kern_synch.c revision 79003
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 79003 2001-06-30 03:11:26Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <sys/vmmeter.h>
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int	hogticks;
72int	lbolt;
73int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void	endtsleep __P((void *));
79static void	roundrobin __P((void *arg));
80static void	schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85	int error, new_val;
86
87	new_val = sched_quantum * tick;
88	error = sysctl_handle_int(oidp, &new_val, 0, req);
89        if (error != 0 || req->newptr == NULL)
90		return (error);
91	if (new_val < tick)
92		return (EINVAL);
93	sched_quantum = new_val / tick;
94	hogticks = 2 * sched_quantum;
95	return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107	struct proc *p;
108{
109
110	mtx_assert(&sched_lock, MA_OWNED);
111	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112		need_resched(curproc);
113}
114
115int
116roundrobin_interval(void)
117{
118	return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 */
124/* ARGSUSED */
125static void
126roundrobin(arg)
127	void *arg;
128{
129
130	mtx_lock_spin(&sched_lock);
131	need_resched(curproc);
132#ifdef SMP
133	forward_roundrobin();
134#endif
135	mtx_unlock_spin(&sched_lock);
136
137	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
138}
139
140/*
141 * Constants for digital decay and forget:
142 *	90% of (p_estcpu) usage in 5 * loadav time
143 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
144 *          Note that, as ps(1) mentions, this can let percentages
145 *          total over 100% (I've seen 137.9% for 3 processes).
146 *
147 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
148 *
149 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
150 * That is, the system wants to compute a value of decay such
151 * that the following for loop:
152 * 	for (i = 0; i < (5 * loadavg); i++)
153 * 		p_estcpu *= decay;
154 * will compute
155 * 	p_estcpu *= 0.1;
156 * for all values of loadavg:
157 *
158 * Mathematically this loop can be expressed by saying:
159 * 	decay ** (5 * loadavg) ~= .1
160 *
161 * The system computes decay as:
162 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
163 *
164 * We wish to prove that the system's computation of decay
165 * will always fulfill the equation:
166 * 	decay ** (5 * loadavg) ~= .1
167 *
168 * If we compute b as:
169 * 	b = 2 * loadavg
170 * then
171 * 	decay = b / (b + 1)
172 *
173 * We now need to prove two things:
174 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
175 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
176 *
177 * Facts:
178 *         For x close to zero, exp(x) =~ 1 + x, since
179 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
180 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
181 *         For x close to zero, ln(1+x) =~ x, since
182 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
183 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
184 *         ln(.1) =~ -2.30
185 *
186 * Proof of (1):
187 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
188 *	solving for factor,
189 *      ln(factor) =~ (-2.30/5*loadav), or
190 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
191 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
192 *
193 * Proof of (2):
194 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
195 *	solving for power,
196 *      power*ln(b/(b+1)) =~ -2.30, or
197 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
198 *
199 * Actual power values for the implemented algorithm are as follows:
200 *      loadav: 1       2       3       4
201 *      power:  5.68    10.32   14.94   19.55
202 */
203
204/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
205#define	loadfactor(loadav)	(2 * (loadav))
206#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
207
208/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
209static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
210SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
211
212/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
213static int	fscale __unused = FSCALE;
214SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
215
216/*
217 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
218 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
219 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
220 *
221 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
222 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
223 *
224 * If you don't want to bother with the faster/more-accurate formula, you
225 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
226 * (more general) method of calculating the %age of CPU used by a process.
227 */
228#define	CCPU_SHIFT	11
229
230/*
231 * Recompute process priorities, every hz ticks.
232 * MP-safe, called without the Giant mutex.
233 */
234/* ARGSUSED */
235static void
236schedcpu(arg)
237	void *arg;
238{
239	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240	register struct proc *p;
241	register int realstathz, s;
242
243	realstathz = stathz ? stathz : hz;
244	sx_slock(&allproc_lock);
245	LIST_FOREACH(p, &allproc, p_list) {
246		/*
247		 * Increment time in/out of memory and sleep time
248		 * (if sleeping).  We ignore overflow; with 16-bit int's
249		 * (remember them?) overflow takes 45 days.
250		if (p->p_stat == SWAIT)
251			continue;
252		 */
253		mtx_lock_spin(&sched_lock);
254		p->p_swtime++;
255		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
256			p->p_slptime++;
257		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
258		/*
259		 * If the process has slept the entire second,
260		 * stop recalculating its priority until it wakes up.
261		 */
262		if (p->p_slptime > 1) {
263			mtx_unlock_spin(&sched_lock);
264			continue;
265		}
266
267		/*
268		 * prevent state changes and protect run queue
269		 */
270		s = splhigh();
271
272		/*
273		 * p_pctcpu is only for ps.
274		 */
275#if	(FSHIFT >= CCPU_SHIFT)
276		p->p_pctcpu += (realstathz == 100)?
277			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278                	100 * (((fixpt_t) p->p_cpticks)
279				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
280#else
281		p->p_pctcpu += ((FSCALE - ccpu) *
282			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
283#endif
284		p->p_cpticks = 0;
285		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
286		resetpriority(p);
287		if (p->p_pri.pri_level >= PUSER) {
288			if ((p != curproc) &&
289#ifdef SMP
290			    p->p_oncpu == NOCPU && 	/* idle */
291#endif
292			    p->p_stat == SRUN &&
293			    (p->p_sflag & PS_INMEM) &&
294			    (p->p_pri.pri_level / RQ_PPQ) !=
295			    (p->p_pri.pri_user / RQ_PPQ)) {
296				remrunqueue(p);
297				p->p_pri.pri_level = p->p_pri.pri_user;
298				setrunqueue(p);
299			} else
300				p->p_pri.pri_level = p->p_pri.pri_user;
301		}
302		mtx_unlock_spin(&sched_lock);
303		splx(s);
304	}
305	sx_sunlock(&allproc_lock);
306	vmmeter();
307	wakeup((caddr_t)&lbolt);
308	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
309}
310
311/*
312 * Recalculate the priority of a process after it has slept for a while.
313 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
314 * least six times the loadfactor will decay p_estcpu to zero.
315 */
316void
317updatepri(p)
318	register struct proc *p;
319{
320	register unsigned int newcpu = p->p_estcpu;
321	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322
323	if (p->p_slptime > 5 * loadfac)
324		p->p_estcpu = 0;
325	else {
326		p->p_slptime--;	/* the first time was done in schedcpu */
327		while (newcpu && --p->p_slptime)
328			newcpu = decay_cpu(loadfac, newcpu);
329		p->p_estcpu = newcpu;
330	}
331	resetpriority(p);
332}
333
334/*
335 * We're only looking at 7 bits of the address; everything is
336 * aligned to 4, lots of things are aligned to greater powers
337 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
338 */
339#define TABLESIZE	128
340static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
341#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
342
343void
344sleepinit(void)
345{
346	int i;
347
348	sched_quantum = hz/10;
349	hogticks = 2 * sched_quantum;
350	for (i = 0; i < TABLESIZE; i++)
351		TAILQ_INIT(&slpque[i]);
352}
353
354/*
355 * General sleep call.  Suspends the current process until a wakeup is
356 * performed on the specified identifier.  The process will then be made
357 * runnable with the specified priority.  Sleeps at most timo/hz seconds
358 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
359 * before and after sleeping, else signals are not checked.  Returns 0 if
360 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
361 * signal needs to be delivered, ERESTART is returned if the current system
362 * call should be restarted if possible, and EINTR is returned if the system
363 * call should be interrupted by the signal (return EINTR).
364 *
365 * The mutex argument is exited before the caller is suspended, and
366 * entered before msleep returns.  If priority includes the PDROP
367 * flag the mutex is not entered before returning.
368 */
369int
370msleep(ident, mtx, priority, wmesg, timo)
371	void *ident;
372	struct mtx *mtx;
373	int priority, timo;
374	const char *wmesg;
375{
376	struct proc *p = curproc;
377	int sig, catch = priority & PCATCH;
378	int rval = 0;
379	WITNESS_SAVE_DECL(mtx);
380
381#ifdef KTRACE
382	if (p && KTRPOINT(p, KTR_CSW))
383		ktrcsw(p->p_tracep, 1, 0);
384#endif
385	WITNESS_SLEEP(0, &mtx->mtx_object);
386	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
387	    ("sleeping without a mutex"));
388	mtx_lock_spin(&sched_lock);
389	if (cold || panicstr) {
390		/*
391		 * After a panic, or during autoconfiguration,
392		 * just give interrupts a chance, then just return;
393		 * don't run any other procs or panic below,
394		 * in case this is the idle process and already asleep.
395		 */
396		if (mtx != NULL && priority & PDROP)
397			mtx_unlock_flags(mtx, MTX_NOSWITCH);
398		mtx_unlock_spin(&sched_lock);
399		return (0);
400	}
401
402	DROP_GIANT_NOSWITCH();
403
404	if (mtx != NULL) {
405		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
406		WITNESS_SAVE(&mtx->mtx_object, mtx);
407		mtx_unlock_flags(mtx, MTX_NOSWITCH);
408		if (priority & PDROP)
409			mtx = NULL;
410	}
411
412	KASSERT(p != NULL, ("msleep1"));
413	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
414	/*
415	 * Process may be sitting on a slpque if asleep() was called, remove
416	 * it before re-adding.
417	 */
418	if (p->p_wchan != NULL)
419		unsleep(p);
420
421	p->p_wchan = ident;
422	p->p_wmesg = wmesg;
423	p->p_slptime = 0;
424	p->p_pri.pri_level = priority & PRIMASK;
425	CTR3(KTR_PROC, "msleep: proc %p (pid %d, %s)", p, p->p_pid, p->p_comm);
426	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
427	if (timo)
428		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
429	/*
430	 * We put ourselves on the sleep queue and start our timeout
431	 * before calling CURSIG, as we could stop there, and a wakeup
432	 * or a SIGCONT (or both) could occur while we were stopped.
433	 * A SIGCONT would cause us to be marked as SSLEEP
434	 * without resuming us, thus we must be ready for sleep
435	 * when CURSIG is called.  If the wakeup happens while we're
436	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
437	 */
438	if (catch) {
439		CTR3(KTR_PROC, "msleep caught: proc %p (pid %d, %s)", p,
440		    p->p_pid, p->p_comm);
441		p->p_sflag |= PS_SINTR;
442		mtx_unlock_spin(&sched_lock);
443		PROC_LOCK(p);
444		sig = CURSIG(p);
445		mtx_lock_spin(&sched_lock);
446		PROC_UNLOCK_NOSWITCH(p);
447		if (sig != 0) {
448			if (p->p_wchan)
449				unsleep(p);
450		} else if (p->p_wchan == NULL)
451			catch = 0;
452	} else
453		sig = 0;
454	if (p->p_wchan != NULL) {
455		p->p_stat = SSLEEP;
456		p->p_stats->p_ru.ru_nvcsw++;
457		mi_switch();
458	}
459	CTR3(KTR_PROC, "msleep resume: proc %p (pid %d, %s)", p, p->p_pid,
460	    p->p_comm);
461	KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
462	p->p_sflag &= ~PS_SINTR;
463	if (p->p_sflag & PS_TIMEOUT) {
464		p->p_sflag &= ~PS_TIMEOUT;
465		if (sig == 0)
466			rval = EWOULDBLOCK;
467	} else if (timo)
468		callout_stop(&p->p_slpcallout);
469	mtx_unlock_spin(&sched_lock);
470
471	if (rval == 0 && catch) {
472		PROC_LOCK(p);
473		/* XXX: shouldn't we always be calling CURSIG() */
474		if (sig != 0 || (sig = CURSIG(p))) {
475			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
476				rval = EINTR;
477			else
478				rval = ERESTART;
479		}
480		PROC_UNLOCK(p);
481	}
482	PICKUP_GIANT();
483#ifdef KTRACE
484	mtx_lock(&Giant);
485	if (KTRPOINT(p, KTR_CSW))
486		ktrcsw(p->p_tracep, 0, 0);
487	mtx_unlock(&Giant);
488#endif
489	if (mtx != NULL) {
490		mtx_lock(mtx);
491		WITNESS_RESTORE(&mtx->mtx_object, mtx);
492	}
493	return (rval);
494}
495
496/*
497 * asleep() - async sleep call.  Place process on wait queue and return
498 * immediately without blocking.  The process stays runnable until mawait()
499 * is called.  If ident is NULL, remove process from wait queue if it is still
500 * on one.
501 *
502 * Only the most recent sleep condition is effective when making successive
503 * calls to asleep() or when calling msleep().
504 *
505 * The timeout, if any, is not initiated until mawait() is called.  The sleep
506 * priority, signal, and timeout is specified in the asleep() call but may be
507 * overriden in the mawait() call.
508 *
509 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
510 */
511
512int
513asleep(void *ident, int priority, const char *wmesg, int timo)
514{
515	struct proc *p = curproc;
516
517	/*
518	 * Remove preexisting wait condition (if any) and place process
519	 * on appropriate slpque, but do not put process to sleep.
520	 */
521
522	mtx_lock_spin(&sched_lock);
523
524	if (p->p_wchan != NULL)
525		unsleep(p);
526
527	if (ident) {
528		p->p_wchan = ident;
529		p->p_wmesg = wmesg;
530		p->p_slptime = 0;
531		p->p_asleep.as_priority = priority;
532		p->p_asleep.as_timo = timo;
533		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
534	}
535
536	mtx_unlock_spin(&sched_lock);
537
538	return(0);
539}
540
541/*
542 * mawait() - wait for async condition to occur.   The process blocks until
543 * wakeup() is called on the most recent asleep() address.  If wakeup is called
544 * prior to mawait(), mawait() winds up being a NOP.
545 *
546 * If mawait() is called more then once (without an intervening asleep() call),
547 * mawait() is still effectively a NOP but it calls mi_switch() to give other
548 * processes some cpu before returning.  The process is left runnable.
549 *
550 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
551 */
552
553int
554mawait(struct mtx *mtx, int priority, int timo)
555{
556	struct proc *p = curproc;
557	int rval = 0;
558	WITNESS_SAVE_DECL(mtx);
559
560	WITNESS_SLEEP(0, &mtx->mtx_object);
561	KASSERT(timo > 0 || mtx_owned(&Giant) || mtx != NULL,
562	    ("sleeping without a mutex"));
563	mtx_lock_spin(&sched_lock);
564	DROP_GIANT_NOSWITCH();
565	if (mtx != NULL) {
566		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
567		WITNESS_SAVE(&mtx->mtx_object, mtx);
568		mtx_unlock_flags(mtx, MTX_NOSWITCH);
569		if (priority & PDROP)
570			mtx = NULL;
571	}
572
573	if (p->p_wchan != NULL) {
574		int sig;
575		int catch;
576
577#ifdef KTRACE
578		if (p && KTRPOINT(p, KTR_CSW))
579			ktrcsw(p->p_tracep, 1, 0);
580#endif
581		/*
582		 * The call to mawait() can override defaults specified in
583		 * the original asleep().
584		 */
585		if (priority < 0)
586			priority = p->p_asleep.as_priority;
587		if (timo < 0)
588			timo = p->p_asleep.as_timo;
589
590		/*
591		 * Install timeout
592		 */
593
594		if (timo)
595			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
596
597		sig = 0;
598		catch = priority & PCATCH;
599
600		if (catch) {
601			p->p_sflag |= PS_SINTR;
602			mtx_unlock_spin(&sched_lock);
603			PROC_LOCK(p);
604			sig = CURSIG(p);
605			mtx_lock_spin(&sched_lock);
606			PROC_UNLOCK_NOSWITCH(p);
607			if (sig != 0) {
608				if (p->p_wchan)
609					unsleep(p);
610			} else if (p->p_wchan == NULL)
611				catch = 0;
612		}
613		if (p->p_wchan != NULL) {
614			p->p_stat = SSLEEP;
615			p->p_stats->p_ru.ru_nvcsw++;
616			mi_switch();
617		}
618		KASSERT(p->p_stat == SRUN, ("running but not SRUN"));
619		p->p_sflag &= ~PS_SINTR;
620		if (p->p_sflag & PS_TIMEOUT) {
621			p->p_sflag &= ~PS_TIMEOUT;
622			if (sig == 0)
623				rval = EWOULDBLOCK;
624		} else if (timo)
625			callout_stop(&p->p_slpcallout);
626		mtx_unlock_spin(&sched_lock);
627		if (rval == 0 && catch) {
628			PROC_LOCK(p);
629			if (sig != 0 || (sig = CURSIG(p))) {
630				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
631					rval = EINTR;
632				else
633					rval = ERESTART;
634			}
635			PROC_UNLOCK(p);
636		}
637#ifdef KTRACE
638		mtx_lock(&Giant);
639		if (KTRPOINT(p, KTR_CSW))
640			ktrcsw(p->p_tracep, 0, 0);
641		mtx_unlock(&Giant);
642#endif
643	} else {
644		/*
645		 * If as_priority is 0, mawait() has been called without an
646		 * intervening asleep().  We are still effectively a NOP,
647		 * but we call mi_switch() for safety.
648		 */
649
650		if (p->p_asleep.as_priority == 0) {
651			p->p_stats->p_ru.ru_nvcsw++;
652			mi_switch();
653		}
654		mtx_unlock_spin(&sched_lock);
655	}
656
657	/*
658	 * clear p_asleep.as_priority as an indication that mawait() has been
659	 * called.  If mawait() is called again without an intervening asleep(),
660	 * mawait() is still effectively a NOP but the above mi_switch() code
661	 * is triggered as a safety.
662	 */
663	if (rval == 0)
664		p->p_asleep.as_priority = 0;
665
666	PICKUP_GIANT();
667	if (mtx != NULL) {
668		mtx_lock(mtx);
669		WITNESS_RESTORE(&mtx->mtx_object, mtx);
670	}
671	return (rval);
672}
673
674/*
675 * Implement timeout for msleep or asleep()/mawait()
676 *
677 * If process hasn't been awakened (wchan non-zero),
678 * set timeout flag and undo the sleep.  If proc
679 * is stopped, just unsleep so it will remain stopped.
680 * MP-safe, called without the Giant mutex.
681 */
682static void
683endtsleep(arg)
684	void *arg;
685{
686	register struct proc *p;
687	int s;
688
689	p = (struct proc *)arg;
690	CTR3(KTR_PROC, "endtsleep: proc %p (pid %d, %s)", p, p->p_pid,
691	    p->p_comm);
692	s = splhigh();
693	mtx_lock_spin(&sched_lock);
694	if (p->p_wchan) {
695		if (p->p_stat == SSLEEP)
696			setrunnable(p);
697		else
698			unsleep(p);
699		p->p_sflag |= PS_TIMEOUT;
700	}
701	mtx_unlock_spin(&sched_lock);
702	splx(s);
703}
704
705/*
706 * Remove a process from its wait queue
707 */
708void
709unsleep(p)
710	register struct proc *p;
711{
712	int s;
713
714	s = splhigh();
715	mtx_lock_spin(&sched_lock);
716	if (p->p_wchan) {
717		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
718		p->p_wchan = NULL;
719	}
720	mtx_unlock_spin(&sched_lock);
721	splx(s);
722}
723
724/*
725 * Make all processes sleeping on the specified identifier runnable.
726 */
727void
728wakeup(ident)
729	register void *ident;
730{
731	register struct slpquehead *qp;
732	register struct proc *p;
733	int s;
734
735	s = splhigh();
736	mtx_lock_spin(&sched_lock);
737	qp = &slpque[LOOKUP(ident)];
738restart:
739	TAILQ_FOREACH(p, qp, p_slpq) {
740		if (p->p_wchan == ident) {
741			TAILQ_REMOVE(qp, p, p_slpq);
742			p->p_wchan = NULL;
743			if (p->p_stat == SSLEEP) {
744				/* OPTIMIZED EXPANSION OF setrunnable(p); */
745				CTR3(KTR_PROC, "wakeup: proc %p (pid %d, %s)",
746				    p, p->p_pid, p->p_comm);
747				if (p->p_slptime > 1)
748					updatepri(p);
749				p->p_slptime = 0;
750				p->p_stat = SRUN;
751				if (p->p_sflag & PS_INMEM) {
752					setrunqueue(p);
753					maybe_resched(p);
754				} else {
755					p->p_sflag |= PS_SWAPINREQ;
756					wakeup((caddr_t)&proc0);
757				}
758				/* END INLINE EXPANSION */
759				goto restart;
760			}
761		}
762	}
763	mtx_unlock_spin(&sched_lock);
764	splx(s);
765}
766
767/*
768 * Make a process sleeping on the specified identifier runnable.
769 * May wake more than one process if a target process is currently
770 * swapped out.
771 */
772void
773wakeup_one(ident)
774	register void *ident;
775{
776	register struct slpquehead *qp;
777	register struct proc *p;
778	int s;
779
780	s = splhigh();
781	mtx_lock_spin(&sched_lock);
782	qp = &slpque[LOOKUP(ident)];
783
784	TAILQ_FOREACH(p, qp, p_slpq) {
785		if (p->p_wchan == ident) {
786			TAILQ_REMOVE(qp, p, p_slpq);
787			p->p_wchan = NULL;
788			if (p->p_stat == SSLEEP) {
789				/* OPTIMIZED EXPANSION OF setrunnable(p); */
790				CTR3(KTR_PROC, "wakeup1: proc %p (pid %d, %s)",
791				    p, p->p_pid, p->p_comm);
792				if (p->p_slptime > 1)
793					updatepri(p);
794				p->p_slptime = 0;
795				p->p_stat = SRUN;
796				if (p->p_sflag & PS_INMEM) {
797					setrunqueue(p);
798					maybe_resched(p);
799					break;
800				} else {
801					p->p_sflag |= PS_SWAPINREQ;
802					wakeup((caddr_t)&proc0);
803				}
804				/* END INLINE EXPANSION */
805			}
806		}
807	}
808	mtx_unlock_spin(&sched_lock);
809	splx(s);
810}
811
812/*
813 * The machine independent parts of mi_switch().
814 * Must be called at splstatclock() or higher.
815 */
816void
817mi_switch()
818{
819	struct timeval new_switchtime;
820	register struct proc *p = curproc;	/* XXX */
821#if 0
822	register struct rlimit *rlim;
823#endif
824	critical_t sched_crit;
825	u_int sched_nest;
826
827	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
828
829	/*
830	 * Compute the amount of time during which the current
831	 * process was running, and add that to its total so far.
832	 */
833	microuptime(&new_switchtime);
834	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
835#if 0
836		/* XXX: This doesn't play well with sched_lock right now. */
837		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
838		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
839		    new_switchtime.tv_sec, new_switchtime.tv_usec);
840#endif
841		new_switchtime = PCPU_GET(switchtime);
842	} else {
843		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
844		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
845		    (int64_t)1000000;
846	}
847
848#if 0
849	/*
850	 * Check if the process exceeds its cpu resource allocation.
851	 * If over max, kill it.
852	 *
853	 * XXX drop sched_lock, pickup Giant
854	 */
855	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
856	    p->p_runtime > p->p_limit->p_cpulimit) {
857		rlim = &p->p_rlimit[RLIMIT_CPU];
858		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
859			mtx_unlock_spin(&sched_lock);
860			PROC_LOCK(p);
861			killproc(p, "exceeded maximum CPU limit");
862			mtx_lock_spin(&sched_lock);
863			PROC_UNLOCK_NOSWITCH(p);
864		} else {
865			mtx_unlock_spin(&sched_lock);
866			PROC_LOCK(p);
867			psignal(p, SIGXCPU);
868			mtx_lock_spin(&sched_lock);
869			PROC_UNLOCK_NOSWITCH(p);
870			if (rlim->rlim_cur < rlim->rlim_max) {
871				/* XXX: we should make a private copy */
872				rlim->rlim_cur += 5;
873			}
874		}
875	}
876#endif
877
878	/*
879	 * Pick a new current process and record its start time.
880	 */
881	cnt.v_swtch++;
882	PCPU_SET(switchtime, new_switchtime);
883	CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d, %s)", p, p->p_pid,
884	    p->p_comm);
885	sched_crit = sched_lock.mtx_savecrit;
886	sched_nest = sched_lock.mtx_recurse;
887	curproc->p_lastcpu = curproc->p_oncpu;
888	curproc->p_oncpu = NOCPU;
889	clear_resched(curproc);
890	cpu_switch();
891	curproc->p_oncpu = PCPU_GET(cpuid);
892	sched_lock.mtx_savecrit = sched_crit;
893	sched_lock.mtx_recurse = sched_nest;
894	sched_lock.mtx_lock = (uintptr_t)curproc;
895	CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d, %s)", p, p->p_pid,
896	    p->p_comm);
897	if (PCPU_GET(switchtime.tv_sec) == 0)
898		microuptime(PCPU_PTR(switchtime));
899	PCPU_SET(switchticks, ticks);
900}
901
902/*
903 * Change process state to be runnable,
904 * placing it on the run queue if it is in memory,
905 * and awakening the swapper if it isn't in memory.
906 */
907void
908setrunnable(p)
909	register struct proc *p;
910{
911	register int s;
912
913	s = splhigh();
914	mtx_lock_spin(&sched_lock);
915	switch (p->p_stat) {
916	case 0:
917	case SRUN:
918	case SZOMB:
919	case SWAIT:
920	default:
921		panic("setrunnable");
922	case SSTOP:
923	case SSLEEP:			/* e.g. when sending signals */
924		if (p->p_sflag & PS_CVWAITQ)
925			cv_waitq_remove(p);
926		else
927			unsleep(p);
928		break;
929
930	case SIDL:
931		break;
932	}
933	p->p_stat = SRUN;
934	if (p->p_sflag & PS_INMEM)
935		setrunqueue(p);
936	splx(s);
937	if (p->p_slptime > 1)
938		updatepri(p);
939	p->p_slptime = 0;
940	if ((p->p_sflag & PS_INMEM) == 0) {
941		p->p_sflag |= PS_SWAPINREQ;
942		wakeup((caddr_t)&proc0);
943	}
944	else
945		maybe_resched(p);
946	mtx_unlock_spin(&sched_lock);
947}
948
949/*
950 * Compute the priority of a process when running in user mode.
951 * Arrange to reschedule if the resulting priority is better
952 * than that of the current process.
953 */
954void
955resetpriority(p)
956	register struct proc *p;
957{
958	register unsigned int newpriority;
959
960	mtx_lock_spin(&sched_lock);
961	if (p->p_pri.pri_class == PRI_TIMESHARE) {
962		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
963		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
964		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
965		    PRI_MAX_TIMESHARE);
966		p->p_pri.pri_user = newpriority;
967	}
968	maybe_resched(p);
969	mtx_unlock_spin(&sched_lock);
970}
971
972/* ARGSUSED */
973static void
974sched_setup(dummy)
975	void *dummy;
976{
977
978	callout_init(&schedcpu_callout, 1);
979	callout_init(&roundrobin_callout, 0);
980
981	/* Kick off timeout driven events by calling first time. */
982	roundrobin(NULL);
983	schedcpu(NULL);
984}
985
986/*
987 * We adjust the priority of the current process.  The priority of
988 * a process gets worse as it accumulates CPU time.  The cpu usage
989 * estimator (p_estcpu) is increased here.  resetpriority() will
990 * compute a different priority each time p_estcpu increases by
991 * INVERSE_ESTCPU_WEIGHT
992 * (until MAXPRI is reached).  The cpu usage estimator ramps up
993 * quite quickly when the process is running (linearly), and decays
994 * away exponentially, at a rate which is proportionally slower when
995 * the system is busy.  The basic principle is that the system will
996 * 90% forget that the process used a lot of CPU time in 5 * loadav
997 * seconds.  This causes the system to favor processes which haven't
998 * run much recently, and to round-robin among other processes.
999 */
1000void
1001schedclock(p)
1002	struct proc *p;
1003{
1004
1005	p->p_cpticks++;
1006	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1007	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1008		resetpriority(p);
1009		if (p->p_pri.pri_level >= PUSER)
1010			p->p_pri.pri_level = p->p_pri.pri_user;
1011	}
1012}
1013
1014/*
1015 * General purpose yield system call
1016 */
1017int
1018yield(struct proc *p, struct yield_args *uap)
1019{
1020	int s;
1021
1022	p->p_retval[0] = 0;
1023
1024	s = splhigh();
1025	mtx_lock_spin(&sched_lock);
1026	DROP_GIANT_NOSWITCH();
1027	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1028	setrunqueue(p);
1029	p->p_stats->p_ru.ru_nvcsw++;
1030	mi_switch();
1031	mtx_unlock_spin(&sched_lock);
1032	PICKUP_GIANT();
1033	splx(s);
1034
1035	return (0);
1036}
1037