kern_synch.c revision 82711
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 82711 2001-09-01 03:54:09Z dillon $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#include <vm/vm.h>
61#include <vm/vm_extern.h>
62#ifdef DDB
63#include <ddb/ddb.h>
64#endif
65#ifdef KTRACE
66#include <sys/uio.h>
67#include <sys/ktrace.h>
68#endif
69
70#include <machine/cpu.h>
71
72static void sched_setup __P((void *dummy));
73SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74
75int	hogticks;
76int	lbolt;
77int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
78
79static struct callout schedcpu_callout;
80static struct callout roundrobin_callout;
81
82static void	endtsleep __P((void *));
83static void	roundrobin __P((void *arg));
84static void	schedcpu __P((void *arg));
85
86static int
87sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
88{
89	int error, new_val;
90
91	new_val = sched_quantum * tick;
92	error = sysctl_handle_int(oidp, &new_val, 0, req);
93        if (error != 0 || req->newptr == NULL)
94		return (error);
95	if (new_val < tick)
96		return (EINVAL);
97	sched_quantum = new_val / tick;
98	hogticks = 2 * sched_quantum;
99	return (0);
100}
101
102SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
103	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
104
105/*
106 * Arrange to reschedule if necessary, taking the priorities and
107 * schedulers into account.
108 */
109void
110maybe_resched(p)
111	struct proc *p;
112{
113
114	mtx_assert(&sched_lock, MA_OWNED);
115	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
116		curproc->p_sflag |= PS_NEEDRESCHED;
117}
118
119int
120roundrobin_interval(void)
121{
122	return (sched_quantum);
123}
124
125/*
126 * Force switch among equal priority processes every 100ms.
127 * We don't actually need to force a context switch of the current process.
128 * The act of firing the event triggers a context switch to softclock() and
129 * then switching back out again which is equivalent to a preemption, thus
130 * no further work is needed on the local CPU.
131 */
132/* ARGSUSED */
133static void
134roundrobin(arg)
135	void *arg;
136{
137
138#ifdef SMP
139	mtx_lock_spin(&sched_lock);
140	forward_roundrobin();
141	mtx_unlock_spin(&sched_lock);
142#endif
143
144	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
145}
146
147/*
148 * Constants for digital decay and forget:
149 *	90% of (p_estcpu) usage in 5 * loadav time
150 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
151 *          Note that, as ps(1) mentions, this can let percentages
152 *          total over 100% (I've seen 137.9% for 3 processes).
153 *
154 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
155 *
156 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
157 * That is, the system wants to compute a value of decay such
158 * that the following for loop:
159 * 	for (i = 0; i < (5 * loadavg); i++)
160 * 		p_estcpu *= decay;
161 * will compute
162 * 	p_estcpu *= 0.1;
163 * for all values of loadavg:
164 *
165 * Mathematically this loop can be expressed by saying:
166 * 	decay ** (5 * loadavg) ~= .1
167 *
168 * The system computes decay as:
169 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
170 *
171 * We wish to prove that the system's computation of decay
172 * will always fulfill the equation:
173 * 	decay ** (5 * loadavg) ~= .1
174 *
175 * If we compute b as:
176 * 	b = 2 * loadavg
177 * then
178 * 	decay = b / (b + 1)
179 *
180 * We now need to prove two things:
181 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
182 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
183 *
184 * Facts:
185 *         For x close to zero, exp(x) =~ 1 + x, since
186 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
187 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
188 *         For x close to zero, ln(1+x) =~ x, since
189 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
190 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
191 *         ln(.1) =~ -2.30
192 *
193 * Proof of (1):
194 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
195 *	solving for factor,
196 *      ln(factor) =~ (-2.30/5*loadav), or
197 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
198 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
199 *
200 * Proof of (2):
201 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
202 *	solving for power,
203 *      power*ln(b/(b+1)) =~ -2.30, or
204 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
205 *
206 * Actual power values for the implemented algorithm are as follows:
207 *      loadav: 1       2       3       4
208 *      power:  5.68    10.32   14.94   19.55
209 */
210
211/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
212#define	loadfactor(loadav)	(2 * (loadav))
213#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
214
215/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
216static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
217SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
218
219/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
220static int	fscale __unused = FSCALE;
221SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
222
223/*
224 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
225 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
226 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
227 *
228 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
229 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
230 *
231 * If you don't want to bother with the faster/more-accurate formula, you
232 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
233 * (more general) method of calculating the %age of CPU used by a process.
234 */
235#define	CCPU_SHIFT	11
236
237/*
238 * Recompute process priorities, every hz ticks.
239 * MP-safe, called without the Giant mutex.
240 */
241/* ARGSUSED */
242static void
243schedcpu(arg)
244	void *arg;
245{
246	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
247	register struct proc *p;
248	register int realstathz;
249
250	realstathz = stathz ? stathz : hz;
251	sx_slock(&allproc_lock);
252	LIST_FOREACH(p, &allproc, p_list) {
253		/*
254		 * Increment time in/out of memory and sleep time
255		 * (if sleeping).  We ignore overflow; with 16-bit int's
256		 * (remember them?) overflow takes 45 days.
257		 */
258		mtx_lock_spin(&sched_lock);
259		p->p_swtime++;
260		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
261			p->p_slptime++;
262		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
263		/*
264		 * If the process has slept the entire second,
265		 * stop recalculating its priority until it wakes up.
266		 */
267		if (p->p_slptime > 1) {
268			mtx_unlock_spin(&sched_lock);
269			continue;
270		}
271
272		/*
273		 * p_pctcpu is only for ps.
274		 */
275#if	(FSHIFT >= CCPU_SHIFT)
276		p->p_pctcpu += (realstathz == 100)?
277			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278                	100 * (((fixpt_t) p->p_cpticks)
279				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
280#else
281		p->p_pctcpu += ((FSCALE - ccpu) *
282			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
283#endif
284		p->p_cpticks = 0;
285		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
286		resetpriority(p);
287		if (p->p_pri.pri_level >= PUSER) {
288			if (p->p_oncpu == NOCPU && 	/* idle */
289			    p->p_stat == SRUN &&
290			    (p->p_sflag & PS_INMEM) &&
291			    (p->p_pri.pri_level / RQ_PPQ) !=
292			    (p->p_pri.pri_user / RQ_PPQ)) {
293				remrunqueue(p);
294				p->p_pri.pri_level = p->p_pri.pri_user;
295				setrunqueue(p);
296			} else
297				p->p_pri.pri_level = p->p_pri.pri_user;
298		}
299		mtx_unlock_spin(&sched_lock);
300	}
301	sx_sunlock(&allproc_lock);
302	vmmeter();
303	wakeup((caddr_t)&lbolt);
304	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
305}
306
307/*
308 * Recalculate the priority of a process after it has slept for a while.
309 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
310 * least six times the loadfactor will decay p_estcpu to zero.
311 */
312void
313updatepri(p)
314	register struct proc *p;
315{
316	register unsigned int newcpu = p->p_estcpu;
317	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
318
319	if (p->p_slptime > 5 * loadfac)
320		p->p_estcpu = 0;
321	else {
322		p->p_slptime--;	/* the first time was done in schedcpu */
323		while (newcpu && --p->p_slptime)
324			newcpu = decay_cpu(loadfac, newcpu);
325		p->p_estcpu = newcpu;
326	}
327	resetpriority(p);
328}
329
330/*
331 * We're only looking at 7 bits of the address; everything is
332 * aligned to 4, lots of things are aligned to greater powers
333 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
334 */
335#define TABLESIZE	128
336static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
337#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
338
339void
340sleepinit(void)
341{
342	int i;
343
344	sched_quantum = hz/10;
345	hogticks = 2 * sched_quantum;
346	for (i = 0; i < TABLESIZE; i++)
347		TAILQ_INIT(&slpque[i]);
348}
349
350/*
351 * General sleep call.  Suspends the current process until a wakeup is
352 * performed on the specified identifier.  The process will then be made
353 * runnable with the specified priority.  Sleeps at most timo/hz seconds
354 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
355 * before and after sleeping, else signals are not checked.  Returns 0 if
356 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
357 * signal needs to be delivered, ERESTART is returned if the current system
358 * call should be restarted if possible, and EINTR is returned if the system
359 * call should be interrupted by the signal (return EINTR).
360 *
361 * The mutex argument is exited before the caller is suspended, and
362 * entered before msleep returns.  If priority includes the PDROP
363 * flag the mutex is not entered before returning.
364 */
365int
366msleep(ident, mtx, priority, wmesg, timo)
367	void *ident;
368	struct mtx *mtx;
369	int priority, timo;
370	const char *wmesg;
371{
372	struct proc *p = curproc;
373	int sig, catch = priority & PCATCH;
374	int rval = 0;
375	WITNESS_SAVE_DECL(mtx);
376
377#ifdef KTRACE
378	if (p && KTRPOINT(p, KTR_CSW))
379		ktrcsw(p->p_tracep, 1, 0);
380#endif
381	WITNESS_SLEEP(0, &mtx->mtx_object);
382	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
383	    ("sleeping without a mutex"));
384	mtx_lock_spin(&sched_lock);
385	if (cold || panicstr) {
386		/*
387		 * After a panic, or during autoconfiguration,
388		 * just give interrupts a chance, then just return;
389		 * don't run any other procs or panic below,
390		 * in case this is the idle process and already asleep.
391		 */
392		if (mtx != NULL && priority & PDROP)
393			mtx_unlock_flags(mtx, MTX_NOSWITCH);
394		mtx_unlock_spin(&sched_lock);
395		return (0);
396	}
397
398	DROP_GIANT_NOSWITCH();
399
400	if (mtx != NULL) {
401		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
402		WITNESS_SAVE(&mtx->mtx_object, mtx);
403		mtx_unlock_flags(mtx, MTX_NOSWITCH);
404		if (priority & PDROP)
405			mtx = NULL;
406	}
407
408	KASSERT(p != NULL, ("msleep1"));
409	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
410
411	p->p_wchan = ident;
412	p->p_wmesg = wmesg;
413	p->p_slptime = 0;
414	p->p_pri.pri_level = priority & PRIMASK;
415	CTR5(KTR_PROC, "msleep: proc %p (pid %d, %s) on %s (%p)", p, p->p_pid,
416	    p->p_comm, wmesg, ident);
417	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
418	if (timo)
419		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
420	/*
421	 * We put ourselves on the sleep queue and start our timeout
422	 * before calling CURSIG, as we could stop there, and a wakeup
423	 * or a SIGCONT (or both) could occur while we were stopped.
424	 * A SIGCONT would cause us to be marked as SSLEEP
425	 * without resuming us, thus we must be ready for sleep
426	 * when CURSIG is called.  If the wakeup happens while we're
427	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
428	 */
429	if (catch) {
430		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
431		    p->p_pid, p->p_comm);
432		p->p_sflag |= PS_SINTR;
433		mtx_unlock_spin(&sched_lock);
434		PROC_LOCK(p);
435		sig = CURSIG(p);
436		mtx_lock_spin(&sched_lock);
437		PROC_UNLOCK_NOSWITCH(p);
438		if (sig != 0) {
439			if (p->p_wchan != NULL)
440				unsleep(p);
441		} else if (p->p_wchan == NULL)
442			catch = 0;
443	} else
444		sig = 0;
445	if (p->p_wchan != NULL) {
446		p->p_stat = SSLEEP;
447		p->p_stats->p_ru.ru_nvcsw++;
448		mi_switch();
449	}
450	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", p, p->p_pid,
451	    p->p_comm);
452	KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
453	p->p_sflag &= ~PS_SINTR;
454	if (p->p_sflag & PS_TIMEOUT) {
455		p->p_sflag &= ~PS_TIMEOUT;
456		if (sig == 0)
457			rval = EWOULDBLOCK;
458	} else if (p->p_sflag & PS_TIMOFAIL)
459		p->p_sflag &= ~PS_TIMOFAIL;
460	else if (timo && callout_stop(&p->p_slpcallout) == 0) {
461		/*
462		 * This isn't supposed to be pretty.  If we are here, then
463		 * the endtsleep() callout is currently executing on another
464		 * CPU and is either spinning on the sched_lock or will be
465		 * soon.  If we don't synchronize here, there is a chance
466		 * that this process may msleep() again before the callout
467		 * has a chance to run and the callout may end up waking up
468		 * the wrong msleep().  Yuck.
469		 */
470		p->p_sflag |= PS_TIMEOUT;
471		p->p_stats->p_ru.ru_nivcsw++;
472		mi_switch();
473	}
474	mtx_unlock_spin(&sched_lock);
475
476	if (rval == 0 && catch) {
477		PROC_LOCK(p);
478		/* XXX: shouldn't we always be calling CURSIG() */
479		if (sig != 0 || (sig = CURSIG(p))) {
480			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
481				rval = EINTR;
482			else
483				rval = ERESTART;
484		}
485		PROC_UNLOCK(p);
486	}
487	PICKUP_GIANT();
488#ifdef KTRACE
489	mtx_lock(&Giant);
490	if (KTRPOINT(p, KTR_CSW))
491		ktrcsw(p->p_tracep, 0, 0);
492	mtx_unlock(&Giant);
493#endif
494	if (mtx != NULL) {
495		mtx_lock(mtx);
496		WITNESS_RESTORE(&mtx->mtx_object, mtx);
497	}
498	return (rval);
499}
500
501/*
502 * Implement timeout for msleep()
503 *
504 * If process hasn't been awakened (wchan non-zero),
505 * set timeout flag and undo the sleep.  If proc
506 * is stopped, just unsleep so it will remain stopped.
507 * MP-safe, called without the Giant mutex.
508 */
509static void
510endtsleep(arg)
511	void *arg;
512{
513	register struct proc *p;
514
515	p = (struct proc *)arg;
516	CTR3(KTR_PROC, "endtsleep: proc %p (pid %d, %s)", p, p->p_pid,
517	    p->p_comm);
518	mtx_lock_spin(&sched_lock);
519	/*
520	 * This is the other half of the synchronization with msleep()
521	 * described above.  If the PS_TIMEOUT flag is set, we lost the
522	 * race and just need to put the process back on the runqueue.
523	 */
524	if ((p->p_sflag & PS_TIMEOUT) != 0) {
525		p->p_sflag &= ~PS_TIMEOUT;
526		setrunqueue(p);
527	} else if (p->p_wchan != NULL) {
528		if (p->p_stat == SSLEEP)
529			setrunnable(p);
530		else
531			unsleep(p);
532		p->p_sflag |= PS_TIMEOUT;
533	} else
534		p->p_sflag |= PS_TIMOFAIL;
535	mtx_unlock_spin(&sched_lock);
536}
537
538/*
539 * Remove a process from its wait queue
540 */
541void
542unsleep(p)
543	register struct proc *p;
544{
545
546	mtx_lock_spin(&sched_lock);
547	if (p->p_wchan != NULL) {
548		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
549		p->p_wchan = NULL;
550	}
551	mtx_unlock_spin(&sched_lock);
552}
553
554/*
555 * Make all processes sleeping on the specified identifier runnable.
556 */
557void
558wakeup(ident)
559	register void *ident;
560{
561	register struct slpquehead *qp;
562	register struct proc *p;
563
564	mtx_lock_spin(&sched_lock);
565	qp = &slpque[LOOKUP(ident)];
566restart:
567	TAILQ_FOREACH(p, qp, p_slpq) {
568		if (p->p_wchan == ident) {
569			TAILQ_REMOVE(qp, p, p_slpq);
570			p->p_wchan = NULL;
571			if (p->p_stat == SSLEEP) {
572				/* OPTIMIZED EXPANSION OF setrunnable(p); */
573				CTR3(KTR_PROC, "wakeup: proc %p (pid %d, %s)",
574				    p, p->p_pid, p->p_comm);
575				if (p->p_slptime > 1)
576					updatepri(p);
577				p->p_slptime = 0;
578				p->p_stat = SRUN;
579				if (p->p_sflag & PS_INMEM) {
580					setrunqueue(p);
581					maybe_resched(p);
582				} else {
583					p->p_sflag |= PS_SWAPINREQ;
584					wakeup((caddr_t)&proc0);
585				}
586				/* END INLINE EXPANSION */
587				goto restart;
588			}
589		}
590	}
591	mtx_unlock_spin(&sched_lock);
592}
593
594/*
595 * Make a process sleeping on the specified identifier runnable.
596 * May wake more than one process if a target process is currently
597 * swapped out.
598 */
599void
600wakeup_one(ident)
601	register void *ident;
602{
603	register struct slpquehead *qp;
604	register struct proc *p;
605
606	mtx_lock_spin(&sched_lock);
607	qp = &slpque[LOOKUP(ident)];
608
609	TAILQ_FOREACH(p, qp, p_slpq) {
610		if (p->p_wchan == ident) {
611			TAILQ_REMOVE(qp, p, p_slpq);
612			p->p_wchan = NULL;
613			if (p->p_stat == SSLEEP) {
614				/* OPTIMIZED EXPANSION OF setrunnable(p); */
615				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
616				    p, p->p_pid, p->p_comm);
617				if (p->p_slptime > 1)
618					updatepri(p);
619				p->p_slptime = 0;
620				p->p_stat = SRUN;
621				if (p->p_sflag & PS_INMEM) {
622					setrunqueue(p);
623					maybe_resched(p);
624					break;
625				} else {
626					p->p_sflag |= PS_SWAPINREQ;
627					wakeup((caddr_t)&proc0);
628				}
629				/* END INLINE EXPANSION */
630			}
631		}
632	}
633	mtx_unlock_spin(&sched_lock);
634}
635
636/*
637 * The machine independent parts of mi_switch().
638 */
639void
640mi_switch()
641{
642	struct timeval new_switchtime;
643	register struct proc *p = curproc;	/* XXX */
644#if 0
645	register struct rlimit *rlim;
646#endif
647	critical_t sched_crit;
648	u_int sched_nest;
649
650	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
651
652	/*
653	 * Compute the amount of time during which the current
654	 * process was running, and add that to its total so far.
655	 */
656	microuptime(&new_switchtime);
657	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
658#if 0
659		/* XXX: This doesn't play well with sched_lock right now. */
660		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
661		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
662		    new_switchtime.tv_sec, new_switchtime.tv_usec);
663#endif
664		new_switchtime = PCPU_GET(switchtime);
665	} else {
666		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
667		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
668		    (int64_t)1000000;
669	}
670
671#ifdef DDB
672	/*
673	 * Don't perform context switches from the debugger.
674	 */
675	if (db_active) {
676		mtx_unlock_spin(&sched_lock);
677		db_error("Context switches not allowed in the debugger.");
678	}
679#endif
680
681#if 0
682	/*
683	 * Check if the process exceeds its cpu resource allocation.
684	 * If over max, kill it.
685	 *
686	 * XXX drop sched_lock, pickup Giant
687	 */
688	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
689	    p->p_runtime > p->p_limit->p_cpulimit) {
690		rlim = &p->p_rlimit[RLIMIT_CPU];
691		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
692			mtx_unlock_spin(&sched_lock);
693			PROC_LOCK(p);
694			killproc(p, "exceeded maximum CPU limit");
695			mtx_lock_spin(&sched_lock);
696			PROC_UNLOCK_NOSWITCH(p);
697		} else {
698			mtx_unlock_spin(&sched_lock);
699			PROC_LOCK(p);
700			psignal(p, SIGXCPU);
701			mtx_lock_spin(&sched_lock);
702			PROC_UNLOCK_NOSWITCH(p);
703			if (rlim->rlim_cur < rlim->rlim_max) {
704				/* XXX: we should make a private copy */
705				rlim->rlim_cur += 5;
706			}
707		}
708	}
709#endif
710
711	/*
712	 * Pick a new current process and record its start time.
713	 */
714	cnt.v_swtch++;
715	PCPU_SET(switchtime, new_switchtime);
716	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
717	    p->p_comm);
718	sched_crit = sched_lock.mtx_savecrit;
719	sched_nest = sched_lock.mtx_recurse;
720	p->p_lastcpu = p->p_oncpu;
721	p->p_oncpu = NOCPU;
722	p->p_sflag &= ~PS_NEEDRESCHED;
723	cpu_switch();
724	p->p_oncpu = PCPU_GET(cpuid);
725	sched_lock.mtx_savecrit = sched_crit;
726	sched_lock.mtx_recurse = sched_nest;
727	sched_lock.mtx_lock = (uintptr_t)p;
728	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
729	    p->p_comm);
730	if (PCPU_GET(switchtime.tv_sec) == 0)
731		microuptime(PCPU_PTR(switchtime));
732	PCPU_SET(switchticks, ticks);
733}
734
735/*
736 * Change process state to be runnable,
737 * placing it on the run queue if it is in memory,
738 * and awakening the swapper if it isn't in memory.
739 */
740void
741setrunnable(p)
742	register struct proc *p;
743{
744
745	mtx_lock_spin(&sched_lock);
746	switch (p->p_stat) {
747	case 0:
748	case SRUN:
749	case SZOMB:
750	case SWAIT:
751	default:
752		panic("setrunnable");
753	case SSTOP:
754	case SSLEEP:			/* e.g. when sending signals */
755		if (p->p_sflag & PS_CVWAITQ)
756			cv_waitq_remove(p);
757		else
758			unsleep(p);
759		break;
760
761	case SIDL:
762		break;
763	}
764	p->p_stat = SRUN;
765	if (p->p_slptime > 1)
766		updatepri(p);
767	p->p_slptime = 0;
768	if ((p->p_sflag & PS_INMEM) == 0) {
769		p->p_sflag |= PS_SWAPINREQ;
770		wakeup((caddr_t)&proc0);
771	} else {
772		setrunqueue(p);
773		maybe_resched(p);
774	}
775	mtx_unlock_spin(&sched_lock);
776}
777
778/*
779 * Compute the priority of a process when running in user mode.
780 * Arrange to reschedule if the resulting priority is better
781 * than that of the current process.
782 */
783void
784resetpriority(p)
785	register struct proc *p;
786{
787	register unsigned int newpriority;
788
789	mtx_lock_spin(&sched_lock);
790	if (p->p_pri.pri_class == PRI_TIMESHARE) {
791		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
792		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
793		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
794		    PRI_MAX_TIMESHARE);
795		p->p_pri.pri_user = newpriority;
796	}
797	maybe_resched(p);
798	mtx_unlock_spin(&sched_lock);
799}
800
801/* ARGSUSED */
802static void
803sched_setup(dummy)
804	void *dummy;
805{
806
807	callout_init(&schedcpu_callout, 1);
808	callout_init(&roundrobin_callout, 0);
809
810	/* Kick off timeout driven events by calling first time. */
811	roundrobin(NULL);
812	schedcpu(NULL);
813}
814
815/*
816 * We adjust the priority of the current process.  The priority of
817 * a process gets worse as it accumulates CPU time.  The cpu usage
818 * estimator (p_estcpu) is increased here.  resetpriority() will
819 * compute a different priority each time p_estcpu increases by
820 * INVERSE_ESTCPU_WEIGHT
821 * (until MAXPRI is reached).  The cpu usage estimator ramps up
822 * quite quickly when the process is running (linearly), and decays
823 * away exponentially, at a rate which is proportionally slower when
824 * the system is busy.  The basic principle is that the system will
825 * 90% forget that the process used a lot of CPU time in 5 * loadav
826 * seconds.  This causes the system to favor processes which haven't
827 * run much recently, and to round-robin among other processes.
828 */
829void
830schedclock(p)
831	struct proc *p;
832{
833
834	p->p_cpticks++;
835	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
836	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
837		resetpriority(p);
838		if (p->p_pri.pri_level >= PUSER)
839			p->p_pri.pri_level = p->p_pri.pri_user;
840	}
841}
842
843/*
844 * General purpose yield system call
845 */
846int
847yield(struct proc *p, struct yield_args *uap)
848{
849	p->p_retval[0] = 0;
850
851	mtx_lock_spin(&sched_lock);
852	mtx_assert(&Giant, MA_NOTOWNED);
853#if 0
854	DROP_GIANT_NOSWITCH();
855#endif
856	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
857	setrunqueue(p);
858	p->p_stats->p_ru.ru_nvcsw++;
859	mi_switch();
860	mtx_unlock_spin(&sched_lock);
861#if 0
862	PICKUP_GIANT();
863#endif
864
865	return (0);
866}
867
868