE */
564			setrunnable(td);
565		else
566			unsleep(td);
567		td->td_flags |= TDF_TIMEOUT;
568	} else {
569		td->td_flags |= TDF_TIMOFAIL;
570	}
571	mtx_unlock_spin(&sched_lock);
572}
573
574/*
575 * Remove a process from its wait queue
576 */
577void
578unsleep(struct thread *td)
579{
580
581	mtx_lock_spin(&sched_lock);
582	if (td->td_wchan != NULL) {
583		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
584		td->td_wchan = NULL;
585	}
586	mtx_unlock_spin(&sched_lock);
587}
588
589/*
590 * Make all processes sleeping on the specified identifier runnable.
591 */
592void
593wakeup(ident)
594	register void *ident;
595{
596	register struct slpquehead *qp;
597	register struct thread *td;
598	struct proc *p;
599
600	mtx_lock_spin(&sched_lock);
601	qp = &slpque[LOOKUP(ident)];
602restart:
603	TAILQ_FOREACH(td, qp, td_slpq) {
604		p = td->td_proc;
605		if (td->td_wchan == ident) {
606			TAILQ_REMOVE(qp, td, td_slpq);
607			td->td_wchan = NULL;
608			if (td->td_proc->p_stat == SSLEEP) {
609				/* OPTIMIZED EXPANSION OF setrunnable(p); */
610				CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
611				    td, p->p_pid, p->p_comm);
612				if (td->td_ksegrp->kg_slptime > 1)
613					updatepri(td);
614				td->td_ksegrp->kg_slptime = 0;
615				td->td_kse->ke_slptime = 0;
616				td->td_proc->p_stat = SRUN;
617				if (p->p_sflag & PS_INMEM) {
618					setrunqueue(td);
619					maybe_resched(td->td_ksegrp);
620				} else {
621					p->p_sflag |= PS_SWAPINREQ;
622					wakeup((caddr_t)&proc0);
623				}
624				/* END INLINE EXPANSION */
625				goto restart;
626			}
627		}
628	}
629	mtx_unlock_spin(&sched_lock);
630}
631
632/*
633 * Make a process sleeping on the specified identifier runnable.
634 * May wake more than one process if a target process is currently
635 * swapped out.
636 */
637void
638wakeup_one(ident)
639	register void *ident;
640{
641	register struct slpquehead *qp;
642	register struct thread *td;
643	register struct proc *p;
644
645	mtx_lock_spin(&sched_lock);
646	qp = &slpque[LOOKUP(ident)];
647
648	TAILQ_FOREACH(td, qp, td_slpq) {
649		p = td->td_proc;
650		if (td->td_wchan == ident) {
651			TAILQ_REMOVE(qp, td, td_slpq);
652			td->td_wchan = NULL;
653			if (td->td_proc->p_stat == SSLEEP) {
654				/* OPTIMIZED EXPANSION OF setrunnable(p); */
655				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
656				    p, p->p_pid, p->p_comm);
657				if (td->td_ksegrp->kg_slptime > 1)
658					updatepri(td);
659				td->td_ksegrp->kg_slptime = 0;
660				td->td_kse->ke_slptime = 0;
661				td->td_proc->p_stat = SRUN;
662				if (p->p_sflag & PS_INMEM) {
663					setrunqueue(td);
664					maybe_resched(td->td_ksegrp);
665					break;
666				} else {
667					p->p_sflag |= PS_SWAPINREQ;
668					wakeup((caddr_t)&proc0);
669				}
670				/* END INLINE EXPANSION */
671			}
672		}
673	}
674	mtx_unlock_spin(&sched_lock);
675}
676
677/*
678 * The machine independent parts of mi_switch().
679 */
680void
681mi_switch()
682{
683	struct timeval new_switchtime;
684	struct thread *td = curthread;	/* XXX */
685	register struct proc *p = td->td_proc;	/* XXX */
686#if 0
687	register struct rlimit *rlim;
688#endif
689	critical_t sched_crit;
690	u_int sched_nest;
691
692	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
693
694	/*
695	 * Compute the amount of time during which the current
696	 * process was running, and add that to its total so far.
697	 */
698	microuptime(&new_switchtime);
699	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
700#if 0
701		/* XXX: This doesn't play well with sched_lock right now. */
702		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
703		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
704		    new_switchtime.tv_sec, new_switchtime.tv_usec);
705#endif
706		new_switchtime = PCPU_GET(switchtime);
707	} else {
708		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
709		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
710		    (int64_t)1000000;
711	}
712
713#ifdef DDB
714	/*
715	 * Don't perform context switches from the debugger.
716	 */
717	if (db_active) {
718		mtx_unlock_spin(&sched_lock);
719		db_error("Context switches not allowed in the debugger.");
720	}
721#endif
722
723#if 0
724	/*
725	 * Check if the process exceeds its cpu resource allocation.
726	 * If over max, kill it.
727	 *
728	 * XXX drop sched_lock, pickup Giant
729	 */
730	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
731	    p->p_runtime > p->p_limit->p_cpulimit) {
732		rlim = &p->p_rlimit[RLIMIT_CPU];
733		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
734			mtx_unlock_spin(&sched_lock);
735			PROC_LOCK(p);
736			killproc(p, "exceeded maximum CPU limit");
737			mtx_lock_spin(&sched_lock);
738			PROC_UNLOCK_NOSWITCH(p);
739		} else {
740			mtx_unlock_spin(&sched_lock);
741			PROC_LOCK(p);
742			psignal(p, SIGXCPU);
743			mtx_lock_spin(&sched_lock);
744			PROC_UNLOCK_NOSWITCH(p);
745			if (rlim->rlim_cur < rlim->rlim_max) {
746				/* XXX: we should make a private copy */
747				rlim->rlim_cur += 5;
748			}
749		}
750	}
751#endif
752
753	/*
754	 * Pick a new current process and record its start time.
755	 */
756	cnt.v_swtch++;
757	PCPU_SET(switchtime, new_switchtime);
758	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
759	    p->p_comm);
760	sched_crit = sched_lock.mtx_savecrit;
761	sched_nest = sched_lock.mtx_recurse;
762	td->td_lastcpu = td->td_kse->ke_oncpu;
763	td->td_kse->ke_oncpu = NOCPU;
764	td->td_kse->ke_flags &= ~KEF_NEEDRESCHED;
765	cpu_switch();
766	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
767	sched_lock.mtx_savecrit = sched_crit;
768	sched_lock.mtx_recurse = sched_nest;
769	sched_lock.mtx_lock = (uintptr_t)td;
770	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
771	    p->p_comm);
772	if (PCPU_GET(switchtime.tv_sec) == 0)
773		microuptime(PCPU_PTR(switchtime));
774	PCPU_SET(switchticks, ticks);
775}
776
777/*
778 * Change process state to be runnable,
779 * placing it on the run queue if it is in memory,
780 * and awakening the swapper if it isn't in memory.
781 */
782void
783setrunnable(struct thread *td)
784{
785	struct proc *p = td->td_proc;
786
787	mtx_lock_spin(&sched_lock);
788	switch (p->p_stat) {
789	case SZOMB: /* not a thread flag XXXKSE */
790		panic("setrunnable(1)");
791	}
792	switch (td->td_proc->p_stat) {
793	case 0:
794	case SRUN:
795	case SWAIT:
796	default:
797		panic("setrunnable(2)");
798	case SSTOP:
799	case SSLEEP:			/* e.g. when sending signals */
800		if (td->td_flags & TDF_CVWAITQ)
801			cv_waitq_remove(td);
802		else
803			unsleep(td);
804		break;
805
806	case SIDL:
807		break;
808	}
809	td->td_proc->p_stat = SRUN;
810	if (td->td_ksegrp->kg_slptime > 1)
811		updatepri(td);
812	td->td_ksegrp->kg_slptime = 0;
813	td->td_kse->ke_slptime = 0;
814	if ((p->p_sflag & PS_INMEM) == 0) {
815		p->p_sflag |= PS_SWAPINREQ;
816		wakeup((caddr_t)&proc0);
817	} else {
818		setrunqueue(td);
819		maybe_resched(td->td_ksegrp);
820	}
821	mtx_unlock_spin(&sched_lock);
822}
823
824/*
825 * Compute the priority of a process when running in user mode.
826 * Arrange to reschedule if the resulting priority is better
827 * than that of the current process.
828 */
829void
830resetpriority(kg)
831	register struct ksegrp *kg;
832{
833	register unsigned int newpriority;
834
835	mtx_lock_spin(&sched_lock);
836	if (kg->kg_pri.pri_class == PRI_TIMESHARE) {
837		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
838		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
839		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
840		    PRI_MAX_TIMESHARE);
841		kg->kg_pri.pri_user = newpriority;
842	}
843	maybe_resched(kg);
844	mtx_unlock_spin(&sched_lock);
845}
846
847/* ARGSUSED */
848static void
849sched_setup(dummy)
850	void *dummy;
851{
852
853	callout_init(&schedcpu_callout, 1);
854	callout_init(&roundrobin_callout, 0);
855
856	/* Kick off timeout driven events by calling first time. */
857	roundrobin(NULL);
858	schedcpu(NULL);
859}
860
861/*
862 * We adjust the priority of the current process.  The priority of
863 * a process gets worse as it accumulates CPU time.  The cpu usage
864 * estimator (p_estcpu) is increased here.  resetpriority() will
865 * compute a different priority each time p_estcpu increases by
866 * INVERSE_ESTCPU_WEIGHT
867 * (until MAXPRI is reached).  The cpu usage estimator ramps up
868 * quite quickly when the process is running (linearly), and decays
869 * away exponentially, at a rate which is proportionally slower when
870 * the system is busy.  The basic principle is that the system will
871 * 90% forget that the process used a lot of CPU time in 5 * loadav
872 * seconds.  This causes the system to favor processes which haven't
873 * run much recently, and to round-robin among other processes.
874 */
875void
876schedclock(td)
877	struct thread *td;
878{
879	struct kse *ke = td->td_kse;
880	struct ksegrp *kg = td->td_ksegrp;
881
882	if (td) {
883		ke->ke_cpticks++;
884		kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
885		if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
886			resetpriority(td->td_ksegrp);
887			if (kg->kg_pri.pri_level >= PUSER)
888				kg->kg_pri.pri_level = kg->kg_pri.pri_user;
889		}
890	} else {
891		panic("schedclock");
892	}
893}
894
895/*
896 * General purpose yield system call
897 */
898int
899yield(struct thread *td, struct yield_args *uap)
900{
901	struct ksegrp *kg = td->td_ksegrp;
902	td->td_retval[0] = 0;
903
904	mtx_lock_spin(&sched_lock);
905	mtx_assert(&Giant, MA_NOTOWNED);
906#if 0
907	DROP_GIANT_NOSWITCH();
908#endif
909	kg->kg_pri.pri_level = PRI_MAX_TIMESHARE;
910	setrunqueue(td);
911	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
912	mi_switch();
913	mtx_unlock_spin(&sched_lock);
914#if 0
915	PICKUP_GIANT();
916#endif
917
918	return (0);
919}
920
921