kern_synch.c revision 79131
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 79131 2001-07-03 08:00:57Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <sys/vmmeter.h>
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int	hogticks;
72int	lbolt;
73int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void	endtsleep __P((void *));
79static void	roundrobin __P((void *arg));
80static void	schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85	int error, new_val;
86
87	new_val = sched_quantum * tick;
88	error = sysctl_handle_int(oidp, &new_val, 0, req);
89        if (error != 0 || req->newptr == NULL)
90		return (error);
91	if (new_val < tick)
92		return (EINVAL);
93	sched_quantum = new_val / tick;
94	hogticks = 2 * sched_quantum;
95	return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107	struct proc *p;
108{
109
110	mtx_assert(&sched_lock, MA_OWNED);
111	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112		need_resched(curproc);
113}
114
115int
116roundrobin_interval(void)
117{
118	return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 * We don't actually need to force a context switch of the current process.
124 * The act of firing the event triggers a context switch to softclock() and
125 * then switching back out again which is equivalent to a preemption, thus
126 * no further work is needed on the local CPU.
127 */
128/* ARGSUSED */
129static void
130roundrobin(arg)
131	void *arg;
132{
133
134#ifdef SMP
135	mtx_lock_spin(&sched_lock);
136	forward_roundrobin();
137	mtx_unlock_spin(&sched_lock);
138#endif
139
140	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
141}
142
143/*
144 * Constants for digital decay and forget:
145 *	90% of (p_estcpu) usage in 5 * loadav time
146 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
147 *          Note that, as ps(1) mentions, this can let percentages
148 *          total over 100% (I've seen 137.9% for 3 processes).
149 *
150 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
151 *
152 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
153 * That is, the system wants to compute a value of decay such
154 * that the following for loop:
155 * 	for (i = 0; i < (5 * loadavg); i++)
156 * 		p_estcpu *= decay;
157 * will compute
158 * 	p_estcpu *= 0.1;
159 * for all values of loadavg:
160 *
161 * Mathematically this loop can be expressed by saying:
162 * 	decay ** (5 * loadavg) ~= .1
163 *
164 * The system computes decay as:
165 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
166 *
167 * We wish to prove that the system's computation of decay
168 * will always fulfill the equation:
169 * 	decay ** (5 * loadavg) ~= .1
170 *
171 * If we compute b as:
172 * 	b = 2 * loadavg
173 * then
174 * 	decay = b / (b + 1)
175 *
176 * We now need to prove two things:
177 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
178 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
179 *
180 * Facts:
181 *         For x close to zero, exp(x) =~ 1 + x, since
182 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
183 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
184 *         For x close to zero, ln(1+x) =~ x, since
185 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
186 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
187 *         ln(.1) =~ -2.30
188 *
189 * Proof of (1):
190 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
191 *	solving for factor,
192 *      ln(factor) =~ (-2.30/5*loadav), or
193 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
194 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
195 *
196 * Proof of (2):
197 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
198 *	solving for power,
199 *      power*ln(b/(b+1)) =~ -2.30, or
200 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
201 *
202 * Actual power values for the implemented algorithm are as follows:
203 *      loadav: 1       2       3       4
204 *      power:  5.68    10.32   14.94   19.55
205 */
206
207/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
208#define	loadfactor(loadav)	(2 * (loadav))
209#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
210
211/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
212static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
213SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
214
215/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
216static int	fscale __unused = FSCALE;
217SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
218
219/*
220 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
221 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
222 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
223 *
224 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
225 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
226 *
227 * If you don't want to bother with the faster/more-accurate formula, you
228 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
229 * (more general) method of calculating the %age of CPU used by a process.
230 */
231#define	CCPU_SHIFT	11
232
233/*
234 * Recompute process priorities, every hz ticks.
235 * MP-safe, called without the Giant mutex.
236 */
237/* ARGSUSED */
238static void
239schedcpu(arg)
240	void *arg;
241{
242	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
243	register struct proc *p;
244	register int realstathz;
245
246	realstathz = stathz ? stathz : hz;
247	sx_slock(&allproc_lock);
248	LIST_FOREACH(p, &allproc, p_list) {
249		/*
250		 * Increment time in/out of memory and sleep time
251		 * (if sleeping).  We ignore overflow; with 16-bit int's
252		 * (remember them?) overflow takes 45 days.
253		if (p->p_stat == SWAIT)
254			continue;
255		 */
256		mtx_lock_spin(&sched_lock);
257		p->p_swtime++;
258		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
259			p->p_slptime++;
260		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
261		/*
262		 * If the process has slept the entire second,
263		 * stop recalculating its priority until it wakes up.
264		 */
265		if (p->p_slptime > 1) {
266			mtx_unlock_spin(&sched_lock);
267			continue;
268		}
269
270		/*
271		 * p_pctcpu is only for ps.
272		 */
273#if	(FSHIFT >= CCPU_SHIFT)
274		p->p_pctcpu += (realstathz == 100)?
275			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
276                	100 * (((fixpt_t) p->p_cpticks)
277				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
278#else
279		p->p_pctcpu += ((FSCALE - ccpu) *
280			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
281#endif
282		p->p_cpticks = 0;
283		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
284		resetpriority(p);
285		if (p->p_pri.pri_level >= PUSER) {
286			if (p->p_oncpu == NOCPU && 	/* idle */
287			    p->p_stat == SRUN &&
288			    (p->p_sflag & PS_INMEM) &&
289			    (p->p_pri.pri_level / RQ_PPQ) !=
290			    (p->p_pri.pri_user / RQ_PPQ)) {
291				remrunqueue(p);
292				p->p_pri.pri_level = p->p_pri.pri_user;
293				setrunqueue(p);
294			} else
295				p->p_pri.pri_level = p->p_pri.pri_user;
296		}
297		mtx_unlock_spin(&sched_lock);
298	}
299	sx_sunlock(&allproc_lock);
300	vmmeter();
301	wakeup((caddr_t)&lbolt);
302	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
303}
304
305/*
306 * Recalculate the priority of a process after it has slept for a while.
307 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
308 * least six times the loadfactor will decay p_estcpu to zero.
309 */
310void
311updatepri(p)
312	register struct proc *p;
313{
314	register unsigned int newcpu = p->p_estcpu;
315	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
316
317	if (p->p_slptime > 5 * loadfac)
318		p->p_estcpu = 0;
319	else {
320		p->p_slptime--;	/* the first time was done in schedcpu */
321		while (newcpu && --p->p_slptime)
322			newcpu = decay_cpu(loadfac, newcpu);
323		p->p_estcpu = newcpu;
324	}
325	resetpriority(p);
326}
327
328/*
329 * We're only looking at 7 bits of the address; everything is
330 * aligned to 4, lots of things are aligned to greater powers
331 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
332 */
333#define TABLESIZE	128
334static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
335#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
336
337void
338sleepinit(void)
339{
340	int i;
341
342	sched_quantum = hz/10;
343	hogticks = 2 * sched_quantum;
344	for (i = 0; i < TABLESIZE; i++)
345		TAILQ_INIT(&slpque[i]);
346}
347
348/*
349 * General sleep call.  Suspends the current process until a wakeup is
350 * performed on the specified identifier.  The process will then be made
351 * runnable with the specified priority.  Sleeps at most timo/hz seconds
352 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
353 * before and after sleeping, else signals are not checked.  Returns 0 if
354 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
355 * signal needs to be delivered, ERESTART is returned if the current system
356 * call should be restarted if possible, and EINTR is returned if the system
357 * call should be interrupted by the signal (return EINTR).
358 *
359 * The mutex argument is exited before the caller is suspended, and
360 * entered before msleep returns.  If priority includes the PDROP
361 * flag the mutex is not entered before returning.
362 */
363int
364msleep(ident, mtx, priority, wmesg, timo)
365	void *ident;
366	struct mtx *mtx;
367	int priority, timo;
368	const char *wmesg;
369{
370	struct proc *p = curproc;
371	int sig, catch = priority & PCATCH;
372	int rval = 0;
373	WITNESS_SAVE_DECL(mtx);
374
375#ifdef KTRACE
376	if (p && KTRPOINT(p, KTR_CSW))
377		ktrcsw(p->p_tracep, 1, 0);
378#endif
379	WITNESS_SLEEP(0, &mtx->mtx_object);
380	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
381	    ("sleeping without a mutex"));
382	mtx_lock_spin(&sched_lock);
383	if (cold || panicstr) {
384		/*
385		 * After a panic, or during autoconfiguration,
386		 * just give interrupts a chance, then just return;
387		 * don't run any other procs or panic below,
388		 * in case this is the idle process and already asleep.
389		 */
390		if (mtx != NULL && priority & PDROP)
391			mtx_unlock_flags(mtx, MTX_NOSWITCH);
392		mtx_unlock_spin(&sched_lock);
393		return (0);
394	}
395
396	DROP_GIANT_NOSWITCH();
397
398	if (mtx != NULL) {
399		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
400		WITNESS_SAVE(&mtx->mtx_object, mtx);
401		mtx_unlock_flags(mtx, MTX_NOSWITCH);
402		if (priority & PDROP)
403			mtx = NULL;
404	}
405
406	KASSERT(p != NULL, ("msleep1"));
407	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
408	/*
409	 * Process may be sitting on a slpque if asleep() was called, remove
410	 * it before re-adding.
411	 */
412	if (p->p_wchan != NULL)
413		unsleep(p);
414
415	p->p_wchan = ident;
416	p->p_wmesg = wmesg;
417	p->p_slptime = 0;
418	p->p_pri.pri_level = priority & PRIMASK;
419	CTR5(KTR_PROC, "msleep: proc %p (pid %d, %s) on %s (%p)", p, p->p_pid,
420	    p->p_comm, wmesg, ident);
421	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
422	if (timo)
423		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
424	/*
425	 * We put ourselves on the sleep queue and start our timeout
426	 * before calling CURSIG, as we could stop there, and a wakeup
427	 * or a SIGCONT (or both) could occur while we were stopped.
428	 * A SIGCONT would cause us to be marked as SSLEEP
429	 * without resuming us, thus we must be ready for sleep
430	 * when CURSIG is called.  If the wakeup happens while we're
431	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
432	 */
433	if (catch) {
434		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
435		    p->p_pid, p->p_comm);
436		p->p_sflag |= PS_SINTR;
437		mtx_unlock_spin(&sched_lock);
438		PROC_LOCK(p);
439		sig = CURSIG(p);
440		mtx_lock_spin(&sched_lock);
441		PROC_UNLOCK_NOSWITCH(p);
442		if (sig != 0) {
443			if (p->p_wchan)
444				unsleep(p);
445		} else if (p->p_wchan == NULL)
446			catch = 0;
447	} else
448		sig = 0;
449	if (p->p_wchan != NULL) {
450		p->p_stat = SSLEEP;
451		p->p_stats->p_ru.ru_nvcsw++;
452		mi_switch();
453	}
454	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", p, p->p_pid,
455	    p->p_comm);
456	KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
457	p->p_sflag &= ~PS_SINTR;
458	if (p->p_sflag & PS_TIMEOUT) {
459		p->p_sflag &= ~PS_TIMEOUT;
460		if (sig == 0)
461			rval = EWOULDBLOCK;
462	} else if (timo)
463		callout_stop(&p->p_slpcallout);
464	mtx_unlock_spin(&sched_lock);
465
466	if (rval == 0 && catch) {
467		PROC_LOCK(p);
468		/* XXX: shouldn't we always be calling CURSIG() */
469		if (sig != 0 || (sig = CURSIG(p))) {
470			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
471				rval = EINTR;
472			else
473				rval = ERESTART;
474		}
475		PROC_UNLOCK(p);
476	}
477	PICKUP_GIANT();
478#ifdef KTRACE
479	mtx_lock(&Giant);
480	if (KTRPOINT(p, KTR_CSW))
481		ktrcsw(p->p_tracep, 0, 0);
482	mtx_unlock(&Giant);
483#endif
484	if (mtx != NULL) {
485		mtx_lock(mtx);
486		WITNESS_RESTORE(&mtx->mtx_object, mtx);
487	}
488	return (rval);
489}
490
491/*
492 * asleep() - async sleep call.  Place process on wait queue and return
493 * immediately without blocking.  The process stays runnable until mawait()
494 * is called.  If ident is NULL, remove process from wait queue if it is still
495 * on one.
496 *
497 * Only the most recent sleep condition is effective when making successive
498 * calls to asleep() or when calling msleep().
499 *
500 * The timeout, if any, is not initiated until mawait() is called.  The sleep
501 * priority, signal, and timeout is specified in the asleep() call but may be
502 * overriden in the mawait() call.
503 *
504 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
505 */
506
507int
508asleep(void *ident, int priority, const char *wmesg, int timo)
509{
510	struct proc *p = curproc;
511
512	/*
513	 * Remove preexisting wait condition (if any) and place process
514	 * on appropriate slpque, but do not put process to sleep.
515	 */
516
517	mtx_lock_spin(&sched_lock);
518
519	if (p->p_wchan != NULL)
520		unsleep(p);
521
522	if (ident) {
523		p->p_wchan = ident;
524		p->p_wmesg = wmesg;
525		p->p_slptime = 0;
526		p->p_asleep.as_priority = priority;
527		p->p_asleep.as_timo = timo;
528		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
529	}
530
531	mtx_unlock_spin(&sched_lock);
532
533	return(0);
534}
535
536/*
537 * mawait() - wait for async condition to occur.   The process blocks until
538 * wakeup() is called on the most recent asleep() address.  If wakeup is called
539 * prior to mawait(), mawait() winds up being a NOP.
540 *
541 * If mawait() is called more then once (without an intervening asleep() call),
542 * mawait() is still effectively a NOP but it calls mi_switch() to give other
543 * processes some cpu before returning.  The process is left runnable.
544 *
545 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
546 */
547
548int
549mawait(struct mtx *mtx, int priority, int timo)
550{
551	struct proc *p = curproc;
552	int rval = 0;
553	WITNESS_SAVE_DECL(mtx);
554
555	WITNESS_SLEEP(0, &mtx->mtx_object);
556	KASSERT(timo > 0 || mtx_owned(&Giant) || mtx != NULL,
557	    ("sleeping without a mutex"));
558	mtx_lock_spin(&sched_lock);
559	DROP_GIANT_NOSWITCH();
560	if (mtx != NULL) {
561		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
562		WITNESS_SAVE(&mtx->mtx_object, mtx);
563		mtx_unlock_flags(mtx, MTX_NOSWITCH);
564		if (priority & PDROP)
565			mtx = NULL;
566	}
567
568	if (p->p_wchan != NULL) {
569		int sig;
570		int catch;
571
572#ifdef KTRACE
573		if (p && KTRPOINT(p, KTR_CSW))
574			ktrcsw(p->p_tracep, 1, 0);
575#endif
576		/*
577		 * The call to mawait() can override defaults specified in
578		 * the original asleep().
579		 */
580		if (priority < 0)
581			priority = p->p_asleep.as_priority;
582		if (timo < 0)
583			timo = p->p_asleep.as_timo;
584
585		/*
586		 * Install timeout
587		 */
588
589		if (timo)
590			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
591
592		sig = 0;
593		catch = priority & PCATCH;
594
595		if (catch) {
596			p->p_sflag |= PS_SINTR;
597			mtx_unlock_spin(&sched_lock);
598			PROC_LOCK(p);
599			sig = CURSIG(p);
600			mtx_lock_spin(&sched_lock);
601			PROC_UNLOCK_NOSWITCH(p);
602			if (sig != 0) {
603				if (p->p_wchan)
604					unsleep(p);
605			} else if (p->p_wchan == NULL)
606				catch = 0;
607		}
608		if (p->p_wchan != NULL) {
609			p->p_stat = SSLEEP;
610			p->p_stats->p_ru.ru_nvcsw++;
611			mi_switch();
612		}
613		KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
614		p->p_sflag &= ~PS_SINTR;
615		if (p->p_sflag & PS_TIMEOUT) {
616			p->p_sflag &= ~PS_TIMEOUT;
617			if (sig == 0)
618				rval = EWOULDBLOCK;
619		} else if (timo)
620			callout_stop(&p->p_slpcallout);
621		mtx_unlock_spin(&sched_lock);
622		if (rval == 0 && catch) {
623			PROC_LOCK(p);
624			if (sig != 0 || (sig = CURSIG(p))) {
625				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
626					rval = EINTR;
627				else
628					rval = ERESTART;
629			}
630			PROC_UNLOCK(p);
631		}
632#ifdef KTRACE
633		mtx_lock(&Giant);
634		if (KTRPOINT(p, KTR_CSW))
635			ktrcsw(p->p_tracep, 0, 0);
636		mtx_unlock(&Giant);
637#endif
638	} else {
639		/*
640		 * If as_priority is 0, mawait() has been called without an
641		 * intervening asleep().  We are still effectively a NOP,
642		 * but we call mi_switch() for safety.
643		 */
644
645		if (p->p_asleep.as_priority == 0) {
646			p->p_stats->p_ru.ru_nvcsw++;
647			mi_switch();
648		}
649		mtx_unlock_spin(&sched_lock);
650	}
651
652	/*
653	 * clear p_asleep.as_priority as an indication that mawait() has been
654	 * called.  If mawait() is called again without an intervening asleep(),
655	 * mawait() is still effectively a NOP but the above mi_switch() code
656	 * is triggered as a safety.
657	 */
658	if (rval == 0)
659		p->p_asleep.as_priority = 0;
660
661	PICKUP_GIANT();
662	if (mtx != NULL) {
663		mtx_lock(mtx);
664		WITNESS_RESTORE(&mtx->mtx_object, mtx);
665	}
666	return (rval);
667}
668
669/*
670 * Implement timeout for msleep or asleep()/mawait()
671 *
672 * If process hasn't been awakened (wchan non-zero),
673 * set timeout flag and undo the sleep.  If proc
674 * is stopped, just unsleep so it will remain stopped.
675 * MP-safe, called without the Giant mutex.
676 */
677static void
678endtsleep(arg)
679	void *arg;
680{
681	register struct proc *p;
682
683	p = (struct proc *)arg;
684	CTR3(KTR_PROC, "endtsleep: proc %p (pid %d, %s)", p, p->p_pid,
685	    p->p_comm);
686	mtx_lock_spin(&sched_lock);
687	if (p->p_wchan) {
688		if (p->p_stat == SSLEEP)
689			setrunnable(p);
690		else
691			unsleep(p);
692		p->p_sflag |= PS_TIMEOUT;
693	}
694	mtx_unlock_spin(&sched_lock);
695}
696
697/*
698 * Remove a process from its wait queue
699 */
700void
701unsleep(p)
702	register struct proc *p;
703{
704
705	mtx_lock_spin(&sched_lock);
706	if (p->p_wchan) {
707		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
708		p->p_wchan = NULL;
709	}
710	mtx_unlock_spin(&sched_lock);
711}
712
713/*
714 * Make all processes sleeping on the specified identifier runnable.
715 */
716void
717wakeup(ident)
718	register void *ident;
719{
720	register struct slpquehead *qp;
721	register struct proc *p;
722
723	mtx_lock_spin(&sched_lock);
724	qp = &slpque[LOOKUP(ident)];
725restart:
726	TAILQ_FOREACH(p, qp, p_slpq) {
727		if (p->p_wchan == ident) {
728			TAILQ_REMOVE(qp, p, p_slpq);
729			p->p_wchan = NULL;
730			if (p->p_stat == SSLEEP) {
731				/* OPTIMIZED EXPANSION OF setrunnable(p); */
732				CTR3(KTR_PROC, "wakeup: proc %p (pid %d, %s)",
733				    p, p->p_pid, p->p_comm);
734				if (p->p_slptime > 1)
735					updatepri(p);
736				p->p_slptime = 0;
737				p->p_stat = SRUN;
738				if (p->p_sflag & PS_INMEM) {
739					setrunqueue(p);
740					maybe_resched(p);
741				} else {
742					p->p_sflag |= PS_SWAPINREQ;
743					wakeup((caddr_t)&proc0);
744				}
745				/* END INLINE EXPANSION */
746				goto restart;
747			}
748		}
749	}
750	mtx_unlock_spin(&sched_lock);
751}
752
753/*
754 * Make a process sleeping on the specified identifier runnable.
755 * May wake more than one process if a target process is currently
756 * swapped out.
757 */
758void
759wakeup_one(ident)
760	register void *ident;
761{
762	register struct slpquehead *qp;
763	register struct proc *p;
764
765	mtx_lock_spin(&sched_lock);
766	qp = &slpque[LOOKUP(ident)];
767
768	TAILQ_FOREACH(p, qp, p_slpq) {
769		if (p->p_wchan == ident) {
770			TAILQ_REMOVE(qp, p, p_slpq);
771			p->p_wchan = NULL;
772			if (p->p_stat == SSLEEP) {
773				/* OPTIMIZED EXPANSION OF setrunnable(p); */
774				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
775				    p, p->p_pid, p->p_comm);
776				if (p->p_slptime > 1)
777					updatepri(p);
778				p->p_slptime = 0;
779				p->p_stat = SRUN;
780				if (p->p_sflag & PS_INMEM) {
781					setrunqueue(p);
782					maybe_resched(p);
783					break;
784				} else {
785					p->p_sflag |= PS_SWAPINREQ;
786					wakeup((caddr_t)&proc0);
787				}
788				/* END INLINE EXPANSION */
789			}
790		}
791	}
792	mtx_unlock_spin(&sched_lock);
793}
794
795/*
796 * The machine independent parts of mi_switch().
797 */
798void
799mi_switch()
800{
801	struct timeval new_switchtime;
802	register struct proc *p = curproc;	/* XXX */
803#if 0
804	register struct rlimit *rlim;
805#endif
806	critical_t sched_crit;
807	u_int sched_nest;
808
809	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
810
811	/*
812	 * Compute the amount of time during which the current
813	 * process was running, and add that to its total so far.
814	 */
815	microuptime(&new_switchtime);
816	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
817#if 0
818		/* XXX: This doesn't play well with sched_lock right now. */
819		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
820		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
821		    new_switchtime.tv_sec, new_switchtime.tv_usec);
822#endif
823		new_switchtime = PCPU_GET(switchtime);
824	} else {
825		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
826		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
827		    (int64_t)1000000;
828	}
829
830#if 0
831	/*
832	 * Check if the process exceeds its cpu resource allocation.
833	 * If over max, kill it.
834	 *
835	 * XXX drop sched_lock, pickup Giant
836	 */
837	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
838	    p->p_runtime > p->p_limit->p_cpulimit) {
839		rlim = &p->p_rlimit[RLIMIT_CPU];
840		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
841			mtx_unlock_spin(&sched_lock);
842			PROC_LOCK(p);
843			killproc(p, "exceeded maximum CPU limit");
844			mtx_lock_spin(&sched_lock);
845			PROC_UNLOCK_NOSWITCH(p);
846		} else {
847			mtx_unlock_spin(&sched_lock);
848			PROC_LOCK(p);
849			psignal(p, SIGXCPU);
850			mtx_lock_spin(&sched_lock);
851			PROC_UNLOCK_NOSWITCH(p);
852			if (rlim->rlim_cur < rlim->rlim_max) {
853				/* XXX: we should make a private copy */
854				rlim->rlim_cur += 5;
855			}
856		}
857	}
858#endif
859
860	/*
861	 * Pick a new current process and record its start time.
862	 */
863	cnt.v_swtch++;
864	PCPU_SET(switchtime, new_switchtime);
865	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
866	    p->p_comm);
867	sched_crit = sched_lock.mtx_savecrit;
868	sched_nest = sched_lock.mtx_recurse;
869	curproc->p_lastcpu = curproc->p_oncpu;
870	curproc->p_oncpu = NOCPU;
871	clear_resched(curproc);
872	cpu_switch();
873	curproc->p_oncpu = PCPU_GET(cpuid);
874	sched_lock.mtx_savecrit = sched_crit;
875	sched_lock.mtx_recurse = sched_nest;
876	sched_lock.mtx_lock = (uintptr_t)curproc;
877	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
878	    p->p_comm);
879	if (PCPU_GET(switchtime.tv_sec) == 0)
880		microuptime(PCPU_PTR(switchtime));
881	PCPU_SET(switchticks, ticks);
882}
883
884/*
885 * Change process state to be runnable,
886 * placing it on the run queue if it is in memory,
887 * and awakening the swapper if it isn't in memory.
888 */
889void
890setrunnable(p)
891	register struct proc *p;
892{
893
894	mtx_lock_spin(&sched_lock);
895	switch (p->p_stat) {
896	case 0:
897	case SRUN:
898	case SZOMB:
899	case SWAIT:
900	default:
901		panic("setrunnable");
902	case SSTOP:
903	case SSLEEP:			/* e.g. when sending signals */
904		if (p->p_sflag & PS_CVWAITQ)
905			cv_waitq_remove(p);
906		else
907			unsleep(p);
908		break;
909
910	case SIDL:
911		break;
912	}
913	p->p_stat = SRUN;
914	if (p->p_slptime > 1)
915		updatepri(p);
916	p->p_slptime = 0;
917	if ((p->p_sflag & PS_INMEM) == 0) {
918		p->p_sflag |= PS_SWAPINREQ;
919		wakeup((caddr_t)&proc0);
920	} else {
921		setrunqueue(p);
922		maybe_resched(p);
923	}
924	mtx_unlock_spin(&sched_lock);
925}
926
927/*
928 * Compute the priority of a process when running in user mode.
929 * Arrange to reschedule if the resulting priority is better
930 * than that of the current process.
931 */
932void
933resetpriority(p)
934	register struct proc *p;
935{
936	register unsigned int newpriority;
937
938	mtx_lock_spin(&sched_lock);
939	if (p->p_pri.pri_class == PRI_TIMESHARE) {
940		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
941		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
942		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
943		    PRI_MAX_TIMESHARE);
944		p->p_pri.pri_user = newpriority;
945	}
946	maybe_resched(p);
947	mtx_unlock_spin(&sched_lock);
948}
949
950/* ARGSUSED */
951static void
952sched_setup(dummy)
953	void *dummy;
954{
955
956	callout_init(&schedcpu_callout, 1);
957	callout_init(&roundrobin_callout, 0);
958
959	/* Kick off timeout driven events by calling first time. */
960	roundrobin(NULL);
961	schedcpu(NULL);
962}
963
964/*
965 * We adjust the priority of the current process.  The priority of
966 * a process gets worse as it accumulates CPU time.  The cpu usage
967 * estimator (p_estcpu) is increased here.  resetpriority() will
968 * compute a different priority each time p_estcpu increases by
969 * INVERSE_ESTCPU_WEIGHT
970 * (until MAXPRI is reached).  The cpu usage estimator ramps up
971 * quite quickly when the process is running (linearly), and decays
972 * away exponentially, at a rate which is proportionally slower when
973 * the system is busy.  The basic principle is that the system will
974 * 90% forget that the process used a lot of CPU time in 5 * loadav
975 * seconds.  This causes the system to favor processes which haven't
976 * run much recently, and to round-robin among other processes.
977 */
978void
979schedclock(p)
980	struct proc *p;
981{
982
983	p->p_cpticks++;
984	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
985	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
986		resetpriority(p);
987		if (p->p_pri.pri_level >= PUSER)
988			p->p_pri.pri_level = p->p_pri.pri_user;
989	}
990}
991
992/*
993 * General purpose yield system call
994 */
995int
996yield(struct proc *p, struct yield_args *uap)
997{
998
999	p->p_retval[0] = 0;
1000
1001	mtx_lock_spin(&sched_lock);
1002	DROP_GIANT_NOSWITCH();
1003	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1004	setrunqueue(p);
1005	p->p_stats->p_ru.ru_nvcsw++;
1006	mi_switch();
1007	mtx_unlock_spin(&sched_lock);
1008	PICKUP_GIANT();
1009
1010	return (0);
1011}
1012