kern_synch.c revision 76950
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 76950 2001-05-22 00:58:20Z alfred $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <sys/vmmeter.h>
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int	hogticks;
72int	lbolt;
73int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void	endtsleep __P((void *));
79static void	roundrobin __P((void *arg));
80static void	schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85	int error, new_val;
86
87	new_val = sched_quantum * tick;
88	error = sysctl_handle_int(oidp, &new_val, 0, req);
89        if (error != 0 || req->newptr == NULL)
90		return (error);
91	if (new_val < tick)
92		return (EINVAL);
93	sched_quantum = new_val / tick;
94	hogticks = 2 * sched_quantum;
95	return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107	struct proc *p;
108{
109
110	mtx_assert(&sched_lock, MA_OWNED);
111	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112		need_resched(curproc);
113}
114
115int
116roundrobin_interval(void)
117{
118	return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 */
124/* ARGSUSED */
125static void
126roundrobin(arg)
127	void *arg;
128{
129
130	mtx_lock_spin(&sched_lock);
131	need_resched(curproc);
132#ifdef SMP
133	forward_roundrobin();
134#endif
135	mtx_unlock_spin(&sched_lock);
136
137	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
138}
139
140/*
141 * Constants for digital decay and forget:
142 *	90% of (p_estcpu) usage in 5 * loadav time
143 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
144 *          Note that, as ps(1) mentions, this can let percentages
145 *          total over 100% (I've seen 137.9% for 3 processes).
146 *
147 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
148 *
149 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
150 * That is, the system wants to compute a value of decay such
151 * that the following for loop:
152 * 	for (i = 0; i < (5 * loadavg); i++)
153 * 		p_estcpu *= decay;
154 * will compute
155 * 	p_estcpu *= 0.1;
156 * for all values of loadavg:
157 *
158 * Mathematically this loop can be expressed by saying:
159 * 	decay ** (5 * loadavg) ~= .1
160 *
161 * The system computes decay as:
162 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
163 *
164 * We wish to prove that the system's computation of decay
165 * will always fulfill the equation:
166 * 	decay ** (5 * loadavg) ~= .1
167 *
168 * If we compute b as:
169 * 	b = 2 * loadavg
170 * then
171 * 	decay = b / (b + 1)
172 *
173 * We now need to prove two things:
174 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
175 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
176 *
177 * Facts:
178 *         For x close to zero, exp(x) =~ 1 + x, since
179 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
180 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
181 *         For x close to zero, ln(1+x) =~ x, since
182 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
183 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
184 *         ln(.1) =~ -2.30
185 *
186 * Proof of (1):
187 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
188 *	solving for factor,
189 *      ln(factor) =~ (-2.30/5*loadav), or
190 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
191 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
192 *
193 * Proof of (2):
194 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
195 *	solving for power,
196 *      power*ln(b/(b+1)) =~ -2.30, or
197 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
198 *
199 * Actual power values for the implemented algorithm are as follows:
200 *      loadav: 1       2       3       4
201 *      power:  5.68    10.32   14.94   19.55
202 */
203
204/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
205#define	loadfactor(loadav)	(2 * (loadav))
206#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
207
208/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
209static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
210SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
211
212/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
213static int	fscale __unused = FSCALE;
214SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
215
216/*
217 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
218 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
219 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
220 *
221 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
222 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
223 *
224 * If you don't want to bother with the faster/more-accurate formula, you
225 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
226 * (more general) method of calculating the %age of CPU used by a process.
227 */
228#define	CCPU_SHIFT	11
229
230/*
231 * Recompute process priorities, every hz ticks.
232 * MP-safe, called without the Giant mutex.
233 */
234/* ARGSUSED */
235static void
236schedcpu(arg)
237	void *arg;
238{
239	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240	register struct proc *p;
241	register int realstathz, s;
242
243	realstathz = stathz ? stathz : hz;
244	sx_slock(&allproc_lock);
245	LIST_FOREACH(p, &allproc, p_list) {
246		/*
247		 * Increment time in/out of memory and sleep time
248		 * (if sleeping).  We ignore overflow; with 16-bit int's
249		 * (remember them?) overflow takes 45 days.
250		if (p->p_stat == SWAIT)
251			continue;
252		 */
253		mtx_lock_spin(&sched_lock);
254		p->p_swtime++;
255		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
256			p->p_slptime++;
257		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
258		/*
259		 * If the process has slept the entire second,
260		 * stop recalculating its priority until it wakes up.
261		 */
262		if (p->p_slptime > 1) {
263			mtx_unlock_spin(&sched_lock);
264			continue;
265		}
266
267		/*
268		 * prevent state changes and protect run queue
269		 */
270		s = splhigh();
271
272		/*
273		 * p_pctcpu is only for ps.
274		 */
275#if	(FSHIFT >= CCPU_SHIFT)
276		p->p_pctcpu += (realstathz == 100)?
277			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278                	100 * (((fixpt_t) p->p_cpticks)
279				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
280#else
281		p->p_pctcpu += ((FSCALE - ccpu) *
282			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
283#endif
284		p->p_cpticks = 0;
285		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
286		resetpriority(p);
287		if (p->p_pri.pri_level >= PUSER) {
288			if ((p != curproc) &&
289#ifdef SMP
290			    p->p_oncpu == NOCPU && 	/* idle */
291#endif
292			    p->p_stat == SRUN &&
293			    (p->p_sflag & PS_INMEM) &&
294			    (p->p_pri.pri_level / RQ_PPQ) !=
295			    (p->p_pri.pri_user / RQ_PPQ)) {
296				remrunqueue(p);
297				p->p_pri.pri_level = p->p_pri.pri_user;
298				setrunqueue(p);
299			} else
300				p->p_pri.pri_level = p->p_pri.pri_user;
301		}
302		mtx_unlock_spin(&sched_lock);
303		splx(s);
304	}
305	sx_sunlock(&allproc_lock);
306	vmmeter();
307	wakeup((caddr_t)&lbolt);
308	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
309}
310
311/*
312 * Recalculate the priority of a process after it has slept for a while.
313 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
314 * least six times the loadfactor will decay p_estcpu to zero.
315 */
316void
317updatepri(p)
318	register struct proc *p;
319{
320	register unsigned int newcpu = p->p_estcpu;
321	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322
323	if (p->p_slptime > 5 * loadfac)
324		p->p_estcpu = 0;
325	else {
326		p->p_slptime--;	/* the first time was done in schedcpu */
327		while (newcpu && --p->p_slptime)
328			newcpu = decay_cpu(loadfac, newcpu);
329		p->p_estcpu = newcpu;
330	}
331	resetpriority(p);
332}
333
334/*
335 * We're only looking at 7 bits of the address; everything is
336 * aligned to 4, lots of things are aligned to greater powers
337 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
338 */
339#define TABLESIZE	128
340static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
341#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
342
343void
344sleepinit(void)
345{
346	int i;
347
348	sched_quantum = hz/10;
349	hogticks = 2 * sched_quantum;
350	for (i = 0; i < TABLESIZE; i++)
351		TAILQ_INIT(&slpque[i]);
352}
353
354/*
355 * General sleep call.  Suspends the current process until a wakeup is
356 * performed on the specified identifier.  The process will then be made
357 * runnable with the specified priority.  Sleeps at most timo/hz seconds
358 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
359 * before and after sleeping, else signals are not checked.  Returns 0 if
360 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
361 * signal needs to be delivered, ERESTART is returned if the current system
362 * call should be restarted if possible, and EINTR is returned if the system
363 * call should be interrupted by the signal (return EINTR).
364 *
365 * The mutex argument is exited before the caller is suspended, and
366 * entered before msleep returns.  If priority includes the PDROP
367 * flag the mutex is not entered before returning.
368 */
369int
370msleep(ident, mtx, priority, wmesg, timo)
371	void *ident;
372	struct mtx *mtx;
373	int priority, timo;
374	const char *wmesg;
375{
376	struct proc *p = curproc;
377	int sig, catch = priority & PCATCH;
378	int rval = 0;
379	WITNESS_SAVE_DECL(mtx);
380
381#ifdef KTRACE
382	if (p && KTRPOINT(p, KTR_CSW))
383		ktrcsw(p->p_tracep, 1, 0);
384#endif
385	WITNESS_SLEEP(0, &mtx->mtx_object);
386	mtx_lock_spin(&sched_lock);
387	if (cold || panicstr) {
388		/*
389		 * After a panic, or during autoconfiguration,
390		 * just give interrupts a chance, then just return;
391		 * don't run any other procs or panic below,
392		 * in case this is the idle process and already asleep.
393		 */
394		if (mtx != NULL && priority & PDROP)
395			mtx_unlock_flags(mtx, MTX_NOSWITCH);
396		mtx_unlock_spin(&sched_lock);
397		return (0);
398	}
399
400	DROP_GIANT_NOSWITCH();
401
402	if (mtx != NULL) {
403		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
404		WITNESS_SAVE(&mtx->mtx_object, mtx);
405		mtx_unlock_flags(mtx, MTX_NOSWITCH);
406		if (priority & PDROP)
407			mtx = NULL;
408	}
409
410	KASSERT(p != NULL, ("msleep1"));
411	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
412	/*
413	 * Process may be sitting on a slpque if asleep() was called, remove
414	 * it before re-adding.
415	 */
416	if (p->p_wchan != NULL)
417		unsleep(p);
418
419	p->p_wchan = ident;
420	p->p_wmesg = wmesg;
421	p->p_slptime = 0;
422	p->p_pri.pri_level = priority & PRIMASK;
423	CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
424		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
425	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
426	if (timo)
427		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
428	/*
429	 * We put ourselves on the sleep queue and start our timeout
430	 * before calling CURSIG, as we could stop there, and a wakeup
431	 * or a SIGCONT (or both) could occur while we were stopped.
432	 * A SIGCONT would cause us to be marked as SSLEEP
433	 * without resuming us, thus we must be ready for sleep
434	 * when CURSIG is called.  If the wakeup happens while we're
435	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
436	 */
437	if (catch) {
438		CTR4(KTR_PROC,
439		        "msleep caught: proc %p (pid %d, %s), schedlock %p",
440			p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
441		p->p_sflag |= PS_SINTR;
442		mtx_unlock_spin(&sched_lock);
443		if ((sig = CURSIG(p))) {
444			mtx_lock_spin(&sched_lock);
445			if (p->p_wchan)
446				unsleep(p);
447			p->p_stat = SRUN;
448			goto resume;
449		}
450		mtx_lock_spin(&sched_lock);
451		if (p->p_wchan == NULL) {
452			catch = 0;
453			goto resume;
454		}
455	} else
456		sig = 0;
457	p->p_stat = SSLEEP;
458	p->p_stats->p_ru.ru_nvcsw++;
459	mi_switch();
460	CTR4(KTR_PROC,
461	        "msleep resume: proc %p (pid %d, %s), schedlock %p",
462		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
463resume:
464	p->p_sflag &= ~PS_SINTR;
465	if (p->p_sflag & PS_TIMEOUT) {
466		p->p_sflag &= ~PS_TIMEOUT;
467		if (sig == 0) {
468#ifdef KTRACE
469			if (KTRPOINT(p, KTR_CSW))
470				ktrcsw(p->p_tracep, 0, 0);
471#endif
472			rval = EWOULDBLOCK;
473			mtx_unlock_spin(&sched_lock);
474			goto out;
475		}
476	} else if (timo)
477		callout_stop(&p->p_slpcallout);
478	mtx_unlock_spin(&sched_lock);
479
480	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
481#ifdef KTRACE
482		if (KTRPOINT(p, KTR_CSW))
483			ktrcsw(p->p_tracep, 0, 0);
484#endif
485		PROC_LOCK(p);
486		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
487			rval = EINTR;
488		else
489			rval = ERESTART;
490		PROC_UNLOCK(p);
491		goto out;
492	}
493out:
494#ifdef KTRACE
495	if (KTRPOINT(p, KTR_CSW))
496		ktrcsw(p->p_tracep, 0, 0);
497#endif
498	PICKUP_GIANT();
499	if (mtx != NULL) {
500		mtx_lock(mtx);
501		WITNESS_RESTORE(&mtx->mtx_object, mtx);
502	}
503	return (rval);
504}
505
506/*
507 * asleep() - async sleep call.  Place process on wait queue and return
508 * immediately without blocking.  The process stays runnable until mawait()
509 * is called.  If ident is NULL, remove process from wait queue if it is still
510 * on one.
511 *
512 * Only the most recent sleep condition is effective when making successive
513 * calls to asleep() or when calling msleep().
514 *
515 * The timeout, if any, is not initiated until mawait() is called.  The sleep
516 * priority, signal, and timeout is specified in the asleep() call but may be
517 * overriden in the mawait() call.
518 *
519 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
520 */
521
522int
523asleep(void *ident, int priority, const char *wmesg, int timo)
524{
525	struct proc *p = curproc;
526	int s;
527
528	/*
529	 * obtain sched_lock while manipulating sleep structures and slpque.
530	 *
531	 * Remove preexisting wait condition (if any) and place process
532	 * on appropriate slpque, but do not put process to sleep.
533	 */
534
535	s = splhigh();
536	mtx_lock_spin(&sched_lock);
537
538	if (p->p_wchan != NULL)
539		unsleep(p);
540
541	if (ident) {
542		p->p_wchan = ident;
543		p->p_wmesg = wmesg;
544		p->p_slptime = 0;
545		p->p_asleep.as_priority = priority;
546		p->p_asleep.as_timo = timo;
547		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
548	}
549
550	mtx_unlock_spin(&sched_lock);
551	splx(s);
552
553	return(0);
554}
555
556/*
557 * mawait() - wait for async condition to occur.   The process blocks until
558 * wakeup() is called on the most recent asleep() address.  If wakeup is called
559 * prior to mawait(), mawait() winds up being a NOP.
560 *
561 * If mawait() is called more then once (without an intervening asleep() call),
562 * mawait() is still effectively a NOP but it calls mi_switch() to give other
563 * processes some cpu before returning.  The process is left runnable.
564 *
565 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
566 */
567
568int
569mawait(struct mtx *mtx, int priority, int timo)
570{
571	struct proc *p = curproc;
572	int rval = 0;
573	int s;
574	WITNESS_SAVE_DECL(mtx);
575
576	WITNESS_SLEEP(0, &mtx->mtx_object);
577	mtx_lock_spin(&sched_lock);
578	DROP_GIANT_NOSWITCH();
579	if (mtx != NULL) {
580		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
581		WITNESS_SAVE(&mtx->mtx_object, mtx);
582		mtx_unlock_flags(mtx, MTX_NOSWITCH);
583		if (priority & PDROP)
584			mtx = NULL;
585	}
586
587	s = splhigh();
588
589	if (p->p_wchan != NULL) {
590		int sig;
591		int catch;
592
593		/*
594		 * The call to mawait() can override defaults specified in
595		 * the original asleep().
596		 */
597		if (priority < 0)
598			priority = p->p_asleep.as_priority;
599		if (timo < 0)
600			timo = p->p_asleep.as_timo;
601
602		/*
603		 * Install timeout
604		 */
605
606		if (timo)
607			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
608
609		sig = 0;
610		catch = priority & PCATCH;
611
612		if (catch) {
613			p->p_sflag |= PS_SINTR;
614			mtx_unlock_spin(&sched_lock);
615			if ((sig = CURSIG(p))) {
616				mtx_lock_spin(&sched_lock);
617				if (p->p_wchan)
618					unsleep(p);
619				p->p_stat = SRUN;
620				goto resume;
621			}
622			mtx_lock_spin(&sched_lock);
623			if (p->p_wchan == NULL) {
624				catch = 0;
625				goto resume;
626			}
627		}
628		p->p_stat = SSLEEP;
629		p->p_stats->p_ru.ru_nvcsw++;
630		mi_switch();
631resume:
632
633		splx(s);
634		p->p_sflag &= ~PS_SINTR;
635		if (p->p_sflag & PS_TIMEOUT) {
636			p->p_sflag &= ~PS_TIMEOUT;
637			if (sig == 0) {
638#ifdef KTRACE
639				if (KTRPOINT(p, KTR_CSW))
640					ktrcsw(p->p_tracep, 0, 0);
641#endif
642				rval = EWOULDBLOCK;
643				mtx_unlock_spin(&sched_lock);
644				goto out;
645			}
646		} else if (timo)
647			callout_stop(&p->p_slpcallout);
648		mtx_unlock_spin(&sched_lock);
649
650		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
651#ifdef KTRACE
652			if (KTRPOINT(p, KTR_CSW))
653				ktrcsw(p->p_tracep, 0, 0);
654#endif
655			PROC_LOCK(p);
656			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
657				rval = EINTR;
658			else
659				rval = ERESTART;
660			PROC_UNLOCK(p);
661			goto out;
662		}
663#ifdef KTRACE
664		if (KTRPOINT(p, KTR_CSW))
665			ktrcsw(p->p_tracep, 0, 0);
666#endif
667	} else {
668		/*
669		 * If as_priority is 0, mawait() has been called without an
670		 * intervening asleep().  We are still effectively a NOP,
671		 * but we call mi_switch() for safety.
672		 */
673
674		if (p->p_asleep.as_priority == 0) {
675			p->p_stats->p_ru.ru_nvcsw++;
676			mi_switch();
677		}
678		mtx_unlock_spin(&sched_lock);
679		splx(s);
680	}
681
682	/*
683	 * clear p_asleep.as_priority as an indication that mawait() has been
684	 * called.  If mawait() is called again without an intervening asleep(),
685	 * mawait() is still effectively a NOP but the above mi_switch() code
686	 * is triggered as a safety.
687	 */
688	p->p_asleep.as_priority = 0;
689
690out:
691	PICKUP_GIANT();
692	if (mtx != NULL) {
693		mtx_lock(mtx);
694		WITNESS_RESTORE(&mtx->mtx_object, mtx);
695	}
696	return (rval);
697}
698
699/*
700 * Implement timeout for msleep or asleep()/mawait()
701 *
702 * If process hasn't been awakened (wchan non-zero),
703 * set timeout flag and undo the sleep.  If proc
704 * is stopped, just unsleep so it will remain stopped.
705 * MP-safe, called without the Giant mutex.
706 */
707static void
708endtsleep(arg)
709	void *arg;
710{
711	register struct proc *p;
712	int s;
713
714	p = (struct proc *)arg;
715	CTR4(KTR_PROC,
716	        "endtsleep: proc %p (pid %d, %s), schedlock %p",
717		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
718	s = splhigh();
719	mtx_lock_spin(&sched_lock);
720	if (p->p_wchan) {
721		if (p->p_stat == SSLEEP)
722			setrunnable(p);
723		else
724			unsleep(p);
725		p->p_sflag |= PS_TIMEOUT;
726	}
727	mtx_unlock_spin(&sched_lock);
728	splx(s);
729}
730
731/*
732 * Remove a process from its wait queue
733 */
734void
735unsleep(p)
736	register struct proc *p;
737{
738	int s;
739
740	s = splhigh();
741	mtx_lock_spin(&sched_lock);
742	if (p->p_wchan) {
743		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
744		p->p_wchan = NULL;
745	}
746	mtx_unlock_spin(&sched_lock);
747	splx(s);
748}
749
750/*
751 * Make all processes sleeping on the specified identifier runnable.
752 */
753void
754wakeup(ident)
755	register void *ident;
756{
757	register struct slpquehead *qp;
758	register struct proc *p;
759	int s;
760
761	s = splhigh();
762	mtx_lock_spin(&sched_lock);
763	qp = &slpque[LOOKUP(ident)];
764restart:
765	TAILQ_FOREACH(p, qp, p_slpq) {
766		if (p->p_wchan == ident) {
767			TAILQ_REMOVE(qp, p, p_slpq);
768			p->p_wchan = NULL;
769			if (p->p_stat == SSLEEP) {
770				/* OPTIMIZED EXPANSION OF setrunnable(p); */
771				CTR4(KTR_PROC,
772				        "wakeup: proc %p (pid %d, %s), schedlock %p",
773					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
774				if (p->p_slptime > 1)
775					updatepri(p);
776				p->p_slptime = 0;
777				p->p_stat = SRUN;
778				if (p->p_sflag & PS_INMEM) {
779					setrunqueue(p);
780					maybe_resched(p);
781				} else {
782					p->p_sflag |= PS_SWAPINREQ;
783					wakeup((caddr_t)&proc0);
784				}
785				/* END INLINE EXPANSION */
786				goto restart;
787			}
788		}
789	}
790	mtx_unlock_spin(&sched_lock);
791	splx(s);
792}
793
794/*
795 * Make a process sleeping on the specified identifier runnable.
796 * May wake more than one process if a target process is currently
797 * swapped out.
798 */
799void
800wakeup_one(ident)
801	register void *ident;
802{
803	register struct slpquehead *qp;
804	register struct proc *p;
805	int s;
806
807	s = splhigh();
808	mtx_lock_spin(&sched_lock);
809	qp = &slpque[LOOKUP(ident)];
810
811	TAILQ_FOREACH(p, qp, p_slpq) {
812		if (p->p_wchan == ident) {
813			TAILQ_REMOVE(qp, p, p_slpq);
814			p->p_wchan = NULL;
815			if (p->p_stat == SSLEEP) {
816				/* OPTIMIZED EXPANSION OF setrunnable(p); */
817				CTR4(KTR_PROC,
818				        "wakeup1: proc %p (pid %d, %s), schedlock %p",
819					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
820				if (p->p_slptime > 1)
821					updatepri(p);
822				p->p_slptime = 0;
823				p->p_stat = SRUN;
824				if (p->p_sflag & PS_INMEM) {
825					setrunqueue(p);
826					maybe_resched(p);
827					break;
828				} else {
829					p->p_sflag |= PS_SWAPINREQ;
830					wakeup((caddr_t)&proc0);
831				}
832				/* END INLINE EXPANSION */
833			}
834		}
835	}
836	mtx_unlock_spin(&sched_lock);
837	splx(s);
838}
839
840/*
841 * The machine independent parts of mi_switch().
842 * Must be called at splstatclock() or higher.
843 */
844void
845mi_switch()
846{
847	struct timeval new_switchtime;
848	register struct proc *p = curproc;	/* XXX */
849#if 0
850	register struct rlimit *rlim;
851#endif
852	u_int sched_nest;
853
854	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
855
856	/*
857	 * Compute the amount of time during which the current
858	 * process was running, and add that to its total so far.
859	 */
860	microuptime(&new_switchtime);
861	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
862#if 0
863		/* XXX: This doesn't play well with sched_lock right now. */
864		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
865		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
866		    new_switchtime.tv_sec, new_switchtime.tv_usec);
867#endif
868		new_switchtime = PCPU_GET(switchtime);
869	} else {
870		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
871		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
872		    (int64_t)1000000;
873	}
874
875#if 0
876	/*
877	 * Check if the process exceeds its cpu resource allocation.
878	 * If over max, kill it.
879	 *
880	 * XXX drop sched_lock, pickup Giant
881	 */
882	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
883	    p->p_runtime > p->p_limit->p_cpulimit) {
884		rlim = &p->p_rlimit[RLIMIT_CPU];
885		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
886			mtx_unlock_spin(&sched_lock);
887			PROC_LOCK(p);
888			killproc(p, "exceeded maximum CPU limit");
889			mtx_lock_spin(&sched_lock);
890			PROC_UNLOCK_NOSWITCH(p);
891		} else {
892			mtx_unlock_spin(&sched_lock);
893			PROC_LOCK(p);
894			psignal(p, SIGXCPU);
895			mtx_lock_spin(&sched_lock);
896			PROC_UNLOCK_NOSWITCH(p);
897			if (rlim->rlim_cur < rlim->rlim_max) {
898				/* XXX: we should make a private copy */
899				rlim->rlim_cur += 5;
900			}
901		}
902	}
903#endif
904
905	/*
906	 * Pick a new current process and record its start time.
907	 */
908	cnt.v_swtch++;
909	PCPU_SET(switchtime, new_switchtime);
910	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
911		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
912	sched_nest = sched_lock.mtx_recurse;
913	curproc->p_lastcpu = curproc->p_oncpu;
914	curproc->p_oncpu = NOCPU;
915	clear_resched(curproc);
916	cpu_switch();
917	curproc->p_oncpu = PCPU_GET(cpuid);
918	sched_lock.mtx_recurse = sched_nest;
919	sched_lock.mtx_lock = (uintptr_t)curproc;
920	CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
921		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
922	if (PCPU_GET(switchtime.tv_sec) == 0)
923		microuptime(PCPU_PTR(switchtime));
924	PCPU_SET(switchticks, ticks);
925}
926
927/*
928 * Change process state to be runnable,
929 * placing it on the run queue if it is in memory,
930 * and awakening the swapper if it isn't in memory.
931 */
932void
933setrunnable(p)
934	register struct proc *p;
935{
936	register int s;
937
938	s = splhigh();
939	mtx_lock_spin(&sched_lock);
940	switch (p->p_stat) {
941	case 0:
942	case SRUN:
943	case SZOMB:
944	case SWAIT:
945	default:
946		panic("setrunnable");
947	case SSTOP:
948	case SSLEEP:			/* e.g. when sending signals */
949		if (p->p_sflag & PS_CVWAITQ)
950			cv_waitq_remove(p);
951		else
952			unsleep(p);
953		break;
954
955	case SIDL:
956		break;
957	}
958	p->p_stat = SRUN;
959	if (p->p_sflag & PS_INMEM)
960		setrunqueue(p);
961	splx(s);
962	if (p->p_slptime > 1)
963		updatepri(p);
964	p->p_slptime = 0;
965	if ((p->p_sflag & PS_INMEM) == 0) {
966		p->p_sflag |= PS_SWAPINREQ;
967		wakeup((caddr_t)&proc0);
968	}
969	else
970		maybe_resched(p);
971	mtx_unlock_spin(&sched_lock);
972}
973
974/*
975 * Compute the priority of a process when running in user mode.
976 * Arrange to reschedule if the resulting priority is better
977 * than that of the current process.
978 */
979void
980resetpriority(p)
981	register struct proc *p;
982{
983	register unsigned int newpriority;
984
985	mtx_lock_spin(&sched_lock);
986	if (p->p_pri.pri_class == PRI_TIMESHARE) {
987		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
988		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
989		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
990		    PRI_MAX_TIMESHARE);
991		p->p_pri.pri_user = newpriority;
992	}
993	maybe_resched(p);
994	mtx_unlock_spin(&sched_lock);
995}
996
997/* ARGSUSED */
998static void
999sched_setup(dummy)
1000	void *dummy;
1001{
1002
1003	callout_init(&schedcpu_callout, 1);
1004	callout_init(&roundrobin_callout, 0);
1005
1006	/* Kick off timeout driven events by calling first time. */
1007	roundrobin(NULL);
1008	schedcpu(NULL);
1009}
1010
1011/*
1012 * We adjust the priority of the current process.  The priority of
1013 * a process gets worse as it accumulates CPU time.  The cpu usage
1014 * estimator (p_estcpu) is increased here.  resetpriority() will
1015 * compute a different priority each time p_estcpu increases by
1016 * INVERSE_ESTCPU_WEIGHT
1017 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1018 * quite quickly when the process is running (linearly), and decays
1019 * away exponentially, at a rate which is proportionally slower when
1020 * the system is busy.  The basic principle is that the system will
1021 * 90% forget that the process used a lot of CPU time in 5 * loadav
1022 * seconds.  This causes the system to favor processes which haven't
1023 * run much recently, and to round-robin among other processes.
1024 */
1025void
1026schedclock(p)
1027	struct proc *p;
1028{
1029
1030	p->p_cpticks++;
1031	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1032	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1033		resetpriority(p);
1034		if (p->p_pri.pri_level >= PUSER)
1035			p->p_pri.pri_level = p->p_pri.pri_user;
1036	}
1037}
1038
1039/*
1040 * General purpose yield system call
1041 */
1042int
1043yield(struct proc *p, struct yield_args *uap)
1044{
1045	int s;
1046
1047	p->p_retval[0] = 0;
1048
1049	s = splhigh();
1050	mtx_lock_spin(&sched_lock);
1051	DROP_GIANT_NOSWITCH();
1052	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1053	setrunqueue(p);
1054	p->p_stats->p_ru.ru_nvcsw++;
1055	mi_switch();
1056	mtx_unlock_spin(&sched_lock);
1057	PICKUP_GIANT();
1058	splx(s);
1059
1060	return (0);
1061}
1062