kern_synch.c revision 76827
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 76827 2001-05-19 01:28:09Z alfred $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/resourcevar.h>
53#include <sys/signalvar.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <sys/vmmeter.h>
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67
68static void sched_setup __P((void *dummy));
69SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
70
71int	hogticks;
72int	lbolt;
73int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74
75static struct callout schedcpu_callout;
76static struct callout roundrobin_callout;
77
78static void	endtsleep __P((void *));
79static void	roundrobin __P((void *arg));
80static void	schedcpu __P((void *arg));
81
82static int
83sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
84{
85	int error, new_val;
86
87	new_val = sched_quantum * tick;
88	error = sysctl_handle_int(oidp, &new_val, 0, req);
89        if (error != 0 || req->newptr == NULL)
90		return (error);
91	if (new_val < tick)
92		return (EINVAL);
93	sched_quantum = new_val / tick;
94	hogticks = 2 * sched_quantum;
95	return (0);
96}
97
98SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
99	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
100
101/*
102 * Arrange to reschedule if necessary, taking the priorities and
103 * schedulers into account.
104 */
105void
106maybe_resched(p)
107	struct proc *p;
108{
109
110	mtx_assert(&sched_lock, MA_OWNED);
111	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
112		need_resched(curproc);
113}
114
115int
116roundrobin_interval(void)
117{
118	return (sched_quantum);
119}
120
121/*
122 * Force switch among equal priority processes every 100ms.
123 */
124/* ARGSUSED */
125static void
126roundrobin(arg)
127	void *arg;
128{
129
130	mtx_lock_spin(&sched_lock);
131	need_resched(curproc);
132#ifdef SMP
133	forward_roundrobin();
134#endif
135	mtx_unlock_spin(&sched_lock);
136
137	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
138}
139
140/*
141 * Constants for digital decay and forget:
142 *	90% of (p_estcpu) usage in 5 * loadav time
143 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
144 *          Note that, as ps(1) mentions, this can let percentages
145 *          total over 100% (I've seen 137.9% for 3 processes).
146 *
147 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
148 *
149 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
150 * That is, the system wants to compute a value of decay such
151 * that the following for loop:
152 * 	for (i = 0; i < (5 * loadavg); i++)
153 * 		p_estcpu *= decay;
154 * will compute
155 * 	p_estcpu *= 0.1;
156 * for all values of loadavg:
157 *
158 * Mathematically this loop can be expressed by saying:
159 * 	decay ** (5 * loadavg) ~= .1
160 *
161 * The system computes decay as:
162 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
163 *
164 * We wish to prove that the system's computation of decay
165 * will always fulfill the equation:
166 * 	decay ** (5 * loadavg) ~= .1
167 *
168 * If we compute b as:
169 * 	b = 2 * loadavg
170 * then
171 * 	decay = b / (b + 1)
172 *
173 * We now need to prove two things:
174 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
175 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
176 *
177 * Facts:
178 *         For x close to zero, exp(x) =~ 1 + x, since
179 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
180 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
181 *         For x close to zero, ln(1+x) =~ x, since
182 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
183 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
184 *         ln(.1) =~ -2.30
185 *
186 * Proof of (1):
187 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
188 *	solving for factor,
189 *      ln(factor) =~ (-2.30/5*loadav), or
190 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
191 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
192 *
193 * Proof of (2):
194 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
195 *	solving for power,
196 *      power*ln(b/(b+1)) =~ -2.30, or
197 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
198 *
199 * Actual power values for the implemented algorithm are as follows:
200 *      loadav: 1       2       3       4
201 *      power:  5.68    10.32   14.94   19.55
202 */
203
204/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
205#define	loadfactor(loadav)	(2 * (loadav))
206#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
207
208/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
209static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
210SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
211
212/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
213static int	fscale __unused = FSCALE;
214SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
215
216/*
217 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
218 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
219 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
220 *
221 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
222 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
223 *
224 * If you don't want to bother with the faster/more-accurate formula, you
225 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
226 * (more general) method of calculating the %age of CPU used by a process.
227 */
228#define	CCPU_SHIFT	11
229
230/*
231 * Recompute process priorities, every hz ticks.
232 * MP-safe, called without the Giant mutex.
233 */
234/* ARGSUSED */
235static void
236schedcpu(arg)
237	void *arg;
238{
239	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
240	register struct proc *p;
241	register int realstathz, s;
242
243	realstathz = stathz ? stathz : hz;
244	sx_slock(&allproc_lock);
245	LIST_FOREACH(p, &allproc, p_list) {
246		/*
247		 * Increment time in/out of memory and sleep time
248		 * (if sleeping).  We ignore overflow; with 16-bit int's
249		 * (remember them?) overflow takes 45 days.
250		if (p->p_stat == SWAIT)
251			continue;
252		 */
253		mtx_lock_spin(&sched_lock);
254		p->p_swtime++;
255		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
256			p->p_slptime++;
257		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
258		/*
259		 * If the process has slept the entire second,
260		 * stop recalculating its priority until it wakes up.
261		 */
262		if (p->p_slptime > 1) {
263			mtx_unlock_spin(&sched_lock);
264			continue;
265		}
266
267		/*
268		 * prevent state changes and protect run queue
269		 */
270		s = splhigh();
271
272		/*
273		 * p_pctcpu is only for ps.
274		 */
275#if	(FSHIFT >= CCPU_SHIFT)
276		p->p_pctcpu += (realstathz == 100)?
277			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
278                	100 * (((fixpt_t) p->p_cpticks)
279				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
280#else
281		p->p_pctcpu += ((FSCALE - ccpu) *
282			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
283#endif
284		p->p_cpticks = 0;
285		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
286		resetpriority(p);
287		if (p->p_pri.pri_level >= PUSER) {
288			if ((p != curproc) &&
289#ifdef SMP
290			    p->p_oncpu == NOCPU && 	/* idle */
291#endif
292			    p->p_stat == SRUN &&
293			    (p->p_sflag & PS_INMEM) &&
294			    (p->p_pri.pri_level / RQ_PPQ) !=
295			    (p->p_pri.pri_user / RQ_PPQ)) {
296				remrunqueue(p);
297				p->p_pri.pri_level = p->p_pri.pri_user;
298				setrunqueue(p);
299			} else
300				p->p_pri.pri_level = p->p_pri.pri_user;
301		}
302		mtx_unlock_spin(&sched_lock);
303		splx(s);
304	}
305	sx_sunlock(&allproc_lock);
306	vmmeter();
307	wakeup((caddr_t)&lbolt);
308	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
309}
310
311/*
312 * Recalculate the priority of a process after it has slept for a while.
313 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
314 * least six times the loadfactor will decay p_estcpu to zero.
315 */
316void
317updatepri(p)
318	register struct proc *p;
319{
320	register unsigned int newcpu = p->p_estcpu;
321	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
322
323	if (p->p_slptime > 5 * loadfac)
324		p->p_estcpu = 0;
325	else {
326		p->p_slptime--;	/* the first time was done in schedcpu */
327		while (newcpu && --p->p_slptime)
328			newcpu = decay_cpu(loadfac, newcpu);
329		p->p_estcpu = newcpu;
330	}
331	resetpriority(p);
332}
333
334/*
335 * We're only looking at 7 bits of the address; everything is
336 * aligned to 4, lots of things are aligned to greater powers
337 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
338 */
339#define TABLESIZE	128
340static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
341#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
342
343void
344sleepinit(void)
345{
346	int i;
347
348	sched_quantum = hz/10;
349	hogticks = 2 * sched_quantum;
350	for (i = 0; i < TABLESIZE; i++)
351		TAILQ_INIT(&slpque[i]);
352}
353
354/*
355 * General sleep call.  Suspends the current process until a wakeup is
356 * performed on the specified identifier.  The process will then be made
357 * runnable with the specified priority.  Sleeps at most timo/hz seconds
358 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
359 * before and after sleeping, else signals are not checked.  Returns 0 if
360 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
361 * signal needs to be delivered, ERESTART is returned if the current system
362 * call should be restarted if possible, and EINTR is returned if the system
363 * call should be interrupted by the signal (return EINTR).
364 *
365 * The mutex argument is exited before the caller is suspended, and
366 * entered before msleep returns.  If priority includes the PDROP
367 * flag the mutex is not entered before returning.
368 */
369int
370msleep(ident, mtx, priority, wmesg, timo)
371	void *ident;
372	struct mtx *mtx;
373	int priority, timo;
374	const char *wmesg;
375{
376	struct proc *p = curproc;
377	int sig, catch = priority & PCATCH;
378	int rval = 0;
379	WITNESS_SAVE_DECL(mtx);
380
381	KASSERT(ident == &proc0 ||	/* XXX: swapper */
382	    timo != 0 ||		/* XXX: we might still miss a wakeup */
383	    mtx_owned(&Giant) || mtx != NULL,
384	    ("indefinite sleep without mutex, wmesg: \"%s\" ident: %p",
385	     wmesg, ident));
386	if (mtx_owned(&vm_mtx) && mtx != &vm_mtx)
387		panic("sleeping with vm_mtx held.");
388#ifdef KTRACE
389	if (p && KTRPOINT(p, KTR_CSW))
390		ktrcsw(p->p_tracep, 1, 0);
391#endif
392	WITNESS_SLEEP(0, &mtx->mtx_object);
393	mtx_lock_spin(&sched_lock);
394	if (cold || panicstr) {
395		/*
396		 * After a panic, or during autoconfiguration,
397		 * just give interrupts a chance, then just return;
398		 * don't run any other procs or panic below,
399		 * in case this is the idle process and already asleep.
400		 */
401		if (mtx != NULL && priority & PDROP)
402			mtx_unlock_flags(mtx, MTX_NOSWITCH);
403		mtx_unlock_spin(&sched_lock);
404		return (0);
405	}
406
407	DROP_GIANT_NOSWITCH();
408
409	if (mtx != NULL) {
410		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
411		WITNESS_SAVE(&mtx->mtx_object, mtx);
412		mtx_unlock_flags(mtx, MTX_NOSWITCH);
413		if (priority & PDROP)
414			mtx = NULL;
415	}
416
417	KASSERT(p != NULL, ("msleep1"));
418	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
419	/*
420	 * Process may be sitting on a slpque if asleep() was called, remove
421	 * it before re-adding.
422	 */
423	if (p->p_wchan != NULL)
424		unsleep(p);
425
426	p->p_wchan = ident;
427	p->p_wmesg = wmesg;
428	p->p_slptime = 0;
429	p->p_pri.pri_level = priority & PRIMASK;
430	CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
431		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
432	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
433	if (timo)
434		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
435	/*
436	 * We put ourselves on the sleep queue and start our timeout
437	 * before calling CURSIG, as we could stop there, and a wakeup
438	 * or a SIGCONT (or both) could occur while we were stopped.
439	 * A SIGCONT would cause us to be marked as SSLEEP
440	 * without resuming us, thus we must be ready for sleep
441	 * when CURSIG is called.  If the wakeup happens while we're
442	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
443	 */
444	if (catch) {
445		CTR4(KTR_PROC,
446		        "msleep caught: proc %p (pid %d, %s), schedlock %p",
447			p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
448		p->p_sflag |= PS_SINTR;
449		mtx_unlock_spin(&sched_lock);
450		if ((sig = CURSIG(p))) {
451			mtx_lock_spin(&sched_lock);
452			if (p->p_wchan)
453				unsleep(p);
454			p->p_stat = SRUN;
455			goto resume;
456		}
457		mtx_lock_spin(&sched_lock);
458		if (p->p_wchan == NULL) {
459			catch = 0;
460			goto resume;
461		}
462	} else
463		sig = 0;
464	p->p_stat = SSLEEP;
465	p->p_stats->p_ru.ru_nvcsw++;
466	mi_switch();
467	CTR4(KTR_PROC,
468	        "msleep resume: proc %p (pid %d, %s), schedlock %p",
469		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
470resume:
471	p->p_sflag &= ~PS_SINTR;
472	if (p->p_sflag & PS_TIMEOUT) {
473		p->p_sflag &= ~PS_TIMEOUT;
474		if (sig == 0) {
475#ifdef KTRACE
476			if (KTRPOINT(p, KTR_CSW))
477				ktrcsw(p->p_tracep, 0, 0);
478#endif
479			rval = EWOULDBLOCK;
480			mtx_unlock_spin(&sched_lock);
481			goto out;
482		}
483	} else if (timo)
484		callout_stop(&p->p_slpcallout);
485	mtx_unlock_spin(&sched_lock);
486
487	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
488#ifdef KTRACE
489		if (KTRPOINT(p, KTR_CSW))
490			ktrcsw(p->p_tracep, 0, 0);
491#endif
492		PROC_LOCK(p);
493		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
494			rval = EINTR;
495		else
496			rval = ERESTART;
497		PROC_UNLOCK(p);
498		goto out;
499	}
500out:
501#ifdef KTRACE
502	if (KTRPOINT(p, KTR_CSW))
503		ktrcsw(p->p_tracep, 0, 0);
504#endif
505	PICKUP_GIANT();
506	if (mtx != NULL) {
507		mtx_lock(mtx);
508		WITNESS_RESTORE(&mtx->mtx_object, mtx);
509	}
510	return (rval);
511}
512
513/*
514 * asleep() - async sleep call.  Place process on wait queue and return
515 * immediately without blocking.  The process stays runnable until mawait()
516 * is called.  If ident is NULL, remove process from wait queue if it is still
517 * on one.
518 *
519 * Only the most recent sleep condition is effective when making successive
520 * calls to asleep() or when calling msleep().
521 *
522 * The timeout, if any, is not initiated until mawait() is called.  The sleep
523 * priority, signal, and timeout is specified in the asleep() call but may be
524 * overriden in the mawait() call.
525 *
526 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
527 */
528
529int
530asleep(void *ident, int priority, const char *wmesg, int timo)
531{
532	struct proc *p = curproc;
533	int s;
534
535	/*
536	 * obtain sched_lock while manipulating sleep structures and slpque.
537	 *
538	 * Remove preexisting wait condition (if any) and place process
539	 * on appropriate slpque, but do not put process to sleep.
540	 */
541
542	s = splhigh();
543	mtx_lock_spin(&sched_lock);
544
545	if (p->p_wchan != NULL)
546		unsleep(p);
547
548	if (ident) {
549		p->p_wchan = ident;
550		p->p_wmesg = wmesg;
551		p->p_slptime = 0;
552		p->p_asleep.as_priority = priority;
553		p->p_asleep.as_timo = timo;
554		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
555	}
556
557	mtx_unlock_spin(&sched_lock);
558	splx(s);
559
560	return(0);
561}
562
563/*
564 * mawait() - wait for async condition to occur.   The process blocks until
565 * wakeup() is called on the most recent asleep() address.  If wakeup is called
566 * prior to mawait(), mawait() winds up being a NOP.
567 *
568 * If mawait() is called more then once (without an intervening asleep() call),
569 * mawait() is still effectively a NOP but it calls mi_switch() to give other
570 * processes some cpu before returning.  The process is left runnable.
571 *
572 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
573 */
574
575int
576mawait(struct mtx *mtx, int priority, int timo)
577{
578	struct proc *p = curproc;
579	int rval = 0;
580	int s;
581	WITNESS_SAVE_DECL(mtx);
582
583	WITNESS_SLEEP(0, &mtx->mtx_object);
584	mtx_lock_spin(&sched_lock);
585	DROP_GIANT_NOSWITCH();
586	if (mtx != NULL) {
587		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
588		WITNESS_SAVE(&mtx->mtx_object, mtx);
589		mtx_unlock_flags(mtx, MTX_NOSWITCH);
590		if (priority & PDROP)
591			mtx = NULL;
592	}
593
594	s = splhigh();
595
596	if (p->p_wchan != NULL) {
597		int sig;
598		int catch;
599
600		/*
601		 * The call to mawait() can override defaults specified in
602		 * the original asleep().
603		 */
604		if (priority < 0)
605			priority = p->p_asleep.as_priority;
606		if (timo < 0)
607			timo = p->p_asleep.as_timo;
608
609		/*
610		 * Install timeout
611		 */
612
613		if (timo)
614			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
615
616		sig = 0;
617		catch = priority & PCATCH;
618
619		if (catch) {
620			p->p_sflag |= PS_SINTR;
621			mtx_unlock_spin(&sched_lock);
622			if ((sig = CURSIG(p))) {
623				mtx_lock_spin(&sched_lock);
624				if (p->p_wchan)
625					unsleep(p);
626				p->p_stat = SRUN;
627				goto resume;
628			}
629			mtx_lock_spin(&sched_lock);
630			if (p->p_wchan == NULL) {
631				catch = 0;
632				goto resume;
633			}
634		}
635		p->p_stat = SSLEEP;
636		p->p_stats->p_ru.ru_nvcsw++;
637		mi_switch();
638resume:
639
640		splx(s);
641		p->p_sflag &= ~PS_SINTR;
642		if (p->p_sflag & PS_TIMEOUT) {
643			p->p_sflag &= ~PS_TIMEOUT;
644			if (sig == 0) {
645#ifdef KTRACE
646				if (KTRPOINT(p, KTR_CSW))
647					ktrcsw(p->p_tracep, 0, 0);
648#endif
649				rval = EWOULDBLOCK;
650				mtx_unlock_spin(&sched_lock);
651				goto out;
652			}
653		} else if (timo)
654			callout_stop(&p->p_slpcallout);
655		mtx_unlock_spin(&sched_lock);
656
657		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
658#ifdef KTRACE
659			if (KTRPOINT(p, KTR_CSW))
660				ktrcsw(p->p_tracep, 0, 0);
661#endif
662			PROC_LOCK(p);
663			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
664				rval = EINTR;
665			else
666				rval = ERESTART;
667			PROC_UNLOCK(p);
668			goto out;
669		}
670#ifdef KTRACE
671		if (KTRPOINT(p, KTR_CSW))
672			ktrcsw(p->p_tracep, 0, 0);
673#endif
674	} else {
675		/*
676		 * If as_priority is 0, mawait() has been called without an
677		 * intervening asleep().  We are still effectively a NOP,
678		 * but we call mi_switch() for safety.
679		 */
680
681		if (p->p_asleep.as_priority == 0) {
682			p->p_stats->p_ru.ru_nvcsw++;
683			mi_switch();
684		}
685		mtx_unlock_spin(&sched_lock);
686		splx(s);
687	}
688
689	/*
690	 * clear p_asleep.as_priority as an indication that mawait() has been
691	 * called.  If mawait() is called again without an intervening asleep(),
692	 * mawait() is still effectively a NOP but the above mi_switch() code
693	 * is triggered as a safety.
694	 */
695	p->p_asleep.as_priority = 0;
696
697out:
698	PICKUP_GIANT();
699	if (mtx != NULL) {
700		mtx_lock(mtx);
701		WITNESS_RESTORE(&mtx->mtx_object, mtx);
702	}
703	return (rval);
704}
705
706/*
707 * Implement timeout for msleep or asleep()/mawait()
708 *
709 * If process hasn't been awakened (wchan non-zero),
710 * set timeout flag and undo the sleep.  If proc
711 * is stopped, just unsleep so it will remain stopped.
712 * MP-safe, called without the Giant mutex.
713 */
714static void
715endtsleep(arg)
716	void *arg;
717{
718	register struct proc *p;
719	int s;
720
721	p = (struct proc *)arg;
722	CTR4(KTR_PROC,
723	        "endtsleep: proc %p (pid %d, %s), schedlock %p",
724		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
725	s = splhigh();
726	mtx_lock_spin(&sched_lock);
727	if (p->p_wchan) {
728		if (p->p_stat == SSLEEP)
729			setrunnable(p);
730		else
731			unsleep(p);
732		p->p_sflag |= PS_TIMEOUT;
733	}
734	mtx_unlock_spin(&sched_lock);
735	splx(s);
736}
737
738/*
739 * Remove a process from its wait queue
740 */
741void
742unsleep(p)
743	register struct proc *p;
744{
745	int s;
746
747	s = splhigh();
748	mtx_lock_spin(&sched_lock);
749	if (p->p_wchan) {
750		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
751		p->p_wchan = NULL;
752	}
753	mtx_unlock_spin(&sched_lock);
754	splx(s);
755}
756
757/*
758 * Make all processes sleeping on the specified identifier runnable.
759 */
760void
761wakeup(ident)
762	register void *ident;
763{
764	register struct slpquehead *qp;
765	register struct proc *p;
766	int s;
767
768	s = splhigh();
769	mtx_lock_spin(&sched_lock);
770	qp = &slpque[LOOKUP(ident)];
771restart:
772	TAILQ_FOREACH(p, qp, p_slpq) {
773		if (p->p_wchan == ident) {
774			TAILQ_REMOVE(qp, p, p_slpq);
775			p->p_wchan = NULL;
776			if (p->p_stat == SSLEEP) {
777				/* OPTIMIZED EXPANSION OF setrunnable(p); */
778				CTR4(KTR_PROC,
779				        "wakeup: proc %p (pid %d, %s), schedlock %p",
780					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
781				if (p->p_slptime > 1)
782					updatepri(p);
783				p->p_slptime = 0;
784				p->p_stat = SRUN;
785				if (p->p_sflag & PS_INMEM) {
786					setrunqueue(p);
787					maybe_resched(p);
788				} else {
789					p->p_sflag |= PS_SWAPINREQ;
790					wakeup((caddr_t)&proc0);
791				}
792				/* END INLINE EXPANSION */
793				goto restart;
794			}
795		}
796	}
797	mtx_unlock_spin(&sched_lock);
798	splx(s);
799}
800
801/*
802 * Make a process sleeping on the specified identifier runnable.
803 * May wake more than one process if a target process is currently
804 * swapped out.
805 */
806void
807wakeup_one(ident)
808	register void *ident;
809{
810	register struct slpquehead *qp;
811	register struct proc *p;
812	int s;
813
814	s = splhigh();
815	mtx_lock_spin(&sched_lock);
816	qp = &slpque[LOOKUP(ident)];
817
818	TAILQ_FOREACH(p, qp, p_slpq) {
819		if (p->p_wchan == ident) {
820			TAILQ_REMOVE(qp, p, p_slpq);
821			p->p_wchan = NULL;
822			if (p->p_stat == SSLEEP) {
823				/* OPTIMIZED EXPANSION OF setrunnable(p); */
824				CTR4(KTR_PROC,
825				        "wakeup1: proc %p (pid %d, %s), schedlock %p",
826					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
827				if (p->p_slptime > 1)
828					updatepri(p);
829				p->p_slptime = 0;
830				p->p_stat = SRUN;
831				if (p->p_sflag & PS_INMEM) {
832					setrunqueue(p);
833					maybe_resched(p);
834					break;
835				} else {
836					p->p_sflag |= PS_SWAPINREQ;
837					wakeup((caddr_t)&proc0);
838				}
839				/* END INLINE EXPANSION */
840			}
841		}
842	}
843	mtx_unlock_spin(&sched_lock);
844	splx(s);
845}
846
847/*
848 * The machine independent parts of mi_switch().
849 * Must be called at splstatclock() or higher.
850 */
851void
852mi_switch()
853{
854	struct timeval new_switchtime;
855	register struct proc *p = curproc;	/* XXX */
856#if 0
857	register struct rlimit *rlim;
858#endif
859	u_int sched_nest;
860
861	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
862
863	/*
864	 * Compute the amount of time during which the current
865	 * process was running, and add that to its total so far.
866	 */
867	microuptime(&new_switchtime);
868	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
869#if 0
870		/* XXX: This doesn't play well with sched_lock right now. */
871		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
872		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
873		    new_switchtime.tv_sec, new_switchtime.tv_usec);
874#endif
875		new_switchtime = PCPU_GET(switchtime);
876	} else {
877		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
878		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
879		    (int64_t)1000000;
880	}
881
882#if 0
883	/*
884	 * Check if the process exceeds its cpu resource allocation.
885	 * If over max, kill it.
886	 *
887	 * XXX drop sched_lock, pickup Giant
888	 */
889	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
890	    p->p_runtime > p->p_limit->p_cpulimit) {
891		rlim = &p->p_rlimit[RLIMIT_CPU];
892		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
893			mtx_unlock_spin(&sched_lock);
894			PROC_LOCK(p);
895			killproc(p, "exceeded maximum CPU limit");
896			mtx_lock_spin(&sched_lock);
897			PROC_UNLOCK_NOSWITCH(p);
898		} else {
899			mtx_unlock_spin(&sched_lock);
900			PROC_LOCK(p);
901			psignal(p, SIGXCPU);
902			mtx_lock_spin(&sched_lock);
903			PROC_UNLOCK_NOSWITCH(p);
904			if (rlim->rlim_cur < rlim->rlim_max) {
905				/* XXX: we should make a private copy */
906				rlim->rlim_cur += 5;
907			}
908		}
909	}
910#endif
911
912	/*
913	 * Pick a new current process and record its start time.
914	 */
915	cnt.v_swtch++;
916	PCPU_SET(switchtime, new_switchtime);
917	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
918		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
919	sched_nest = sched_lock.mtx_recurse;
920	curproc->p_lastcpu = curproc->p_oncpu;
921	curproc->p_oncpu = NOCPU;
922	clear_resched(curproc);
923	cpu_switch();
924	curproc->p_oncpu = PCPU_GET(cpuid);
925	sched_lock.mtx_recurse = sched_nest;
926	sched_lock.mtx_lock = (uintptr_t)curproc;
927	CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
928		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
929	if (PCPU_GET(switchtime.tv_sec) == 0)
930		microuptime(PCPU_PTR(switchtime));
931	PCPU_SET(switchticks, ticks);
932}
933
934/*
935 * Change process state to be runnable,
936 * placing it on the run queue if it is in memory,
937 * and awakening the swapper if it isn't in memory.
938 */
939void
940setrunnable(p)
941	register struct proc *p;
942{
943	register int s;
944
945	s = splhigh();
946	mtx_lock_spin(&sched_lock);
947	switch (p->p_stat) {
948	case 0:
949	case SRUN:
950	case SZOMB:
951	case SWAIT:
952	default:
953		panic("setrunnable");
954	case SSTOP:
955	case SSLEEP:			/* e.g. when sending signals */
956		if (p->p_sflag & PS_CVWAITQ)
957			cv_waitq_remove(p);
958		else
959			unsleep(p);
960		break;
961
962	case SIDL:
963		break;
964	}
965	p->p_stat = SRUN;
966	if (p->p_sflag & PS_INMEM)
967		setrunqueue(p);
968	splx(s);
969	if (p->p_slptime > 1)
970		updatepri(p);
971	p->p_slptime = 0;
972	if ((p->p_sflag & PS_INMEM) == 0) {
973		p->p_sflag |= PS_SWAPINREQ;
974		wakeup((caddr_t)&proc0);
975	}
976	else
977		maybe_resched(p);
978	mtx_unlock_spin(&sched_lock);
979}
980
981/*
982 * Compute the priority of a process when running in user mode.
983 * Arrange to reschedule if the resulting priority is better
984 * than that of the current process.
985 */
986void
987resetpriority(p)
988	register struct proc *p;
989{
990	register unsigned int newpriority;
991
992	mtx_lock_spin(&sched_lock);
993	if (p->p_pri.pri_class == PRI_TIMESHARE) {
994		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
995		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
996		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
997		    PRI_MAX_TIMESHARE);
998		p->p_pri.pri_user = newpriority;
999	}
1000	maybe_resched(p);
1001	mtx_unlock_spin(&sched_lock);
1002}
1003
1004/* ARGSUSED */
1005static void
1006sched_setup(dummy)
1007	void *dummy;
1008{
1009
1010	callout_init(&schedcpu_callout, 1);
1011	callout_init(&roundrobin_callout, 0);
1012
1013	/* Kick off timeout driven events by calling first time. */
1014	roundrobin(NULL);
1015	schedcpu(NULL);
1016}
1017
1018/*
1019 * We adjust the priority of the current process.  The priority of
1020 * a process gets worse as it accumulates CPU time.  The cpu usage
1021 * estimator (p_estcpu) is increased here.  resetpriority() will
1022 * compute a different priority each time p_estcpu increases by
1023 * INVERSE_ESTCPU_WEIGHT
1024 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1025 * quite quickly when the process is running (linearly), and decays
1026 * away exponentially, at a rate which is proportionally slower when
1027 * the system is busy.  The basic principle is that the system will
1028 * 90% forget that the process used a lot of CPU time in 5 * loadav
1029 * seconds.  This causes the system to favor processes which haven't
1030 * run much recently, and to round-robin among other processes.
1031 */
1032void
1033schedclock(p)
1034	struct proc *p;
1035{
1036
1037	p->p_cpticks++;
1038	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1039	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1040		resetpriority(p);
1041		if (p->p_pri.pri_level >= PUSER)
1042			p->p_pri.pri_level = p->p_pri.pri_user;
1043	}
1044}
1045
1046/*
1047 * General purpose yield system call
1048 */
1049int
1050yield(struct proc *p, struct yield_args *uap)
1051{
1052	int s;
1053
1054	p->p_retval[0] = 0;
1055
1056	s = splhigh();
1057	mtx_lock_spin(&sched_lock);
1058	DROP_GIANT_NOSWITCH();
1059	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1060	setrunqueue(p);
1061	p->p_stats->p_ru.ru_nvcsw++;
1062	mi_switch();
1063	mtx_unlock_spin(&sched_lock);
1064	PICKUP_GIANT();
1065	splx(s);
1066
1067	return (0);
1068}
1069