kern_synch.c revision 79126
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 79126 2001-07-03 05:33:09Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <sys/vmmeter.h>
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int	hogticks;
72int	lbolt;
73int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void	endtsleep __P((void *));
79static void	roundrobin __P((void *arg));
80static void	schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85	int error, new_val;
86
87	new_val = sched_quantum * tick;
88	error = sysctl_handle_int(oidp, &new_val, 0, req);
89        if (error != 0 || req->newptr == NULL)
90		return (error);
91	if (new_val < tick)
92		return (EINVAL);
93	sched_quantum = new_val / tick;
94	hogticks = 2 * sched_quantum;
95	return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107	struct proc *p;
108{
109
110	mtx_assert(&sched_lock, MA_OWNED);
111	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112		need_resched(curproc);
113}
114
115int
116roundrobin_interval(void)
117{
118	return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 * We don't actually need to force a context switch of the current process.
124 * The act of firing the event triggers a context switch to softclock() and
125 * then switching back out again which is equivalent to a preemption, thus
126 * no further work is needed on the local CPU.
127 */
128/* ARGSUSED */
129static void
130roundrobin(arg)
131	void *arg;
132{
133
134#ifdef SMP
135	mtx_lock_spin(&sched_lock);
136	forward_roundrobin();
137	mtx_unlock_spin(&sched_lock);
138#endif
139
140	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
141}
142
143/*
144 * Constants for digital decay and forget:
145 *	90% of (p_estcpu) usage in 5 * loadav time
146 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
147 *          Note that, as ps(1) mentions, this can let percentages
148 *          total over 100% (I've seen 137.9% for 3 processes).
149 *
150 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
151 *
152 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
153 * That is, the system wants to compute a value of decay such
154 * that the following for loop:
155 * 	for (i = 0; i < (5 * loadavg); i++)
156 * 		p_estcpu *= decay;
157 * will compute
158 * 	p_estcpu *= 0.1;
159 * for all values of loadavg:
160 *
161 * Mathematically this loop can be expressed by saying:
162 * 	decay ** (5 * loadavg) ~= .1
163 *
164 * The system computes decay as:
165 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
166 *
167 * We wish to prove that the system's computation of decay
168 * will always fulfill the equation:
169 * 	decay ** (5 * loadavg) ~= .1
170 *
171 * If we compute b as:
172 * 	b = 2 * loadavg
173 * then
174 * 	decay = b / (b + 1)
175 *
176 * We now need to prove two things:
177 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
178 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
179 *
180 * Facts:
181 *         For x close to zero, exp(x) =~ 1 + x, since
182 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
183 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
184 *         For x close to zero, ln(1+x) =~ x, since
185 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
186 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
187 *         ln(.1) =~ -2.30
188 *
189 * Proof of (1):
190 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
191 *	solving for factor,
192 *      ln(factor) =~ (-2.30/5*loadav), or
193 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
194 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
195 *
196 * Proof of (2):
197 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
198 *	solving for power,
199 *      power*ln(b/(b+1)) =~ -2.30, or
200 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
201 *
202 * Actual power values for the implemented algorithm are as follows:
203 *      loadav: 1       2       3       4
204 *      power:  5.68    10.32   14.94   19.55
205 */
206
207/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
208#define	loadfactor(loadav)	(2 * (loadav))
209#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
210
211/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
212static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
213SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
214
215/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
216static int	fscale __unused = FSCALE;
217SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
218
219/*
220 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
221 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
222 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
223 *
224 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
225 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
226 *
227 * If you don't want to bother with the faster/more-accurate formula, you
228 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
229 * (more general) method of calculating the %age of CPU used by a process.
230 */
231#define	CCPU_SHIFT	11
232
233/*
234 * Recompute process priorities, every hz ticks.
235 * MP-safe, called without the Giant mutex.
236 */
237/* ARGSUSED */
238static void
239schedcpu(arg)
240	void *arg;
241{
242	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
243	register struct proc *p;
244	register int realstathz, s;
245
246	realstathz = stathz ? stathz : hz;
247	sx_slock(&allproc_lock);
248	LIST_FOREACH(p, &allproc, p_list) {
249		/*
250		 * Increment time in/out of memory and sleep time
251		 * (if sleeping).  We ignore overflow; with 16-bit int's
252		 * (remember them?) overflow takes 45 days.
253		if (p->p_stat == SWAIT)
254			continue;
255		 */
256		mtx_lock_spin(&sched_lock);
257		p->p_swtime++;
258		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
259			p->p_slptime++;
260		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
261		/*
262		 * If the process has slept the entire second,
263		 * stop recalculating its priority until it wakes up.
264		 */
265		if (p->p_slptime > 1) {
266			mtx_unlock_spin(&sched_lock);
267			continue;
268		}
269
270		/*
271		 * prevent state changes and protect run queue
272		 */
273		s = splhigh();
274
275		/*
276		 * p_pctcpu is only for ps.
277		 */
278#if	(FSHIFT >= CCPU_SHIFT)
279		p->p_pctcpu += (realstathz == 100)?
280			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
281                	100 * (((fixpt_t) p->p_cpticks)
282				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
283#else
284		p->p_pctcpu += ((FSCALE - ccpu) *
285			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
286#endif
287		p->p_cpticks = 0;
288		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
289		resetpriority(p);
290		if (p->p_pri.pri_level >= PUSER) {
291			if ((p != curproc) &&
292#ifdef SMP
293			    p->p_oncpu == NOCPU && 	/* idle */
294#endif
295			    p->p_stat == SRUN &&
296			    (p->p_sflag & PS_INMEM) &&
297			    (p->p_pri.pri_level / RQ_PPQ) !=
298			    (p->p_pri.pri_user / RQ_PPQ)) {
299				remrunqueue(p);
300				p->p_pri.pri_level = p->p_pri.pri_user;
301				setrunqueue(p);
302			} else
303				p->p_pri.pri_level = p->p_pri.pri_user;
304		}
305		mtx_unlock_spin(&sched_lock);
306		splx(s);
307	}
308	sx_sunlock(&allproc_lock);
309	vmmeter();
310	wakeup((caddr_t)&lbolt);
311	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
312}
313
314/*
315 * Recalculate the priority of a process after it has slept for a while.
316 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
317 * least six times the loadfactor will decay p_estcpu to zero.
318 */
319void
320updatepri(p)
321	register struct proc *p;
322{
323	register unsigned int newcpu = p->p_estcpu;
324	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
325
326	if (p->p_slptime > 5 * loadfac)
327		p->p_estcpu = 0;
328	else {
329		p->p_slptime--;	/* the first time was done in schedcpu */
330		while (newcpu && --p->p_slptime)
331			newcpu = decay_cpu(loadfac, newcpu);
332		p->p_estcpu = newcpu;
333	}
334	resetpriority(p);
335}
336
337/*
338 * We're only looking at 7 bits of the address; everything is
339 * aligned to 4, lots of things are aligned to greater powers
340 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
341 */
342#define TABLESIZE	128
343static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
344#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
345
346void
347sleepinit(void)
348{
349	int i;
350
351	sched_quantum = hz/10;
352	hogticks = 2 * sched_quantum;
353	for (i = 0; i < TABLESIZE; i++)
354		TAILQ_INIT(&slpque[i]);
355}
356
357/*
358 * General sleep call.  Suspends the current process until a wakeup is
359 * performed on the specified identifier.  The process will then be made
360 * runnable with the specified priority.  Sleeps at most timo/hz seconds
361 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
362 * before and after sleeping, else signals are not checked.  Returns 0 if
363 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
364 * signal needs to be delivered, ERESTART is returned if the current system
365 * call should be restarted if possible, and EINTR is returned if the system
366 * call should be interrupted by the signal (return EINTR).
367 *
368 * The mutex argument is exited before the caller is suspended, and
369 * entered before msleep returns.  If priority includes the PDROP
370 * flag the mutex is not entered before returning.
371 */
372int
373msleep(ident, mtx, priority, wmesg, timo)
374	void *ident;
375	struct mtx *mtx;
376	int priority, timo;
377	const char *wmesg;
378{
379	struct proc *p = curproc;
380	int sig, catch = priority & PCATCH;
381	int rval = 0;
382	WITNESS_SAVE_DECL(mtx);
383
384#ifdef KTRACE
385	if (p && KTRPOINT(p, KTR_CSW))
386		ktrcsw(p->p_tracep, 1, 0);
387#endif
388	WITNESS_SLEEP(0, &mtx->mtx_object);
389	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
390	    ("sleeping without a mutex"));
391	mtx_lock_spin(&sched_lock);
392	if (cold || panicstr) {
393		/*
394		 * After a panic, or during autoconfiguration,
395		 * just give interrupts a chance, then just return;
396		 * don't run any other procs or panic below,
397		 * in case this is the idle process and already asleep.
398		 */
399		if (mtx != NULL && priority & PDROP)
400			mtx_unlock_flags(mtx, MTX_NOSWITCH);
401		mtx_unlock_spin(&sched_lock);
402		return (0);
403	}
404
405	DROP_GIANT_NOSWITCH();
406
407	if (mtx != NULL) {
408		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
409		WITNESS_SAVE(&mtx->mtx_object, mtx);
410		mtx_unlock_flags(mtx, MTX_NOSWITCH);
411		if (priority & PDROP)
412			mtx = NULL;
413	}
414
415	KASSERT(p != NULL, ("msleep1"));
416	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
417	/*
418	 * Process may be sitting on a slpque if asleep() was called, remove
419	 * it before re-adding.
420	 */
421	if (p->p_wchan != NULL)
422		unsleep(p);
423
424	p->p_wchan = ident;
425	p->p_wmesg = wmesg;
426	p->p_slptime = 0;
427	p->p_pri.pri_level = priority & PRIMASK;
428	CTR3(KTR_PROC, "msleep: proc %p (pid %d, %s)", p, p->p_pid, p->p_comm);
429	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
430	if (timo)
431		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
432	/*
433	 * We put ourselves on the sleep queue and start our timeout
434	 * before calling CURSIG, as we could stop there, and a wakeup
435	 * or a SIGCONT (or both) could occur while we were stopped.
436	 * A SIGCONT would cause us to be marked as SSLEEP
437	 * without resuming us, thus we must be ready for sleep
438	 * when CURSIG is called.  If the wakeup happens while we're
439	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
440	 */
441	if (catch) {
442		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
443		    p->p_pid, p->p_comm);
444		p->p_sflag |= PS_SINTR;
445		mtx_unlock_spin(&sched_lock);
446		PROC_LOCK(p);
447		sig = CURSIG(p);
448		mtx_lock_spin(&sched_lock);
449		PROC_UNLOCK_NOSWITCH(p);
450		if (sig != 0) {
451			if (p->p_wchan)
452				unsleep(p);
453		} else if (p->p_wchan == NULL)
454			catch = 0;
455	} else
456		sig = 0;
457	if (p->p_wchan != NULL) {
458		p->p_stat = SSLEEP;
459		p->p_stats->p_ru.ru_nvcsw++;
460		mi_switch();
461	}
462	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", p, p->p_pid,
463	    p->p_comm);
464	KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
465	p->p_sflag &= ~PS_SINTR;
466	if (p->p_sflag & PS_TIMEOUT) {
467		p->p_sflag &= ~PS_TIMEOUT;
468		if (sig == 0)
469			rval = EWOULDBLOCK;
470	} else if (timo)
471		callout_stop(&p->p_slpcallout);
472	mtx_unlock_spin(&sched_lock);
473
474	if (rval == 0 && catch) {
475		PROC_LOCK(p);
476		/* XXX: shouldn't we always be calling CURSIG() */
477		if (sig != 0 || (sig = CURSIG(p))) {
478			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
479				rval = EINTR;
480			else
481				rval = ERESTART;
482		}
483		PROC_UNLOCK(p);
484	}
485	PICKUP_GIANT();
486#ifdef KTRACE
487	mtx_lock(&Giant);
488	if (KTRPOINT(p, KTR_CSW))
489		ktrcsw(p->p_tracep, 0, 0);
490	mtx_unlock(&Giant);
491#endif
492	if (mtx != NULL) {
493		mtx_lock(mtx);
494		WITNESS_RESTORE(&mtx->mtx_object, mtx);
495	}
496	return (rval);
497}
498
499/*
500 * asleep() - async sleep call.  Place process on wait queue and return
501 * immediately without blocking.  The process stays runnable until mawait()
502 * is called.  If ident is NULL, remove process from wait queue if it is still
503 * on one.
504 *
505 * Only the most recent sleep condition is effective when making successive
506 * calls to asleep() or when calling msleep().
507 *
508 * The timeout, if any, is not initiated until mawait() is called.  The sleep
509 * priority, signal, and timeout is specified in the asleep() call but may be
510 * overriden in the mawait() call.
511 *
512 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
513 */
514
515int
516asleep(void *ident, int priority, const char *wmesg, int timo)
517{
518	struct proc *p = curproc;
519
520	/*
521	 * Remove preexisting wait condition (if any) and place process
522	 * on appropriate slpque, but do not put process to sleep.
523	 */
524
525	mtx_lock_spin(&sched_lock);
526
527	if (p->p_wchan != NULL)
528		unsleep(p);
529
530	if (ident) {
531		p->p_wchan = ident;
532		p->p_wmesg = wmesg;
533		p->p_slptime = 0;
534		p->p_asleep.as_priority = priority;
535		p->p_asleep.as_timo = timo;
536		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
537	}
538
539	mtx_unlock_spin(&sched_lock);
540
541	return(0);
542}
543
544/*
545 * mawait() - wait for async condition to occur.   The process blocks until
546 * wakeup() is called on the most recent asleep() address.  If wakeup is called
547 * prior to mawait(), mawait() winds up being a NOP.
548 *
549 * If mawait() is called more then once (without an intervening asleep() call),
550 * mawait() is still effectively a NOP but it calls mi_switch() to give other
551 * processes some cpu before returning.  The process is left runnable.
552 *
553 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
554 */
555
556int
557mawait(struct mtx *mtx, int priority, int timo)
558{
559	struct proc *p = curproc;
560	int rval = 0;
561	WITNESS_SAVE_DECL(mtx);
562
563	WITNESS_SLEEP(0, &mtx->mtx_object);
564	KASSERT(timo > 0 || mtx_owned(&Giant) || mtx != NULL,
565	    ("sleeping without a mutex"));
566	mtx_lock_spin(&sched_lock);
567	DROP_GIANT_NOSWITCH();
568	if (mtx != NULL) {
569		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
570		WITNESS_SAVE(&mtx->mtx_object, mtx);
571		mtx_unlock_flags(mtx, MTX_NOSWITCH);
572		if (priority & PDROP)
573			mtx = NULL;
574	}
575
576	if (p->p_wchan != NULL) {
577		int sig;
578		int catch;
579
580#ifdef KTRACE
581		if (p && KTRPOINT(p, KTR_CSW))
582			ktrcsw(p->p_tracep, 1, 0);
583#endif
584		/*
585		 * The call to mawait() can override defaults specified in
586		 * the original asleep().
587		 */
588		if (priority < 0)
589			priority = p->p_asleep.as_priority;
590		if (timo < 0)
591			timo = p->p_asleep.as_timo;
592
593		/*
594		 * Install timeout
595		 */
596
597		if (timo)
598			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
599
600		sig = 0;
601		catch = priority & PCATCH;
602
603		if (catch) {
604			p->p_sflag |= PS_SINTR;
605			mtx_unlock_spin(&sched_lock);
606			PROC_LOCK(p);
607			sig = CURSIG(p);
608			mtx_lock_spin(&sched_lock);
609			PROC_UNLOCK_NOSWITCH(p);
610			if (sig != 0) {
611				if (p->p_wchan)
612					unsleep(p);
613			} else if (p->p_wchan == NULL)
614				catch = 0;
615		}
616		if (p->p_wchan != NULL) {
617			p->p_stat = SSLEEP;
618			p->p_stats->p_ru.ru_nvcsw++;
619			mi_switch();
620		}
621		KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
622		p->p_sflag &= ~PS_SINTR;
623		if (p->p_sflag & PS_TIMEOUT) {
624			p->p_sflag &= ~PS_TIMEOUT;
625			if (sig == 0)
626				rval = EWOULDBLOCK;
627		} else if (timo)
628			callout_stop(&p->p_slpcallout);
629		mtx_unlock_spin(&sched_lock);
630		if (rval == 0 && catch) {
631			PROC_LOCK(p);
632			if (sig != 0 || (sig = CURSIG(p))) {
633				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
634					rval = EINTR;
635				else
636					rval = ERESTART;
637			}
638			PROC_UNLOCK(p);
639		}
640#ifdef KTRACE
641		mtx_lock(&Giant);
642		if (KTRPOINT(p, KTR_CSW))
643			ktrcsw(p->p_tracep, 0, 0);
644		mtx_unlock(&Giant);
645#endif
646	} else {
647		/*
648		 * If as_priority is 0, mawait() has been called without an
649		 * intervening asleep().  We are still effectively a NOP,
650		 * but we call mi_switch() for safety.
651		 */
652
653		if (p->p_asleep.as_priority == 0) {
654			p->p_stats->p_ru.ru_nvcsw++;
655			mi_switch();
656		}
657		mtx_unlock_spin(&sched_lock);
658	}
659
660	/*
661	 * clear p_asleep.as_priority as an indication that mawait() has been
662	 * called.  If mawait() is called again without an intervening asleep(),
663	 * mawait() is still effectively a NOP but the above mi_switch() code
664	 * is triggered as a safety.
665	 */
666	if (rval == 0)
667		p->p_asleep.as_priority = 0;
668
669	PICKUP_GIANT();
670	if (mtx != NULL) {
671		mtx_lock(mtx);
672		WITNESS_RESTORE(&mtx->mtx_object, mtx);
673	}
674	return (rval);
675}
676
677/*
678 * Implement timeout for msleep or asleep()/mawait()
679 *
680 * If process hasn't been awakened (wchan non-zero),
681 * set timeout flag and undo the sleep.  If proc
682 * is stopped, just unsleep so it will remain stopped.
683 * MP-safe, called without the Giant mutex.
684 */
685static void
686endtsleep(arg)
687	void *arg;
688{
689	register struct proc *p;
690	int s;
691
692	p = (struct proc *)arg;
693	CTR3(KTR_PROC, "endtsleep: proc %p (pid %d, %s)", p, p->p_pid,
694	    p->p_comm);
695	s = splhigh();
696	mtx_lock_spin(&sched_lock);
697	if (p->p_wchan) {
698		if (p->p_stat == SSLEEP)
699			setrunnable(p);
700		else
701			unsleep(p);
702		p->p_sflag |= PS_TIMEOUT;
703	}
704	mtx_unlock_spin(&sched_lock);
705	splx(s);
706}
707
708/*
709 * Remove a process from its wait queue
710 */
711void
712unsleep(p)
713	register struct proc *p;
714{
715	int s;
716
717	s = splhigh();
718	mtx_lock_spin(&sched_lock);
719	if (p->p_wchan) {
720		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
721		p->p_wchan = NULL;
722	}
723	mtx_unlock_spin(&sched_lock);
724	splx(s);
725}
726
727/*
728 * Make all processes sleeping on the specified identifier runnable.
729 */
730void
731wakeup(ident)
732	register void *ident;
733{
734	register struct slpquehead *qp;
735	register struct proc *p;
736	int s;
737
738	s = splhigh();
739	mtx_lock_spin(&sched_lock);
740	qp = &slpque[LOOKUP(ident)];
741restart:
742	TAILQ_FOREACH(p, qp, p_slpq) {
743		if (p->p_wchan == ident) {
744			TAILQ_REMOVE(qp, p, p_slpq);
745			p->p_wchan = NULL;
746			if (p->p_stat == SSLEEP) {
747				/* OPTIMIZED EXPANSION OF setrunnable(p); */
748				CTR3(KTR_PROC, "wakeup: proc %p (pid %d, %s)",
749				    p, p->p_pid, p->p_comm);
750				if (p->p_slptime > 1)
751					updatepri(p);
752				p->p_slptime = 0;
753				p->p_stat = SRUN;
754				if (p->p_sflag & PS_INMEM) {
755					setrunqueue(p);
756					maybe_resched(p);
757				} else {
758					p->p_sflag |= PS_SWAPINREQ;
759					wakeup((caddr_t)&proc0);
760				}
761				/* END INLINE EXPANSION */
762				goto restart;
763			}
764		}
765	}
766	mtx_unlock_spin(&sched_lock);
767	splx(s);
768}
769
770/*
771 * Make a process sleeping on the specified identifier runnable.
772 * May wake more than one process if a target process is currently
773 * swapped out.
774 */
775void
776wakeup_one(ident)
777	register void *ident;
778{
779	register struct slpquehead *qp;
780	register struct proc *p;
781	int s;
782
783	s = splhigh();
784	mtx_lock_spin(&sched_lock);
785	qp = &slpque[LOOKUP(ident)];
786
787	TAILQ_FOREACH(p, qp, p_slpq) {
788		if (p->p_wchan == ident) {
789			TAILQ_REMOVE(qp, p, p_slpq);
790			p->p_wchan = NULL;
791			if (p->p_stat == SSLEEP) {
792				/* OPTIMIZED EXPANSION OF setrunnable(p); */
793				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
794				    p, p->p_pid, p->p_comm);
795				if (p->p_slptime > 1)
796					updatepri(p);
797				p->p_slptime = 0;
798				p->p_stat = SRUN;
799				if (p->p_sflag & PS_INMEM) {
800					setrunqueue(p);
801					maybe_resched(p);
802					break;
803				} else {
804					p->p_sflag |= PS_SWAPINREQ;
805					wakeup((caddr_t)&proc0);
806				}
807				/* END INLINE EXPANSION */
808			}
809		}
810	}
811	mtx_unlock_spin(&sched_lock);
812	splx(s);
813}
814
815/*
816 * The machine independent parts of mi_switch().
817 * Must be called at splstatclock() or higher.
818 */
819void
820mi_switch()
821{
822	struct timeval new_switchtime;
823	register struct proc *p = curproc;	/* XXX */
824#if 0
825	register struct rlimit *rlim;
826#endif
827	critical_t sched_crit;
828	u_int sched_nest;
829
830	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
831
832	/*
833	 * Compute the amount of time during which the current
834	 * process was running, and add that to its total so far.
835	 */
836	microuptime(&new_switchtime);
837	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
838#if 0
839		/* XXX: This doesn't play well with sched_lock right now. */
840		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
841		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
842		    new_switchtime.tv_sec, new_switchtime.tv_usec);
843#endif
844		new_switchtime = PCPU_GET(switchtime);
845	} else {
846		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
847		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
848		    (int64_t)1000000;
849	}
850
851#if 0
852	/*
853	 * Check if the process exceeds its cpu resource allocation.
854	 * If over max, kill it.
855	 *
856	 * XXX drop sched_lock, pickup Giant
857	 */
858	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
859	    p->p_runtime > p->p_limit->p_cpulimit) {
860		rlim = &p->p_rlimit[RLIMIT_CPU];
861		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
862			mtx_unlock_spin(&sched_lock);
863			PROC_LOCK(p);
864			killproc(p, "exceeded maximum CPU limit");
865			mtx_lock_spin(&sched_lock);
866			PROC_UNLOCK_NOSWITCH(p);
867		} else {
868			mtx_unlock_spin(&sched_lock);
869			PROC_LOCK(p);
870			psignal(p, SIGXCPU);
871			mtx_lock_spin(&sched_lock);
872			PROC_UNLOCK_NOSWITCH(p);
873			if (rlim->rlim_cur < rlim->rlim_max) {
874				/* XXX: we should make a private copy */
875				rlim->rlim_cur += 5;
876			}
877		}
878	}
879#endif
880
881	/*
882	 * Pick a new current process and record its start time.
883	 */
884	cnt.v_swtch++;
885	PCPU_SET(switchtime, new_switchtime);
886	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
887	    p->p_comm);
888	sched_crit = sched_lock.mtx_savecrit;
889	sched_nest = sched_lock.mtx_recurse;
890	curproc->p_lastcpu = curproc->p_oncpu;
891	curproc->p_oncpu = NOCPU;
892	clear_resched(curproc);
893	cpu_switch();
894	curproc->p_oncpu = PCPU_GET(cpuid);
895	sched_lock.mtx_savecrit = sched_crit;
896	sched_lock.mtx_recurse = sched_nest;
897	sched_lock.mtx_lock = (uintptr_t)curproc;
898	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
899	    p->p_comm);
900	if (PCPU_GET(switchtime.tv_sec) == 0)
901		microuptime(PCPU_PTR(switchtime));
902	PCPU_SET(switchticks, ticks);
903}
904
905/*
906 * Change process state to be runnable,
907 * placing it on the run queue if it is in memory,
908 * and awakening the swapper if it isn't in memory.
909 */
910void
911setrunnable(p)
912	register struct proc *p;
913{
914	register int s;
915
916	s = splhigh();
917	mtx_lock_spin(&sched_lock);
918	switch (p->p_stat) {
919	case 0:
920	case SRUN:
921	case SZOMB:
922	case SWAIT:
923	default:
924		panic("setrunnable");
925	case SSTOP:
926	case SSLEEP:			/* e.g. when sending signals */
927		if (p->p_sflag & PS_CVWAITQ)
928			cv_waitq_remove(p);
929		else
930			unsleep(p);
931		break;
932
933	case SIDL:
934		break;
935	}
936	p->p_stat = SRUN;
937	if (p->p_sflag & PS_INMEM)
938		setrunqueue(p);
939	splx(s);
940	if (p->p_slptime > 1)
941		updatepri(p);
942	p->p_slptime = 0;
943	if ((p->p_sflag & PS_INMEM) == 0) {
944		p->p_sflag |= PS_SWAPINREQ;
945		wakeup((caddr_t)&proc0);
946	}
947	else
948		maybe_resched(p);
949	mtx_unlock_spin(&sched_lock);
950}
951
952/*
953 * Compute the priority of a process when running in user mode.
954 * Arrange to reschedule if the resulting priority is better
955 * than that of the current process.
956 */
957void
958resetpriority(p)
959	register struct proc *p;
960{
961	register unsigned int newpriority;
962
963	mtx_lock_spin(&sched_lock);
964	if (p->p_pri.pri_class == PRI_TIMESHARE) {
965		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
966		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
967		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
968		    PRI_MAX_TIMESHARE);
969		p->p_pri.pri_user = newpriority;
970	}
971	maybe_resched(p);
972	mtx_unlock_spin(&sched_lock);
973}
974
975/* ARGSUSED */
976static void
977sched_setup(dummy)
978	void *dummy;
979{
980
981	callout_init(&schedcpu_callout, 1);
982	callout_init(&roundrobin_callout, 0);
983
984	/* Kick off timeout driven events by calling first time. */
985	roundrobin(NULL);
986	schedcpu(NULL);
987}
988
989/*
990 * We adjust the priority of the current process.  The priority of
991 * a process gets worse as it accumulates CPU time.  The cpu usage
992 * estimator (p_estcpu) is increased here.  resetpriority() will
993 * compute a different priority each time p_estcpu increases by
994 * INVERSE_ESTCPU_WEIGHT
995 * (until MAXPRI is reached).  The cpu usage estimator ramps up
996 * quite quickly when the process is running (linearly), and decays
997 * away exponentially, at a rate which is proportionally slower when
998 * the system is busy.  The basic principle is that the system will
999 * 90% forget that the process used a lot of CPU time in 5 * loadav
1000 * seconds.  This causes the system to favor processes which haven't
1001 * run much recently, and to round-robin among other processes.
1002 */
1003void
1004schedclock(p)
1005	struct proc *p;
1006{
1007
1008	p->p_cpticks++;
1009	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1010	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1011		resetpriority(p);
1012		if (p->p_pri.pri_level >= PUSER)
1013			p->p_pri.pri_level = p->p_pri.pri_user;
1014	}
1015}
1016
1017/*
1018 * General purpose yield system call
1019 */
1020int
1021yield(struct proc *p, struct yield_args *uap)
1022{
1023	int s;
1024
1025	p->p_retval[0] = 0;
1026
1027	s = splhigh();
1028	mtx_lock_spin(&sched_lock);
1029	DROP_GIANT_NOSWITCH();
1030	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1031	setrunqueue(p);
1032	p->p_stats->p_ru.ru_nvcsw++;
1033	mi_switch();
1034	mtx_unlock_spin(&sched_lock);
1035	PICKUP_GIANT();
1036	splx(s);
1037
1038	return (0);
1039}
1040