kern_synch.c revision 79130
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 79130 2001-07-03 07:53:35Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <sys/vmmeter.h>
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int	hogticks;
72int	lbolt;
73int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void	endtsleep __P((void *));
79static void	roundrobin __P((void *arg));
80static void	schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85	int error, new_val;
86
87	new_val = sched_quantum * tick;
88	error = sysctl_handle_int(oidp, &new_val, 0, req);
89        if (error != 0 || req->newptr == NULL)
90		return (error);
91	if (new_val < tick)
92		return (EINVAL);
93	sched_quantum = new_val / tick;
94	hogticks = 2 * sched_quantum;
95	return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107	struct proc *p;
108{
109
110	mtx_assert(&sched_lock, MA_OWNED);
111	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112		need_resched(curproc);
113}
114
115int
116roundrobin_interval(void)
117{
118	return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 * We don't actually need to force a context switch of the current process.
124 * The act of firing the event triggers a context switch to softclock() and
125 * then switching back out again which is equivalent to a preemption, thus
126 * no further work is needed on the local CPU.
127 */
128/* ARGSUSED */
129static void
130roundrobin(arg)
131	void *arg;
132{
133
134#ifdef SMP
135	mtx_lock_spin(&sched_lock);
136	forward_roundrobin();
137	mtx_unlock_spin(&sched_lock);
138#endif
139
140	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
141}
142
143/*
144 * Constants for digital decay and forget:
145 *	90% of (p_estcpu) usage in 5 * loadav time
146 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
147 *          Note that, as ps(1) mentions, this can let percentages
148 *          total over 100% (I've seen 137.9% for 3 processes).
149 *
150 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
151 *
152 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
153 * That is, the system wants to compute a value of decay such
154 * that the following for loop:
155 * 	for (i = 0; i < (5 * loadavg); i++)
156 * 		p_estcpu *= decay;
157 * will compute
158 * 	p_estcpu *= 0.1;
159 * for all values of loadavg:
160 *
161 * Mathematically this loop can be expressed by saying:
162 * 	decay ** (5 * loadavg) ~= .1
163 *
164 * The system computes decay as:
165 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
166 *
167 * We wish to prove that the system's computation of decay
168 * will always fulfill the equation:
169 * 	decay ** (5 * loadavg) ~= .1
170 *
171 * If we compute b as:
172 * 	b = 2 * loadavg
173 * then
174 * 	decay = b / (b + 1)
175 *
176 * We now need to prove two things:
177 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
178 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
179 *
180 * Facts:
181 *         For x close to zero, exp(x) =~ 1 + x, since
182 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
183 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
184 *         For x close to zero, ln(1+x) =~ x, since
185 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
186 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
187 *         ln(.1) =~ -2.30
188 *
189 * Proof of (1):
190 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
191 *	solving for factor,
192 *      ln(factor) =~ (-2.30/5*loadav), or
193 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
194 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
195 *
196 * Proof of (2):
197 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
198 *	solving for power,
199 *      power*ln(b/(b+1)) =~ -2.30, or
200 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
201 *
202 * Actual power values for the implemented algorithm are as follows:
203 *      loadav: 1       2       3       4
204 *      power:  5.68    10.32   14.94   19.55
205 */
206
207/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
208#define	loadfactor(loadav)	(2 * (loadav))
209#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
210
211/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
212static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
213SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
214
215/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
216static int	fscale __unused = FSCALE;
217SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
218
219/*
220 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
221 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
222 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
223 *
224 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
225 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
226 *
227 * If you don't want to bother with the faster/more-accurate formula, you
228 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
229 * (more general) method of calculating the %age of CPU used by a process.
230 */
231#define	CCPU_SHIFT	11
232
233/*
234 * Recompute process priorities, every hz ticks.
235 * MP-safe, called without the Giant mutex.
236 */
237/* ARGSUSED */
238static void
239schedcpu(arg)
240	void *arg;
241{
242	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
243	register struct proc *p;
244	register int realstathz;
245
246	realstathz = stathz ? stathz : hz;
247	sx_slock(&allproc_lock);
248	LIST_FOREACH(p, &allproc, p_list) {
249		/*
250		 * Increment time in/out of memory and sleep time
251		 * (if sleeping).  We ignore overflow; with 16-bit int's
252		 * (remember them?) overflow takes 45 days.
253		if (p->p_stat == SWAIT)
254			continue;
255		 */
256		mtx_lock_spin(&sched_lock);
257		p->p_swtime++;
258		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
259			p->p_slptime++;
260		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
261		/*
262		 * If the process has slept the entire second,
263		 * stop recalculating its priority until it wakes up.
264		 */
265		if (p->p_slptime > 1) {
266			mtx_unlock_spin(&sched_lock);
267			continue;
268		}
269
270		/*
271		 * p_pctcpu is only for ps.
272		 */
273#if	(FSHIFT >= CCPU_SHIFT)
274		p->p_pctcpu += (realstathz == 100)?
275			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
276                	100 * (((fixpt_t) p->p_cpticks)
277				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
278#else
279		p->p_pctcpu += ((FSCALE - ccpu) *
280			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
281#endif
282		p->p_cpticks = 0;
283		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
284		resetpriority(p);
285		if (p->p_pri.pri_level >= PUSER) {
286			if ((p != curproc) &&
287#ifdef SMP
288			    p->p_oncpu == NOCPU && 	/* idle */
289#endif
290			    p->p_stat == SRUN &&
291			    (p->p_sflag & PS_INMEM) &&
292			    (p->p_pri.pri_level / RQ_PPQ) !=
293			    (p->p_pri.pri_user / RQ_PPQ)) {
294				remrunqueue(p);
295				p->p_pri.pri_level = p->p_pri.pri_user;
296				setrunqueue(p);
297			} else
298				p->p_pri.pri_level = p->p_pri.pri_user;
299		}
300		mtx_unlock_spin(&sched_lock);
301	}
302	sx_sunlock(&allproc_lock);
303	vmmeter();
304	wakeup((caddr_t)&lbolt);
305	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
306}
307
308/*
309 * Recalculate the priority of a process after it has slept for a while.
310 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
311 * least six times the loadfactor will decay p_estcpu to zero.
312 */
313void
314updatepri(p)
315	register struct proc *p;
316{
317	register unsigned int newcpu = p->p_estcpu;
318	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
319
320	if (p->p_slptime > 5 * loadfac)
321		p->p_estcpu = 0;
322	else {
323		p->p_slptime--;	/* the first time was done in schedcpu */
324		while (newcpu && --p->p_slptime)
325			newcpu = decay_cpu(loadfac, newcpu);
326		p->p_estcpu = newcpu;
327	}
328	resetpriority(p);
329}
330
331/*
332 * We're only looking at 7 bits of the address; everything is
333 * aligned to 4, lots of things are aligned to greater powers
334 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
335 */
336#define TABLESIZE	128
337static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
338#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
339
340void
341sleepinit(void)
342{
343	int i;
344
345	sched_quantum = hz/10;
346	hogticks = 2 * sched_quantum;
347	for (i = 0; i < TABLESIZE; i++)
348		TAILQ_INIT(&slpque[i]);
349}
350
351/*
352 * General sleep call.  Suspends the current process until a wakeup is
353 * performed on the specified identifier.  The process will then be made
354 * runnable with the specified priority.  Sleeps at most timo/hz seconds
355 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
356 * before and after sleeping, else signals are not checked.  Returns 0 if
357 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
358 * signal needs to be delivered, ERESTART is returned if the current system
359 * call should be restarted if possible, and EINTR is returned if the system
360 * call should be interrupted by the signal (return EINTR).
361 *
362 * The mutex argument is exited before the caller is suspended, and
363 * entered before msleep returns.  If priority includes the PDROP
364 * flag the mutex is not entered before returning.
365 */
366int
367msleep(ident, mtx, priority, wmesg, timo)
368	void *ident;
369	struct mtx *mtx;
370	int priority, timo;
371	const char *wmesg;
372{
373	struct proc *p = curproc;
374	int sig, catch = priority & PCATCH;
375	int rval = 0;
376	WITNESS_SAVE_DECL(mtx);
377
378#ifdef KTRACE
379	if (p && KTRPOINT(p, KTR_CSW))
380		ktrcsw(p->p_tracep, 1, 0);
381#endif
382	WITNESS_SLEEP(0, &mtx->mtx_object);
383	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
384	    ("sleeping without a mutex"));
385	mtx_lock_spin(&sched_lock);
386	if (cold || panicstr) {
387		/*
388		 * After a panic, or during autoconfiguration,
389		 * just give interrupts a chance, then just return;
390		 * don't run any other procs or panic below,
391		 * in case this is the idle process and already asleep.
392		 */
393		if (mtx != NULL && priority & PDROP)
394			mtx_unlock_flags(mtx, MTX_NOSWITCH);
395		mtx_unlock_spin(&sched_lock);
396		return (0);
397	}
398
399	DROP_GIANT_NOSWITCH();
400
401	if (mtx != NULL) {
402		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
403		WITNESS_SAVE(&mtx->mtx_object, mtx);
404		mtx_unlock_flags(mtx, MTX_NOSWITCH);
405		if (priority & PDROP)
406			mtx = NULL;
407	}
408
409	KASSERT(p != NULL, ("msleep1"));
410	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
411	/*
412	 * Process may be sitting on a slpque if asleep() was called, remove
413	 * it before re-adding.
414	 */
415	if (p->p_wchan != NULL)
416		unsleep(p);
417
418	p->p_wchan = ident;
419	p->p_wmesg = wmesg;
420	p->p_slptime = 0;
421	p->p_pri.pri_level = priority & PRIMASK;
422	CTR5(KTR_PROC, "msleep: proc %p (pid %d, %s) on %s (%p)", p, p->p_pid,
423	    p->p_comm, wmesg, ident);
424	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
425	if (timo)
426		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
427	/*
428	 * We put ourselves on the sleep queue and start our timeout
429	 * before calling CURSIG, as we could stop there, and a wakeup
430	 * or a SIGCONT (or both) could occur while we were stopped.
431	 * A SIGCONT would cause us to be marked as SSLEEP
432	 * without resuming us, thus we must be ready for sleep
433	 * when CURSIG is called.  If the wakeup happens while we're
434	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
435	 */
436	if (catch) {
437		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
438		    p->p_pid, p->p_comm);
439		p->p_sflag |= PS_SINTR;
440		mtx_unlock_spin(&sched_lock);
441		PROC_LOCK(p);
442		sig = CURSIG(p);
443		mtx_lock_spin(&sched_lock);
444		PROC_UNLOCK_NOSWITCH(p);
445		if (sig != 0) {
446			if (p->p_wchan)
447				unsleep(p);
448		} else if (p->p_wchan == NULL)
449			catch = 0;
450	} else
451		sig = 0;
452	if (p->p_wchan != NULL) {
453		p->p_stat = SSLEEP;
454		p->p_stats->p_ru.ru_nvcsw++;
455		mi_switch();
456	}
457	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", p, p->p_pid,
458	    p->p_comm);
459	KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
460	p->p_sflag &= ~PS_SINTR;
461	if (p->p_sflag & PS_TIMEOUT) {
462		p->p_sflag &= ~PS_TIMEOUT;
463		if (sig == 0)
464			rval = EWOULDBLOCK;
465	} else if (timo)
466		callout_stop(&p->p_slpcallout);
467	mtx_unlock_spin(&sched_lock);
468
469	if (rval == 0 && catch) {
470		PROC_LOCK(p);
471		/* XXX: shouldn't we always be calling CURSIG() */
472		if (sig != 0 || (sig = CURSIG(p))) {
473			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
474				rval = EINTR;
475			else
476				rval = ERESTART;
477		}
478		PROC_UNLOCK(p);
479	}
480	PICKUP_GIANT();
481#ifdef KTRACE
482	mtx_lock(&Giant);
483	if (KTRPOINT(p, KTR_CSW))
484		ktrcsw(p->p_tracep, 0, 0);
485	mtx_unlock(&Giant);
486#endif
487	if (mtx != NULL) {
488		mtx_lock(mtx);
489		WITNESS_RESTORE(&mtx->mtx_object, mtx);
490	}
491	return (rval);
492}
493
494/*
495 * asleep() - async sleep call.  Place process on wait queue and return
496 * immediately without blocking.  The process stays runnable until mawait()
497 * is called.  If ident is NULL, remove process from wait queue if it is still
498 * on one.
499 *
500 * Only the most recent sleep condition is effective when making successive
501 * calls to asleep() or when calling msleep().
502 *
503 * The timeout, if any, is not initiated until mawait() is called.  The sleep
504 * priority, signal, and timeout is specified in the asleep() call but may be
505 * overriden in the mawait() call.
506 *
507 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
508 */
509
510int
511asleep(void *ident, int priority, const char *wmesg, int timo)
512{
513	struct proc *p = curproc;
514
515	/*
516	 * Remove preexisting wait condition (if any) and place process
517	 * on appropriate slpque, but do not put process to sleep.
518	 */
519
520	mtx_lock_spin(&sched_lock);
521
522	if (p->p_wchan != NULL)
523		unsleep(p);
524
525	if (ident) {
526		p->p_wchan = ident;
527		p->p_wmesg = wmesg;
528		p->p_slptime = 0;
529		p->p_asleep.as_priority = priority;
530		p->p_asleep.as_timo = timo;
531		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
532	}
533
534	mtx_unlock_spin(&sched_lock);
535
536	return(0);
537}
538
539/*
540 * mawait() - wait for async condition to occur.   The process blocks until
541 * wakeup() is called on the most recent asleep() address.  If wakeup is called
542 * prior to mawait(), mawait() winds up being a NOP.
543 *
544 * If mawait() is called more then once (without an intervening asleep() call),
545 * mawait() is still effectively a NOP but it calls mi_switch() to give other
546 * processes some cpu before returning.  The process is left runnable.
547 *
548 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
549 */
550
551int
552mawait(struct mtx *mtx, int priority, int timo)
553{
554	struct proc *p = curproc;
555	int rval = 0;
556	WITNESS_SAVE_DECL(mtx);
557
558	WITNESS_SLEEP(0, &mtx->mtx_object);
559	KASSERT(timo > 0 || mtx_owned(&Giant) || mtx != NULL,
560	    ("sleeping without a mutex"));
561	mtx_lock_spin(&sched_lock);
562	DROP_GIANT_NOSWITCH();
563	if (mtx != NULL) {
564		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
565		WITNESS_SAVE(&mtx->mtx_object, mtx);
566		mtx_unlock_flags(mtx, MTX_NOSWITCH);
567		if (priority & PDROP)
568			mtx = NULL;
569	}
570
571	if (p->p_wchan != NULL) {
572		int sig;
573		int catch;
574
575#ifdef KTRACE
576		if (p && KTRPOINT(p, KTR_CSW))
577			ktrcsw(p->p_tracep, 1, 0);
578#endif
579		/*
580		 * The call to mawait() can override defaults specified in
581		 * the original asleep().
582		 */
583		if (priority < 0)
584			priority = p->p_asleep.as_priority;
585		if (timo < 0)
586			timo = p->p_asleep.as_timo;
587
588		/*
589		 * Install timeout
590		 */
591
592		if (timo)
593			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
594
595		sig = 0;
596		catch = priority & PCATCH;
597
598		if (catch) {
599			p->p_sflag |= PS_SINTR;
600			mtx_unlock_spin(&sched_lock);
601			PROC_LOCK(p);
602			sig = CURSIG(p);
603			mtx_lock_spin(&sched_lock);
604			PROC_UNLOCK_NOSWITCH(p);
605			if (sig != 0) {
606				if (p->p_wchan)
607					unsleep(p);
608			} else if (p->p_wchan == NULL)
609				catch = 0;
610		}
611		if (p->p_wchan != NULL) {
612			p->p_stat = SSLEEP;
613			p->p_stats->p_ru.ru_nvcsw++;
614			mi_switch();
615		}
616		KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
617		p->p_sflag &= ~PS_SINTR;
618		if (p->p_sflag & PS_TIMEOUT) {
619			p->p_sflag &= ~PS_TIMEOUT;
620			if (sig == 0)
621				rval = EWOULDBLOCK;
622		} else if (timo)
623			callout_stop(&p->p_slpcallout);
624		mtx_unlock_spin(&sched_lock);
625		if (rval == 0 && catch) {
626			PROC_LOCK(p);
627			if (sig != 0 || (sig = CURSIG(p))) {
628				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
629					rval = EINTR;
630				else
631					rval = ERESTART;
632			}
633			PROC_UNLOCK(p);
634		}
635#ifdef KTRACE
636		mtx_lock(&Giant);
637		if (KTRPOINT(p, KTR_CSW))
638			ktrcsw(p->p_tracep, 0, 0);
639		mtx_unlock(&Giant);
640#endif
641	} else {
642		/*
643		 * If as_priority is 0, mawait() has been called without an
644		 * intervening asleep().  We are still effectively a NOP,
645		 * but we call mi_switch() for safety.
646		 */
647
648		if (p->p_asleep.as_priority == 0) {
649			p->p_stats->p_ru.ru_nvcsw++;
650			mi_switch();
651		}
652		mtx_unlock_spin(&sched_lock);
653	}
654
655	/*
656	 * clear p_asleep.as_priority as an indication that mawait() has been
657	 * called.  If mawait() is called again without an intervening asleep(),
658	 * mawait() is still effectively a NOP but the above mi_switch() code
659	 * is triggered as a safety.
660	 */
661	if (rval == 0)
662		p->p_asleep.as_priority = 0;
663
664	PICKUP_GIANT();
665	if (mtx != NULL) {
666		mtx_lock(mtx);
667		WITNESS_RESTORE(&mtx->mtx_object, mtx);
668	}
669	return (rval);
670}
671
672/*
673 * Implement timeout for msleep or asleep()/mawait()
674 *
675 * If process hasn't been awakened (wchan non-zero),
676 * set timeout flag and undo the sleep.  If proc
677 * is stopped, just unsleep so it will remain stopped.
678 * MP-safe, called without the Giant mutex.
679 */
680static void
681endtsleep(arg)
682	void *arg;
683{
684	register struct proc *p;
685
686	p = (struct proc *)arg;
687	CTR3(KTR_PROC, "endtsleep: proc %p (pid %d, %s)", p, p->p_pid,
688	    p->p_comm);
689	mtx_lock_spin(&sched_lock);
690	if (p->p_wchan) {
691		if (p->p_stat == SSLEEP)
692			setrunnable(p);
693		else
694			unsleep(p);
695		p->p_sflag |= PS_TIMEOUT;
696	}
697	mtx_unlock_spin(&sched_lock);
698}
699
700/*
701 * Remove a process from its wait queue
702 */
703void
704unsleep(p)
705	register struct proc *p;
706{
707
708	mtx_lock_spin(&sched_lock);
709	if (p->p_wchan) {
710		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
711		p->p_wchan = NULL;
712	}
713	mtx_unlock_spin(&sched_lock);
714}
715
716/*
717 * Make all processes sleeping on the specified identifier runnable.
718 */
719void
720wakeup(ident)
721	register void *ident;
722{
723	register struct slpquehead *qp;
724	register struct proc *p;
725
726	mtx_lock_spin(&sched_lock);
727	qp = &slpque[LOOKUP(ident)];
728restart:
729	TAILQ_FOREACH(p, qp, p_slpq) {
730		if (p->p_wchan == ident) {
731			TAILQ_REMOVE(qp, p, p_slpq);
732			p->p_wchan = NULL;
733			if (p->p_stat == SSLEEP) {
734				/* OPTIMIZED EXPANSION OF setrunnable(p); */
735				CTR3(KTR_PROC, "wakeup: proc %p (pid %d, %s)",
736				    p, p->p_pid, p->p_comm);
737				if (p->p_slptime > 1)
738					updatepri(p);
739				p->p_slptime = 0;
740				p->p_stat = SRUN;
741				if (p->p_sflag & PS_INMEM) {
742					setrunqueue(p);
743					maybe_resched(p);
744				} else {
745					p->p_sflag |= PS_SWAPINREQ;
746					wakeup((caddr_t)&proc0);
747				}
748				/* END INLINE EXPANSION */
749				goto restart;
750			}
751		}
752	}
753	mtx_unlock_spin(&sched_lock);
754}
755
756/*
757 * Make a process sleeping on the specified identifier runnable.
758 * May wake more than one process if a target process is currently
759 * swapped out.
760 */
761void
762wakeup_one(ident)
763	register void *ident;
764{
765	register struct slpquehead *qp;
766	register struct proc *p;
767
768	mtx_lock_spin(&sched_lock);
769	qp = &slpque[LOOKUP(ident)];
770
771	TAILQ_FOREACH(p, qp, p_slpq) {
772		if (p->p_wchan == ident) {
773			TAILQ_REMOVE(qp, p, p_slpq);
774			p->p_wchan = NULL;
775			if (p->p_stat == SSLEEP) {
776				/* OPTIMIZED EXPANSION OF setrunnable(p); */
777				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
778				    p, p->p_pid, p->p_comm);
779				if (p->p_slptime > 1)
780					updatepri(p);
781				p->p_slptime = 0;
782				p->p_stat = SRUN;
783				if (p->p_sflag & PS_INMEM) {
784					setrunqueue(p);
785					maybe_resched(p);
786					break;
787				} else {
788					p->p_sflag |= PS_SWAPINREQ;
789					wakeup((caddr_t)&proc0);
790				}
791				/* END INLINE EXPANSION */
792			}
793		}
794	}
795	mtx_unlock_spin(&sched_lock);
796}
797
798/*
799 * The machine independent parts of mi_switch().
800 */
801void
802mi_switch()
803{
804	struct timeval new_switchtime;
805	register struct proc *p = curproc;	/* XXX */
806#if 0
807	register struct rlimit *rlim;
808#endif
809	critical_t sched_crit;
810	u_int sched_nest;
811
812	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
813
814	/*
815	 * Compute the amount of time during which the current
816	 * process was running, and add that to its total so far.
817	 */
818	microuptime(&new_switchtime);
819	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
820#if 0
821		/* XXX: This doesn't play well with sched_lock right now. */
822		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
823		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
824		    new_switchtime.tv_sec, new_switchtime.tv_usec);
825#endif
826		new_switchtime = PCPU_GET(switchtime);
827	} else {
828		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
829		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
830		    (int64_t)1000000;
831	}
832
833#if 0
834	/*
835	 * Check if the process exceeds its cpu resource allocation.
836	 * If over max, kill it.
837	 *
838	 * XXX drop sched_lock, pickup Giant
839	 */
840	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
841	    p->p_runtime > p->p_limit->p_cpulimit) {
842		rlim = &p->p_rlimit[RLIMIT_CPU];
843		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
844			mtx_unlock_spin(&sched_lock);
845			PROC_LOCK(p);
846			killproc(p, "exceeded maximum CPU limit");
847			mtx_lock_spin(&sched_lock);
848			PROC_UNLOCK_NOSWITCH(p);
849		} else {
850			mtx_unlock_spin(&sched_lock);
851			PROC_LOCK(p);
852			psignal(p, SIGXCPU);
853			mtx_lock_spin(&sched_lock);
854			PROC_UNLOCK_NOSWITCH(p);
855			if (rlim->rlim_cur < rlim->rlim_max) {
856				/* XXX: we should make a private copy */
857				rlim->rlim_cur += 5;
858			}
859		}
860	}
861#endif
862
863	/*
864	 * Pick a new current process and record its start time.
865	 */
866	cnt.v_swtch++;
867	PCPU_SET(switchtime, new_switchtime);
868	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
869	    p->p_comm);
870	sched_crit = sched_lock.mtx_savecrit;
871	sched_nest = sched_lock.mtx_recurse;
872	curproc->p_lastcpu = curproc->p_oncpu;
873	curproc->p_oncpu = NOCPU;
874	clear_resched(curproc);
875	cpu_switch();
876	curproc->p_oncpu = PCPU_GET(cpuid);
877	sched_lock.mtx_savecrit = sched_crit;
878	sched_lock.mtx_recurse = sched_nest;
879	sched_lock.mtx_lock = (uintptr_t)curproc;
880	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
881	    p->p_comm);
882	if (PCPU_GET(switchtime.tv_sec) == 0)
883		microuptime(PCPU_PTR(switchtime));
884	PCPU_SET(switchticks, ticks);
885}
886
887/*
888 * Change process state to be runnable,
889 * placing it on the run queue if it is in memory,
890 * and awakening the swapper if it isn't in memory.
891 */
892void
893setrunnable(p)
894	register struct proc *p;
895{
896
897	mtx_lock_spin(&sched_lock);
898	switch (p->p_stat) {
899	case 0:
900	case SRUN:
901	case SZOMB:
902	case SWAIT:
903	default:
904		panic("setrunnable");
905	case SSTOP:
906	case SSLEEP:			/* e.g. when sending signals */
907		if (p->p_sflag & PS_CVWAITQ)
908			cv_waitq_remove(p);
909		else
910			unsleep(p);
911		break;
912
913	case SIDL:
914		break;
915	}
916	p->p_stat = SRUN;
917	if (p->p_slptime > 1)
918		updatepri(p);
919	p->p_slptime = 0;
920	if ((p->p_sflag & PS_INMEM) == 0) {
921		p->p_sflag |= PS_SWAPINREQ;
922		wakeup((caddr_t)&proc0);
923	} else {
924		setrunqueue(p);
925		maybe_resched(p);
926	}
927	mtx_unlock_spin(&sched_lock);
928}
929
930/*
931 * Compute the priority of a process when running in user mode.
932 * Arrange to reschedule if the resulting priority is better
933 * than that of the current process.
934 */
935void
936resetpriority(p)
937	register struct proc *p;
938{
939	register unsigned int newpriority;
940
941	mtx_lock_spin(&sched_lock);
942	if (p->p_pri.pri_class == PRI_TIMESHARE) {
943		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
944		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
945		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
946		    PRI_MAX_TIMESHARE);
947		p->p_pri.pri_user = newpriority;
948	}
949	maybe_resched(p);
950	mtx_unlock_spin(&sched_lock);
951}
952
953/* ARGSUSED */
954static void
955sched_setup(dummy)
956	void *dummy;
957{
958
959	callout_init(&schedcpu_callout, 1);
960	callout_init(&roundrobin_callout, 0);
961
962	/* Kick off timeout driven events by calling first time. */
963	roundrobin(NULL);
964	schedcpu(NULL);
965}
966
967/*
968 * We adjust the priority of the current process.  The priority of
969 * a process gets worse as it accumulates CPU time.  The cpu usage
970 * estimator (p_estcpu) is increased here.  resetpriority() will
971 * compute a different priority each time p_estcpu increases by
972 * INVERSE_ESTCPU_WEIGHT
973 * (until MAXPRI is reached).  The cpu usage estimator ramps up
974 * quite quickly when the process is running (linearly), and decays
975 * away exponentially, at a rate which is proportionally slower when
976 * the system is busy.  The basic principle is that the system will
977 * 90% forget that the process used a lot of CPU time in 5 * loadav
978 * seconds.  This causes the system to favor processes which haven't
979 * run much recently, and to round-robin among other processes.
980 */
981void
982schedclock(p)
983	struct proc *p;
984{
985
986	p->p_cpticks++;
987	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
988	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
989		resetpriority(p);
990		if (p->p_pri.pri_level >= PUSER)
991			p->p_pri.pri_level = p->p_pri.pri_user;
992	}
993}
994
995/*
996 * General purpose yield system call
997 */
998int
999yield(struct proc *p, struct yield_args *uap)
1000{
1001
1002	p->p_retval[0] = 0;
1003
1004	mtx_lock_spin(&sched_lock);
1005	DROP_GIANT_NOSWITCH();
1006	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1007	setrunqueue(p);
1008	p->p_stats->p_ru.ru_nvcsw++;
1009	mi_switch();
1010	mtx_unlock_spin(&sched_lock);
1011	PICKUP_GIANT();
1012
1013	return (0);
1014}
1015