kern_synch.c revision 74927
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 74927 2001-03-28 11:52:56Z jhb $
40 */
41
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/condvar.h>
47#include <sys/ipl.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysproto.h>
58#include <sys/vmmeter.h>
59#include <vm/vm.h>
60#include <vm/vm_extern.h>
61#ifdef KTRACE
62#include <sys/uio.h>
63#include <sys/ktrace.h>
64#endif
65
66#include <machine/cpu.h>
67#include <machine/smp.h>
68
69static void sched_setup __P((void *dummy));
70SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
71
72int	hogticks;
73int	lbolt;
74int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
75
76static struct callout schedcpu_callout;
77static struct callout roundrobin_callout;
78
79static void	endtsleep __P((void *));
80static void	roundrobin __P((void *arg));
81static void	schedcpu __P((void *arg));
82
83static int
84sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
85{
86	int error, new_val;
87
88	new_val = sched_quantum * tick;
89	error = sysctl_handle_int(oidp, &new_val, 0, req);
90        if (error != 0 || req->newptr == NULL)
91		return (error);
92	if (new_val < tick)
93		return (EINVAL);
94	sched_quantum = new_val / tick;
95	hogticks = 2 * sched_quantum;
96	return (0);
97}
98
99SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
100	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
101
102/*
103 * Arrange to reschedule if necessary, taking the priorities and
104 * schedulers into account.
105 */
106void
107maybe_resched(p)
108	struct proc *p;
109{
110
111	mtx_assert(&sched_lock, MA_OWNED);
112	if (p->p_pri.pri_level < curproc->p_pri.pri_level)
113		need_resched();
114}
115
116int
117roundrobin_interval(void)
118{
119	return (sched_quantum);
120}
121
122/*
123 * Force switch among equal priority processes every 100ms.
124 */
125/* ARGSUSED */
126static void
127roundrobin(arg)
128	void *arg;
129{
130
131	mtx_lock_spin(&sched_lock);
132	need_resched();
133	mtx_unlock_spin(&sched_lock);
134#ifdef SMP
135	forward_roundrobin();
136#endif
137
138	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
139}
140
141/*
142 * Constants for digital decay and forget:
143 *	90% of (p_estcpu) usage in 5 * loadav time
144 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
145 *          Note that, as ps(1) mentions, this can let percentages
146 *          total over 100% (I've seen 137.9% for 3 processes).
147 *
148 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
149 *
150 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
151 * That is, the system wants to compute a value of decay such
152 * that the following for loop:
153 * 	for (i = 0; i < (5 * loadavg); i++)
154 * 		p_estcpu *= decay;
155 * will compute
156 * 	p_estcpu *= 0.1;
157 * for all values of loadavg:
158 *
159 * Mathematically this loop can be expressed by saying:
160 * 	decay ** (5 * loadavg) ~= .1
161 *
162 * The system computes decay as:
163 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
164 *
165 * We wish to prove that the system's computation of decay
166 * will always fulfill the equation:
167 * 	decay ** (5 * loadavg) ~= .1
168 *
169 * If we compute b as:
170 * 	b = 2 * loadavg
171 * then
172 * 	decay = b / (b + 1)
173 *
174 * We now need to prove two things:
175 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
176 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
177 *
178 * Facts:
179 *         For x close to zero, exp(x) =~ 1 + x, since
180 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
181 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
182 *         For x close to zero, ln(1+x) =~ x, since
183 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
184 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
185 *         ln(.1) =~ -2.30
186 *
187 * Proof of (1):
188 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
189 *	solving for factor,
190 *      ln(factor) =~ (-2.30/5*loadav), or
191 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
192 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
193 *
194 * Proof of (2):
195 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
196 *	solving for power,
197 *      power*ln(b/(b+1)) =~ -2.30, or
198 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
199 *
200 * Actual power values for the implemented algorithm are as follows:
201 *      loadav: 1       2       3       4
202 *      power:  5.68    10.32   14.94   19.55
203 */
204
205/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
206#define	loadfactor(loadav)	(2 * (loadav))
207#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
208
209/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
210static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
211SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
212
213/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
214static int	fscale __unused = FSCALE;
215SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
216
217/*
218 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
219 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
220 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
221 *
222 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
223 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
224 *
225 * If you don't want to bother with the faster/more-accurate formula, you
226 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
227 * (more general) method of calculating the %age of CPU used by a process.
228 */
229#define	CCPU_SHIFT	11
230
231/*
232 * Recompute process priorities, every hz ticks.
233 * MP-safe, called without the Giant mutex.
234 */
235/* ARGSUSED */
236static void
237schedcpu(arg)
238	void *arg;
239{
240	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
241	register struct proc *p;
242	register int realstathz, s;
243
244	realstathz = stathz ? stathz : hz;
245	sx_slock(&allproc_lock);
246	LIST_FOREACH(p, &allproc, p_list) {
247		/*
248		 * Increment time in/out of memory and sleep time
249		 * (if sleeping).  We ignore overflow; with 16-bit int's
250		 * (remember them?) overflow takes 45 days.
251		if (p->p_stat == SWAIT)
252			continue;
253		 */
254		mtx_lock_spin(&sched_lock);
255		p->p_swtime++;
256		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
257			p->p_slptime++;
258		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
259		/*
260		 * If the process has slept the entire second,
261		 * stop recalculating its priority until it wakes up.
262		 */
263		if (p->p_slptime > 1) {
264			mtx_unlock_spin(&sched_lock);
265			continue;
266		}
267
268		/*
269		 * prevent state changes and protect run queue
270		 */
271		s = splhigh();
272
273		/*
274		 * p_pctcpu is only for ps.
275		 */
276#if	(FSHIFT >= CCPU_SHIFT)
277		p->p_pctcpu += (realstathz == 100)?
278			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
279                	100 * (((fixpt_t) p->p_cpticks)
280				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
281#else
282		p->p_pctcpu += ((FSCALE - ccpu) *
283			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
284#endif
285		p->p_cpticks = 0;
286		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
287		resetpriority(p);
288		if (p->p_pri.pri_level >= PUSER) {
289			if ((p != curproc) &&
290#ifdef SMP
291			    p->p_oncpu == NOCPU && 	/* idle */
292#endif
293			    p->p_stat == SRUN &&
294			    (p->p_sflag & PS_INMEM) &&
295			    (p->p_pri.pri_level / RQ_PPQ) !=
296			    (p->p_pri.pri_user / RQ_PPQ)) {
297				remrunqueue(p);
298				p->p_pri.pri_level = p->p_pri.pri_user;
299				setrunqueue(p);
300			} else
301				p->p_pri.pri_level = p->p_pri.pri_user;
302		}
303		mtx_unlock_spin(&sched_lock);
304		splx(s);
305	}
306	sx_sunlock(&allproc_lock);
307	vmmeter();
308	wakeup((caddr_t)&lbolt);
309	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
310}
311
312/*
313 * Recalculate the priority of a process after it has slept for a while.
314 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
315 * least six times the loadfactor will decay p_estcpu to zero.
316 */
317void
318updatepri(p)
319	register struct proc *p;
320{
321	register unsigned int newcpu = p->p_estcpu;
322	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
323
324	if (p->p_slptime > 5 * loadfac)
325		p->p_estcpu = 0;
326	else {
327		p->p_slptime--;	/* the first time was done in schedcpu */
328		while (newcpu && --p->p_slptime)
329			newcpu = decay_cpu(loadfac, newcpu);
330		p->p_estcpu = newcpu;
331	}
332	resetpriority(p);
333}
334
335/*
336 * We're only looking at 7 bits of the address; everything is
337 * aligned to 4, lots of things are aligned to greater powers
338 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
339 */
340#define TABLESIZE	128
341static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
342#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
343
344void
345sleepinit(void)
346{
347	int i;
348
349	sched_quantum = hz/10;
350	hogticks = 2 * sched_quantum;
351	for (i = 0; i < TABLESIZE; i++)
352		TAILQ_INIT(&slpque[i]);
353}
354
355/*
356 * General sleep call.  Suspends the current process until a wakeup is
357 * performed on the specified identifier.  The process will then be made
358 * runnable with the specified priority.  Sleeps at most timo/hz seconds
359 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
360 * before and after sleeping, else signals are not checked.  Returns 0 if
361 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
362 * signal needs to be delivered, ERESTART is returned if the current system
363 * call should be restarted if possible, and EINTR is returned if the system
364 * call should be interrupted by the signal (return EINTR).
365 *
366 * The mutex argument is exited before the caller is suspended, and
367 * entered before msleep returns.  If priority includes the PDROP
368 * flag the mutex is not entered before returning.
369 */
370int
371msleep(ident, mtx, priority, wmesg, timo)
372	void *ident;
373	struct mtx *mtx;
374	int priority, timo;
375	const char *wmesg;
376{
377	struct proc *p = curproc;
378	int sig, catch = priority & PCATCH;
379	int rval = 0;
380	WITNESS_SAVE_DECL(mtx);
381
382#ifdef KTRACE
383	if (p && KTRPOINT(p, KTR_CSW))
384		ktrcsw(p->p_tracep, 1, 0);
385#endif
386	WITNESS_SLEEP(0, &mtx->mtx_object);
387	mtx_lock_spin(&sched_lock);
388	if (cold || panicstr) {
389		/*
390		 * After a panic, or during autoconfiguration,
391		 * just give interrupts a chance, then just return;
392		 * don't run any other procs or panic below,
393		 * in case this is the idle process and already asleep.
394		 */
395		if (mtx != NULL && priority & PDROP)
396			mtx_unlock_flags(mtx, MTX_NOSWITCH);
397		mtx_unlock_spin(&sched_lock);
398		return (0);
399	}
400
401	DROP_GIANT_NOSWITCH();
402
403	if (mtx != NULL) {
404		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
405		WITNESS_SAVE(&mtx->mtx_object, mtx);
406		mtx_unlock_flags(mtx, MTX_NOSWITCH);
407		if (priority & PDROP)
408			mtx = NULL;
409	}
410
411	KASSERT(p != NULL, ("msleep1"));
412	KASSERT(ident != NULL && p->p_stat == SRUN, ("msleep"));
413	/*
414	 * Process may be sitting on a slpque if asleep() was called, remove
415	 * it before re-adding.
416	 */
417	if (p->p_wchan != NULL)
418		unsleep(p);
419
420	p->p_wchan = ident;
421	p->p_wmesg = wmesg;
422	p->p_slptime = 0;
423	p->p_pri.pri_level = priority & PRIMASK;
424	CTR4(KTR_PROC, "msleep: proc %p (pid %d, %s), schedlock %p",
425		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
426	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
427	if (timo)
428		callout_reset(&p->p_slpcallout, timo, endtsleep, p);
429	/*
430	 * We put ourselves on the sleep queue and start our timeout
431	 * before calling CURSIG, as we could stop there, and a wakeup
432	 * or a SIGCONT (or both) could occur while we were stopped.
433	 * A SIGCONT would cause us to be marked as SSLEEP
434	 * without resuming us, thus we must be ready for sleep
435	 * when CURSIG is called.  If the wakeup happens while we're
436	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
437	 */
438	if (catch) {
439		CTR4(KTR_PROC,
440		        "msleep caught: proc %p (pid %d, %s), schedlock %p",
441			p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
442		p->p_sflag |= PS_SINTR;
443		mtx_unlock_spin(&sched_lock);
444		if ((sig = CURSIG(p))) {
445			mtx_lock_spin(&sched_lock);
446			if (p->p_wchan)
447				unsleep(p);
448			p->p_stat = SRUN;
449			goto resume;
450		}
451		mtx_lock_spin(&sched_lock);
452		if (p->p_wchan == NULL) {
453			catch = 0;
454			goto resume;
455		}
456	} else
457		sig = 0;
458	p->p_stat = SSLEEP;
459	p->p_stats->p_ru.ru_nvcsw++;
460	mi_switch();
461	CTR4(KTR_PROC,
462	        "msleep resume: proc %p (pid %d, %s), schedlock %p",
463		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
464resume:
465	p->p_sflag &= ~PS_SINTR;
466	if (p->p_sflag & PS_TIMEOUT) {
467		p->p_sflag &= ~PS_TIMEOUT;
468		if (sig == 0) {
469#ifdef KTRACE
470			if (KTRPOINT(p, KTR_CSW))
471				ktrcsw(p->p_tracep, 0, 0);
472#endif
473			rval = EWOULDBLOCK;
474			mtx_unlock_spin(&sched_lock);
475			goto out;
476		}
477	} else if (timo)
478		callout_stop(&p->p_slpcallout);
479	mtx_unlock_spin(&sched_lock);
480
481	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
482#ifdef KTRACE
483		if (KTRPOINT(p, KTR_CSW))
484			ktrcsw(p->p_tracep, 0, 0);
485#endif
486		PROC_LOCK(p);
487		if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
488			rval = EINTR;
489		else
490			rval = ERESTART;
491		PROC_UNLOCK(p);
492		goto out;
493	}
494out:
495#ifdef KTRACE
496	if (KTRPOINT(p, KTR_CSW))
497		ktrcsw(p->p_tracep, 0, 0);
498#endif
499	PICKUP_GIANT();
500	if (mtx != NULL) {
501		mtx_lock(mtx);
502		WITNESS_RESTORE(&mtx->mtx_object, mtx);
503	}
504	return (rval);
505}
506
507/*
508 * asleep() - async sleep call.  Place process on wait queue and return
509 * immediately without blocking.  The process stays runnable until mawait()
510 * is called.  If ident is NULL, remove process from wait queue if it is still
511 * on one.
512 *
513 * Only the most recent sleep condition is effective when making successive
514 * calls to asleep() or when calling msleep().
515 *
516 * The timeout, if any, is not initiated until mawait() is called.  The sleep
517 * priority, signal, and timeout is specified in the asleep() call but may be
518 * overriden in the mawait() call.
519 *
520 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
521 */
522
523int
524asleep(void *ident, int priority, const char *wmesg, int timo)
525{
526	struct proc *p = curproc;
527	int s;
528
529	/*
530	 * obtain sched_lock while manipulating sleep structures and slpque.
531	 *
532	 * Remove preexisting wait condition (if any) and place process
533	 * on appropriate slpque, but do not put process to sleep.
534	 */
535
536	s = splhigh();
537	mtx_lock_spin(&sched_lock);
538
539	if (p->p_wchan != NULL)
540		unsleep(p);
541
542	if (ident) {
543		p->p_wchan = ident;
544		p->p_wmesg = wmesg;
545		p->p_slptime = 0;
546		p->p_asleep.as_priority = priority;
547		p->p_asleep.as_timo = timo;
548		TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_slpq);
549	}
550
551	mtx_unlock_spin(&sched_lock);
552	splx(s);
553
554	return(0);
555}
556
557/*
558 * mawait() - wait for async condition to occur.   The process blocks until
559 * wakeup() is called on the most recent asleep() address.  If wakeup is called
560 * prior to mawait(), mawait() winds up being a NOP.
561 *
562 * If mawait() is called more then once (without an intervening asleep() call),
563 * mawait() is still effectively a NOP but it calls mi_switch() to give other
564 * processes some cpu before returning.  The process is left runnable.
565 *
566 * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
567 */
568
569int
570mawait(struct mtx *mtx, int priority, int timo)
571{
572	struct proc *p = curproc;
573	int rval = 0;
574	int s;
575	WITNESS_SAVE_DECL(mtx);
576
577	WITNESS_SLEEP(0, &mtx->mtx_object);
578	mtx_lock_spin(&sched_lock);
579	DROP_GIANT_NOSWITCH();
580	if (mtx != NULL) {
581		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
582		WITNESS_SAVE(&mtx->mtx_object, mtx);
583		mtx_unlock_flags(mtx, MTX_NOSWITCH);
584		if (priority & PDROP)
585			mtx = NULL;
586	}
587
588	s = splhigh();
589
590	if (p->p_wchan != NULL) {
591		int sig;
592		int catch;
593
594		/*
595		 * The call to mawait() can override defaults specified in
596		 * the original asleep().
597		 */
598		if (priority < 0)
599			priority = p->p_asleep.as_priority;
600		if (timo < 0)
601			timo = p->p_asleep.as_timo;
602
603		/*
604		 * Install timeout
605		 */
606
607		if (timo)
608			callout_reset(&p->p_slpcallout, timo, endtsleep, p);
609
610		sig = 0;
611		catch = priority & PCATCH;
612
613		if (catch) {
614			p->p_sflag |= PS_SINTR;
615			mtx_unlock_spin(&sched_lock);
616			if ((sig = CURSIG(p))) {
617				mtx_lock_spin(&sched_lock);
618				if (p->p_wchan)
619					unsleep(p);
620				p->p_stat = SRUN;
621				goto resume;
622			}
623			mtx_lock_spin(&sched_lock);
624			if (p->p_wchan == NULL) {
625				catch = 0;
626				goto resume;
627			}
628		}
629		p->p_stat = SSLEEP;
630		p->p_stats->p_ru.ru_nvcsw++;
631		mi_switch();
632resume:
633
634		splx(s);
635		p->p_sflag &= ~PS_SINTR;
636		if (p->p_sflag & PS_TIMEOUT) {
637			p->p_sflag &= ~PS_TIMEOUT;
638			if (sig == 0) {
639#ifdef KTRACE
640				if (KTRPOINT(p, KTR_CSW))
641					ktrcsw(p->p_tracep, 0, 0);
642#endif
643				rval = EWOULDBLOCK;
644				mtx_unlock_spin(&sched_lock);
645				goto out;
646			}
647		} else if (timo)
648			callout_stop(&p->p_slpcallout);
649		mtx_unlock_spin(&sched_lock);
650
651		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
652#ifdef KTRACE
653			if (KTRPOINT(p, KTR_CSW))
654				ktrcsw(p->p_tracep, 0, 0);
655#endif
656			PROC_LOCK(p);
657			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
658				rval = EINTR;
659			else
660				rval = ERESTART;
661			PROC_UNLOCK(p);
662			goto out;
663		}
664#ifdef KTRACE
665		if (KTRPOINT(p, KTR_CSW))
666			ktrcsw(p->p_tracep, 0, 0);
667#endif
668	} else {
669		/*
670		 * If as_priority is 0, mawait() has been called without an
671		 * intervening asleep().  We are still effectively a NOP,
672		 * but we call mi_switch() for safety.
673		 */
674
675		if (p->p_asleep.as_priority == 0) {
676			p->p_stats->p_ru.ru_nvcsw++;
677			mi_switch();
678		}
679		mtx_unlock_spin(&sched_lock);
680		splx(s);
681	}
682
683	/*
684	 * clear p_asleep.as_priority as an indication that mawait() has been
685	 * called.  If mawait() is called again without an intervening asleep(),
686	 * mawait() is still effectively a NOP but the above mi_switch() code
687	 * is triggered as a safety.
688	 */
689	p->p_asleep.as_priority = 0;
690
691out:
692	PICKUP_GIANT();
693	if (mtx != NULL) {
694		mtx_lock(mtx);
695		WITNESS_RESTORE(&mtx->mtx_object, mtx);
696	}
697	return (rval);
698}
699
700/*
701 * Implement timeout for msleep or asleep()/mawait()
702 *
703 * If process hasn't been awakened (wchan non-zero),
704 * set timeout flag and undo the sleep.  If proc
705 * is stopped, just unsleep so it will remain stopped.
706 * MP-safe, called without the Giant mutex.
707 */
708static void
709endtsleep(arg)
710	void *arg;
711{
712	register struct proc *p;
713	int s;
714
715	p = (struct proc *)arg;
716	CTR4(KTR_PROC,
717	        "endtsleep: proc %p (pid %d, %s), schedlock %p",
718		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
719	s = splhigh();
720	mtx_lock_spin(&sched_lock);
721	if (p->p_wchan) {
722		if (p->p_stat == SSLEEP)
723			setrunnable(p);
724		else
725			unsleep(p);
726		p->p_sflag |= PS_TIMEOUT;
727	}
728	mtx_unlock_spin(&sched_lock);
729	splx(s);
730}
731
732/*
733 * Remove a process from its wait queue
734 */
735void
736unsleep(p)
737	register struct proc *p;
738{
739	int s;
740
741	s = splhigh();
742	mtx_lock_spin(&sched_lock);
743	if (p->p_wchan) {
744		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_slpq);
745		p->p_wchan = NULL;
746	}
747	mtx_unlock_spin(&sched_lock);
748	splx(s);
749}
750
751/*
752 * Make all processes sleeping on the specified identifier runnable.
753 */
754void
755wakeup(ident)
756	register void *ident;
757{
758	register struct slpquehead *qp;
759	register struct proc *p;
760	int s;
761
762	s = splhigh();
763	mtx_lock_spin(&sched_lock);
764	qp = &slpque[LOOKUP(ident)];
765restart:
766	TAILQ_FOREACH(p, qp, p_slpq) {
767		if (p->p_wchan == ident) {
768			TAILQ_REMOVE(qp, p, p_slpq);
769			p->p_wchan = NULL;
770			if (p->p_stat == SSLEEP) {
771				/* OPTIMIZED EXPANSION OF setrunnable(p); */
772				CTR4(KTR_PROC,
773				        "wakeup: proc %p (pid %d, %s), schedlock %p",
774					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
775				if (p->p_slptime > 1)
776					updatepri(p);
777				p->p_slptime = 0;
778				p->p_stat = SRUN;
779				if (p->p_sflag & PS_INMEM) {
780					setrunqueue(p);
781					maybe_resched(p);
782				} else {
783					p->p_sflag |= PS_SWAPINREQ;
784					wakeup((caddr_t)&proc0);
785				}
786				/* END INLINE EXPANSION */
787				goto restart;
788			}
789		}
790	}
791	mtx_unlock_spin(&sched_lock);
792	splx(s);
793}
794
795/*
796 * Make a process sleeping on the specified identifier runnable.
797 * May wake more than one process if a target process is currently
798 * swapped out.
799 */
800void
801wakeup_one(ident)
802	register void *ident;
803{
804	register struct slpquehead *qp;
805	register struct proc *p;
806	int s;
807
808	s = splhigh();
809	mtx_lock_spin(&sched_lock);
810	qp = &slpque[LOOKUP(ident)];
811
812	TAILQ_FOREACH(p, qp, p_slpq) {
813		if (p->p_wchan == ident) {
814			TAILQ_REMOVE(qp, p, p_slpq);
815			p->p_wchan = NULL;
816			if (p->p_stat == SSLEEP) {
817				/* OPTIMIZED EXPANSION OF setrunnable(p); */
818				CTR4(KTR_PROC,
819				        "wakeup1: proc %p (pid %d, %s), schedlock %p",
820					p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
821				if (p->p_slptime > 1)
822					updatepri(p);
823				p->p_slptime = 0;
824				p->p_stat = SRUN;
825				if (p->p_sflag & PS_INMEM) {
826					setrunqueue(p);
827					maybe_resched(p);
828					break;
829				} else {
830					p->p_sflag |= PS_SWAPINREQ;
831					wakeup((caddr_t)&proc0);
832				}
833				/* END INLINE EXPANSION */
834			}
835		}
836	}
837	mtx_unlock_spin(&sched_lock);
838	splx(s);
839}
840
841/*
842 * The machine independent parts of mi_switch().
843 * Must be called at splstatclock() or higher.
844 */
845void
846mi_switch()
847{
848	struct timeval new_switchtime;
849	register struct proc *p = curproc;	/* XXX */
850#if 0
851	register struct rlimit *rlim;
852#endif
853	u_int sched_nest;
854
855	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
856
857	/*
858	 * Compute the amount of time during which the current
859	 * process was running, and add that to its total so far.
860	 */
861	microuptime(&new_switchtime);
862	if (timevalcmp(&new_switchtime, PCPU_PTR(switchtime), <)) {
863#if 0
864		/* XXX: This doesn't play well with sched_lock right now. */
865		printf("microuptime() went backwards (%ld.%06ld -> %ld.%06ld)\n",
866		    PCPU_GET(switchtime.tv_sec), PCPU_GET(switchtime.tv_usec),
867		    new_switchtime.tv_sec, new_switchtime.tv_usec);
868#endif
869		new_switchtime = PCPU_GET(switchtime);
870	} else {
871		p->p_runtime += (new_switchtime.tv_usec - PCPU_GET(switchtime.tv_usec)) +
872		    (new_switchtime.tv_sec - PCPU_GET(switchtime.tv_sec)) *
873		    (int64_t)1000000;
874	}
875
876#if 0
877	/*
878	 * Check if the process exceeds its cpu resource allocation.
879	 * If over max, kill it.
880	 *
881	 * XXX drop sched_lock, pickup Giant
882	 */
883	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
884	    p->p_runtime > p->p_limit->p_cpulimit) {
885		rlim = &p->p_rlimit[RLIMIT_CPU];
886		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
887			mtx_unlock_spin(&sched_lock);
888			killproc(p, "exceeded maximum CPU limit");
889			mtx_lock_spin(&sched_lock);
890		} else {
891			mtx_unlock_spin(&sched_lock);
892			PROC_LOCK(p);
893			psignal(p, SIGXCPU);
894			mtx_lock_spin(&sched_lock);
895			PROC_UNLOCK_NOSWITCH(p);
896			if (rlim->rlim_cur < rlim->rlim_max) {
897				/* XXX: we should make a private copy */
898				rlim->rlim_cur += 5;
899			}
900		}
901	}
902#endif
903
904	/*
905	 * Pick a new current process and record its start time.
906	 */
907	cnt.v_swtch++;
908	PCPU_SET(switchtime, new_switchtime);
909	CTR4(KTR_PROC, "mi_switch: old proc %p (pid %d, %s), schedlock %p",
910		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
911	sched_nest = sched_lock.mtx_recurse;
912	curproc->p_lastcpu = curproc->p_oncpu;
913	curproc->p_oncpu = NOCPU;
914	clear_resched();
915	cpu_switch();
916	curproc->p_oncpu = PCPU_GET(cpuid);
917	sched_lock.mtx_recurse = sched_nest;
918	sched_lock.mtx_lock = (uintptr_t)curproc;
919	CTR4(KTR_PROC, "mi_switch: new proc %p (pid %d, %s), schedlock %p",
920		p, p->p_pid, p->p_comm, (void *) sched_lock.mtx_lock);
921	if (PCPU_GET(switchtime.tv_sec) == 0)
922		microuptime(PCPU_PTR(switchtime));
923	PCPU_SET(switchticks, ticks);
924}
925
926/*
927 * Change process state to be runnable,
928 * placing it on the run queue if it is in memory,
929 * and awakening the swapper if it isn't in memory.
930 */
931void
932setrunnable(p)
933	register struct proc *p;
934{
935	register int s;
936
937	s = splhigh();
938	mtx_lock_spin(&sched_lock);
939	switch (p->p_stat) {
940	case 0:
941	case SRUN:
942	case SZOMB:
943	case SWAIT:
944	default:
945		panic("setrunnable");
946	case SSTOP:
947	case SSLEEP:			/* e.g. when sending signals */
948		if (p->p_sflag & PS_CVWAITQ)
949			cv_waitq_remove(p);
950		else
951			unsleep(p);
952		break;
953
954	case SIDL:
955		break;
956	}
957	p->p_stat = SRUN;
958	if (p->p_sflag & PS_INMEM)
959		setrunqueue(p);
960	splx(s);
961	if (p->p_slptime > 1)
962		updatepri(p);
963	p->p_slptime = 0;
964	if ((p->p_sflag & PS_INMEM) == 0) {
965		p->p_sflag |= PS_SWAPINREQ;
966		wakeup((caddr_t)&proc0);
967	}
968	else
969		maybe_resched(p);
970	mtx_unlock_spin(&sched_lock);
971}
972
973/*
974 * Compute the priority of a process when running in user mode.
975 * Arrange to reschedule if the resulting priority is better
976 * than that of the current process.
977 */
978void
979resetpriority(p)
980	register struct proc *p;
981{
982	register unsigned int newpriority;
983
984	mtx_lock_spin(&sched_lock);
985	if (p->p_pri.pri_class == PRI_TIMESHARE) {
986		newpriority = PUSER + p->p_estcpu / INVERSE_ESTCPU_WEIGHT +
987		    NICE_WEIGHT * (p->p_nice - PRIO_MIN);
988		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
989		    PRI_MAX_TIMESHARE);
990		p->p_pri.pri_user = newpriority;
991	}
992	maybe_resched(p);
993	mtx_unlock_spin(&sched_lock);
994}
995
996/* ARGSUSED */
997static void
998sched_setup(dummy)
999	void *dummy;
1000{
1001
1002	callout_init(&schedcpu_callout, 1);
1003	callout_init(&roundrobin_callout, 0);
1004
1005	/* Kick off timeout driven events by calling first time. */
1006	roundrobin(NULL);
1007	schedcpu(NULL);
1008}
1009
1010/*
1011 * We adjust the priority of the current process.  The priority of
1012 * a process gets worse as it accumulates CPU time.  The cpu usage
1013 * estimator (p_estcpu) is increased here.  resetpriority() will
1014 * compute a different priority each time p_estcpu increases by
1015 * INVERSE_ESTCPU_WEIGHT
1016 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1017 * quite quickly when the process is running (linearly), and decays
1018 * away exponentially, at a rate which is proportionally slower when
1019 * the system is busy.  The basic principle is that the system will
1020 * 90% forget that the process used a lot of CPU time in 5 * loadav
1021 * seconds.  This causes the system to favor processes which haven't
1022 * run much recently, and to round-robin among other processes.
1023 */
1024void
1025schedclock(p)
1026	struct proc *p;
1027{
1028
1029	p->p_cpticks++;
1030	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
1031	if ((p->p_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1032		resetpriority(p);
1033		if (p->p_pri.pri_level >= PUSER)
1034			p->p_pri.pri_level = p->p_pri.pri_user;
1035	}
1036}
1037
1038/*
1039 * General purpose yield system call
1040 */
1041int
1042yield(struct proc *p, struct yield_args *uap)
1043{
1044	int s;
1045
1046	p->p_retval[0] = 0;
1047
1048	s = splhigh();
1049	mtx_lock_spin(&sched_lock);
1050	DROP_GIANT_NOSWITCH();
1051	p->p_pri.pri_level = PRI_MAX_TIMESHARE;
1052	setrunqueue(p);
1053	p->p_stats->p_ru.ru_nvcsw++;
1054	mi_switch();
1055	mtx_unlock_spin(&sched_lock);
1056	PICKUP_GIANT();
1057	splx(s);
1058
1059	return (0);
1060}
1061